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Abstract

Background: Loss of CpG dinucleotides in genomic DNA through methylation-induced mutation is characteristic
of vertebrates and plants. However, these and other eukaryotic phyla show a range of other dinucleotide frequency
biases with currently uncharacterized underlying mutational or selection mechanisms. We developed a
parameterized Markov process to identify what neighbour context-dependent mutations best accounted for
patterns of dinucleotide frequency biases in genomic and cytoplasmically expressed mRNA sequences of different
vertebrates, other eukaryotic groups and RNA viruses that infect them.

Results: Consistently, 11- to 14-fold greater frequencies of the methylation-associated mutation of C to T upstream
of G (depicted as C→T,G) than other transitions best modelled dinucleotide frequencies in mammalian genomic
DNA. However, further mutations such as G→T,T (5-fold greater than the default transversion rate) were required to
account for the full spectrum of dinucleotide frequencies in mammalian sequence datasets. Consistent with
modeling predictions for these two mutations, instability of both CpG and CpT dinucleotides was identified
through SNP frequency analysis of human DNA sequences. Different sets of context-dependent mutations were
modelled in other eukaryotes with non-methylated genomic DNA. In contrast to genomic DNA, best-fit models of
dinucleotide frequencies in transcribed RNA sequences expressed in the cytoplasm from all organisms were
dominated by mutations that eliminated UpA dinucleotides, observations consistent with cytoplasmically driven
selection for mRNA stability. Surprisingly, mRNA sequences from organisms with methylated genomes showed
evidence for additional selection against CpG through further context-dependent mutations (eg. C→A,G). Similar
mutation or selection processes were identified among single-stranded mammalian RNA viruses; these potentially
account for their previously described but unexplained under-representations of CpG and UpA dinucleotides.

Conclusions: Methods we have developed identify mutational processes and selection pressures in organisms that
provide new insights into nucleotide compositional constraints and a wealth of biochemical and evolutionarily
testable predictions for the future.
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Background
One of the most striking compositional abnormalities in
DNA sequences of mammalian and other vertebrate gen-
omic DNA sequences is the marked under-representation
of CpG and over-representation of CpA and TpG dinucle-
otides. This compositional abnormality was first recog-
nized over 50 years ago [1-3] and is now generally
accepted to result directly from the mutagenic effect of
methylation of cytosine (mC) bases in CpG dinucleotides.
mC is more likely to deaminate to thymine [4,5] so deplet-
ing CpG dinucleotides and increasing the frequencies of
TpG and CpA on the opposite strand through mismatch
repair.
In more general terms, dinucleotide compositional ab-

normalities reflect either context-sensitive differences in
mutation rates (as in the case of DNA methylation and
CpG under-representation) or specific selection for or
against certain dinucleotides. As an example of the latter,
the UpA dinucleotide is targeted by RNA-degrading
enzymes and its presence in an RNA sequence acceler-
ates its degradation in the cytoplasm. UpA composition
therefore modulates protein expression from mRNA
through its influence on transcriptome turnover [6,7].
The widespread suppression of UpA dinucleotides in
mRNA sequences may therefore reflect selection for in-
creased stability in the cytoplasm.
In spite of these two well known examples, it remains

unclear whether the combination of mutational biases
against CpG in genomic DNA and selection against
UpA in mRNA accounts for the complex pattern of
over- and under-representation of each of the 16 dinu-
cleotides in vertebrates. Secondly it remains unexplained
why the degree of CpG under-representation is inversely
proportional to the G+C content of the underlying
sequence, although it has been speculated that there are
differences in the accessibility of genomic DNA in high
and low G+C regions to deamination [8,9]. Thirdly, the
observation made many years ago that many RNA
viruses under-represent CpG dinucleotides despite the
absence of a specific (methylation-dependent) muta-
tional pathway for RNA has remained unexplained
[10-12]. Patterns of CpG and UpA under-representation
among viruses infecting hosts with different degrees of
host genomic DNA methylation have remained similarly
unexplored. Finally, eukaryotes with non-methylated
genomes show different patterns of dinucleotide repre-
sentation (such as elevated frequencies of ApA in
ecdysozoa) for which neither a mutational nor a selec-
tionist mechanism has yet been proposed.
Using data from a range of eukaryotes with different

methylation patterns, Simmen showed that the degree of
over-representation of CpA and TpG dinucleotides were
in proportion to the expected frequency created by
C→T transitions in methylated DNA [13]. In Duret and
Galtier [14], an explicit mathematical model was devel-
oped to investigate whether frequent CpG-context de-
pendent mutations could account for the suppression in
frequencies of TpA in human DNA sequences. Assign-
ment of an elevated C→T transition rate reproduced the
CpG deficit (and G+C dependence) observed in mam-
malian DNA and indirectly depleted TpA dinucleotide
frequencies. However, this model failed to account for
the full extent of TpA depletion observed in human
DNA sequences and the model was not applied to inves-
tigate the effect of this single mutational bias on other
dinucleotide frequencies, such as TpG and CpA that also
show compositional biases. How well this model might
fully recreate the dinucleotide profile of human DNA
remains unresolved.
In the current study we have developed an extended

