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Abstract: Studying loop corrections to inflationary perturbations, with particular empha-

sis on infrared factors, is important to understand the consistency of the inflationary theory,

its predictivity and to establish the existence of the slow-roll eternal inflation phenomena

and its recently found volume bound. In this paper we prove that the ζ correlation function

is time-independent at one-loop level in single clock inflation. While many of the one-loop

diagrams lead to a time-dependence when considered individually, the time-dependence

beautifully cancels out in the overall sum. We identify two subsets of diagrams that cancel

separately due to different physical reasons. The first cancellation is related to the change

of the background cosmology due to the renormalization of the stress tensor. It results in

a cancellation between the non-1PI diagrams and some of the diagrams made with quartic

vertices. The second subset of diagrams that cancel is made up of cubic operators, plus the

remaining quartic ones. We are able to write the sum of these diagrams as the integral over

a specific three-point function between two very short wavelengths and one very long one.

We then apply the consistency condition for this three-point function in the squeezed limit

to show that the sum of these diagrams cannot give rise to a time dependence. This second

cancellation is thus a consequence of the fact that in single clock inflation the attractor

nature of the solution implies that a long wavelength ζ perturbation is indistinguishable

from a trivial rescaling of the background, and so results in no physical effect on short

wavelength modes.
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1 Introduction

1.1 Motivation

The purpose of this paper is to prove that in single clock inflation, where there is only

one relevant degree of freedom during inflation, the correlation function of the curvature

perturbation ζ for separations outside the horizon is time independent at one loop level.

We believe this to be a very important result to prove for several reasons. As it becomes

more and more likely that Inflation was part of the early history of our Universe it becomes

more and more important to understand how the theory behaves at quantum level, even if

the expected corrections are small. We could make an analogy with the 1950s when QED

was studied to all orders in perturbation theory. Similarly to what happened in that case,

it is not so obvious that quantum corrections are as small as one might expect. While a

simple parametric analysis tells that the corrections to the curvature perturbation should

be of order

〈ζ2〉1−loop ∼ 〈ζ2〉2tree ∼ 10−9〈ζ2〉tree , (1.1)

no symmetry forbids the presence of potentially large infrared factors, such as

〈ζ2
k〉1−loop ∼ k3〈ζ2

k〉2tree log(kL) , (1.2)

where L is the comoving size of the inflationary space, or of the form

〈ζ2
k〉1−loop ∼ k3〈ζ2

k〉2treeHt , (1.3)

where H is the Hubble constant during inflation and t is time. All these terms have

appeared in partial calculations of the one-loop corrections to the power spectrum [1].

Log(H/µ) effects. Additionally, infrared effects of the form

〈ζ2
k〉1−loop ∼ k3〈ζ2

k〉2tree log(k/µ) , (1.4)

with µ being the renormalization scale of the theory, have been found in several papers

(see references in [2]). Strictly speaking, a correction of the form log(k/µ) is not allowed

by symmetries, representing a breaking of zero-mode gauge invariance x → λx, a → a/λ,

where a is the scale factor of the FRW metric. Its presence was due to a mistake in the

implementation of a diff. invariant regularization, and some of us addressed this issue in [2],

where it was shown that the logarithmic running takes the form

〈ζ2
k〉1−loop ∼ k3〈ζ2

k〉2 log(H/µ) . (1.5)

Notice that if a result of the form log(k/µ) were to be correct, then the effect could have

been potentially very large when k → 0.

Contrary to the case of log(k/µ), logarithmic corrections of the form log(kL) or

log(a(t)) ∼ Ht are allowed by symmetries.

– 2 –
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Log(kL) effects. The factor of log(kL) can be potentially very large, as log(kL) is of

order Nbeginning, the number of e-foldings of Inflation that have occurred before the mode

k has crossed the horizon. Even for the standard inflation that we might have in our past,

Nbeginning can be a large enhancement factor. Furthermore in situations where Nbeginning

might be large, 〈ζ2〉 for modes exiting the horizon at the beginning of inflation might also

be significantly larger as one could be near an eternal inflation regime. The infrared factor

log(kL) does appear in the one-loop correction to the power spectrum [3, 4], and in [5] some

of us have shown that it is simply a projection effect that is completely removed when one

computes observable quantities and that does not affect our ability to extract predictions

from inflation.

Log(a(t)) effects and the predictivity of inflation. In this paper we try to address

the question of wether the one-loop correction to the power spectrum is time dependent,

or in other words if at loop level ζk is constant after the mode k has crossed the horizon.

We notice that for our current inflationary patch, since we observe around 50 e-foldings

of inflation and ζ ∼ 3 × 10−5, such a correction factor, even if present, would represent a

correction at most of order 50× 10−9 ∼ 5× 10−8. From an observational perspective this

is a very small correction. Regardless of this fact, as a matter of principle if such a time-

dependent factor were to be present the consequences for the inflationary theory would be

profound. Such a result would imply that short scale fluctuations, say of the size of the

horizon, can change the amplitude of a mode after it has crossed the horizon. In standard

inflation the amplitude of the short perturbations is very small and the duration of inflation

is relatively short so the resulting evolution of the long modes is negligible. However,

fluctuations might not be small during other epochs of the evolution of the universe, such

as reheating and baryogenesis or if the dynamics of inflation changes dramatically at some

point. We know little about these epochs, but if perturbations were to be large on Hubble

scales during those times, the time-dependence induced on long, observable, modes could

change their amplitude significantly. We would lose the predictions of Inflation unless we

know the details of the physics governing reheating or baryogenesis, which we hardly do.

The potential for a time dependence of the power spectrum at loop level was pointed

out by Weinberg in [1]. He noticed that many diagrams naively induce a time-dependence

of ζ.1 The question of weather a time dependence persists after we sum all the diagrams

has remained open. In [2] we addressed this issue in certain simplified examples involving

spectator fields running in the loops. Although the physics we identified in that paper will

basically apply unchanged in this study, the fact of the matter is that no proper calculation

in the context of single clock inflation has been presented. Ref. [10] claims to have done this

and to have found a time dependence. In reality they only presented results for a severely

truncated and simplified Lagrangian and of course they did not recover the cancellations

we identify in this paper and thus claimed a spurious time dependence.

1Such a result would not be in contradiction with the many proofs available in the literature on the

conservation of ζ outside of the horizon (see for example [6–8]). The fact that the constant solution is the

attractor one, and not simply one of the two solutions, was proven in [9]. All these proofs work in the limit

in which all modes are longer than the horizon, so that gradients of all fluctuations can be neglected.

– 3 –
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Slow roll eternal inflation. From a more theoretical point of view, a time-dependence of

ζ would have important consequences for slow-roll eternal inflation. In recent years [11–14],

there has been remarkable progress in understanding slow roll eternal inflation at a quan-

titative level. The study of eternal inflation (usually of the false vacuum type) has been

largely motivated by the fact that the universe is currently accelerating and by the appar-

ent existence of a landscape of vacua in String Theory which put together suggest that

the current acceleration can be understood as resulting from an anthropic selection of the

vacuum energy made possible by an epoch of eternal inflation in our past. Another piece of

motivation to study eternal inflation relies on the perhaps mysterious connections between

gravity and quantum mechanics in the presence of a horizon. De Sitter space, with its

supposedly finite entropy, represents a mystery, and slow roll (eternal) inflation represents

a natural regularization of de Sitter space. In [11] it was shown that slow roll inflation

undergoes a phase transition when a parameter

Ω =
2π2

3

φ̇2

H4
, (1.6)

becomes less than one. At that point, the probability to develop an infinite volume goes

from being strictly zero to non-zero. This is the phase transition to eternal inflation.

Subsequently, in [12], it was found that there is a sharp upper bound to how large a finite

volume can be created: the probability to produce a finite volume larger than e6Nc , with

Nc representing the classical number of e-foldings, is non-perturbatively small from the

point of view of quantum gravity:

P
(
Vfinite > e6Nc

)
< e−M

2
Pl/H

2
. (1.7)

By connecting the classical number of e-foldings to the the entropy of de Sitter space SdS
at the end of inflation, this bound can be recast as

P
(
Vfinite > eSdS/2

)
< e−M

2
Pl/H

2
. (1.8)

This bound is a generalization to the quantum and eternal regime of the bound found

in [15], that was much stronger than the one in (1.8). Further, in [13], it was shown that

this bound is actually universal: it holds for any number of spacetime dimensions and for

any number of inflating fields. Moreover it holds unchanged also when considering higher-

order corrections to the theory of gravity and of the inflaton, and it does so to all orders in

perturbation theory. In an upcoming paper [14], some of us will show that it holds also when

including slow-roll corrections. All of these results strongly suggest that the bound in (1.8)

is a true fact of nature connected to the holographic interpretation of de Sitter space.

All these new results on Eternal Inflation assumed that the ζ two-point function at

coincidence takes the form2

〈ζ(x)2〉 ∼ H3t , (1.9)

2Studies of the phase transition to slow-roll eternal inflation have only been done at lowest order in

slow-roll, where there is basically no distinction between ζ and δφ.

– 4 –
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which is a direct consequence of its scale invariance and time-independence in Fourier space

〈ζ2
k〉 ∼

H2

k3
. (1.10)

If the two point function of the inflaton in Fourier space were to go as

〈ζ2
k〉 ∼

H2

k3
log(kL) , or 〈ζ2

k〉 ∼
H2

k3
Ht (1.11)

then in real space it would go as

〈ζ(x)2〉 ∼ H4t2 , (1.12)

and all the above-mentioned new results on slow roll eternal inflation would fail.3 Depend-

ing on the sign of the loop correction, we would be lead to conclude that all inflationary

models are either eternal or never-eternal. This motivates us to study the possible time-

dependence of ζ at loop level.

1.2 Simple arguments

There are several simple intuitive arguments that suggest that short scale fluctuations

cannot induce a time dependence on a long wavelength ζ mode that is much longer than

the horizon. The simplest and most intuitive argument relies on the fact that at long

wavelengths a ζ mode is indistinguishable in practice from a rescaling of the scale factor

a → a eζ . This means that a time dependent ζ is more or less equivalent to a change in

the local value of the expansion rate H: ζ̇ ∼ δH. In order for short-scale fluctuations to

create a time-dependent long wavelength ζ, the short scale fluctuations should create a

modulation of the Hubble parameter that is coherent over a very large scale, the scale of

the long wavelength ζ mode.

One could imagine two mechanisms through which this could happen. The random

small scale fluctuations could lead by chance to a large scale fluctuation, but simple ‘square

root of N ’ type of arguments show that this is not the case. Another option is that the

short modes are sensitive to the long wavelength fluctuations through tidal-type effects

and thus their expectation values, their energy density say, varies over the long scales and

leads to a modulation in the expansion rate. This last possibility also sounds quite unrea-

sonable. Because of the attractor nature of the inflationary background, a long wavelength

ζ fluctuation is locally almost indistinguishable from a rescaling of the background, with

corrections that rapidly redshift to zero. This means that short wavelength fluctuations

should behave in very much the same way in the presence of a long ζ mode as they do

in its absence (apart for a trivial rescaling of the coordinates). This is what the so-called

Maldacena consistency condition of curvature fluctuations actually states [6, 9, 16], and it

has been shown to work at tree-level in several calculations.

Perhaps a better way to illustrate the point we are trying to make is the following.

Assume that short wavelength modes running in the loop lead to a time dependence of

3We acknowledge David Gross for pointing this out to us.
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the two point function of a long wavelength mode. This one loop calculation is just giving

the change of the long modes produced by the short modes when averaged over the short

ones. If the short modes can be observed directly the effect of the short modes on the long

should lead to an observable correlation between short and long modes. In other words, it

should lead for example to a non-zero three point function in the squeezed limit. However,

since the work of Maldacena [6] we know that there is no such effect in the squeezed three

point function. It is hard to imagine that one would not be able to detect a correlation

between short and long modes when both short and long modes are measured, but that on

average the short modes do lead to an evolution of the long modes.

All of this suggests that it would be quite surprising if short modes were to induce

time-dependence in a long wavelength ζ fluctuation.4 We note that the essence of these

arguments were already given by some of us in [2].

1.3 Summary of the strategy

Let us make the simple arguments above a bit more precise highlighting our strategy to

prove the time-independence of ζ. Since we are interested in a late time-dependence of ζ,

we can restrict ourselves to the case in which we let only short wavelength modes run in

the loops. The constancy of ζ when all modes are outside the horizon was already proved

in [6]. In the present case, computing one-loop effects can be thought as solving the non-

linear evolution equations for a long wavelength ζ operator, ζL, up to cubic order in the

fluctuations. This will take the form

Ô [ζL] = S [ζS , ζS , ζL] , (1.13)

where S represent a generic sum of operators that are quadratic in the short wavelength

ζ, ζS , and that can also eventually depend on ζL both explicitly and implicitly through a

dependence of ζS on ζL. Each monomial in S can contain derivatives acting on the various

ζ’s. The solution is schematically of the form

ζL = Ô−1 [S [ζS , ζS , ζL]] . (1.14)

It should be noted the 〈S [ζS , ζS , ζL]〉 is in general not zero. There are tadpole contributions

for ζ because at loop level we are expanding around the incorrect background history.

We will add tadpole counterterms to the action to ensure that the background solution

we started with satisfies the equations of motion. These counterterms lead to additional

diagrams that will cancel many of the one loop diagrams in our power spectrum calculation.

The one loop power spectrum will be given by

〈ζLζL〉 ∼ 〈Ô−1 [S [ζS , ζS , ζL]] ζL〉+〈Ô−1 [S [ζS , ζS , ζL = 0]] Ô−1 [S [ζS , ζS , ζL = 0]]〉 . (1.15)

We call the first contribution on the right the cut-in-the-side (CIS) diagrams, while the

second contribution on the right cut-in-the-middle (CIM) diagrams.

4There is one subtlety which has to do with the renormalization of the background. Short wavelength

fluctuations do renormalize the background, so that H(t) is different from its value at tree level when the

short fluctuations are neglected. It is important to take this fact into account properly in order for ζ not

to have a time-dependence.

– 6 –
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The CIM diagrams represent the effect of the short scale modes in their unperturbed

state directly on the power spectrum of the long wavelength modes. These diagrams will

not lead to any time-dependence of the long modes simply because it is very hard for short

mode fluctuations to be coherent over long scales.

