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Abstract

Background: This paper forecasts next year’s canine heartworm prevalence in the United States from 16 climate,
geographic and societal factors. The forecast’s construction and an assessment of its performance are described.

Methods: The forecast is based on a spatial-temporal conditional autoregressive model fitted to over 31 million
antigen heartworm tests conducted in the 48 contiguous United States during 2011–2015. The forecast uses
county-level data on 16 predictive factors, including temperature, precipitation, median household income, local
forest and surface water coverage, and presence/absence of eight mosquito species. Non-static factors are
extrapolated into the forthcoming year with various statistical methods. The fitted model and factor extrapolations
are used to estimate next year’s regional prevalence.

Results: The correlation between the observed and model-estimated county-by-county heartworm prevalence for
the 5-year period 2011–2015 is 0.727, demonstrating reasonable model accuracy. The correlation between 2015
observed and forecasted county-by-county heartworm prevalence is 0.940, demonstrating significant skill and
showing that heartworm prevalence can be forecasted reasonably accurately.

Conclusions: The forecast presented herein can a priori alert veterinarians to areas expected to see higher than
normal heartworm activity. The proposed methods may prove useful for forecasting other diseases.
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Background
Heartworm disease, caused by the mosquito-borne filarial
nematode Dirofilaria immitis, is arguably the most medic-
ally important parasitic infection of domestic dogs in the
United States (US), affecting at least 115,000 dogs in 2015.
Beyond the US, heartworm disease is a global veterinary
healthcare problem, with D. immitis affecting dogs in
many parts of South America, Europe, Asia, and Australia
[1, 2]. Infection is associated with life-threatening compli-
cations and significant financial burden, costing millions
in veterinary care annually for disease treatment [3–7]. Al-
though less common and less studied, heartworm disease
is also a health concern for other mammals such as
domestic cats, domestic ferrets, and some wildlife species
[8]. Clinical signs of heartworm disease in domestic dogs

include exercise intolerance, coughing, dyspnea, cachexia,
anorexia, epistaxis and ascites. Dogs with a high burden of
adult heartworms can suffer from pulmonary arterial
occlusion and inflammation, leading to pulmonary hyper-
tension and potentially right heart failure. Cats and ferrets
may experience similar signs but acute death may occur,
even with very low worm burdens. Humans can also be
infected with D. immitis, but infections are rare, with
fewer than 100 cases reported in the US over the last
60 years [9]. Human infection is most commonly asymp-
tomatic, with people considered dead-end hosts for the
parasite. While rare, human D. immitis infection is highly
problematic in that it most often manifests as “coin
lesions” in the lungs that may be mistaken for a neoplasm
on chest radiographs; surgical excision is necessary to
differentiate the two entities [10].
Heartworm disease in dogs is most commonly diag-

nosed through the detection of circulating D. immitis anti-
gen in the blood [3, 11]. The prevalence of heartworm
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infection in the US varies considerably by geographical re-
gion. Two nationwide surveillance studies of D. immitis
infection seroprevalence (henceforth prevalence) in do-
mestic dogs found the highest prevalence in the Southeast
and the lowest in the Northeast [11]. For unknown rea-
sons, a noted decrease in the prevalence of D. immitis oc-
curred between the 2001–2007 and 2010–2012 in these
studies. Importantly, regardless of time period and even
within areas where heartworm infection is considered
common, there can be considerable local variation, with
prevalence reaching as high as 13 % [12, 13].
Numerous factors are purported to be associated with