model of sequence evolution that allows separate muta-
tion rates for each type of transition and transversion in
each dinucleotide context against a background, separ-
ately optimized mean transition / transversion ratio (κ).
This model generalizes Duret and Galtier’s model [14],
in which κ was fixed at 2.1 and only one context
dependent mutation, (C→T,G) was allowed to take a
higher mutation rate. (This rate was based on observa-
tional data available at the time of the study on sequence
variability in human DNA sequences.) Our approach in
contrast allowed up to 48 (or 96 for RNA) different di-
nucleotide context dependent mutations and optimised
rates to maximise the fit between model predictions and
observed frequencies of all 16 dinucleotides. In the spe-
cific case of analysing human DNA, the mutation C→T,
G and a transition rate of around 12 were discovered by
the modelling rather than being imposed a priori. This
analysis was also extended to the corresponding mRNA
sequences to investigate whether additional or different
mutational or selection pressures were exerted in cyto-
plasmically expressed sequences.
Modelling was extended to other mammalian DNA

and mRNA datasets, organisms showing largely absent
genomic DNA methylation (fish, insects, nematodes)
and mammalian RNA viruses in which the phenomenon
of CpG under-representation has been previously de-
scribed [10,11]. Modelling was naturally restricted to
processes showing global effects on DNA composition
and was unsuited for modelling effects of genome modi-
fications with specific functional roles. The latter include
the recently discovered role of DNA methylation in the
gene expression and development pathways of the honey
bee (Apis mellifera) and other insects [15,16] that possess
primarily non-methylated genomes. Modelling was also
restricted to mutational processes or selection operating
in dinucleotide contexts. While methylation (and associ-
ated mutations) primarily occurs in a CpG context in ver-
tebrates and where studied in other eukaryotic groups,
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plant genomes are additionally heavily methylated (50-
80%) in the CpA/T/CpG trinucleotide context [17]. As
this potentially exerts a significant additional mutational
pressure on plant genomic DNA and cannot be modelled,
the analysis of plant genome sequences was excluded from
the current study.
On the larger genomic scale, we obtained evidence

both for mutational processes acting on genomic DNA
beyond simple methylation-induced hypermutation and
for a range of additional likely selection pressures on
mRNA that centre around the elimination of UpA dinu-
cleotides. The existence of this selection pressure and its
occurrence in RNA viruses provides evidence for a series of
novel compositional constraints in the cytoplasm on viral
RNA. Specific dinucleotides may be selected against to es-
cape currently uncharacterized self/non-self recognition
mechanisms that are coupled to the interferon system
(in mammals) and potential parallel defence mechanisms
in other eukaryotic phyla.

Results
Patterns of dinucleotide frequencies in genomic DNA
and mRNA
Ratios of observed to expected frequencies of dinucleo-
tides were computed for DNA genomic sequences of
several different eukaryotes and their corresponding
mRNA sequences. DNA datasets were restricted to se-
quences that were non-transcribed since mRNA sequences
encoded by genomic DNA that enter the cytoplasm may be
subject to additional selection pressures. These represent a
relatively small component of mammalian DNA sequences
(H. sapiens, P. troglodytes and M. musculus in the current
study; 1.2-2.0%) but the proportion of cytoplasmically
expressed sequences was much larger in other vertebrates
and other eukaryotic phyla (6.5% - 28%).
As anticipated, frequencies of CpG dinucleotides in

non-transcribed genomic DNA sequences from eukaryotic
genomes showing extensive methylation (H. sapiens, and
D. rerio [zebra fish]; Figures 1A, 1B) were substantially
lower than expected from their G+C content. No such
reduction was evident in DNA sequences of the mosquito,
A. gambiae (Figure 1C) whose genome is largely unmeth-
ylated. Results from other mammals (P. troglodytes and
M. musculus) were in practical terms identical to human
DNA sequences) while other organisms without methyla-
tion of genomic DNA sequences (Caenorhabditis elegans
[a nematode], Drosophila melanogaster [fruit fly]) showed
no under-representation of CpG dinucleotides (data not
shown).
G+C contents of the subset of mRNA sequences were