Many of the CIS diagrams cancel with diagrams coming from the tadpole countert-

erms. The remaining CIS diagrams represent instead the evolution of ζL due to the effect

that ζL itself has on the expectation value of quadratic operators made of short modes.

These diagrams involve the correlation between this short-mode expectation value and the

long wavelength mode itself.5 This short-mode long-mode correlation sources ζL.

The Maldacena consistency condition implies that this short-mode long-mode correla-

tion actually vanishes,

〈Ô−1 [S [ζS , ζS , ζL]] ζL〉 = 0. (1.16)

This is so because the consistency condition means that in the limit in which the long

mode has a wavelength much longer than the horizon, it simply acts as a rescaling of the

coordinates. So the correlation function between short and long modes can be understood

in terms of the power spectrum of the short modes computed in a rescaled background.

Since in the loop the short-mode expectation value is integrated over all the short-mode

momenta the rescaling is irrelevant and as a result there is no correlation between the short

scale power and the long mode.

Even though the former arguments are quite compelling, the calculation is very com-

plex, and many subtleties are hidden in the above equations. They include the identification

of the Lagrangian of the ζ zero-mode, that will turn out to be delicate and to affect the

definition of the tadpole counterterms. Because of diff. invariance, these counterterms

will play a role even for the finite momentum correlation functions. Additionally, it will

be non-trivial to see how the Maldacena consistency condition works when dealing with

operators involving derivatives.

In summary, since the interactions are dominated by the gravitational ones, our one-

loop computation amounts to doing a one loop calculation in gravity in an accelerating

universe. This is quite a hard task, at least for us! In particular, there are many many

many diagrams involved, and many many of these naively induce a time-dependence on

ζ. The time independence will result from cancellations among diagrams. We will now try

to move step by step to make our arguments explicit and precise, finally proving that ζ is

constant outside of the horizon also at one-loop level.

2 An intuitive organization of the diagrams

It is possible to organize the one-loop diagrams in a way that is particularly close to our

intuition. This approach was originally developed in [17] for a restricted set of theories,

and it was noted in [18] that the derivation was not consistent with the i ε prescription for

choosing the interacting vacuum in the past. This approach has been generalized in [2] to

5It will become clear later that this remaining CIS diagrams depend both on the cubic and quartic

Hamiltonians.
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more generic theories and a correct i ε prescription has been implemented. Here we will

see that the implementation of the i ε prescription can be performed in a very simple way.

For concreteness let us specialize to the ζ two-point function. We have to compute

〈Ω|ζ2(t)|Ω〉 = 〈0|Uint(t,−∞+)†ζ2
I (t)Uint(t,−∞+)|0〉 , (2.1)

where |Ω〉 is the vacuum of the interacting theory, |0〉 is the one of the free theory,

Uint(t,−∞+) = Te
−i

∫ t
−∞+

dt′ Hint(t
′)
, (2.2)

and the subscript I stays for interaction picture. Finally, the symbol −∞+ represents the

fact that the time-integration contour has been rotated so as to project the free vacuum on

the interacting vacuum. In practice, this amounts to choosing the contour that suppresses

the oscillatory terms in the infinite past.

We start by taking expression (2.1) and inserting the unit operator

1 = Uint(t,−∞)U †int(t,−∞) , (2.3)

between the two ζ’s, to obtain

〈ζ2(t)〉 = 〈
(
U †int(t,−∞−)ζI(t)Uint(t,−∞)

)(
U †int(t,−∞)ζI(t)Uint(t,−∞+)

)
〉 , (2.4)

where we have ignored to specify the state upon which we compute the correlation function,

either |Ω〉 or |0〉, as it is clear from the context. Ignoring for a moment the issue of the i ε

prescription, we have written the expectation of the operator ζ(t)2 as the product of two

interaction picture ζI(t)’s, each evolved with the interaction picture time evolution operator

Uint. In other words, the ζ(t)2 correlation function is simply given by the correlation

function of the evolved ζ(t)’s. We can Taylor expand in Hint to obtain

〈ζ2(t)〉 = (2.5)

=

〈( ∞∑
N=0

iN
∫ t

−∞
dtN

∫ tN

−∞
dtN−1 . . .

∫ t2

−∞
dt1 [Hint(t1), [Hint(t2), . . . [Hint(tN ), ζI(t)] . . .]]

)

×

( ∞∑
N=0

iN
∫ t

−∞
dt′N

∫ tN

−∞
dt′N−1 . . .

∫ t2

−∞
dt′1
[
Hint(t

′
1),
[
Hint(t

′
2), . . .

[
Hint(t

′
N ), ζI(t)

]
. . .
]])†〉

.

Expanding (2.5) up to second order in Hint, we obtain

〈ζ2(t)〉 = 〈ζ2(t)〉CIS + 〈ζ2(t)〉CIM , (2.6)

where we have defined

〈ζ2(t)〉CIS = −2 Re

[(∫ t

−∞
dt2

∫ t2

−∞
dt1〈[H3(t1), [H3(t2), ζI(t)]]

)
ζI(t)〉

−i
(∫ t

−∞
dt1〈[H4(t1), ζI(t)]

)
ζI(t)〉

]
,

〈ζ2(t)〉CIM = −
(∫ t

−∞
dt1〈[H3(t1), ζI(t)]

)(∫ t

−∞
dt′1
[
H3(t′1), ζI(t)

]
〉
)
. (2.7)

– 8 –
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The subscript CIS denotes what we call cut-in-the-side diagrams, while CIM denotes cut-

in-the-middle diagrams. Here by H3, H4, . . . we mean the cubic, quartic, . . . interaction

Hamiltonians. We see that the CIM diagrams are made up by evolving each of the two

ζ’s to first order in the cubic interactions. The CIS diagrams corresponds to evolving only

one of the two ζ’s, either twice with cubic interactions or once with a quartic interaction.

This form of organizing the diagrams is particularly intuitive. If we remind ourselves

that the ζ retarded Green’s function is given by

GRζ (x, x′) = iθ(t− t′)
[
ζI(x), ζI(x

′)
]
, (2.8)

we have that

[H
(3)
int , ζ] ∼ GR δL3

δζ
. (2.9)

Then the CIM diagrams approximately correspond to considering the sourcing of ζ from

the vacuum correlation function of δL3/δζ. This is very similar to the case when we try

to solve some equations of motion perturbatively. We can define the solution of order n in

the perturbation as ζ(n). If we have schematically:

Dζ(2) = ζ(1)2 ⇒ ζ(2) =

∫
dt′Gζ(t, t

′)ζ(1)(t′)2 (2.10)

where D is the differential operator of the free equations of motion, of which the Green’s

function is the inverse, then the CIM diagram is represented by the following

CIM = 〈ζ(2)ζ(2)〉 . (2.11)

The CIM diagram is diagrammatically represented in figure 1. Intuitively, it can be

thought of as taking into account of the backreaction on ζ from the quantum variance of

the operator δL3/δζ.

On the other hand, the CIS diagrams correspond to two sort of diagrams. The ones

involving the quartic interactions, CIS4, correspond to considering the effect of the expec-

tation value of the vacuum fluctuations of two fluctuations on the external ζ. Schematically,

it is given by

Dζ = ζ(1)3 ⇒ ζ(3) =

∫
dt′Gζ(t, t

′)ζ(1)(t′)3 ⇒ CIS4 = 〈ζ(3)ζ(1)〉 , (2.12)

and it is represented in figure 2.

The CIS diagrams that involve two cubic interactions can in turn be divided in two

subclasses. The first are of the non-1PI form, CISnon−1PI, and describe the effect of the

expectation value of two fluctuations on the ζ zero mode, ζ0, and how then the zero mode

affects the ζ propagation. Schematically, this is given by

Dζ0 = ζ(1)2 ⇒ 〈ζ(2)
0 〉=

∫
dt′Gζ(t, t

′)〈ζ(1)(t′)2〉 (2.13)

Dζ(3) = ζ(1)〈ζ(2)
0 〉 ⇒ ζ(3) =

∫
dt′Gζ(t, t

′)ζ(1)(t′)〈ζ(2)
0 〉(t

′) ⇒ CISnon−1PI = 〈ζ(3)ζ(1)〉 ,

– 9 –
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and it is represented in figure 3. This diagram intuitively represents how a perturbation to

the background (the zero mode) affects the evolution of the finite-k modes.

The second kind of CIS diagram, CIS1PI is 1PI and corresponds to considering the

sourcing on ζ from two fluctuations, one of which has been perturbed by an initial ζ

fluctuation.

Dζ(2) = ζ(1)2 ⇒ ζ(2) =

∫
dt′Gζ(t, t

′)ζ(1)(t′)2 (2.14)

Dζ(3) = ζ(1)ζ(2) ⇒ ζ(3) =

∫
dt′Gζ(t, t

′)ζ(1)(t′)ζ(2)(t′) ⇒ CIS1PI = 〈ζ(3)ζ(1)〉 ,

and it is represented in figure 4. Physically, this represents how a fluctuation is affected

by two fluctuations, one of which has been already perturbed. If we imagine for a moment

that only short fluctuations run in the loop, this diagram would represent how a long mode

affects through tidal effects the dynamics of the short modes, and how these backreact on

the long mode.

Let us finally comment on how to implement the i ε prescription. When we insert

the unit operator in (2.4), we should keep in mind that the integration contours of the

time evolutors on the sides of the expectation value are rotated, while the ones in the

middle are not. This means that when we Taylor expand in Hint, the various terms do not

really regroup and form commutators, because they are evaluated on different contours. A

solution to this problem was provided in [2] where the rotation was performed only at very

early times and the commutator form applied only at late time. Here we implement the

correct i ε rotation in a different way. We perform no contour rotation, but we multiply

our expression by eiε(
∑
ki)t, where the sum runs over all the momenta involved in the loops

and ε > 0, so that the time integrals are convergent in the far past, and then take the

limit ε → 0+. While the multiplication by eiε(
∑
ki)t is not a rotation of the contour of

integration, it converges to one in the limit ε → 0+. It can be easily checked that this

procedure agrees with the rotation of the contour.

3 Loops as the integral of the three-point function

Let us consider a cubic Lagrangian of the form

L3 =
∑
n

L(n)
3 (3.1)

where the sum over n runs over all possible monomials constituting L3. We will schemati-

cally write

L(n)
3 ∝ D(n)

1 ζD(n)
2 ζD(n)

3 ζ, (3.2)

where D(n)
a , a = 1, 2, 3 are the differential operator acting on ζ(x) in position a. It includes

both time and spatial derivatives, as well as the identity operator.

There are certain quartic diagrams which we call Quartic3,∂t . They are the quartic

diagrams with the quartic vertices that arise because the cubic Lagrangian contains ζ̇,
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ζ(1)

x

x1 x2 t = tfinal

ζ(2)
ζ(2)

ζ(1) ζ(1) ζ(1)

t

Figure 1. Cut-in-the-middle (CIM) diagrams. Green continuos lines represent Green’s func-

tions, red dashed lines represent free fields, and red crosses circled by a blue dotted line represent

correlations of free fields. Two crosses have to be contracted together in order for the diagram not

to be zero. This diagram represents how vacuum correlation functions of quadratic operators ζ(1)2,

〈ζ(1)2ζ(1)2〉 source perturbed correlation functions for ζ(2): 〈ζ(2)ζ(2)〉.

t = tfinal

ζ(3)

t

x

x1 x2

ζ(1) ζ(1) ζ(1)

ζ(1)

Figure 2. Cut-in-the-side quartic (CIS4) diagrams. These diagrams represent how vacuum

expectation values of quadratic operators 〈ζ(1)2〉 affect the propagation of a mode ζ(3), and therefore

the ζ correlation function: 〈ζ(3)ζ(1)〉.

H4 ⊃ H4,32 = δζ̇/δP × (δL3/δζ̇)2/2. We want to prove that we can write the sum of

CIS1PI + CIM +Quartic3,∂t diagrams as:

〈ζkζk〉CIS1PI+CIM+Quartic3,∂t
= lim

ε→0

∫ t

−∞
dt1 a(t1)3+δ (3.3)

∑
a,n

D(n)
a Gζk(t, t1)2Re

〈[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

U †int(t1,−∞)ζk,I(t)Uint(t1,−∞)

〉
eεkt1 .
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ζ
(2)
0

ζ(1)

ζ(1)

ζ(3)

t

x

x1 x2

ζ(1)

t = tfinal

ζ(1)

Figure 3. Non-1PI cut-in-the-side quartic (CISnon−1PI) diagrams. These diagrams represent how

vacuum expectation values of quadratic operators 〈ζ(1)2〉 affect the propagation of the zero mode

ζ
(2)
0 , and therefore the evolution of a mode by a non linear coupling ζ(3) ∼ ζ(1)ζ(2)0 . This sources a

correlation function of the form: 〈ζ(3)ζ(1)〉.

t = tfinal

ζ(3)

ζ(2)

t

x

x1 x2

ζ(1) ζ(1) ζ(1)

ζ(1)

Figure 4. 1PI cut-in-the-side quartic (CIS1PI) diagrams. These diagrams represent how the

propagation of a mode is perturbed at two different times by two fluctuations that are correlated

among themselves. This sources a correlation function of the form: 〈ζ(1)ζ(3)〉.

In this formula [
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

(3.4)

represents the k-Fourier component of what is left of the the cubic Lagrangian term L(n)
3

after the removal of a(t1)3+δ D(n)
a ζa(t1). ζI is again the interaction picture field.

Eq. (3.3) is a remarkably simple formula given that it sums up a very large number of

diagrams. It shows that the sum of all these diagrams can be written as a sum of integrals of

three-point functions. Since we are interested in the case in which the fluctuations running

in the loop are much shorter-wavelength than the one in the external fields, the three-point
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functions are computed in the squeezed limit, a fact that simplifies largely their behavior

and makes them describable using the consistency condition of three-point functions. This

will turn out to be very useful.