regional and local variations in D. immitis prevalence in
domestic dogs. Highly effective commercially available
anthelmintics (e.g. macrocyclic lactones (ML) [3], in-
cluding the avermectins (ivermectin, selamectin) and the
milbemycins (moxidectin, milbemycin oxime) can be
administered monthly to prevent the development of
immature stages into adult worms. Year-round prevent-
ive use is recommended throughout the US, yet the
majority of dogs only receive seasonal treatment [14].
Even within highly endemic regions, anthelminthic use
varies based on client compliance, knowledge, or dog
owner’s demographics. In addition, resistance of D.
immitis to ML has been recently documented and is a
growing concern in the Gulf States, but the current ex-
tent of resistant phenotypes remains unknown [7, 15].
Dirofilaria immitis can be transmitted by over 70 species
of mosquitoes, although certain species (e.g. Aedes trivit-
tatus, Aedes sierrensis and Culex quinquefasciatus) are
considered more important vectors [16]. Because the
density of mosquitoes and community composition of
competent vector species is influenced greatly by habitat
use and climate, these factors should be considered
when investigating factors influencing heartworm
disease. In support of this, a previous study found that
temperature, median household income, population
density, precipitation, elevation, relative humidity,
forestation coverage, and surface water coverage all sig-
nificantly influence D. immitis prevalence in dogs [16].
Clearly, it would be advantageous to accurately forecast

D. immitis prevalence on a local scale, providing an a
priori alert to veterinarians in problem areas where imme-
diate remediation measures could be taken. Annual fore-
casts of emergent infection will also inform veterinary and
public health officials to shifting areas of infection,
particularly in temperate regions of the US where D.
immitis is generally absent, rare, or prevalence is highly
influenced by annual variation in biotic or abiotic factors.

Methods
Data structure
The data studied here contain 31,345,244 heartworm
antigen test results from dogs in the conterminous

United States from 2011 to 2015, and various climate,
geographic and socio-economic factors purported to
influence heartworm prevalence. The raw tests were
obtained from the Antech and IDEXX laboratories [17,
18]. Over all 5 years in the study, 384,905 of the tests
were positive (1.23 %). The test data contain the county/
parish of the testing clinic and the month when the tests
were conducted; however, no measure of uncertainty is
given with the individual test results.
The test data were aggregated into the number of

positive and negative tests for each year in each
conterminous United States county/parish. Table 1
lists 16 explanatory factors that are purportedly
related to dog heartworm prevalence, as well as their
time period of record and geographic scale of collec-
tion. These 16 factors include the climatic variables
of annual temperature, precipitation and relative
humidity, the geographic variables of county elevation,
forestation coverage and surface water coverage, the
socio-economic variables of county population density
and median household income, and the presence of
eight mosquito vectors. For more details on these
factors, see [19].
Figure 1 displays county-level raw heartworm preva-

lences obtained by dividing the number of positive tests
by the number of tests over all 5 years in the study. The
raw prevalences exhibit a large degree of spatial correl-
ation in that neighboring counties tend to report similar
prevalences. Significant temporal dependence is also
present in the data: the current prevalence is similar to
past prevalence. Therefore, this data set requires a statis-
tical model with both spatial and temporal dependence.
Figure 2 provides a spatially smoothed prevalence

map, using a head-banging smoothing procedure, based
on the Fig. 1 prevalences. In the head-banging smooth-
ing procedure, 45 triples were employed. The smoothing
was also weighted proportionally to the number of tests
in each county over the 5-year period. This prevents the
map from signaling a high/low prevalence that is more
likely attributed to a small sample (one positive out of
three tests has the same prevalence as one hundred posi-
tive in 300 tests, though the latter is more indicative of
infection risk). Details on head-banging smoothing and
its uses in disease mapping are contained in [16].
Figure 2 serves as a contemporary depiction of the
“baseline” heartworm risk for dogs in the United States.

Statistical modeling
The model and methods used to statistically analyze the
heartworm tests are now described. The goal here is to
assess the significance of the 16 factors and accurately
estimate regional heartworm prevalence.
Let Ys(t) and ns(t) denote the number of positive and total

tests conducted in county s during year t, respectively, for
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counties s ∈ {1,…, S} and years t ∈ {1,…,T}. Method-
ologies for modeling spatial and temporal dependence
have received much recent attention in the statistics
literature [20–27]. Among many choices, Bayesian
hierarchical models have been prominent due to their
flexibility. In a Bayesian hierarchical model, spatial
and temporal dependence is modelled in a hierarchy

via a series of random effect terms with prescribed
structures; see [20, 21] for a modern review of spatio-
temporal models. Typically, when modeling the spatial
or spatial-temporal dependent count data via para-
metric models, a Poisson distribution is preferred
[21–24]. The following hierarchical regression model
is used here:

Fig. 1 County-by-county raw prevalence aggregated over 2011–2015

Table 1 Factors purported to influence heartworm prevalence

Factor Data period Scale Notation Numerical scale of data

Climate factors Annual temperature 1895–2015 Climate Division Xs,1(t) Continuous

Annual precipitation 1895–2015 Climate Division Xs,2(t)

Annual relative humidity 2006–2015 Climate Division Xs,3(t)

Geographic factors Elevation 2012 County Xs,4(t) Continuous

Percentage forest coverage 2012 County Xs,5(t)

Percentage surface water coverage 2010 County Xs,6(t)

Societal factors Population density 2011–2014 County Xs,7(t) Continuous

Median household income 1997–2014 County Xs,8(t)

Mosquito species Aedes aegypti 2008 County Xs,9(t) Xs,k = 1 if present, and
Xs,k = 0 otherwise

Aedes albopictus 2012 County Xs,10(t)

Aedes canadensis 2004 County Xs,11(t)

Aedes sierrensis 2004 County Xs,12(t)

Aedes trivittatus 2004 County Xs,13(t)

Anopheles punctipennis 2004 County Xs,14(t)

Anopheles quadrimaculatus 2004 County Xs,15(t)

Culex quinquefasciatus 2004 County Xs,16(t)

For further discussion, including the source of each factor, see [16]
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Y s tð Þjns tð Þ; ps tð Þ ∼ Poisson ns tð Þps tð Þf g; ð1Þ

log ps tð Þf g ¼ β0 þ
X16

k¼1

βkXs;k tð Þ þ ξs tð Þ; ð2Þ

where log(⋅) denotes natural logarithm, Xs(t) = (Xs,1(t),…,
Xs,16(t)) ' is a vector of covariate information for county s
at time t ('denotes matrix transpose), β = (β0,…, βp) ' is a
vector of regression coefficients, ps(t) denotes the heart-
worm prevalence of county s at time t, the symbol ~
means has the distributional type, and ∣ indicates given
quantities. Equation (1) indicates that Ys(t) has a Poisson
distribution with mean ns(t)ps(t). In addition, it is assumed
that the positive test counts (i.e. Ys(t)) are conditionally in-
dependent of each other given the number of tests, factor
information, and random effects. This does not imply that
Ys(t) is independent across varying space s or time t.
To relate prevalence to the factors and build spatial

and temporal dependence, the model in (2) is proposed,
as is common in Poisson regressions [21–24]. There are
many ways to induce spatial and temporal dependence
from the random effects {ξs(t)}. One natural and popular
choice is the conditional autoregressive (CAR) structure

ξ1 ¼ ϕ1;

ξt

���ξt−1;φ ¼ φξt−1 þ ϕt; for t ¼ 2;…;T ;

ð3Þ
ϕt∼CAR τ2; ρ

� �
; for t ¼ 1;…;T ; ð4Þ

where ξt = (ξ1(t),…, ξS(t)) ' and ϕt = (ϕ1(t),…, ϕS(t)) ' are
random vectors. Equation (4) indicates that the spatial
effects (i.e. ϕt, for t = 1,…,T) are independent and identi-
cally distributed random vectors that follow a condi-
tional autoregressive (CAR) model [25], which is a
popular choice for modeling spatial dependence [26].
More specifically, let ϕ = (ϕ1,…, ϕS) ' denote a random

vector which follows a CAR model. There are several
varieties of CAR models. Typically, the CAR model is
specified via a series of univariate conditional distribu-
tions. Spatial dependence is induced through a neighbor-
ing system involving geographically adjacent counties.
Our version of the CAR model, taken from [26], uses

ϕk∣ϕ−k ; τ
2; ρ;W∼N ρ

XS

i¼1
wk;iϕiXS

i¼1
wk;i

;
τ2XS

i¼1
wk;i

0
@

1
A;

for k ¼ 1;…; S

ð5Þ

Here, ϕ− k = (ϕ1,…, ϕk − 1, ϕk + 1,…, ϕS) ' is a vector that
contains county effects for all counties except the kth
one and N(μ, σ2) denotes a normally distributed quantity
with mean μ and variance σ2. In addition, W = {wk,i} is
an S × S dimensional matrix that describes the neighbor-
hood structure of all counties. Specifically, the entries of
W are either zero or unity; wk,i = 1 if and only if the ith
and kth counties share some common border.