higher than non-cytoplasmically expressed sequences
(Figure 1D, 1E, 1F). Several further differences between
DNA and mRNA sequences were apparent in their
dinucleotide compositions and their relationship with
G+C composition. For example, for sequences with a given
G+C content, UpA under-representation was greater in
mRNA sequences than genomic sequences of humans
(Figure 1A, 1D; p < 10-10 by Student t-test (Additional
file 1: Table S1)). Even more evidently, UpA frequencies
followed a quite different relationship with G+C content
in A. gambiae and CpG frequencies in mRNA were sub-
stantially higher than in genomic DNA (Figure 1C, 1F).
These observations are consistent with the existence
of additional selection pressures on the subset of se-
quences expressed as mRNAs.
Compositional biases extended to other dinucleo-

tides in humans (Figure 2A, 2B) and other organisms
(Additional file 2: Figure S1). Several instances of compos-
itional asymmetries are evident in complementary dinu-
cleotides in mRNA sequences, such as the higher
frequencies of UpC dinucleotides compared to GpA and
in the UpG/CpA and GpG/CpC pairs (Additional file 2:
Figure S1B).

Fitting the mutational model to observed dinucleotide
frequencies
Observations of differing dinucleotide representations in
DNA and mRNA sequences and the asymmetries be-
tween complementary pairs in mRNA justified the devel-
opment of separate mutational models for DNA and
mRNA sequences. To investigate which context depen-
dent substitutions could account best for the pattern of
dinucleotide under- and over-representation in each
sequence dataset, we developed a Markov process pa-
rameter estimation method. This evaluated every possible
substitution with each upstream and downstream neigh-
bouring base and an associated mutation rate that maxi-
mized the fit between modelled and observed dinucleotide
frequencies. The degree of fit was quantified by calculation
of root mean square (RMS) distances between modelled
frequencies for sequences of different G+C contents and
those of a sample of actual sequences.
For RNA, there were 96 possible context-dependent

mutations, while the symmetry of DNA allowed 48
(eg. C→T,G is formally equivalent to C,G→A; see
Methods). For both datasets separate optimization of
transition / transversion ratios (κ) represented an add-
itional parameter applied to mutations that was incor-
porated into the modelling process. The parameters
that produced the lowest RMS distance for all 16 di-
nucleotides was selected. Since the model was fitted
to sequences with a range of G+C contents, RMS dis-
tances are additionally influenced by how well the
model reproduces the marked G+C dependence in
the frequencies of certain dinucleotides (such as CpG
and UpA).
Having identified the context-dependent mutation, its

rate and κ that best fitted the observational data, the



Figure 1 G+C composition (x-axis) and frequencies of CpG and TpA (or UpA) dinucleotides in representative organisms with
methylated (H. sapiens, D. rerio) and non-methylated genomes (A. gambiae), labelled in panels. Symbols for CpG and UpA dinucleotide
frequencies (blue and red dots respectively; see inset box) and were expressed as the ratio of observed frequency / frequency expected from
mononucleotide (base) composition of the fragment.
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mutation (although not its rate) was fixed and the
analysis repeated to find a second context-dependent
mutation that in combination with the first and a re-
optimised value of κ, created the greatest further reduc-
tion in RMS distances. This procedure was repeated
with further context-dependent mutations until there
was no further reduction in RMS distance. Fitting two
parameters to human DNA and mRNA sequences led to
a better match between the model predictions for UpA
and CpG dinucleotide frequencies (red and blue lines re-
spectively) across a range of G+C compositions than
achieved using one parameter. Using four parameters
provided a better match than two and indeed modelled
CpG and UpA frequencies very closely matched the
quadratic line of best fit through the observational data
(black lines; Figure 2).
Matches between model predictions and observed fre-
quency data extended to other dinucleotides in human
DNA sequences and in most cases also successfully
reproduced relationships between dinucleotide frequen-
cies and G+C content (Additional file 2: Figure S1A).
Similarly close fits between modelled and observational
data for the 16 dinucleotides were observed for human
mRNA sequences (Additional file 2: Figure S1B). Model
predictions additionally reproduced the observed differ-
ences in frequencies of self-complementary dinucleotides
(such as CpA and UpG), represented as red/yellow/white
and dark blue/light blue/white filled symbols.
Modelling was extended to DNA and RNA datasets

for the other organisms (data from a fish and an insect
are shown in Additional file 2: Figure S1C, S1D, S1E and
S1F). Similarly close fits between modelled and observed



Figure 2 Observed / expected CpG and UpA frequencies in (A) human DNA and (B) mRNA sequences as a function of G+C content.
Frequencies of each dinucleotide predicted from mutational models with 1, 2 and 4 parameters (1p, 2p and 4p, labelled according to the inset
box) were superimposed on observed distributions of CpG and UpA dinucleotides (blue and red dots respectively; see inset box). Quadratic lines
of best fit through observed distribution (black lines) were matched to model predictions over a G+C composition range from 20%-80%.
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frequencies were observed at each using up to 4 parame-
ters. The main difference from human sequences was
the much more restricted range of G+C contents of both
DNA and mRNA sequences in each that made fitting
the data to G+C compositional trends less relevant.