3.1 Quasi 3-point function

In order to prove the master eq. (3.3), let us start by considering the 3-point function

appearing there:

2Re

〈[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

U †int(t1,−∞)ζI,k(t)Uint(t1,−∞)

〉
=

2Re


〈
Uint(t1,−∞)†

[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
I,k

Uint(t1,−∞)U †int(t1,−∞)ζI,k(t)Uint(t1,−∞)

〉
+

∑
b

i

2

〈[
D(n,out)
b [H3(t1), ζ(t1)]

(
1

a(t1)3+δ

δ2L(n)
3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)
+(

1

a(t1)3+δ

δ2L(n)
3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)
D(n,out)
b [H3(t1), ζ(t1)]

]
k

ζk(t)

〉}
, (3.5)

where (
δ2L(n)

3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)
(3.6)

represents the removal of ζ̇(t1) in position b from the quadratic term(
δL(n)

3 (t1)/δD(n)
a ζa(t1)

)
. Finally D(n,out)

b is the derivative operator acting on ζb

outstripped of the time derivative. For example if Dbζb = ∂ζ̇b, then D(out)
b = ∂. The

last contact terms are due to the fact that ζ̇ is not the momentum conjugate to ζ. The

simplest way to obtain its time evolution is using ∂t(U
†
int(t)ζI(t)Uint(t)). When the time

derivative acts on the Uints it results in contact terms. We have also symmetrized its

expression because L3 is hermitian. Straightforward manipulations lead to

2Re

〈[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

U †int(t1,−∞)ζI,k(t)Uint(t1,−∞)

〉
= (3.7)

2Re

{〈[
i

∫ t1

−∞
dt2 H3(t2),

1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

ζk(t)

〉
(3.8)

+
∑
m,b

〈[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

∫ t1

−∞
dt2 D(m)

b Gζk(t, t2)

[
δL(m)

3 (t2)

δD̃(m)
b ζb(t2)

]
k

〉
(3.9)

−1

2

∑
b

〈[
D(n,out)
b

(
δL̃3(t1)

δP (t1)

)(
1

a(t1)3+δ

δ2L(n)
3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)
(3.10)

+

(
1

a(t1)3+δ

δ2L(n)
3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)
D(n,out)
b

(
δL̃3(t1)

δP (t1)

)]
k

ζk(t)

〉}
,
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where

Gζ(t, t1) = iθ(t− t1)[ζ(t), ζ(t1)] (3.11)

is the ζ Green’s function from t1 to t. The second term is obtained upon noticing that

[ ∫ t

−∞
dt2 H3(t2), ζk(t)

]
= −i

∫ t

−∞
dt2

∑
m,b

D(m)
b Gζk(t, t2)

[
δL(m)

3 (t2)

δD(m)
b ζb(t2)

]
k

, (3.12)

and the third term through the following

[H3(t1), ζ(t1)] = −iδH̃3

δP
= i

δL̃3

δP
, (3.13)

where P is the momentum conjugate to ζ in the interaction picture: P = δL2/δζ̇, and we

introduced H̃3 because any additional (spatial) derivatives acting on P have been integrated

by parts and now act on H3. Let us label the term in line (3.8) by I(n)
1 , the one in line (3.9)

by I(n)
2 and the one in line (3.10) by I(n)

3 :

I(n,a)
1 (t1) = 2Re

{〈[
i

∫ t1

−∞
dt2 H3(t2),

1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

ζk(t)

〉}
, (3.14)

I(n,a)
2 (t1) = 2

∑
m,b

Re

{〈[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

∫ t1

−∞
dt2D(m)

b Gζk(t, t2)

[
δL(m)

3 (t2)

δD̃(m)
b ζb(t2)

]
k

〉}
,

I(n,a)
3 (t1) =−

∑
b

Re

{〈[
D(n,out)
b

(
δL̃3(t1)

δP (t1)

)(
1

a(t1)3+δ

δ2L(n)
3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)

+

(
1

a(t1)3+δ

δ2L(n)
3 (t1)

δD(n)
a ζa(t1)δζ̇b(t1)

)
D(n,out)
b

(
δL̃3(t1)

δP (t1)

)]
k

ζk(t)

〉}
,

so that

2Re〈

[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

ζk(t)〉 = I(n,a)
1 (t1) + I(n,a)

2 (t1) + I(n,a)
3 (t1) . (3.15)

We are now going to see that the CIS diagrams reduce to the sum over a and n of the

integral of the Green’s function times I(n,a)
1 , the CIM diagrams reduce to the integral of

Green’s function or of its derivatives times I(n,a)
2 , and finally the quartic diagrams using

the quartic vertices associated to the cubic Lagrangian reduce to the integral of Green’s

function times the sum over a and n of I(n,a)
3 .
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3.2 CIS1PICIS(1 PI) diagrams

The CIS1PI diagrams read

CIS1PI = −2 Re

∫ t

−∞
dt1

∫ t1

−∞
dt2〈[H3(t2), [ H3(t1), ζk(t)]] ζk(t)〉 = (3.16)

2 Re
∑
n,a

i

∫ t

−∞
dt1

∫ t1

−∞
dt2

〈[
H3(t2),

δL(n)
3 (t1)

δD(n)
a ζa(t1)

D(n)
a Gζk(t, t1)

]
k

ζk(t)

〉
=

2 Re
∑
n,a

∫ t

−∞
dt1D(n)

a Gζk(t, t1)

〈[
i

∫ t1

−∞
dt2H3(t2),

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

ζk(t)

〉

=
∑
n,a

∫ t

−∞
dt1 a(t1)3+δ D(n)

a G
(n)
ζk

(t, t1) I(n,a)
1 (t1) .

So the CIS diagrams are the integral of the Green’s function times the sum over a and

n of I(n,a)
1 .

3.3 CIM diagrams

The CIM diagrams read

CIM=−
〈[∫ t

−∞
dt1 H3(t1), ζk(t)

] [∫ t

−∞
dt2 H3(t2), ζk(t)

]〉
(3.17)

=
∑

n,m,a,b

∫ t

−∞
dt1D(n)

a G
(n)
ζk

(t, t1)

〈[
δL(n)

3 (t1)

δD(n)
a ζa(t1)

]
k

∫ t

−∞
dt2D(m)

b Gζk(t, t2)

[
δL(m)

3 (t2)

δD(m)
b ζb(t2)

]
k

〉

= 2
∑

n,m,a,b

∫ t

−∞
dt1D(n)

a G
(n)
ζk

(t, t1)

〈[
δL(n)

3 (t1)

δD(n)
a ζa(t1)

]
k

∫ t1

−∞
dt2D(m)

b Gζk(t, t2)

[
δL(m)

3 (t2)

δD(m)
b ζb(t2)

]
k

〉

=
∑
n,a

∫ t

−∞
dt1 a(t1)3+δ D(n)

a Gζk(t, t1) I(n,a)
2 (t1)

so the CIM diagrams are the integral of the Green’s function times the sum over a and

n of I(n,a)
2 .

3.4 Quartic diagrams from cubic Lagrangian

The fact that the cubic Lagrangian depends on ζ̇ means that the interaction picture quartic

Hamiltonian receives a contribution that we call H4,32 , equal to

H4,32 =
1

2

δP

δζ̇

(
δL̃3

δP

)2

=
1

2

δP

δζ̇

∑
b,n

D(n,out)
b

(
δL̃3

δP

)(
δL(n)

3

δPb

)
, (3.18)

where in the second term we have explicitly stressed the sum over b and we have integrated

by parts any possible residual derivative (notice that the sign is re-absorbed in the definition
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of L̃3). The resulting quartic diagram is

Quartic3,∂t = (3.19)

2Re

{〈[
i

∫ t

−∞
dt1H4,32(t1), ζ(t)

]
k

ζk(t)

〉}
=Re


〈i∫ t

∞
dt1

δP

δζ̇

(
δL̃3

δP

)2

, ζ(t)


k

ζk(t)

〉
= −Re

∑
n,a

{∫ t

−∞
dt1 D(n)

a Gζk(t, t1) ×

〈[(
δ2L(n)

3 (t1)

δD(n)
a ζaδζ̇b

)
D(n,out)
b

(
δL̃3(t1)

δP

)
+D(n,out)

b

(
δL̃3(t1)

δP

)(
δ2L(n)

3 (t1)

δD(n)
a ζaδζ̇b

)]
k

ζk(t)

〉}

=
∑
n,a

∫ t

−∞
dt1 a(t1)3+δ D(n)

a Gζk(t, t1) I(n,a)
3 (t1) .

So the Quartic3,∂t diagrams are the integral of the Green’s function times the sum over a

and n of I(n,a)
3 . By summing the final expressions from the CIS1PI, CIM and Quartic3,∂t ,

we obtain the remarkably simple formula in eq. (3.3), as we wanted to show.

4 Time-(in)dependence of ζ from cubic diagrams

We can now ask ourselves if the contribution from the diagrams considered in the former

section can lead to a time dependence on the ζk correlation function after the comoving

mode k has crossed the horizon.

4.1 Quartic∂i diagrams

To understand wether the diagrams considered so far can lead to a time dependence, it will

turn out to be useful to first add the quartic diagrams that are associated to the rescaling

of the spatial derivatives in the cubic vertices. We call these Quartic∂i . They take the form

Quartic∂i = −
∑
n

∂i∂
n
t ζ

∫
dζ

∂L3

∂(∂i∂nt ζ)
, (4.1)

The symbol
∫
dζ represents the fact that we multiply ∂L3/∂(∂i∂

n
t ζ) by ζ if there is no ζ

without any derivative acting on it in ∂L3/∂(∂i∂
n
t ζ), we multiply by ζ/2 if there is one

ζ without any derivative acting on it.6 The reason why we wish to include these quartic

diagrams with the former is due to the fact that whenever an operator contains a spatial

derivative, we expect that in the presence of long ζ mode the coordinates are effectively

rescaled in a form ∂i → e−ζ∂i. As we will explain more in detail, the former interactions do

not take into account of this rescaling, which is instead implemented by the quartic terms

we are singling out. More formally, we can understand the presence of these terms in the

following way. In the ADM parametrization

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (4.2)

6The last remaining option, two ζ’s in ∂L3/∂(∂i∂
n
t ζ) without any derivatives acting on them, is forbidden

by rotational invariance.

– 16 –



J
H
E
P
0
7
(
2
0
1
2
)
1
6
6

ζ gauge and the ζ perturbation are defined by fixing the spatial diff.s by imposing the

spatial metric to take the form

hij = a(t)2e2ζ(~x,t)δij , (4.3)

and the time diff.s are fixed by imposing the inflaton perturbations to be zero. This gauge

choice leaves some zero-mode spatial diff.s unfixed. For example those that are associated

to a time dependent rescaling and translation of the spatial coordinates:

xi → xi = eβ(t)x̃i + Ci(t) , (4.4)

with β(t), Ci(t) generic functions of time. Under this rescaling, ζ and N i transform as

ζ → ζ̃ = ζ + β(t) , (4.5)

N i → Ñ i = N ie−β + β̇(t)x̃i + e−βĊi(t).

Thus the ζ zero mode has not been gauge fixed. For our purposes, we therefore learn

that the ζ action must be diff. invariant under this restricted group of diff.s. Therefore,

any combination of ∂i must actually take the form e−ζ∂i to be diff. invariant. By Taylor

expanding this exponential, we clearly see that there is a connection between linear and

quadratic terms, or from cubic and quartic terms.

To be even more explicit, let us give some examples. Given a vertex in the cubic

Lagrangian, we identify the necessary vertex to be considered from the quartic Lagrangian

in the following way

L3 ⊃ ζ(∂iζ)2 → L4 ⊃ −ζ2(∂iζ)2 , (4.6)

L3 ⊃ ζ̇(∂iζ)2 → L4 ⊃ −2ζζ̇(∂iζ)2 .

4.2 Time independence and the consistency condition

It is useful to split formula (3.3) into the sum of two terms. Let us introduce a time tkout
quite after the mode k has crossed the horizon k/a(tkout) = εoutH(tkout), with εout � 1.

Eq. (3.3) can be written as

〈ζkζk〉CIS1PI+CIM+Quartic3,∂t
= lim

ε→0

(∫ tkout

−∞
dt1 +

∫ t

tkout

dt1

)
(4.7)[

a(t1)3+δ
∑
a,n

D(n)
a Gζk(t, t1)

×2Re

〈[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]
k

U †int(t1,−∞)ζk,I(t)Uint(t1,−∞)

〉
eεkt1

]
.

The contribution from the first term represents the case where the three-point function is

evaluated at a time before the time tkout , while the second integral represents the contri-

bution from evaluating the contribution of the three-point function from time tkout up to

the present time t.
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Clearly, the first term is time-independent. The only dependence on t appears in the

last term ζI(t), the interaction picture field that is constant at t� tkout . Let us therefore

concentrate on the second term. Since we are considering times when the mode k is very

outside of the horizon, we can expand the Green’s function at late times k/a(t1)� H. In

conformal time, we have

Gζk(η, η1) ' H2

3

(
η3 − η3

1

)
θ(η − η1) , (4.8)

obtaining

〈ζkζk〉CISint+CIM+Quartic3,∂t ,t
' lim

ε→0

∫ η

ηkout

dη1

(
− 1

Hη1

)4+δ∑
a,n

D(n,out)
a

H2

3

(
η3−η3

1

)
θ(η − η1)

2 Re

〈[
1

a(η1)3+δ

δL(n)
3 (η1)

δD(n)
a ζa(η1)

]
k

U †(η1,−∞)ζk,I(η)U(η1,−∞)

〉
eε k log(a(η1))/H , (4.9)

where the subscript t in 〈ζkζk〉CIS1PI+CIM+Quartic3,∂t ,t
refers to the fact that we are concen-

trating only on the time dependent part, and where the appearance of D(n,out)
a is due to

the fact that the commutators of [ζk, ζ̇k] and [ζk, ζk] scale in the same way at late times.

Neglecting any possible time dependence from the terms in the second line, we see that

naively the time integral diverges as∫ η

dη1
1

η1+δ
1

∼ 1

ηδ1
→ log(−η) ∼ Ht as δ → 0 . (4.10)

We see the potential risk of linear infrared divergencies in cosmic time t (logarithmic

in conformal time η) in the case the three-point function’s contribution, that we have

neglected in this formula, does not decay in time. Contributions from terms with D(n,out)
a

being non-unity are clearly more convergent by powers of η1.

Let us therefore concentrate on the three point function, which can be schematically

written as a convolution:

∼
∫
d3+δq 〈D1ζ~q(t1)D2ζ~k−~q(t1) U(t1,−∞)†ζk,I(t)U(t1,−∞)〉 (4.11)

where D1,2 represent generic differential operators (including the identity operator) that

could be present. The integral in q runs from very small wavenumbers (much smaller than

k) up to infinity because we are working in dimensional regularization.

The contribution from momenta smaller than k/εout cannot give a time dependence.