Fig. 2 Head-banged baseline map showing heartworm prevalence for an average year during 2011–2015
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The parameter τ2 in (5) is a scaling variance param-
eter. In fact, it can be seen that the conditional variance
of ϕk given its neighbor’s random effects is inversely pro-
portional to the number of counties bordering county k.
Hence, counties with more neighboring counties tend to
have a smaller variance, which is reasonable since data
from the bordering counties helps predict the prevalence
in the said county.
In Eq. (5), ρ ∈ [0, 1] is an autocorrelation parameter

that governs correlation between bordering counties.
Notice that the conditional expectation of ϕk is the
weighted arithmetic average of the neighboring random
effects, multiplied by ρ. When ρ = 0, the conditional
expectations of ϕs are zero and all random effects are
independent of each other; antipodally, ρ close to unity
indicates strong spatial dependence between bordering
counties.
In (3), time-dependence is modeled through a tem-

poral autoregressive model of order one (AR(1)), which
is a time series staple [28]. Here, it describes prevalence
for a fixed county across different years. The parameter
φ is the temporal correlation between consecutive years
and lies within (−1, 1). This ensures a causal and station-
arity solution to the time series model [28], which is
needed in estimation.
From (5), it is possible to explicitly identify the joint

distribution of ϕ, which is multivariate normal:

ϕ∼N 0; Γð Þ; Γ ¼ τ2 D−ρWð Þ−1;
where W is the previously mentioned neighborhood
matrix and D = {di,j} is an S × S diagonal matrix whose i
th diagonal element is the number of neighboring
counties for county i.
Bayesian techniques are used to estimate the model

parameters, which are β,φ, ρ, and τ2. Thus, to complete
the Bayesian hierarchical model, the following prior
distributions for these parameters are introduced:

βk ∼ Nð0; 1000Þ; for k ¼ 0;…; 16;
φ ∼ Uniformð−1; 1Þ;
ρ ∼ Uniformð0; 1Þ;
τ−2 ∼ Gammað0:5; 0:05Þ:

Prior distributions for φ and ρ are taken as uninforma-
tive in that all admissible possibilities are equally likely.
Priors for the regression coefficients β0,…, β16 are taken
as diffuse so that inferences for these parameters are
based primarily on the data. The prior for τ− 2 is chosen
as a conjugate prior (the posterior and prior distributions
are from the same distributional family) for ease of com-
putation. The random effects and model parameters are
estimated based on posterior samples from a Markov
chain Monte Carlo (MCMC) simulation. The MCMC
simulation for our model uses a combination of Gibbs

and Metropolis-Hastings steps. In the implementation of
the algorithm, the test data for non-reporting counties
was viewed as being latent and was subsequently
sampled along with the model parameters. To run our
MCMC simulation and assess significance of model
parameters, a program was developed and implemented
in R and C++.

Results
Model assessment
The spatio-temporal Poisson regression model in (1)
has 16 explanatory factors, all of which may not have
predictive power. To assess this issue, a full model
with all 16 factors was first fitted. Credible intervals,
Bayesian analogs to confidence intervals in frequentist
statistics, were then created for the parameters of
interest. Table 1 summarizes our full model findings,
showing 16 regression coefficients estimates (posterior
median) and their 95 % highest posterior density
(HPD) intervals; for further details about credible and
HPD intervals, see [29, 30].
Table 2 implies that not all factors are significant, e.g.