Quantifying model error
To quantify how well our model fitted the observational
data, RMS distances between the observed dinucleotide
frequencies and those predicted by the model were
calculated for all 16 dinucleotides. These were then
compared with the corresponding minimum RMS dis-
tances between the observed dinucleotide frequencies
and a separate quadratic model of each dinucleotide.
These quadratic models yield the best possible fit to the
data and lowest possible RMS value. Any other model
will have higher RMS values and the amount by which
its RMS values are above the quadratic models’ RMS
values shows the error in the model. We refer to this as
the baseline corrected model error and this is used in
the presentation of the RMS results. As an example, the
best fit model data for mammalian DNA using 3
mutation rates had a RMS distance for all 16 dinucleo-
tides of 0.0378 while quadratic best fit data showed a
RMS distance of 0.0275. The baseline-corrected model
error was therefore 0.0103 (0.0378 – 0.0275). The calcu-
lation of baseline corrected model errors therefore ex-
cludes measurement errors associated with dinucleotide
frequency measurements of often relative short nucleo-
tide sequences.
The effect of sequence length on RMS calculations can

be visualised by comparison of the degree of scatter of
dinucleotide frequencies of human mRNA sequences
(mean length of approximately 2463 bases) with that of
the much longer DNA sequences (50,000 bps; Figures 1A,
1D, 2A, 2B). To more formally demonstrate the relation-
ship between RMS scores and sequence lengths, human
DNA sequences of lengths ranging from 400,000 to 500
bps were generated and model error estimated for each
dataset using separate modelling to minimum values
(Additional file 3: Figure S2 in Supplementary Data). An
empirical relationship between sequence length and RMS
distance can be represented as:

RMS distance ¼ 2:2=length0:42
� �þ 0:0095

The intercept with the y-axis of 0.0095 therefore repre-
sents model error for DNA fragments of infinite length
(ie. not attributable to sampling error). For DNA frag-
ments of 50,000 bps in length, sampling error can be
estimated to contribute 0.0329 to RMS distances, while
for human mRNA sequences, sampling error was three
times higher at 0.0994. These values are close to RMS dis-
tances calculated from lines of best fit to the data (0.0275
and 0.0972 respectively). This close match for human
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sequences was reproduced in corresponding datasets for
other organisms (Additional file 4: Table S2).

Effectiveness of context-dependent mutational
rate modelling
Model errors for the first four most influential mutations
and the minimum value were calculated for human, fish
and insect datasets (Figure 3). All values were baseline
corrected by subtraction of RMS scores of quadratic
Figure 3 Model errors (y-axis) for mutational models with between 1
D. rerio) and non-vertebrate (A. gambiae) DNA and mRNA sequences.
shown as a dotted line. Model error reductions for alternative mutational b
UpA are shown in pink and blue inset boxes respectively. All model error v
quadratic lines of best fit through observational data.
lines of best fit through observational data (uncorrected
RMS scores are shown in Additional file 5: Figure S3).
For non-cytoplasmically expressed human DNA se-
quences, corrected model errors fell from an initial value
of 0.228 (no context-dependent mutations) to 0.0024
(minimum value achieved with 9 parameters; Figure 3A).
The two most influential context-dependent mutations
were C→T,G (model error reduction to 0.100) followed by
G→T,T (0.019) with minimal proportionate reductions
to 4 context-dependent mutational biases for vertebrate (human,
Minimum RMS distances for up to 16 additional mutational biases are
iases are shown as unfilled circles. Mutations that remove CpG and T/
alues have been baseline corrected by subtraction of RMS scores of
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using further mutations. These model error reductions
correspond to the successively better fits between mod-
elled and observed frequencies for human DNA and
mRNA for UpA and CpG dinucleotides displayed in
Figure 2. Both the mutations and their mutation rates
were highly reproducible on replicate sampling of DNA
sequences (Additional file 6: Table S3). Similarly, for or-
ganisms such as the three mammalian species in which
we suspect similar mutational biases and selection pres-
sures may exist, the first three context-dependent muta-
tions were, with one exception, identical while model
error reductions, values of κ and mutation rates were
highly similar (Table 1).
A further insight into the robustness of these predic-

tions was obtained by plotting out baseline corrected
model error for 2nd, 3rd and 4th ranked alternative
context-dependent mutations. For human DNA, C→T,G
and G→T,T led to a substantially greater reduction than
alternatives despite their frequent similarities in their
effects on sequence composition. For example, 2nd and
3rd alternatives to C→T,G also eliminated CpG residues
from sequences (shaded pink boxes; Figure 3A). The
same findings were obtained on analysis of DNA se-
quences of other mammalian genomes (M. musculus
and P. troglodytes; data not shown).