This is so because as these modes are longer than k/εout, the three-point function is eval-

uated when all the Fourier modes are very outside of the horizon. A remarkable prop-

erty of the cubic interaction Lagrangian of ζ, which can be traced back to the original

diff. invariance of the Lagrangian, is the fact that it can be written in a form where

there are no operators with either no derivative or just a time derivative [6]. This

means that if we decide to consider the contribution from terms where D(n,out)
a is ab-

sent, so that they are potentially IR divergent, we are forced to consider an operator
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[
δL(n)

3 (η1)/δ(D(n)
a ζa(η1))

]
k
∼ ζ~q(t1)ζ~k−~q(t1) with at least a derivative acting on one of the

two operators. This therefore leads to a time-convergent integral.7

We are finally lead to consider the remaining part of the integral where we include

modes q & k/εout. These modes are at horizon crossing or well inside the horizon when the

three-point function is evaluated, and so, contrary to what happens in the former regime

q . k/εout, there is no suppression for derivatives acting on these modes. However, in

this regime we can use a remarkable property of the three-point function in the regime

k � q, the so called ‘consistency condition’ of the three-point function, which states that

at leading order in k/q � 1, k/(aH)� 1, the three-point function has the following form〈[
1

a(η1)3+δ

δL(n)
3 (η1)

δD(n)
a ζa(η1)

]
k, (q�k)

ζk,I(η1)

〉
' (4.13)

' 1

q3+δ

∂

〈[
q3+δ 1

a(η1)3+δ
δL(n)3 (η1)

δD(n)
a ζa(η1)

]
q

〉
∂ log q

〈ζk(η1)2〉+O

(
Max

[(
k

a(η1)H(η1)

)2

,

(
k

q

)2
])

.

The last term represents the subleading correction to the squeezed limit. Let us understand

the Max
[

k
a(η1)H(η1) ,

k
q

]
term. If we expand in gradients in the long wavelength fluctuation,

the natural quantity to consider is clearly the physical wavenumber k/(aH). So, this is

the natural size of the correction in the squeezed limit. The calculation of the three-

point function in this limit involves a time integral in a variable that we can call η2.

Subleading corrections in the squeezed limit are contained in the integrand are proportional

to k/(a(η2)H(η2)). If the short modes q are longer than the horizon at the time η1, then

the time integral is peaked at the time η2 when the modes q crossed the horizon. This gives

q/(a(η2)H(η2)) ∼ 1, which gives a correction of the form k/q. If the modes q are instead

still inside the horizon at η1, the integral is peaked at η2 ∼ η1, giving a correction of the

form k/(a(η1)H(η1)).

There are two subtleties to discuss about the above formula (4.13). The first regards

the case in which the operator
[
δL(n)

3 (η1)/δ(D(n)
a ζa(η1))

]
k

contains spatial derivatives of the

short modes, for example if it is of the form (∂iζ)2. In this case the consistency condition

does not hold. The consistency condition implies that in the squeezed limit the 3-point

function follows directly from the fact that in this limit the long mode acts as a rescaling of

the spatial coordinates ~x→ e−ζ~x. However, when we compute the 3-point function with the

usual formulas ∼ [
∫
dtHint, ζ

3], we are evolving in the interaction picture the operators ζ,

not the spatial coordinates themselves. This means that evaluation of the 3-point function

amounts to effectively rescaling the argument of the operators ζ(~x) → ζ(e−ζ~x). The

computation does not implement the rescaling of the spatial derivatives, simply because

7Similar conclusion applies also to the case where we consider the operator

∂i
∂2
ζ̇∂iζζ̇ . (4.12)

as even if we remove first non-local term by inserting it in the Green’s function, we are left with ∂iζζ̇ that

has enough derivatives to compensate for the non local term.
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they ‘go along with the ride’, unaffected by the interacting Hamiltonian. Formula (4.13)

does not hold. Although this seems to challenge the very intuitive result that a long

wavelength ζ acts as a rescaling of the coordinates, diff. invariance provides a solution.

The quartic vertex Quartic∂i in eq. (4.1) provides precisely the contact term necessary to

rescale the coordinates in the spatial derivative. So, eq. (4.13) holds after we add to all

the diagrams considered so far also the Quartic∂i . In appendix A, we discuss examples

of three-point functions in the squeezed limit in which one of the modes has much longer

wavelength than the others, involving short modes that are still inside the horizon and

that are acted upon by space and time derivatives. There we show that the consistency

condition holds after the addition of the relevant contact operators.

The second subtlety in using (4.13) is that in the three-point function we are computing

the last term should be

Uint(η1,−∞)†ζk,I(η)Uint(η1,−∞) ,

which is different from ζk,I(η1). This is equivalent to the situation where we were to

arbitrarily shut down Hint at t1 and the theory become free after that. Even though this

is not the case in the actual physical system, it can be straightforwardly realized that this

difference does not matter, because at the time t1 the k-mode is already well outside the

horizon. We therefore are free to use (4.13) at leading order in k/(aH).

By substituting (4.13) into (4.9), we obtain:

〈ζkζk〉CIS1PI+CIM+Quartic3,∂t+Quartic∂i ,t
' lim

ε→0

∫ η

ηkout

dη1

(
− 1

Hη1

)4+δ

(4.14)

∑
a,n

D(n,out)
a

H2

3

(
η3−η3

1

)
θ(η−η1)2Re

∫ +∞

k/εout

d3+δq
1

q3+δ

∂

〈[
q3+δ 1

a(η1)3+δ
δL(n)3 (η1)

δD(n)
a ζa(η1)

]
q

〉
∂ log q

〈ζk(t)2〉.

The rotational integral is trivially performed, and the remaining momentum q-integral is

a total derivative. This leads to

〈ζkζk〉CIS+CIM+Quartic3,∂t+Quartic
∂i
,t '

lim
ε→0

∫ η

ηkout

dη1

(
− 1

Hη1

)4+δ∑
a,n

D(n,out)
a

H2

3

(
η3 − η3

1

)
θ(η − η1)

8π

〈[
1

a(η1)3+δ

δL(n)
3 (η1)

δD(n)
a ζa(η1)

]
q

〉∣∣∣∣∣∣
q=k/εout

〈ζk(t)2〉 , (4.15)

where the contribution from q = ∞ is zero as the integral is made convergent in dim-reg.

As we evaluate the term〈[
q3+δ 1

a(η1)3+δ

δL(n)
3 (η1)

δD(n)
a ζa(η1)

]
q

〉∣∣∣∣∣∣
q=k/εout

(4.16)

and we take the limit η1 → 0 as η → 0, we notice the property of the cubic ζ-Lagrangian

that we mentioned before: there is no operator
[
δL(n)

3 (η1)/δ(D(n)
a ζa(η1))

]
k

that does not
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vanish as some power of k/(a(η1)H(η1)) ∼ kη1 → 0. This is so because in order for this

term to have any chance to contribute at late times we had to restrict ourselves to choosing

an operator that had at least one derivative acting on one of the two ζ operators. Since

this terms is evaluated when momenta are outside the horizon, it vanishes as η1 → 0. This

means that the resulting time integral is convergent.

We stress that there is no time dependence because, as a result of the consistency

condition, the integrand in the internal momenta q becomes a total derivative. If this had

not been the case, it would have been less trivial to show that the result of the integration

leads to a time independent answer.8

This result can probably be stated more intuitively by simply noticing that the consis-

tency condition implies that in the extreme squeezed limit k � q the effect of the long mode

on the dynamics is to do nothing : its effect is simply a trivial rescaling of the comoving mo-

menta. Since we compute the integrals over the whole high momentum modes, this rescaling

has no effect apart for changing the boundary of integration for the most infrared modes of

order k/εout. But the integral has no support in that region. This is a simple explanation

of the reason why the loop integral becomes a total derivative in the squeezed limit.

This is enough to make the subleading corrections time convergent. We have at this

point gone through the whole phase space in CIM+CIS+Quartic3,∂t+Quartic∂i diagrams,

finding that their sum leads to no time dependence.

A note on the counterterms. It is important to realize that (4.15) is the result of the

full loops integrals in the squeezed limit k � q, k/(aH) � 1. The integral is therefore

UV finite, even in the limit in which we send the number of spatial dimensions to three,

or the regulator to infinity. This is a very important consistency check. If the integral in

this regime were to be UV divergent we would have had a divergent time dependence piece

and we would have needed a counterterm that cancelled the divergent time-dependence

of ζ. But there are no counterterms in the action that induce a time-dependence for ζ

because that is equivalent to inducing at quadratic level a mass for ζ which does not

happen for the terms allowed by the symmetries. As we will see in the next section, the

only quadratic counterterms that induce a mass for ζ are the ones associated to the tadpole

terms, that induce also a linear tadpole for ζ. We will verify they will exactly cancel the

time-dependence from the diagrams built with the quartic vertices.

8Let us comment on the contribution of the subleading corrections in eq. (4.13), which do not take

the form of a total derivative. Those contributions are not scale invariant in the external wavenumber k,

having one additional factor of k in the numerator with respect to the leading, scale invariant contribution.

This means that the resulting contribution goes to zero at late times as (kη1)2 and so they lead to a time-

convergent contribution as η → 0. The fact that the contribution to the subleading corrections in eq. (4.13)

is not scale invariant comes from the following. If we consider the contribution from any fixed momentum

shell in q between q ∼ k/εout to q ∼ γk with γ � 1/εout, with γ a time independent number small enough

so that q is outside the horizon, the contribution from that shell of momenta goes to zero as some power

of kη1. This is so because the operator
[
δL(n)

3 (η1)/δ(D(n)
a ζa(η1))

]
k

contains some derivatives of the fields.

This means that the contributions in the integrand coming from momenta outside of the horizon is peaked

at those momenta at horizon crossing q ∼ aH, which meanS that the subleading corrections are of the form

k/q ∼ k/(aH) and so the integrand goes to zero as η1 → 0. Finally, the contribution from momenta q that

are inside the horizon is explicitly down by powers of k/(aH) and so they are as well convergent.
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4.3 Example

It is instructive to find a simple example where this can be seen explicitly. Thanks to the

Effective Field Theory of Inflation [19, 20], it is possible to find a consistent inflationary

Lagrangian which has the properties we discussed.9 By parametrizing the fluctuations in

terms of the Goldstone boson π and going to the decoupling limit, the algebra becomes

very simple. Let us take for example the following Lagrangian in the decoupling limit

S =

∫
d4x
√
−g

[
−ḢM2

Pl

(
π̇2 − 1

a2
(∂iπ)

)
+M4(t+ π)

(
π̇2 + . . .

)]
(4.17)

where . . . represent cubic or quartic terms in π that have one derivative acting on each

fluctuation. Those terms do not lead to any diagram with an explicit time dependence,

and we neglect them here. For illustrative purposes, let us suppose now that the function

M4(t) depends linearly on time. By Taylor expanding in π, we notice that we have the

cubic interaction

L3 = ∂t
(
M4(t)

)
ππ̇2 . (4.18)

This interaction in very dangerous. If we imagine forming a loop with two of these vertices

and using a π in the first vertex to contract with the external leg, the resulting diagram

will become time-dependent. This means that time-independence can come only from a

quartic interaction. Indeed, this is exactly the kind of cubic Lagrangians that leads to a

non-trivial H4,3.

Bu concentrating only on the effects proportional to (∂tM
4)2, the action can be re-

cast as

S =

∫
d4x
√
−g

[
−ḢM2

Pl

c2
s

(
π̇2 − c2

s

a2
(∂iπ)2

)
+
(
∂t
(
M4(t)

)
ππ̇2

)]
. (4.19)

The speed of sound is c2
s = −ḢM2

Pl/(−ḢM2
Pl +M

4(t)). The momentum conjugate to π, P ,

is given by

P =
δL
δπ̇

= 2a3

(
−ḢM2

Pl

c2
s

+ ∂t
(
M4(t)

)
π

)
π̇ , (4.20)

and the Hamiltonian is therefore

H=P π̇(π, P )− L(π, π̇(π, P ))=
P 2

4a3
(
−ḢM2

Pl
c2s

+ ∂t (M4(t))π
) + a3

(
−ḢM2

Pl

) 1

a2
(∂iπ)2 .

(4.21)

We can identify the quartic Hamiltonian of order (∂tM
4)2 to be

H4,3 =

[
∂t
(
M4(t)

)]2
4a3

(
−ḢM2

Pl
c2s

)3P
2π2 = a3

[
∂t
(
M4(t)

)]2
−ḢM2

Pl
c2s

π̇2
Iπ

2
I . (4.22)

9The Effective Field Theory of Inflation is a quite powerful new formalism to describe the theory of infla-

tion in very general terms. A sample of recent works that have been developing it is given by [2, 9, 19–32].
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where in the second passage we have written the expression in terms of the interaction

picture fields. It can be easily checked that this agrees with (3.18). Quartic diagrams built

with H4,3 lead also to time dependence, a time-dependence that indeed cancels the one

from the cubic diagrams built with (∂t(M
4(t))ππ̇2. This example is discussed in detail

in appendix A.2.

5 Time-(in)dependence of ζ from quartic diagrams

In order to complete the study of the possible infrared effects we need to look at the

contribution from the remaining quartic interactions H4 ⊃ H4,4 = −L4 − L4,∂i , where

L4,∂i represents the terms that were borrowed in the former section to give the Quartic∂i
diagrams. These remaining diagrams contribute to the two point function as

〈ζkζk〉Quartic4 = (5.1)

− lim
ε→0

∫ t

−∞
dt1 a(t)3+δ

∑
a,n

D(n)
a Gζk(t, t1)2Re

〈[
1

a(t1)3+δ

δL(n)
4 (t1)

δD(n)
a ζa(t1)

]
k

ζk(t1)

〉
eεkt1 .

Like in the former section, it is straightforward to see that the factor before the four-

point function on the left of the above formula leads to a time dependence proportional to

Ht if the four-point function does not have a suppression at late time. Contrary to what

happened in the former section with the three-point function after it was integrated over

comoving monenta, there is no such a cancellation from diagrams within H4. So there is a

subset of diagrams that naively lead to a time-dependence. We are now going to show that

there is a cancellation that leads to absence of a time dependence of ζ at late times after

adding a new set of diagrams. These new diagrams come from effectively quartic vertices

that arise when we insert the couterterms for the tadpoles.