95 % HPD intervals of annual precipitation, elevation,
percentage surface water coverage, and all mosquito
presence factors except A. albopictus contain zeroes. To
develop a parsimonious model with only significant fac-
tors, all explanatory variables whose 95 % HPD intervals
contain zeroes were removed and the model was refitted.
This leaves a “reduced model” with the six explanatory
factors: annual temperature, annual relative humidity,
percentage forest coverage, population density, median
household income and A. albopictus absence/presence.
Parameter estimates (posterior median) and 95 % HPD
intervals for the regression parameters for the reduced
model are shown in Table 3. The estimates (posterior
median) of the other model parameters are φ = 0.914, ρ =
0.998, and τ2 = 0.802.
Most of the significant factors have an intuitive inter-

pretation. For example, the positive regression coeffi-
cient for the temperature and relative humidity factors
implies that heartworm is more prevalent in warmer and
humid locations. On the other hand, as is seen by nega-
tive regression coefficients, heartworm prevalence
decreases with increasing population densities and
median household incomes. Given the presence of rela-
tive humidity in the model, it is not overly surprising
that precipitation drops out of the model fit. Finally, the
negative regression coefficient on A. albopictus presence
is not a contradiction: in the presence of all other factors
(which include space and time prevalence histories),
presence of this mosquito is associated with lessened
heartworm prevalence. It is worthwhile to note that in a
separate analysis (results not shown) a model with only
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A. albopictus was fitted, and the accompanying regres-
sion coefficient was non-negative.
To assess the overall performance of our reduced

model, Fig. 3 graphically portrays our fitted model by
plotting the average (over all 5 years) of model-
estimated prevalence for each county after smoothing
(standard Kriging with default parameters were used
here). The model-estimated prevalence in Fig. 3 com-
pares well to the head-banging smoothed baseline in
Fig. 2. In fact, the correlation between the Figs 2 and 3
graphics is 0.727 (only counties reporting at least one
test during the 5 year study period were used in this cal-
culation). Clarifying further, our correlation between the
two observation sets {As}s = 1

S and {Bs}s = 1
S is

Corr Asf g; Bsf gð Þ ¼
XS

s¼1
ns As−A
� �

Bs−B
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXS

s¼1
ns As−A
� �2XS

s¼1
ns Bs−B
� �2q ;

ð6Þ
where

A ¼
XS

s¼1
nsAsXS

s¼1
ns

; B ¼
XS

s¼1
nsBsXS

s¼1
ns

are the sample-size weighted averages of {As}s = 1
S and

{Bs}s = 1
S , and ns is the number of tests conducted in

county s. Since the correlation here is between smoothed
and model-estimated prevalence (these are non sample
size dependent quantities), the weights were taken as
ns≡1 (and not the county-by-county sample sizes). The
0.727 correlation achieved indicates that the regression
model has explained most of the data structure.
The fitted model has a number of uses. In the next

section, it is used to construct annual heartworm preva-
lence forecasts. The model could also be used to esti-
mate how climate change could alter heartworm disease
risk.

Forecasting
This section shows how to use our model to forecast
next year’s regional heartworm prevalence. For this, all
six significant explanatory factors and the spatial-
temporal effects will need to be forecasted for the forth-
coming year. To see how our forecast performs, the
2015 test and factor data was removed from the analysis,
and the proposed six-factor model was refitted using
data from 2011 to 2014 only. Our forecasts simply “plug
in” 2015 forecasted factors for A. albopictus, annual
temperature, annual relative humidity, percent forest
coverage, population density, median household income,
and a randomly generated random effect component
into our model; for further details see [29, 30].
Two of the six factors are relatively stable over time:

county forestation and the presence of A. albopictus. For
these two factors, the most recent observations are used
as 2015’s forecasted values.
To forecast annual temperature, historical temperature

records were collected from 1895 to 2014 for each
county and modeled as an autoregressive model of order
one. The AR(1) model for an annual temperature series
{Ft} (previously denoted by {Xs,1(t)} in Section 3 for
county s) obeys the difference equation

Ft ¼ δ þ γFt−1 þ ωt ;

where {ωt} is zero mean white noise; for further time
series forecasting information, see [28]. The AR(1)
model can be fitted to the temperature observations

Table 2 Parameter estimates from the full model

Factor Estimate 95 % HPD interval

Annual temperature 0.052 [0.038, 0.066]

Annual precipitation 0.008 [-0.031, 0.047]

Annual relative humidity 0.007 [0.003, 0.013]

Elevation 0.013 [-0.013, 0.039]

Percentage forest
coverage

2.482 [1.664, 3.317]

Percentage surface
water coverage

0.036 [-0.215, 0.277]