Context-dependent mutations and single nucleotide
polymorphism (SNP) frequencies
The consistent prediction in mammalian datasets of the
G→T,T mutation, ranked second, was unexpected and
did not correspond to any characterized mutational bias
in mammalian genomes. To investigate whether there
was greater mutability of the GpT dinucleotide in hu-
man DNA sequences, we compiled a large dataset of ap-
proximately 45 million SNPs compiled from the NCBI
dbSNP database and compiled frequencies of each pos-
sible mutation (ie. A↔C, A↔G, …..G↔T) subdivided
into groups according to the base downstream of the
SNP (3′ dinucleotide context). These frequencies were
normalized by frequencies of each dinucleotide and of
each mutation in the human SNP dataset to calculate
the influence of dinucleotide context on mutation fre-
quencies. As expected, SNP mutations showed a strong
preference for the first ranked C→T,G mutation (8.6×
Table 1 Comparison of the first three context-dependent mut

Seq. Species κ Corrected model error

DNA H. sapiens 3.1 0.0135 C→

P. troglodytes 4.6 0.0134 C→

M. musculus 4.6 0.0117 C→

RNA H. sapiens 1.7 0.0249 C→

P. troglodytes 1.6 0.0265 C→

M. musculus 1.6 0.0183 C→
expected frequency) predicted from modeling and add-
itionally the C→A,G and C→G,G alternative mutations
(3.5× and 4.0× respectively; Figure 4). Consistent with
the second ranked mutation detected on modelling, con-
sistently elevated mutational frequencies were observed in
the GpT dinucleotide (1.6× – 1.8×) although in this case
there was a less clear bias among the three possible muta-
tions for the G↔T transversion predicted in the model.
The instability of GpT identified by SNP analysis supports
the prediction of an elevated G→T,T mutation rate identi-
fied by modelling and by the under-representation of GpT
in human (Additional file 2: Figure S1A; ≈80% of expected
value) and in other mammalian sequence datasets (data
not shown).

Mutational biases in mRNA sequences
Differences in dinucleotide composition between human
non-cytoplasmically expressed genomic DNA sequences
and mRNA sequences were reflected in different best-fit
mutational models between DNA and RNA sequences
(Figure 3). The composition of mRNA sequences is
influenced by mutational pressures operating on the
underlying DNA sequences, as well as possible muta-
tional biases introduced by RNA polymerase II and by
selection pressures in the cytoplasm. While the most in-
fluential mutation was C→U,G, along with alternatives
that also removed CpG dinucleotides, the second (and al-
ternatives) all removed UpA dinucleotides, a mutational
or selection pressure absent in mammalian DNA se-
quences. mRNA showed further mutations that removed
CpG and UpA dinucleotides, consistent with a greater,
possibly cytoplasmically-driven selection pressure to re-
move these two dinucleotides (see Discussion). Evidence
for greater complexity of the mutation and/or selection
pressures operating on mRNA sequences was provided by
the greater number of mutations needed to reduce model
error and larger minimum value from the best fitted model.
For DNA sequences of other species, mutations re-

moving CpG dinucleotides were found among those
with methylated genomes (D. rerio; Figure 3C along with
the sea squirt, C. intestinalis) as expected but were en-
tirely absent among A. gambiae sequences (Figure 3E)
and other organisms with non- or weakly-methylated ge-
nomes (D. melanogaster, C. elegans; data not shown).
ations and mutation rates in three mammalian species

1st Rate 2nd Rate 3rd Rate

T,G 12.06 G→T,T 6.16 A→G,T 1.42

T,G 11.29 G→T,T 6.01 A→G,T 1.30

T,G 14.33 G→T,T 4.30 C→G,A 2.20

U,G 10.26 U,A→C 9.53 C→A,G 9.40

U,G 10.17 U,A→C 11.93 C→A,G 10.00

U,G 10.84 U,A→C 9.48 C→A,G 10.73



Figure 4 Frequencies of SNPs (y-axis) occurring in each
dinucleotide context (x-axis) compiled from approximately 45
million SNPs in human genomic DNA sequences. These were
categorised by mutation type and by the base downstream of the
SNP (3′ dinucleotide context). Frequencies of SNPs were normalised
to those predicted from dinucleotide frequencies and transition and
transversion rates measured in the whole SNP dataset.
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mRNA sequences from all species showed a predomin-
ance of mutations that removed UpA, consistent with
widespread cytoplasmically driven selection against this
dinucleotide.
To compare mutational and/or selection pressures op-