Let us see this in detail. At one loop order the first diagrams we should consider are

the tadpole diagrams, that can be written as

〈ζk〉Tad = lim
ε→0

∫ t

−∞
dt1 a(t)3+δ

∑
a,n

D(n)
a Gζk(t, t1)

〈[
1

a(t1)3+δ

δL(n)
3 (t1)

δD(n)
a ζa(t1)

]〉
eεkt1 . (5.2)

Very simple counting arguments shows that these diagrams can lead to a time dependence

of the zero mode ζk=0. If these diagrams are not zero it is because we are expanding around

the wrong unperturbed history. Indeed, by translation invariance, only the k = 0 mode

is directly affected, and the zero mode can be totally reabsorbed in the definition of the

unperturbed history. However this does not mean that these diagrams affect only the zero

mode: they can be attached with a cubic vertex to a propagator to affect the two point

function of modes at finite k in a non-1PI diagram (figure 3), and possibly induce a time

dependence even there. The fact that this diagrams is not zero is clearly a nuisance.

Fortunately, these diagrams can be set to zero by inserting proper counterterms. In

order to cancel tadpole diagrams, they must start linear in the fluctuations. In principle,

there are many possible operators of this form, but luckily we can use a theorem proved in
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the context of the Effective Field Theory of inflation [19, 20]. It states that all the possible

tadpole counterterms can be reduced to just two operators.10 In unitary gauge, these are

Stad,counter =

∫
d4x
√
−g

[
g00δM4(t) + δΛ(t)

]
. (5.3)

Up to one loop level, the terms starting linear in the fluctuations take the form

Stad =

∫
d4x
√
−g

[
g00
(
M2

PlḢ + δM4
)
−M2

Pl

((
3H2 + Ḣ

)
+ δΛ

)]
, (5.4)

The coefficients ḢM2
Pl and −M2

Pl(3H
2+Ḣ) are uniquely fixed by the background, as proven

in [19, 20], while the terms δM4 and δΛ represent the one-loop counterterms that are chosen

to cancel the tadpole diagrams. The most important point that we need to realize is that

these operators that start linear in the fluctuations necessarily contain higher order terms.

This is so because of the non-linear realization of time diffs. In particular this means that

there will be quadratic terms that can contribute to the two-point function effectively as

one-loop terms. In this section we are going to prove that they exactly cancel the quartic

diagrams constructed with H4 that would lead to a time dependence.

5.1 Example

Since the algebra quickly becomes very complicated, we use the Effective Field Theory

of Inflation [19, 20] to find a consistent inflationary model where this cancellation can be

studied in the simplest context. Let us consider the following Lagrangian in unitary gauge

S =

∫
d4x
√
−g

[
g00
(
M2

PlḢ + δM4
)
−M2

Pl

((
3H2 + Ḣ

)
+ δΛ

)
+M4

3

(
δg00

)3]
(5.5)

and let us imagine that M4
3 depends rapidly linearly in time. This means that we can

concentrate on that interaction and study it in the decoupling limit. Upon reinserting the

Goldstone boson π by performing a time-diff t→ t+ π, the Lagrangian reduces to

S =

∫
d4x
√
−g

[
(−1− π̇ + (∂π)2)

(
M2

PlḢ + δM4(t+ π)
)
−M2

Pl

((
3H2 + Ḣ

)
+ δΛ

)
+

M4
3 (t+ π)π̇3

]
, (5.6)

where we have stopped at quartic level and we have kept only the interactions proportional

to M3(t). By Taylor expanding the last term, we have a vertex of the form Ṁ4
3ππ̇

3 which, if

we contract π̇ as the final leg in the Green’s function, leads to a quartic diagram that naively

induces a time-dependence. Let us see how it cancels with the operators induced by the

tadpole counterterms. By the non-linear realization of time diffs., this same operator starts

cubic, and it therefore induces a tadpole. All diagrams with only one vertex can be most

simply studied directly in the Lagrangian by taking the expectation value of the quadratic

operators contracted in the loop, and studying the resulting quadratic Lagrangian. This

10We stress that this is one of the advantages of using the Effective Field Theory of Inflation: by concen-

trating directly on the fluctuations, it allows immediately to identify the operators with the correct number

of fluctuating fields to be tadpole counterterms.
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ζ
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Figure 5. Cancellation between the tadpole diagram and the tadpole counterterm.

δM 4, δΛ

ζ(1) ζ(1)

ζ(3)

x

t = tfinal

ζ
(2)
0

x1

ζ(1)

x2

ζ(1)

tx2

ζ(1)

x1

ζ(3)

x

t = tfinal

ζ
(2)
0

ζ(1)

t

Figure 6. Cancellation of the CISnon−1PI diagrams with the CISnon−1PI diagrams constructed

with the tadpole counterterms.

is equivalent to resuming all the non-1PI diagrams obtained by multiple insertion of the

same loop. So we notice that the last term induces a tadpole term of the form

δS3→1 =

∫
d4x
√
−g
[
3M4

3 (t)δg00〈(δg00)2〉
]
. (5.7)

This means that in order to cancel this diagram we have to choose δM4 as

δM(t)4 = −3M4
3 (t)〈(δg00)2〉 . (5.8)

This is shown diagrammatically in figure 5 where we call the variables directly ζ. The

cancellation of the tadpole terms automatically guarantees the cancellation of the non-1PI

diagrams, that otherwise should be included (see figure 6).

In unitary gauge, the resulting tadpole operator in δg00 is of the form

STad,counter =

∫
d4x
√
−g

[
−δg003M4

3 (t)〈(δg00)2〉
]
, (5.9)

But since this has the same form as the induced tadpole operator that we have from(
δg00

)3
, then the resulting quadratic (and higher order) terms that we obtain by expanding√

−gM4
3 (t) will also cancel. This removes the contribution from the quartic operators that

would induce a time dependence.
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δM 4, δΛ
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t

x

x1 x2

ζ(1)

t = tfinal

ζ(1)

Figure 7. Cancellation of some quartic diagrams with the tree diagrams with an insertion of a

counterterm-induced quadratic vertex.

This can also be checked directly at the level of π. The dangerous term Ṁ4
3ππ̇

3

effectively gives a contribution that in the action can be represented as

δS4→2 =

∫
d4x
√
−g

[
3Ṁ4

3ππ̇〈π̇2〉
]
, (5.10)

which is exactly cancelled by the tadpole term at second order

S(2)
Tad,counter =

∫
d4x
√
−g

[
−π̇3M4

3 (t+ π)〈π̇2〉
]
⊃
∫
d4x
√
−g

[
−3Ṁ4

3 (t)ππ̇〈π̇2〉
]
. (5.11)

This is represented in figure 7. Other quadratic terms induced by this tadpole operator

are of the form π̇2 and (∂iπ)2 and so do not induce time-dependent effects.

This cancellation can be intuitively summarized by noticing that the ζ action at tree-

level cannot have any mass term once expressed around the correct background. This is

so because ζ constant must be a solution of the equations of motion when the mode is

outside the horizon. The counterterms for tadpole diagrams ensure that we are around

the correct history, and so the quartic diagrams must cancel with the induced-quadratic

diagrams from the tadpoles counterterms.

6 Quartic diagrams: verification for purely gravitational interactions

Let us now move on and consider the most generic example for H4 where we take generic

coefficients and we do not neglect interactions mediated by gravity. Because of the com-

plexity of this kind of interactions, the discussion becomes quite complicated even though

all the essential points have already been highlighted using the Effective Field Theory of

Inflation in the former section. We will therefore perform the study in several steps.

The first step will be to study the induced time dependence on the ζ zero mode, ζ0.

As we discussed in eq. (4.4) and (4.5), the zero mode is not gauge fixed in the ordinary

ζ gauge. We can fix the two functions in eq. (4.5) in the following way: first we impose

periodic boundary conditions. We imagine that the system is in a very large periodic box

of comoving size L. In this way we forbid any dependence proportional to xi. This fixes

β(t). Second, we can fix Ci(t) by imposing that the zero mode component of N i vanishes:

N i
~k=0

(t) = 0.
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6.1 On the gauge choice for the zero mode

Before proceeding, it is very interesting to notice the following. At finite k, N i is deter-

mined by being the solution of a constraint equation. At linear level, for example, the

equation reads:

∂iN
i ∼ ζ̇ (6.1)

which can be solved at finite k to give

N i ∼ ki

k2
ζ̇ . (6.2)

In real space this term is often reported in a non-local fashion as N i ∼ ∂i
∂2
ζ̇. The zero

momentum limit of that expression gives something that in real space reads as

N i(t) ∼ ζ̇xi . (6.3)

By using our freedom in choosing the function β, we decided to set this term to zero.

Therefore our solution for N i is not the k → 0 limit of the solution for N i at finite k. We

choose to work in a gauge where the limit is discontinuous. Of course any gauge choice

should be as good as any other one.

Working within the gauge where the limit k → 0 of N i is continuous, that we can call

‘continuous gauge’, raises several complications that we prefer to avoid. First of all, the

continous gauge looks very unfamiliar when there is only a zero mode present. In this case

the spacetime is described by an FRW metric but the gauge choice makes us use unusual

coordinates where g0i 6= 0. But the situation becomes even more complicated. For example

if in the continuous gauge we naively Taylor expand the action at linear level, we find that

there is a tadpole term for the zero mode. The action starts linear, proportional to

S =
M2

Pl

2

∫
d4x
√
−g

[
R+ Ḣδg00 + 3H2 + Ḣ + . . .

]
⊃ (6.4)

∼ M2
Pl

∫
d4x a3H∂iN

i ∼M2
Pl

∫
d4x a3 Ḣ

H
ζ̇ .

where . . . stands for terms that start explicitly quadratic in the fluctuations. This is of

course a wrong result, as the action for the fluctuations should start at quadratic order if

we expand around a solution to the classical equations of motion, as we are doing. The

reason for the mistake is that in this case the action has a boundary term that does not

decouple in the limit in which we send the boundary to infinity. This is due to the behavior

of N i ∝ xi. Indeed the boundary term is the Gibbons-Hawking-York one:

SGHY = M2
Pl

∫
∂V (4)

d3x̃
√
−hK , (6.5)

where h is the induced metric on the boundary described by coordinates x̃ and K the trace

of the extrinsic curvature. It is easy to check that this boundary term cancels the tadpole

for the zero mode that we obtain from the bulk action.
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The situation is instead much simpler in the ‘discontinuous gauge’ where the limit

k → 0 of Ni is discontinuous. In this case, for a fixed comoving box, the boundary terms

become irrelevant as we send the boundary to infinity, and indeed the bulk action starts

quadratic in the fluctuations. Furthermore, zero mode fluctuations appear to be directly

in a standard FRW slicing. We will therefore work with this discontinuous gauge.

6.2 Time-independence for the zero-mode

We are now going to prove that the zero-mode is time-independent at one-loop. In order

to do this, we need to expand the action to quadratic order in the zero-mode and inde-

pendently up to quadratic order in the non-zero-modes. We count them as independent

parameters. Since we expand only up to second order in each of the parameters, we need

to solve the constraint solutions in the zero and in the short modes only at linear level in

each of those. We work in Fourier space directly, and write

N = 1 + δNk(t) + δN0(t) , (6.6)

N i
k = ∂iψk(t) .

We start from the action

S =

∫
d3x dt

√
h (6.7){

1

2
M2

Pl

(
EijE

ij−Eii2

N
+NR

)
−
M2

PlḢ

N
−NM2

Pl

(
3H2 + Ḣ

)
−NδΛ(t)− δM4(t)

N

}
,

where the δM4 and δΛ terms represent the only two tadpole counterterms allowed by

symmetries (all other possible choices are equivalent to those [19, 20]), and should be

intended as objects that are of order ζ2
k . The constraint equations read

M2
Pl

2

[
R− 1

N2

(
EijE

j
i−Ell

)2
]

+
1

N2

(
M2

PlḢ + δM4
)
−
[
M2

Pl

(
3H2+Ḣ

)
+ δΛ

]
= 0 ,

∇̂i
[

1

N

(
Eij − δijEll

)]
= 0 , (6.8)

and are solved by

δN0(t) =
3H

Ḣ + 3H2
ζ̇0 , (6.9)

δNk =
(1 + δN0)

H + ζ̇0

ζ̇k ,

ψk =
e−2(ζ0+ρ(t))

k2
(
H + ζ̇0

)2

(
Ḣζ̇ke

2(ζ0+ρ(t)) − (H + ζ̇0)k2ζk(t)(1 + δN0)2
)
.

We plug back the above solutions into the action. At linear order the action is a total

derivative, as it should be. At quadratic order, the zero-mode action reads

Sζ20 =

∫
d3x dt e3ρ(t)

(
−

3M2
PlḢ

3H2 + Ḣ

)
ζ̇0(t)2 , (6.10)
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where we are writing a(t) = eρ(t). It is interesting to notice that the quadratic action for

the zero-mode is not the k → 0 limit of the finite k ζ action, the prefactor of ζ̇2
k being

different. This is indeed

Sζ2k
=

∫
d3k dt e3ρ(t)

(
−
M2

PlḢ

H2

) (
ζ̇~k(t)ζ̇−~k(t)− e

−2ρ(t)k2ζ−~kζ~k

)
. (6.11)

6.2.1 Tadpole counterterms’ coefficients

At this point we need to find the expressions for the tadpole counterterms δΛ and δM4

that ensure the cancellation of the tadpoles for ζ0. This is done by finding the cubic

action at order ζ0ζ
2
k , taking the expectation value on the short modes and canceling the

resulting tadpole coefficients.11 Leaving out the simple algebra, the solution for the tadpole

counterterms reads

δM4 =
M2

Ple
−2ρ(t)

3H4

(
H
(
−2〈∂iζ∂iζ̇〉Ḣ+H(〈∂iζ̇∂iζ̇〉+〈∂iζ∂iζ̈〉)−H2〈∂iζ∂iζ̇〉+H3(−〈∂iζ∂iζ〉)

)
−e2ρ(t)

(
6H2〈ζ̇ ζ̇〉Ḣ − 3〈ζ̇ ζ̇〉Ḣ2 − 9H3〈ζζ̇〉Ḣ +H

(
〈ζ̇ ζ̇〉Ḧ + 2〈ζ̇ ζ̈〉Ḣ

)
+

6H4(〈ζ̇ ζ̇〉+ 〈ζζ̈〉)
))

, (6.12)

δΛ =
M2

Ple
−2ρ(t)

3H4

(
H
(
H(H(2H〈∂iζ∂iζ〉+5〈∂iζ∂iζ̇〉)+〈∂iζ̇∂iζ̇〉+〈∂iζ∂iζ̈〉)−2〈∂iζ∂iζ̇〉Ḣ

)
−e2ρ(t)

(
3H2〈ζ̇ ζ̇〉Ḣ − 3〈ζ̇ ζ̇〉Ḣ2 + 9H3〈ζζ̇〉Ḣ +H

(
〈ζ̇ ζ̇〉Ḧ + 2〈ζ̇ ζ̈〉Ḣ

)
+6H4(〈ζ̇ ζ̇〉+ 〈ζζ̈〉) + 36H5〈ζζ̇〉

))
.