Population density -5.086× 10-5 [-6.744 × 10-5, -3.367 × 10-5]

Median household
income

-0.018 [-0.021, -0.016]

Aedes aegypti -0.095 [-0.255, 0.059]

Aedes albopictus -0.158 [-0.237, -0.071]

Aedes canadensis 0.185 [-0.039, 0.402]

Aedes sierrensis -0.112 [-0.414, 0.204]

Aedes trivittatus 0.169 [-0.094, 0.414]

Anopheles punctipennis -0.065 [-0.321, 0.182]

Anopheles quadrimaculatus -0.076 [-0.246, 0.109]

Culex quinquefasciatus 0.099 [-0.099, 0.295]

Table 3 Parameter estimates from the reduced model

Parameter Median 95 % HPD interval

Annual temperature 0.042 [0.027, 0.062]

Annual relative
humidity

0.007 [0.002, 0.012]

Percentage forest
coverage

2.599 [1.82, 3.473]

Population density -5.177 × 10-5 [-7.074 × 10-5, -3.550 × 10-5]

Median household
income

-0.018 [-0.021, -0.016]

Aedes albopictus -0.165 [-0.246, -0.081]
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using practically any statistical software package. Let δ̂
and γ̂ denote estimates of δ and γ, respectively. A pre-
diction of the annual temperature at year t + 1 from tem-
peratures from year 1 to year t is

F̂ tþ1 ¼ δ̂ þ γ̂Ft :

In our forecast, F̂ tþ1 is used as next year’s forecasted
temperature factor. Figures 4 and 5 compare forecasted
and observed annual temperatures for 2015. The correl-
ation between these two figures in (6) is r = 0.996, which
is very good (ns≡1 here).
A simple linear regression was used to forecast next

year’s relative humidity (previously denoted by {Xs,3(t)})
and median household income (previously denoted by
{Xs,8(t)}) in each county. Historical relative humidities
from 2006 to 2014 and median household incomes from
1997 to 2014 were used to fit a regression model of
form

It ¼ αþ κt þ ηt

for each county. Here, {It} denotes the relative humid-
ity (previously denoted by {Xs,3(t)}) or median household
income (previously denoted by {Xs,8(t)}), {ηt} is zero-
mean random noise. Least squares estimators of α and
κ, denoted by α and κ̂ , respectively, were computed from
the data at each county. The forecasted value for year t
+ 1 is simply

Î tþ1 ¼ α̂ þ κ̂ t þ 1ð Þ:
Forecasting the county population density for next

year requires the county areas and their recent popu-
lation counts. The US Census provides good county
population estimates for 2010, but not in years since
2010. Estimated state populations were obtained for
each state between 1969 and 2014. A simple linear
regression was fitted to these data for each state and
2015 state populations were forecasted. This fore-
casted state population was then partitioned to the
counties within the state at a proportion that agrees
with 2010 Census proportions.
To forecast the next year’s spatial and temporal

random effects, formula (3) is applied. Since the ϕt s
are independent and identically distributed over vari-
ous years, based on the values of τ2 and ρ (available
from the posterior samples), for the current time t,
ϕt + 1 can be generated from the multivariate normal
distribution N(0, τ2(D − ρW)− 1). Then ξt + 1 is calcu-
lated by ξt + 1 =φξt + ϕt + 1. This process is repeated for
each value of (ρ, τ2,φ), which are available from the
posterior sample, thus yielding predictive posterior sam-
ples of the next year’s random effect ξt + 1. See [29, 30]
for additional detail on obtaining predictive posterior
samples.
Figures 6 and 7 compare observed and forecasted

heartworm prevalence during 2015. One can discern
where heartworm is forecasted to be higher/lower than
normal by comparing Figs. 2 and 7. The correlation

Fig. 3 Model-based heartworm prevalence
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between the Figs. 6 and 7 prevalence, as measured in
(6), is 0.940. Hence, the model is accurately forecasting
in locations that report more tests. Finally, Fig. 8 pre-
sents our heartworm forecast for 2016. When 2016 con-
cludes, we will be able to compare this forecast to 2016
test results.