erating against CpG and UpA dinucleotides in different
organisms, modelled mutation rates (−fold excess over
default values) were calculated for the most influential
Figure 5 Mutation rates for sequence changes that remove CpG and
removing CpG dinucleotides among the first three parameters for genomic
removing UpA dinucleotides. Zero values indicate that mutational biases w
Mus musculus; Dr: D. rerio; Ci: C. intestinalis; Ce: C. elegans; Ag: A. gambiae
mutations that remove these in each species (Figure 5).
This analysis confirmed the absence of mutational or se-
lection pressures against CpG dinucleotides in DNA or
mRNA sequences in any of the organisms with non-
methylated genomes (ecdysozoa). In contrast, selection
against UpA dinucleotides was universal in mRNA se-
quences of all organisms examined and occurred at an
optimized rate that was invariably several fold higher
than observed in corresponding DNA sequences. Muta-
tions removing TpA was indeed absent in all mamma-
lian datasets and in C. intestinalis among the first four
parameters that were most influential in reducing model
error.
Unexpectedly, greater mutational rates in mRNA se-

quences compared to non-cytoplasmically expressed
DNA sequences were also observed for CpG dinucleo-
tides, where modelled rates were consistently higher
(despite the existence of the methylation-induced muta-
tional pathway operating on genomic DNA sequences of
vertebrates). The existence of an additional selection
pressure imposed on cytoplasmically expressed sequences
was consistent with the existent of two mutations rather
than one (C→U,G [1st parameter] and C→A,G [3rd par-
ameter]) in human mRNA sequences and in other mam-
malian mRNA datasets (P. troglodytes, M. musculus;
Table 1; Figure 3B).

Modelling mutational and selection biases in mammalian
RNA viruses
RNA viruses replicate in the cytoplasm of a wide range
of eukaryotes and are potentially susceptible to the same
UpA dinucleotides in different eukaryotes. (A) Rates for mutations
DNA and mRNA sequences of different eukaryotes (B) Mutations
ere not detected. Abbreviations: HS: H. sapiens; Pt: P. troglodytes; Mm:
; Dm: D. melanogaster.
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selection pressures observed in host mRNA sequences.
To investigate this, dinucleotide compositions in complete
genome sequences from a wide range of RNA and small
DNA viruses infecting mammals and insects were calcu-
lated. Consistent with previous analyses [10], most classes
of RNA virus and small DNA viruses showed evidence of
marked CpG suppression (Figure 6) and a wide range of
under-and over-representation of other dinucleotides
(Additional file 7: Figure S4A, S4B). No suppression of
CpG was apparent among insect viruses. RNA viruses
were subdivided into groups based on the configuration of
their genomic RNA (based on the Baltimore classification)
and potential exposure to the cytoplasm. RNA viruses
with single stranded genomes (positive or negative sense)
and reverse transcribing viruses (eg. retroviruses) showed
similar degrees of CpG suppression that was related to
their G+C composition, while no comparable suppression
was observed in dsRNA viruses (Figure 6; green filled cir-
cles p < 10-10; Additional file 1: Table S1). These observa-
tions provided tentative evidence that RNA viruses that
expose their genomic RNA sequences to the cytoplasm
are subject to similar selection against CpG as was evident
in mRNA sequences. Insect viruses of any configuration
showed no CpG under-representation.
To investigate whether the suppression of CpG in

RNA viruses was a response to similar mutational and
selection pressures observed in their hosts’ mRNA se-
quences, 420 animal positive- and negative- sense
viruses were analyzed using the 96 parameter mutational
model (Figure 7; uncorrected RMS scores are shown in
Additional file 8: Figure S5). As observed among mRNA
sequences of their hosts, the main context-dependent
Figure 6 CpG dinucleotide frequencies among different classes of RN
were divided into groups based on the genomic composition: RNA+: posit
reverse transcribing viruses (Retroviridae, Hepadnaviridae and Caulimnovirid
viruses as indicated in the inset box.
mutations that reduced model error were those that
eliminated CpG and UpA dinucleotides, prominently
represented among both the first choice and alternative
mutations.

Discussion
Modeling mutational processes
This study investigated several unresolved issues in pre-
vious analyses of dinucleotides and the context-sensitive
mutational and selection biases. Specifically, are simple
processes such as the elevated C→T transition fre-
quency upstream of G residues arising from methylation
necessary and sufficient to account for the spectrum of
skewed dinucleotide frequencies observed in mammalian
genomic DNA sequences? A previous investigations of
dinucleotide composition of genomic sequences in a
range of eukaryotic phyla showing different degrees of
methylation and CpG under-representation demonstrated
(despite previous reports to the contrary; eg. [18]) that the
observed CpA/TpG over-representation arose in direct
proportion to the loss of CpG dinucleotides [13]. Using a
modeling method on which the current study was based,
Duret and Galtier [14] further showed that assigning an
elevated C→T,G rate upstream of G residues reproduced
the G+C relationship with CpG under-representation
in human genomic DNA and, rather counter-intuitively,
additionally reproduced the G+C-dependent depletion
of TpA dinucleotides also observed in human DNA se-
quences [14]. Despite the title of that study however, the
actual depletion of UpA is proportionately greater in
genomic DNA than could be modelled and the further ef-
fect of this primary mutational bias on other dinucleotide
A and small DNA viruses infecting mammals and insects. Viruses
ive strand RNA viruses; RNA-: negative strand RNA viruses; rtRNA:
ae); dsRNA: double-stranded RNA viruses; ssDNA: single stranded DNA