In these expressions, a term such as 〈∂iζ∂iζ〉 stands for 〈∂iζ(~x, t)∂iζ(~x, t)〉. A term like

〈ζζ̇〉 stays for 〈ζζ̇ + ζ̇ζ〉/2. No slow roll approximation has been performed nor it has

ever been performed in this paper. There are three subtleties to stress here. The first is

that the cubic action of order ζ0ζ
2
k is not the cubic action ζ3

k with one of the momenta

taken to zero. As before, the limit is discontinuous and the action is different. We do not

report it here because it is very long and comes from trivial substitution of the solutions

of the constraint equations into the action. Second, in taking expectation values 〈ζ2〉,
one might worry about the contribution of the zero-mode, which has a different action

than ζ0ζ
2
k . This is irrelevant because the zero mode has measure zero when we perform

the expectation value. The difference in the action is important for the tadpole terms

and for the non 1-PI diagrams because the ζ0 propagator is the only one singled out by

translation invariance. Finally, the third subtlety is about the expectation values involving

two derivatives of ζ: 〈ζζ̈〉. Here one can use the linear equation of motion for the short

modes as derived from (6.11) to relate it to expectation values of the form 〈ζ∂2ζ〉 or 〈ζζ̇〉.

6.2.2 Cancellation between quartic diagrams and diff.-enhanced tadpole coun-

terterms

At this point we are able to address the time (in)dependence of the zero mode two-point

function. In the former section we have discussed the contribution of the diagrams involving

11Notice that since we are working in the gauge N i
0 = 0 and we choose a fixed comoving box in this

gauge, there is no need to introduce boundary counterterms.
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two cubic terms. We saw that upon the addition of some quartic diagrams, they induced

no time dependence on ζ. We have now to deal with the remaining quartic diagrams, that

in this case come from the action of the form ζ2
0ζ

2
k .

The simplest way to evaluate the contribution of these diagrams to the ζ0 two-point

function is to derive the quartic action and substitute directly the quadratic pieces in the

short modes with their expectation value. For example∫
d3k dt e3ρ(t) ζ0(t)2ζ~kζ−~k →

∫
dt e3ρ(t) ζ0(t)2〈ζ2〉 , (6.13)

and then derive the resulting linear equation of motion for ζ0. In this way we can incorpo-

rate the effect of this quartic diagrams by simply studying the corrections to the quadratic

action. The symmetries of the problem imply that the quadratic action will have a kinetic

term ζ̇2
0 and a mass terms ζ2

0 . There is also a term proportional to ζ̇0ζ0 that can be reduced

to a mass term upon integration by parts. Clearly a time dependence on 〈ζ2
0 〉 can come

only from a non vanishing mass term. These terms read

S
(4)

ζ20 , ζ0ζ̇0
= (6.14)∫

dt

[
ζ2

0

2H2

(
M2

PlHe
ρ(t)(H〈∂iζ∂iζ〉+ 2〈∂iζ∂iζ̇〉)− 9e3ρ(t)

(
M2

PlḢ
(

3H2〈ζζ〉+ 〈ζ̇ ζ̇〉
)

+H2
(

3M2
PlH

(
3H〈ζζ〉+ 2〈ζζ̇〉

)
+ 2(δΛ + δM4)

)))
+

ζ0ζ̇0

H3
(
Ḣ + 3H2

) (M2
PlHe

ρ(t)
(

3H3〈∂iζ∂iζ〉 − 2〈∂iζ∂iζ̇〉Ḣ
)

−3e3ρ(t)
(

3M2
PlH

2Ḣ
(

2H〈ζζ̇〉+ 3H2〈ζζ〉 − 3〈ζ̇ ζ̇〉
)

−2M2
Pl〈ζ̇ ζ̇〉Ḣ2 + 3H4

(
9M2

PlH
2〈ζζ〉+ 2(δΛ− δM4)

)))]
.

After we substitute in the counterterm solutions from (6.12), and we integrate by parts the

term ζ0ζ̇0, the above expression simplifies to

S
(4)

ζ20
=

∫
dt

M2
Ple
−ρ(t)

H2
(
Ḣ + 3H2

)2 ζ2
0 (6.15)

(
2〈∂i∂jζ∂i∂jζ〉Ḣ

(
Ḣ+3H2

)
+ e2ρ(t)

(
2Ḣ
(
Ḣ(H(H〈∂iζ∂iζ〉+ 7〈∂iζ∂iζ̇〉)− 〈∂iζ̇∂iζ̇〉)

−3H2(H(2H〈∂iζ∂iζ〉−〈∂iζ∂iζ̇〉)+〈∂iζ̇∂iζ̇〉)
)

+Ḧ
(

2〈∂iζ∂iζ̇〉Ḣ − 3H3〈∂iζ∂iζ〉
)))

.

Clearly, a mass term seems to have survived after we have taken into account of the

quadratic terms generated by the counterterm solutions. Unless these remaining terms

are exactly those quartic terms of eq. (4.1), the terms associated with a rescaling of the

spatial coordinates in cubic vertices, we would have a time-dependence for the ζ0 two

point function. Luckily,12 this is exactly what happens. It is indeed indicative that all

the surviving terms have spatial derivatives acting on the ζ’s inside the expectation values,

12Or obviously, depending on the point of view.
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suggesting that they are indeed associated to a rescaling of the spatial coordinates. Let

us therefore discover what are those terms in (4.1) by first finding the cubic Lagrangian

of order ζ0ζ
2
k and then taking the expectation value of the finite-k modes. With the usual

procedure, we obtain

S
(3)

ζ0ζ2k
=

∫
d3x dt

(
− eρ(t)

H3
(
Ḣ + 3H2

)) (6.16)(
H3Ḣ

(
M2

Pl

(
ζ0

(
−
(
〈∂iζ∂iζ〉−9e2ρ(t)〈ζζ〉Ḣ

)
+12e2ρ(t)Ḣ+9〈ζ̇ ζ̇〉e2ρ(t)

)
+6〈ζζ̇〉e2ρ(t)ζ̇0

)
+6δΛ(t)ζ0e

2ρ(t)+6δM4ζ0e
2ρ(t)

)
−3H4

(
ζ̇0

(
M2

Pl

((
〈∂iζ∂iζ〉−3e2ρ(t)〈ζζ〉Ḣ

)
−4e2ρ(t)Ḣ

)
−2δΛe2ρ(t) + 2δM4e2ρ(t)

)
+ 2M2

Plζ0

(
〈∂iζ∂iζ̇〉 − 3e2ρ(t)〈ζζ̇〉Ḣ

))
+3H5ζ0

(
M2

Pl

(
−
((
〈∂iζ∂iζ〉−18e2ρ(t)〈ζζ〉Ḣ

)
−24e2ρ(t)Ḣ

))
+6δΛe2ρ(t)+6δM4e2ρ(t)

)
−M2

PlH
2Ḣ
(

2ζ0〈∂iζ∂iζ̇〉+ 9〈ζ̇ ζ̇〉e2ρ(t)ζ̇0

)
+M2

PlHḢ
(

3ζ0〈ζ̇ ζ̇〉e2ρ(t)Ḣ + 2k2〈ζζ̇〉ζ̇0

)
−2M2

Pl〈ζ̇ ζ̇〉e2ρ(t)Ḣ2ζ̇0 + 9M2
PlH

6e2ρ(t)
(
3〈ζζ〉ζ̇0 + 6ζ0〈ζζ̇〉

)
+81M2

PlH
7ζ0〈ζζ〉e2ρ(t)

)
.

According to the results of section 4, loops formed with cubic operators that contain

spatial derivatives would induce time dependence unless we combine them with quartic

loops constructed with the operators derived from formula (4.1). Applying it to the cubic

action above, we obtain

SQuartic,∂i =

∫
d3x dt

− M2
Ple

ρ(t)

H2
(
Ḣ + 3H2

)ζ0

 (6.17)

(
−4〈∂iζ∂iζ̇〉Ḣζ̇0 + 2Hζ0〈∂iζ∂iζ̇〉Ḣ +H2ζ0〈∂iζ∂iζ〉Ḣ + 6H3〈∂iζ∂iζ〉ζ̇0

+6H3ζ0〈∂iζ∂iζ̇〉+ 3H4ζ0〈∂iζ∂iζ〉
)
.

Upon integration by parts, and after using the equation of motions in terms of the form 〈ζ̈ζ〉,
it is easy to see that these terms are exactly the ones left out in (6.15). Notice that we do

not even need to compute explicitly the value of 〈∂ζ∂ζ〉: it cancels with the corresponding

terms. This shows that one can combine the terms in (6.15) with the diagrams built with

cubic interactions to see that all those diagrams do not give a time dependence to ζ0. The

remaining quartic diagrams cancel with the quadratic terms induced by the tadpole terms.

This concludes all the diagrams that appear at one loop. We see that both the 1-PI and

non 1-PI diagrams are important to cancel each other so that, even though naively many

diagrams are dangerous and can potentially give a time dependence to the ζ0 correlation

function, the time-dependence cancels in the sum, and we conclude that the ζ0 two-point

function is time independent.

6.3 Time-independence for the non-zero-modes

We are now ready to begin the study of the case in which the external momentum is finite.

This task is very challenging,13 as the interactions are even more complicated than for

13At least for our standards.
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the case of the zero mode. Luckily we will be able to do it by employing a trick. As

we discussed, the time-dependence we are interested in ruling out is the one that appears

when the wavelength of the mode is much longer than the horizon, and the loop effect is

due to short wavelength modes running in the loop (modes longer than our mode clearly

cannot induce a time dependence). For this reason, we can simplify the action by taking

the leading term in the smallness of the derivatives of the external mode.

In ζ-gauge, this simplification is not trivial at all. After substituting the solutions to

the constraint equations, N i becomes larger and larger as we move to finite but smaller and

smaller k’s. This is due to the fact that at finite k, N i has the non-local-looking expression

N i ∼ kiζ̇/k2 .14 Armed with the experience of the zero-mode, we realize that it would

probably be much better if we could find a gauge where N i does not have this bad behavior

at low momenta. Since at finite k all gauge freedoms are completely fixed by the ζ-gauge

conditions, this is globally impossible. However, we can do this locally. Indeed, we can find

a frame valid in a region of space very small compared to the wavelength of the mode, where

the universe looks like an anisotropic flat universe. Corrections to the results obtained in

this frame will be down by powers of k/(aH) and so will lead to a contribution that is

convergent with time. Since we are dealing with a time-dependent finite-k Fourier mode, the

local frame is not a local FRW universe as it was for the zero mode, but it is an anisotropic

universe. For simplicity, we can choose to work directly with a single Fourier mode

ζk(~x, t) = Re
[
ζ̃0(t) ei

~k·~x
]
, Re

[
ζ̃0

]
= ζ0 . (6.18)

Using rotational invariance, we can take the momentum ~k to be along the ẑ direction

without loss of generality. The resulting spatial metric in the ADM parametrization is

given by the following:

ĥ11 = ĥ22 = e2ρ(t)+2ζ0(t)+2λ0(t)e2ζ(~x,t) , (6.19)

ĥ33 = e2ρ(t)+2ζ0(t)−4λ0(t)e2ζ(~x,t) ,

Ni = ∂iψ(~x, t) + Ñi(~x, t) , ∂iÑi(~x, t) = 0

N = 1 + δN0(t) + δN(~x, t) .

Here the fields with the argument ~x represent short wavelength fields that will be

integrated over in the loops. We see that there is no Ni,0(t) component. This is so because

we can make N i
0 and ∂iN

j
0 vanish. The field λ0 is the (traceless) anisotropic component

of the metric, related to ζ0 by

λ0(t) = −1

3

∫ t

dt′
Ḣ

H2
ζ̇0 , (6.20)

up to an irrelevant constant that can be set to zero using a constant rescaling of the

spatial coordinates. The details of this change of coordinates are given in appendix B.

14We stress that since we are trying to investigate if ζk becomes time-dependent, we cannot assume that

ζ̇ ∼ k2ζ/a2 out of the horizon, as it happens in the free theory. Indeed time derivatives do not count as a

suppression when the mode is part of a commutator in a Green’s function.
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Apart from the terms proportional to λ0, the treatment is very parallel to the one of

the former subsection. First we find the solution to the tadpole counterterms δM4 and

δΛ. As expected, there is no tadpole for the terms in λ0 because of rotational invariance:

the free vacuum expectation value of product of fields must be rotational invariant and

cannot source any anisotropy. This is indeed the case, and the solutions for δM4 and δΛ

are exactly the same as before eq. (6.12).15

At this point we proceed to find the action for the short modes in this background.