Discussion
Generally, the management of emerging infectious dis-
eases is approached reactively, with efforts focused on
managing outbreaks after onset. The ability to reliably
forecast transmission risk, particularly for diseases influ-
enced by dynamic factors such as climate, could shift

Fig. 4 County-by-county forecasted 2015 annual average temperatures

Fig. 5 County-by-county observed 2015 annual average temperatures
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our paradigm from reaction to prevention. This is par-
ticularly true for vector-borne diseases, as specific envir-
onmental needs for vector survival are well documented
[31]. One approach to infectious disease modeling is to
use these factors to predict transmission and model the
data in both space and time. This has been used

successfully to estimate the incidence of malaria during
eradication campaigns in Namibia and cutaneous leish-
maniasis in high-risk areas of Columbia [32, 33].
Although preventable, heartworm disease is a relatively

common and serious vector-borne disease of domestic
dogs. Annual disease incidence, as reported by IDEXX

Fig. 6 Observed heartworm prevalence for 2015

Fig. 7 Forecasted heartworm prevalence for 2015
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and Antech, averages greater than 100,000 new cases
annually. Annual data likely represent the true annual
incidence of heartworm infection in domestic dogs:
when diagnosed with heartworm, most dogs are either
treated, or in some cases euthanized, due to poor
outcome or financial constraints [34]. While fulminant
infection with D. immitis may be due to lack of owner
compliance in use of preventatives, it also may be due to
misunderstanding the disease risk; mosquito vectors are
known to be dynamic in their range and survival under
changing climatic conditions.
To enhance veterinary client education and illuminate

the benefits of preventatives, factors associated with D.
immitis transmission [16, 35] were identified and used to
develop a spatial-temporal conditional autoregressive fore-
cast model of heartworm prevalence. A comparison of ob-
served versus forecasted heartworm prevalence was made
in 2015 and was quite accurate. This may be attributed, in
part, to the fact that many of the factors influencing heart-
worm prevalence do not change significantly from year to
year (e.g. forest coverage, population density, household in-
come). While temperature and humidity change annually
and are important disease risk factors [36], these factors are
still reasonably predictable; however, environmental or cli-
mate catastrophes (e.g. regional climate shifts, flooding,
hurricanes) could impact heartworm incidence. Finally,
mosquito populations can fluctuate greatly from year to
year as they depend on numerous local land-use and
environmental factors. Some competent vectors of D.
immitis are still expanding their range in the US [37].

Several of the mosquito presence/absence factors were
not included in our final model; this may be because our
currently available data are only presence/absence,
whereas mosquito abundance, a purportedly more
powerful factor, varies annually at a local level. More
accurate mosquito counts would likely yield more
accurate forecasts. In addition, human activities such as
treatment abatement programs may impact mosquito
abundances. Since the introduction of West Nile virus
into the US, localities have developed or expanded
mosquito control programs, including reducing breeding
habitats and application of pesticides. With increased
concern over the Chikungunya and Zika viruses, it is
possible that increased mosquito control may be
initiated in the coming year(s). If such programs are
initiated, mosquito abundance counts should take these
programs into account.

Conclusion
In conclusion, our 2016 heartworm disease forecast
(Fig. 8) has some noteworthy implications for veterinary
practitioners, including an increased prevalence in
northern California, eastern Montana, and central New
Mexico. A relatively small increase in risk is predicted in
some areas where heartworm is likely under appreciated,
such as parts of the Dakotas and Nebraska. Importantly,
our data indicate that all regions of the lower 48 United
States have some risk for heartworm infection. Our
maps and forecasts provide veterinarians with evidence-
based recommendations for use of preventive in non-

Fig. 8 Forecasted heartworm prevalence for 2016
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endemic regions of the US and support the recommen-
dation of year-round use of preventive in high risk areas.
Ultimately, we believe that these methods can be used to
forecast multiple vector-borne diseases with veterinary
and human health impacts, including Lyme disease,
ehrlichiosis and anaplasmosis. Currently, the Companion
Animal Parasite Council (CAPC, www.capcvet.org)
provides monthly updates of heartworm prevalence on a
county by county scale. Through a combination of real-
time updates and forecasting efforts, we hope to see
fewer cases of heartworm disease in dogs and cats in the
future.
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