Figure 7 Baseline corrected model errors (y-axis) for
mammalian RNA viruses using mutational models with 1 to 4
context-dependent mutational biases (labeled under graph
line) and minimum values using up to 8 additional mutational
biases (dotted line). Model errors for alternative mutational biases
are shown as unfilled circles. Mutations that remove CpG and UpA
are shown in pink and blue boxes respectively.
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representations was not analyzed. A further problem with
this hypothesis is that UpA deficiencies are equally pro-
nounced among organisms that lack methylation of gen-
omic DNA and show no suppression of CpG frequencies
(eg. A. gambiae - Additional file 2: Figure S1E).
In the current study, we have substantially expanded

the modelling process to allow multiple mutational
biases and rates and used model error calculations to
allow each to be systematically optimized rather than
empirically assigned. The method proved robust, with
minimal variability in predicted mutations and muta-
tional rates of human DNA when different random se-
lected samples were analyzed (Additional file 6: Table
S3) or on comparison of mammalian genomic DNA and
RNA datasets where selection pressures are expected to
be similar between species (Table 1; Figure 5). We do ac-
knowledge, however, that finding the simplest combin-
ation of context-dependent mutations and associated
mutational rates that fits the observational data is not
necessarily the actual underlying biological process.
However the mutational models we have discovered are
compelling in their simplicity, efficiently account for ob-
servational data with a minimum of parameters and pre-
dict context-dependent mutations and rates that are
both biologically plausible and consistent with results
and inferences made from different approaches [19-22].
This applies particularly to mammalian DNA datasets
where the use of just two mutations reduced baseline
corrected model error to close to zero. Furthermore, the
optimized mutational rate for the C→T,G transition was
comparable to estimates based on different methods. For
example a 12-fold higher rate compared to other transi-
tions was reported using a simple equilibrium model
[22]. More recent maximum likelihood approaches that
incorporate the C→T,G transition rate in human genomic
DNA as a separate parameter to standard substitution
models for likelihood-optimization, arrive at mutational
rates ranging from 8.5 (TF model; [19]) to 9.2 [21], similar
to the modelled 11.0× – 12.1× rates we derived for mam-
malian DNA (Table 1).
One unanticipated finding that supports the validity of

the modelling method was the reconstruction of the re-
lationship between the under-representation of CpG and
TpA (and other dinucleotides) with G+C content. Quad-
ratic lines of best fit through observational data super-
imposed almost exactly on model predictions using 4 or
fewer parameters Figure 2 and Additional file 2: Figure
S1). This provides a simpler explanation than hypotheses
that propose different susceptibilities of high and low
G+C content DNA to methylation and deamination or
different selection pressures operating on CpG islands
that contain higher proportion of coding sequences [23].
For example, one widely discussed model argues that gen-
omic DNA with a low G+C content is more susceptible to
methylation-induced mutations that eliminate CpG dinu-
cleotides [8,9]. The effect of replacing C with T further re-
duces G+C composition in these regions encouraging
further methylation and elimination of CpG dinucleotides.
The theory provides a compelling explanation for the ex-
istence of alternating regions of low C+G content and
heavily methylated DNA interspersed with CpG-rich
islands (particularly in warm-blooded animals where ele-
vated temperatures potentially contributes to the accessi-
bility of low G+C DNA to methylation). However, we
have found that precisely the same relationship emerges
from a model in which G+C content had no influence on
methylation rate.
Compared to this simple, single parameter modelling

previously reported of human DNA [14], at least one
further mutation and better optimized C→T,G mutation
rate and κ (transition / transversion) ratio was required
to reproduce the steeper positive (CpG) and negative
(TpA) gradients between dinucleotide representation
and G+C content. In the case of TpA, the use of two pa-
rameters additionally reproduced the degree of under-
representation of TpA observed in genomic sequences
that was not effectively modelled in the original study.
Previous investigation and modelling of mutations that

create dinucleotide frequency biases have typically concen-
trated specifically on CpG and its under-representation in
mammalian genomes. There is therefore a dearth of pub-
lished information to corroborate predictions for other di-
nucleotides and among other organisms without genomic
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methylation. There is for example little information on the
potential existence of the highly influential G→T,T muta-
tion identified in mammalian DNA sequences, C→T,T in
D. rerio and G→A,A among ecdysozoa. The GpT di-
nucleotide is depleted in mammalian DNA sequences as
well as in eubacterial and mitochondrial genomes [24], and
consistent with the greater than expected frequency of
SNPs involving this dinucleotide in a large scale analysis of
human SNP data (mean 1.7-fold; Figure 4). This mutational
bias is indeed visible although uncommented on in previ-
ous SNP analyses of human and mouse sequences [25,26].
Together these findings are consistent with a greater mut-
ability of this dinucleotide.