We start with the solution to the constraint equations, that read:

δN0(t) =
3H

3H2 + Ḣ
ζ̇0 , (6.21)

δNk =
ζ̇k
H2

(
HδN0 +H − ζ̇0

)
+

k2
ani

2k2H2

(
ζ̇k − 3Hζk

)
λ̇0 ,

ψk =
e2ρ(t)

2k4H3

[
2Ḣζ̇k

(
H
(
2k2

aniλ0 + 2k2ζ0 + k2
)
− 2k2ζ̇0

)
+

λ̇0

(
−3Hζk

(
3H2 + Ḣ

)
+
(

3H2 + 2Ḣ
)
ζ̇k

)
+

k2Hζk

(
−k2

aniλ̇0 − 2k2
(

2HδN0 +H − ζ̇0

))]
,

Ñi =
kie

2ρ(t)

k4H
2
(
k2 − k2

ani

)
λ̇0

(
3Hζk − ζ̇k

)
, i = 1, 2 ,

Ñ3 =
k3e

2ρ(t)

k4H
2
(
2k2 − k2

ani

)
λ̇0

(
3Hζk − ζ̇k

)
,

where k2 = k2
x + k2

y + k2
z and k2

ani = k2
x + k2

y − 2k2
z . kani has the nice property that∫

d2k̂ k2
ani = 0. After substitution of the above solutions in the action, we obtain the

quartic action at order ζ2
0ζ

2
k . As before we evaluate the expectation value on the ζk-modes

and isolate the terms in ζ0 (and λ0) that could lead to a time-dependence for ζ0. Clearly, we

need to keep track only of the terms that contain at least one λ0, the terms quadratic in ζ0

will cancel exactly as in the former section. Furthermore, because of rotational invariance,

terms proportional to λ0ζ0 are absent. We are left with

S
(4)

λ20
=

∫
d3x dt eρ(t)λ2

0

4M2
Pl

H

(
H〈∂iζ∂iζ〉+ 2〈∂iζ∂iζ̇〉

)
, (6.22)

S
(4)

λ0λ̇0
=

∫
d3x dt

(
−2eρ(t)M

2
Pl

H3

)(
−3H

(〈
∂2

ani

∂2
ζ
∂2

ani

∂2
ζ̇

〉
− 2〈ζζ̇〉

)
e2ρ(t)Ḣ − 6H2〈∂iζ∂iζ〉

+

(〈
∂2

ani

∂2
ζ̇
∂2

ani

∂2
ζ̇

〉
− 2〈ζ̇ ζ̇〉

)
e2ρ(t)Ḣ + 2H〈∂iζ∂iζ̇〉

)
.

15There is only one subtlety here that distinguishes this case from the former one. In the former section

we were studying the effect of loops on the zero mode, and therefore loop integrals whose range is over

momenta that are shorter than the external one, were basically running over all momenta. Here instead,

since we are Taylor expanding in derivatives of the long external mode, loops should formally include only

modes that are shorter than the external one. This is hardly a problem however because in order to prove

that there is no induced time-dependence, we are interested in the case where the external mode k is outside

of the horizon. The contribution from modes longer than the horizon is equivalent to the contribution of

modes that are all out of the horizon. At this point, a nice property of the ζ action tells that there are

no vertices without at least a derivative acting on one ζ fluctuation [6]. This guarantees that when all the

modes are outside of the horizon each vertex is suppress by powers of k/(aH). So those contributions would

give rise to a time-convergent contribution and can be safely ignored.
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Here ∂2 = ∂2
x + ∂2

y + ∂2
z while ∂2

ani = ∂2
x + ∂2

y − 2∂2
z . The second expression above can be

further simplified by noticing that by rotational invariance

〈
∂2

ani

∂2
ζ̇
∂2

ani

∂2
ζ̇

〉
=

4

5
〈ζ̇ ζ̇〉 , (6.23)

and similar for similar terms. After integrating by parts the term in λ0λ̇0 and summing

with the term in λ2
0, we obtain the final expression

S
(4)

λ20
=

∫
d3x dt e−ρ(t) λ2

0

2M2
Pl

5H4Ḣ
(6.24)(

−20H3e2ρ(t)Ḣ〈∂iζ∂iζ̇〉 − 5H4〈∂iζ∂iζ〉e2ρ(t)Ḣ − 3e4ρ(t)Ḣ3〈ζ̇ ζ̇〉

+H2
(
−5e2ρ(t)Ḧ〈∂iζ∂iζ̇〉+ e2ρ(t)Ḣ

(
18e2ρ(t)Ḣ〈ζ̇ ζ̇〉+ 5〈∂iζ̇∂iζ̇〉

)
−Ḣ

(
5〈∂j∂iζ∂j∂iζ〉−6e2ρ(t)Ḣ〈∂iζ∂iζ〉

))
+3He2ρ(t)Ḣ

(
e2ρ(t)Ḧ〈ζ̇ ζ̇〉+ 2〈∂iζ∂iζ̇〉Ḣ

))
.

As in the former section, if these terms were not to be exactly the ones in Quartic∂i then we

will have a time dependence for the ζ correlation function. To check for this, we move to

the cubic action. Again, we need simply to investigate terms proportional to λ0ζ
2
k . We have

S
(3)

λ0ζ2k
=

∫
d3x dt 2

M2
Ple

ρ(t)

H3
(6.25)(

e2ρ(t)Ḣλ̇0

(
3H

∂2
ani

∂2
ζζ̇ − ∂2

ani

∂2
ζ̇ ζ̇

)
−H

(
λ̇0

(
∂2

aniζζ̇ − 3H∂2
aniζζ

)
−2Hλ0

(
H∂2

aniζζ + 2∂2
aniζζ̇

)))
.

The identification of the quartic vertices starting from the cubic vertices is slightly more

complicated due to the anisotropy. In practice, everytime in the cubic Lagrangian there are

two derivatives that are contracted, they should be thought of as originating from being

contracted with the spatial metric ĥij , and we take the resulting relevant quartic operator.

Let us give a few examples:

L3 ⊃ ζ0(∂iζ)2 → L4 ⊃− ζ2
0 (∂iζ)2 − 2λ0ζ0(∂aniζ)2 , (6.26)

L3 ⊃ ζ̇0(∂iζ)2 → L4 ⊃− 2ζ0ζ̇0(∂iζ)2 − 2λ0ζ̇0(∂aniζ)2 ,

L3 ⊃ λ0(∂iζ)2 → L4 ⊃− 2ζ0λ0(∂iζ)2 − λ2
0(∂aniζ)2 ,

L3 ⊃ λ̇0(∂iζ)2 → L4 ⊃− 2ζ0λ̇0(∂iζ)2 − 2λ0λ̇0(∂aniζ)2,

L3 ⊃ ζ0(∂aniζ)2 → L4 ⊃ (−ζ0 + 2λ0)ζ0(∂aniζ)2 − 4λ0ζ0(∂iζ)2 ,

L3 ⊃ ζ̇0(∂aniζ)2 → L4 ⊃ (−2ζ0 + 2λ0)ζ̇0(∂aniζ)2 − 4λ0ζ̇0(∂iζ)2 ,

L3 ⊃ λ0(∂aniζ)2 → L4 ⊃ (−2ζ0 + λ0)λ0(∂aniζ)2 − 2λ2
0(∂iζ)2 ,

L3 ⊃ λ̇0(∂aniζ)2 → L4 ⊃ (−2ζ0 + 2λ0)λ̇0(∂aniζ)2 − 4λ0λ̇0(∂iζ)2 ,
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where ~∂ani = (∂x, ∂y, i
√

2∂z). Upon implementing the promotion of the spatial derivative

to include the ζ0 and λ0 factors, we have

SQuartic,∂i=

∫
d3x dt eρ(t) λ0

4M2
Pl

5H(t)3
(6.27)(

5H
(
λ̇0

(
3H〈∂iζ∂iζ〉 − 〈∂iζ∂iζ̇〉

)
+Hλ0

(
H〈∂iζ∂iζ〉+ 2〈∂iζ∂iζ̇〉

))
−

3e2ρ(t)Ḣλ̇0

(
3H〈ζζ̇〉 − 〈ζ̇ ζ̇〉

))
=

=

∫
d3x dt e−ρ(t) λ2

0

M2
Pl

5H4Ḣ(
−20H3e2ρ(t)Ḣ〈∂iζ∂iζ̇〉 − 5H4〈∂iζ∂iζ〉e2ρ(t)Ḣ − 3e4ρ(t)Ḣ3〈ζ̇ ζ̇〉

+H2
(
−5e2ρ(t)Ḧ〈∂iζ∂iζ̇〉+ e2ρ(t)Ḣ

(
18e2ρ(t)Ḣ〈ζ̇ ζ̇〉+ 5〈∂iζ̇∂iζ̇〉

)
−Ḣ

(
5〈∂j∂iζ∂j∂iζ〉−6e2ρ(t)Ḣ〈∂iζ∂iζ〉

))
+3He2ρ(t)Ḣ

(
e2ρ(t)Ḧ〈ζ̇ ζ̇〉+2〈∂iζ∂iζ̇〉Ḣ

))
.

where in the first passage we have used that by rotational invariance terms involving ∂2
ani are

zero and those involving ∂4
ani are equal to the same expression with (∂2

ani)
2 → 4(∂2)2/5, and

in the second passage we have performed an integration by parts. We see that thisQuartic∂i
term is exactly the one being left out from the loops with the quartic diagrams, and so its

time-dependent contribution will cancel the one coming from the CIS1PI+CIM+Quartic∂t
diagrams. This completes the exploration of all the diagrams entering at one-loop, proving

that the ζk correlator does not have a time-dependence even at finite momentum k.

A note on tensor modes. Since in this section we have dealt with gravitational interac-

tions, it is logical to wonder on the contribution of the tensor modes. Indeed, for standard

slow roll inflation, at one-loop the contribution from tensor modes is parametrically the

same as the one from the ζ short modes. One might wonder why we could neglect them,

or alternatively why time-dependent effects from loops of ζ modes cancel independently of

the ones from loops of tensor modes. It is easy to realize that the contribution from tensor

modes must cancel independently. Let us analyze the various diagrams. It is pretty clear

that the diagrams built with cubic vertices will cancel independently in the same way as

they independently did for the ζ modes. This cancellation in fact relies on the consistency

condition, that holds for tensor modes as well as for ζ modes. A bit less obvious is to

understand why the graviton and ζ contribution from quartic and tadpole terms cancel

independently. The fact that the contribution of tensor modes and scalar modes is para-

metrically the same is an accident of standard slow roll inflation. It is possible to engineer

inflationary models where the contribution is parametrically different. If for example we

add to the Effective Field Theory of Inflation an operator of the form (δg00)2, we change

the speed of sound of the ζ fluctuations, without changing the ones of the tensor modes.

Since the tadpoles and the quartic loops are evaluated on the linear solutions, this shows

that those loops are parametrically different, and they have to cancel independently. We

have explicitly verified that this is the case for the effect on the ζ zero-mode.
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7 Conclusions

Understanding the behavior of the theory of inflationary fluctuations at one-loop order,

with particular attention to the possible infrared factors, is a very important task. We

have stressed how this is important for the predictivity of inflation as well as for slow

roll eternal inflation and its universal volume bound. In general, it is also important to

understand how the theory we believe to be the strongest contender for describing the first

instants in the history of our universe behaves at quantum level.

In this paper we have proven that the ζk correlation function does not receive correc-

tions that grow with time ∼ Ht after the mode has crossed the horizon. This result is

achieved by proving that there is a cancellation among the various diagrams that would

naively induce a time-dependence, if taken alone. While this cancellation happens in an

intricate way, its physical origin can be stated in a very simple form. First, since there is a

vacuum contribution to the stress tensor due to the fluctuations, it is important to define

the ζ fluctuations around the correct one-loop spacetime background. This can be achieved

either by automatically including non−1PI diagrams in the calculation, or, as we do here,

by inserting diff. invariant counterterms that cancel the tadpole correction. Because of

diff. invariance, these tadpole counterterms contain terms quadratic in the fluctuations

that modify the ζ propagator and account for a cancellation of the time-dependence in-

duced by many of the diagrams built from quartic vertex. Some of these quartic diagrams

indeed look very much like coming from a renormalization of the background, as they in-

volve vacuum expectation values of quadratic operators on the unperturbed background.

It is not so surprising that they cancel with the tadpole counterterms.

The remaining quartic vertices, that we have called Quartic∂t and Quartic∂i , induce a

time dependence that cancels with the one from the cubic diagrams that we call CIS1PI +

CIM . The sum of all these diagrams describes how the vacuum expectation value of the

short-wavelength modes is affected by the presence of a long-wavelength mode, and how

the perturbation in this expectation value in turn backreacts on the long-wavelength mode.

Because of the attractor nature of the inflationary solution, a long wavelength ζ fluctuation

is equivalent to a trivial rescaling of the coordinates in the unperturbed background. So

the vacuum expectation value of the short-wavelength modes should not be affected at all

by the presence of a long wavelength mode making this effect disappear.

Since the ζ fluctuations are not derivatively coupled, a feature shared also by the

graviton, showing this is not easy. In order to do it we wrote the sum of these diagrams

as the three-point function between two short-wavelength modes and one long-wavelength

mode, integrated over the short-wavelength Fourier components. In this way, after adding

the terms from Quartic∂t and Quartic∂i , we could use the consistency condition to show

that the presence of a long-wavelength ζ does not change the expectation value of short

modes in a way that correlates with the long mode and therefore that these diagrams do

not give any time dependence.

By accounting for all the diagrams at one loop order we proved that ζ is a constant at

this order.

There are many possible generalizations to our results. In the introduction we gave
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arguments that could be easily generalized to arbitrary loops. Furthermore it would be

nice to include in the treatment gravitons both inside the loops as well as in the external

legs. All of this seems doable. The physical principles responsible for the cancellations we

found should hold unchanged also for these more general cases.
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A Consistency condition inside the horizon

In this appendix we discuss the three-point function in the squeezed limit in which one

of the modes is much longer than the other two. While so far the literature has always

concentrated in the limit in which the two short modes are outside of the horizon, as this

is the relevant limit for observed modes in tree-level correlation functions, at loop level we

are also interested in the case in which the two short modes are inside the horizon. We will

verify that the consistency condition also holds in this regime. We will do this at leading

order in slow roll parameters.

For the case in which the short modes are still inside the horizon, the proof at leading

order in slow roll parameters is very easy. In fact, contrary to what happens when we are

interested in computing the correlation function of modes at a time when they are outside

the horizon, in this case the leading interaction is of zeroth order in the slow roll parameters.

Indeed, it is not true that the ζ cubic action starts at first order in slow roll parameters

(relative to the quadratic action). This is so only up to terms that can be removed by a

field redefinition and that can therefore be evaluated at the final time. For modes that are

outside of the horizon at the time of evaluation, these vanish. For modes that are not yet

outside of the horizon, they do not, and they therefore represent the leading contribution

in the slow roll expansion.

Following [6], the term we are discussing comes from the field redefinition:

ζ = ζn +
ζζ̇

H
+ . . . , (A.1)

where . . . represent terms suppressed by slow roll parameters. The variable ζn has a cubic

action that is suppressed by slow roll parameters, and so negligible. At this point computing
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the three-point function is very straightforward. In the limit in which the long mode k3 is

much longer than the horizon k3/a(η)� H and k3 � k2 ' k1, we have

〈ζk1(η)ζk2(η)ζk3(η)〉 ' (2π)3δ(3)(~k1 + ~k2 + ~k3)
1

H
〈ζ̇k1ζk1 + ζk1 ζ̇k1〉′ 〈ζ2

k3〉
′ (A.2)

= (2π)3δ(3)(~k1 + ~k2 + ~k3)
1

H
∂t〈ζ2

k1〉
′ 〈ζ2

k3〉
′ , k1 � k3 ,

where the 〈〉′ symbol stays for the fact that we have removed the delta function from

the expectation value. Using the wavefunction of the modes at leading order in slow

roll parameters

ζclk (η) =
H

2
√
εMPl

1

k3/2
(1− ikη) eikη , (A.3)

where ε is the slow roll parameter ε = −Ḣ/H2, we obtain

〈ζk1(η)ζk2(η)ζk3(η)〉 ' − H4

8M4
Plε

2
· η2

k1k3
3

. (A.4)

In order to satisfy the consistency condition, the above result should be equal to

〈ζk1(η)ζk2(η)ζk3(η)〉 ' −(2π)3δ(3)(~k1 + ~k2 + ~k3)
∂
[
k3

1〈ζ2
k1
〉′
]

∂ log k1
〈ζ2
k1〉
′〈ζ2

k3〉
′ . (A.5)

Notice that since the short modes are still inside the horizon, their power spectrum is not

yet scale invariant, so ∂
[
k3

1〈ζ2
k1
〉′
]
/∂ log k1 is not slow-roll suppressed. Upon substitution

of (A.3), this is indeed equal to (A.4), verifying the consistency condition for modes inside

the horizon.

A.1 Consistency condition for operators with spatial derivatives

Let us now consider the three-point function in the same regime of momenta as above for

a derivative operator of the form〈
1

a(η)2
∂iζk1(η)∂iζk2(η)ζk3(η)

〉
. (A.6)

Since when we compute the three-point function we simply evolve the operators and not

their spatial derivatives, the result can be trivially obtained from the one above in eq. (A.4)

to be〈
1

a(η)2
(∂iζ)k1 (η) (∂iζ)k2 (η)ζk3(η)

〉
' (2π)3δ(3)(~k1 + ~k2 + ~k3)

k2
1

a(η)2

1

H
∂t〈ζ2

k1〉
′ 〈ζ2

k3〉
′

= − H6

8M4
Plε

2
· η

4 k1

k3
3

, k1 � k3 . (A.7)

This operator does not satisfy the consistency condition, that reads〈
1

a(η)2
(∂iζ)k1 (η) (∂iζ)k2 (η)ζk3(η)

〉
'−(2π)3δ(3)(~k1+~k2+~k3)

1

a(η)2

∂
[
k5

1〈ζ2
k1
〉′
]

∂ log k1
〈ζ2
k1〉
′〈ζ2

k3〉
′

= − H6

8M4
Plε

2

η2
(
1 + η2k2

1

)
k1k3

3

. (A.8)
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The reason for this mismatch is that in the consistency condition we are rescaling all the

momenta, including the ones representing the external derivatives.

An operator that instead satisfies the consistency condition (A.8) is one in which the

derivatives go together with factors of e−ζk3 . In the squeezed limit we have〈
1

a(η)2e2ζk3 (~x,η)
(∂iζ)k1 (η) (∂iζ)k2 (η)ζk3(η)

〉
=〈

1

a(η)2
(∂iζ)k1 (η)(∂iζ)−k1(η)ζk3'0(η)

〉
−2

〈
1

a(η)2
(∂iζ)k1 (η) (∂iζ)−k1 (η)ζk3'0(η)ζ−k3'0(η)

〉
, (A.9)

as it can be readily verified.

We see that the consistency condition is satisfied by considering the sum of the oper-

ator we considered initially (∂iζ)k1 (∂iζ)k2 ζk3 plus a contact quartic operator of the form

−2 (∂iζ)k1 (∂iζ)k2 ζk3
2. As we argued in the main text, this additional contact operator

comes automatically in the quartic Lagrangian, its presence being indeed guaranteed by

the residual diff. invariance that we have in ζ gauge. The factor of 2 apparent mismatch in

the contact operator we insert in (A.9) and the one we identify in the quartic Lagrangian

in (4.6) takes into account the combinatorial factor that we have when we contract the

operator with the external wavefunctions. This is the kind of combination of operators we

consider in section 4 when we use the consistency condition to show that some combination

of diagrams do not lead to time dependence in the ζ correlators.

A.2 Consistency condition for operators with time derivatives

Here we want to show that time derivatives of operators, even when inside the horizon,

will obey the consistency condition, when correlated with a long wavelength mode. In

particular, we want to study a correlation function of the form 〈ζ̇k1(η)ζ̇k2(η)ζk3(η)〉 in the

regime k3 � k1 ≈ k2, and the long mode has exited the horizon.

As discussed in section 4.3, there is a contribution from contact terms that is essential

for the consistency condition to be satisfied. For operators that involved spatial derivatives,

we had to borrow terms from the quartic Hamiltonian. Here, we have a very similar

situation. For operators with time derivatives, these operators came naturally from H4,3,

i.e., the quartic Hamiltonian induced by the cubic Lagrangian. A more rigorous parallel

between these cases is made at the end of this subsection.

We will study an example in the Effective Field Theory of inflation where the speed of

sound deviates from the speed of light, and the other background quantities, like H and Ḣ,

are assumed to be constant, for effects of computing the tilt of the spectrum. The action

was written in (4.17) but let us write it before taking the decoupling limit:

S =

∫
d4x
√
−g
[
ḢM2

Plg
00 +M4(t)(δg00)2

]
. (A.10)

Let us further assume that M4(t) has a linear dependence in time and we will concen-

trate only on the effects that are proportional to ∂t(M
4). That is, we imagine that M4(t)
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varies on time scales that are slow with respect to H−1, but fast with respect to εH−1. Us-

ing the Stueckelberg procedure to recover gauge invariance, we perform a diffeomorphism

t→ t+π and consider the limit where the longitudinal mode decouples from the graviton.

The action, up to cubic order, reads:

S =

∫
dtd3xa3

{
−ḢM2

Pl

c2
s

[
π̇2 − c2

s

(
∂iπ

a

)2
]

+4∂t(M
4(t))ππ̇2 + 4M4(t)π̇3 − 4M4(t)π̇

(
∂iπ

a

)2
}

. (A.11)

The speed of sound breaks the equivalent footing of time and space derivatives in the

quadratic term, and is given by

c2
s =

−ḢM2
Pl

4M4(t)− ḢM2
Pl

. (A.12)

To write 〈ζ̇k1 ζ̇k2ζk3〉 we first compute 〈π̇k1 π̇k2πk3〉. In order to do it, we need the

following operator equation, in Heisemberg picture:

π̇(t) = ∂t(U
†
int(t,−∞+πI(t)Uint(t,−∞+)) =

iU †int(t,−∞+)[Hint(t), πI(t)]Uint(t,−∞+)+U †int(t,−∞+)π̇I(t)Uint(t,−∞+) . (A.13)

The quantum field π can be written as πk(η) = a−kπ
cl(k, η)+a†kπ

cl(k, η)∗, with the classical

wavefunction given by:

πcl(k, η) = − i

2
√
εcsk3MPl

(1− icskη)eicskη . (A.14)

Then the three point function 〈π̇k1(η)π̇k2(η)πk3(η)〉 is given by:

〈π̇k1(η)π̇k2(η)πk3(η)〉= i

∫ η

−∞+

dτ〈[H3(τ), π̇k1(η)π̇k2(η)πk3(η)]〉+ (A.15)

+ i〈[H3(η), πk1(η)]π̇k2(η)πk3(η)〉+ i〈π̇k1(η)[H3(η), πk2(η)]πk3(η)〉 .

The first term in the right hand side is the usual in-in expression, and the terms in the

second line are the extra contact terms that come from using (A.13). A straightforward

computation of the three terms yields, in the squeezed limit:

i

∫ η

−∞+

dτ〈[H3(τ), π̇k1(η)π̇k2(η)πk3(η)]〉= (2π)3δ(3)
(∑

ki

) 1

8

c4
s∂t(M

4(t))

M6
Plε

3

(k1η)4

k3
1k

3
3

,

i〈[H3(η), πk1(η)]π̇k2(η)πk3(η)〉= (A.16)

= i〈π̇k1(η)[H3(η), πk2(η)]πk3(η)〉=−(2π)3δ(3)
(∑

ki

) 1

4

c4
s∂t(M

4(t))

M6
Plε

3

(k1η)4

k3
1k

3
3

.

So adding these terms will give us 〈π̇k1(η)π̇k2(η)πk3(η)〉. Now, we are interested in

〈ζ̇k1(η)ζ̇k2(η)ζk3(η)〉. But the ζ and π fields are related through ζ = −Hπ +Hπ̇π [9],16 so

16There are additional quadratic corrections to this expression, but they will give corrections to the three

point function that are subleading when at least one of the modes is outside of the horizon or that are slow

roll suppressed.
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we can write our desired correlator:

〈ζ̇k1(η)ζ̇k2(η)ζk3(η)〉= (A.17)

(2π)3δ(3) (k1 + k2 + k3)

[
3

8

c4
s∂t(M

4(t))H3

M6
Plε

3

(k1η)4

k3
1k

3
3

+
1

H

∂〈ζ̇2
k1
〉′

∂t
〈ζ2
k3〉
′

]

=−(2π)3δ(3) (k1 + k2 + k3)
c3
sH

4

4εM2
Pl

4
(k1η)4

k3
1

〈ζ2
k3〉
′ =

=−(2π)3δ(3) (k1+k2+k3)
1

k3
1

d

d log k1

(
k3

1〈ζ̇2
k1〉
′
)
〈ζ2
k3〉
′ , k3�k1≈k2 ,

where we have used that

〈ζk1(η)ζk2(η)〉 = (2π)3δ(3)(k1 + k2)
H2(1 + c2

sk
2
1η

2)

4csεM2
Plk

3
1

, (A.18)

〈ζ̇k1(η)ζ̇k2(η)〉 = (2π)3δ(3)(k1 + k2)
c3
sH

4(k1η)4

4εM2
Pl k

3
1

.

Notice that the effect of the field redefinition is to remove the time derivatives associated

to terms that do not depend explicitly on kη, such as cs, so that the consistency condition

works. This concludes our check of the consistency condition for modes inside the horizon,

with time derivative operators.

As a last remark, we now discuss the relation between the contact terms that con-

tributed to 〈π̇π̇π〉, and the contact terms arising from the quartic Hamiltonian H4,3, which

is discussed in the main text. They are playing the exact same role: accounting for the

action of the time derivative on Uint. The results of this subsection can be cast in a form

that makes this connection more manifest. We use here the notation “S, L” for short and

long modes.

In the main text, we are computing a three point function of the following

schematic form:∑
a

∫ η

dη′
〈(

δL3

δDaζa

)
S

(η′)ζL(η)

〉
DaGζ(η′, η) ∼

∫ η

dη′
〈
i[HS,S,L,L

4,3 (η′), ζL(η)]ζL(η)
〉

+ . . . ,

(A.19)

where . . . are contributions to the one-loop two point function coming from other diagrams.

Now, we can recast the three point function 〈π̇π̇π〉 as:

〈π̇S(η)π̇S(η)πL(η)〉 =

〈(
δLππ̇

2

3

δπ̇

)
S

(η) πL(η)

〉
, (A.20)

and the contact term as:

i〈[H3(η), πS(η)]π̇S(η)πL(η)〉 ∼ −

〈(
δL3

δP

)
S,L

(η)

(
δLππ̇

2

3

δπ̇

)
S,L

(η)

〉
. (A.21)

So we see that if the three point function involved the full Lagrangian, the contact term

would be proportional to the squeezed quartic Hamiltonian, 〈HS,S,L,L
4,3 〉. As the one loop

diagram involves a commutator instead of a tree level four point function, we need to

insert the Green’s function on the left hand side of (A.19), thus seeing how both three

point functions are affected by contact terms coming from H4,3.
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B Local anisotropic universe

We aim here to provide the change of coordinates that locally takes us from the metric writ-

ten in standard ζ gauge to a form that is locally of the form of (6.19). We need to work only

at linear order in the long wavelength fluctuations ζL, because in the loop we integrate over

the short wavelength fluctuations ζS . We start from the metric in ADM parametrization

ds2 = −N2dt2 +
∑
ij

δija(t)2e2ζ
(
dxi +N idt

) (
dxj +N jdt

)
, (B.1)

where in this appendix we suspend the convention of summing over repeated indices. We

can perform the following change of coordinates

xi = eβij(t)x̃j + Ci(t) , (B.2)

without introducing perturbations in the field that is driving inflation. Since we can work

at linear order in the long modes, we can use rotational invariance to consider a long mode

with wavenumber only along the ẑ direction,

ζL(~x, t) = Re
[
ζ̃0(t) eikz

]
, Re

[
ζ̃0

]
= ζ0 . (B.3)

It will be enough to take βij = β(t)δi3δj3. The only subtle point in this change of variables

is that at linear order in the long modes, we have

~NL =

{
0, 0,Re

[
i
Ḣ

H2

1

k
˙̃
ζ0 e

ik eβ z̃

]}
+O(k2ζ̃0) , (B.4)

which does not have a nice behavior for k → 0. We need therefore to enforce that our

change of coordinates not only fixes to zero N i at one point, say the origin, N i
0 = 0, but

also it must set to zero ∂iN
j at the origin, (∂iN

j)0 = 0. This will guarantee that neglected

terms are suppressed in the limit k → 0.

Simple algebra shows that the solution is

~C =

∫
dt

{
0, 0,

Ḣ

H2

1

k
Im
[

˙̃
ζ0

]}
, (B.5)

β =

∫
dt

Ḣ

H2
ζ̇0 . (B.6)

The metric then takes the form of (6.19), with, in the new coordinates

Ñ i
0 = 0 ,

(
∂jÑ

i
)

0
= 0 , ζ̃(~̃x, t) = ζ

(
~x(~̃x, t), t

)
+

2

3

∫ t

dt
Ḣ

H2
ζ̇0(t) . (B.7)

Notice that the short mode fluctuations ζS transform as a scalar under this change

of coordinates

ζ̃S(~̃x, t) = ζS

(
~x(~̃x, t), t

)
. (B.8)

The same procedure can be clearly performed at non-linear level in ζL using a generic

matrix βij , but this is not necessary for a one-loop calculation.
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