Differential selection on expressed mRNA sequences
In contrast to previous studies, investigation of muta-
tional and/or selection biases was based on genomic se-
quences separated into expressed directly as mRNA
sequences and DNA sequences that are non-transcribed.
This differentiation was particularly relevant for organisms
with high proportions of coding and other expressed
sequences in their genomes. This differentiation re-
vealed several differences both in their dinucleotide
frequency biases and in the optimised models for their
underlying mutational and selection biases.
The first observation was that dinucleotide frequency

biases were often distinct between genomic DNA and
mRNA sequences, even though the latter sequences ne-
cessarily incorporate mutational processes operating on
genomic DNA. The proportionately greater under-
representation of UpA dinucleotides for a given G+C
content observed in mRNA sequences has been previ-
ously described [7], although this phenomenon extends
to several other dinucleotides which show even greater
compositional differences (such as GpA and CpA in hu-
man mRNA; Additional file 2: Figure S1B). Further evi-
dence that different selection may be operating on
mRNA sequences was indicated by frequent asymmet-
ries in complementary dinucleotides, such as CpA and
UpG that could not have originated through mutational
biases occurring on genomic DNA (where they are ef-
fectively symmetrical). Mutational models developed for
mRNA sequences showed several further differences
from those optimised for genomic DNA sequences of
the same organism. Most prominent was the evidence in
all species examined for strong selection against the
UpA dinucleotide, ranked first or second in order of in-
fluence. In contrast, selection against UpT was either ab-
sent (mammalian species, C. intestinalis) or substantially
weaker in genomic DNA sequences (Table 1, Figure 5).
Best fitting mutations that removed UpA residues were
usually transitions (eg. U→C,A) but showed no evidence
of context dependence that would be expected for a mu-
tational bias. Similarly, among the species investigated,
the 96+1 parameter (asymmetric) model generated simi-
lar numbers of upstream and downstream-base condi-
tioned mutations, such as U,A→C in mammalian
mRNA and D. rerio and U,A→G in A. gambiae (Table 1,
Figure 3). This contrasted with the strict dependence of
methylation-induced transitions on a downstream G
residue in DNA sequences.
Selection against UpA dinucleotides in cytoplasmically-

expressed sequences might be expected given the role of
the UpA dinucleotides as a recognition motif for RNAseL
and other RNA degrading enzymes [6,7,27]. For example,
human mRNA sequences expressed in the cytoplasm
of CHO (hamster) cells showed greater degradation
rates in proportion to frequencies of UpA residues in
the cytoplasm [6]. Although there is little information
on degradation pathways of mRNA sequences in in-
vertebrates, the observation that UpA is consistently
under-represented throughout eukaryotic phyla pro-
vides some evidence for the existence of comparable
regulatory mechanisms [7]. As suggested many years ago,
the suppression of UpA dinucleotides among RNA viruses
infecting mammalian, plant and insect cells (Figure 6;
[10,11]) may therefore represent their specific adaptation
to evade RNA degradation during their replication cycle.
In the current study, further evidence for specific selection
against UpA dinucleotides was provided by the mutational
model for positive- and negative-strand animal viruses in
which mutations removing UpA residues were ranked sec-
ond behind those removing CpG (Figure 7).

Selection against CpG dinucleotides in expressed
RNA sequences
Mutations eliminating CpG residues were also highly in-
fluential in reducing model error for mRNA sequences
and ranked 1st or 2nd in species with methylated ge-
nomes (Figure 3). Although these arise (at least in part)
from mutational biases in the underlying genomic se-
quence, modelled mutational rates were invariably
higher in mRNA sequences (Figure 5). Furthermore, in
C. intestinalis, CpG depletion was best modelled by mu-
tations that were dependent on the upstream base (eg.
C,G→A; Figure 3 and data not shown). These observa-
tions provide evidence that additional, likely selective
rather than mutational pressures against CpG dinucleo-
tides are exerted on RNA sequences expressed in the
cytoplasm. The existence of this selection pressure oper-
ating independently of DNA methylation induced muta-
tion is supported by our finding of mutational biases
against CpG dinucleotides among RNA viruses (Figure 7)
in which conventional deamination and mutation as a
consequence of methylation cannot occur. This selection
process may underlie the prominent under-representation
of CpG dinucleotides in many classes of RNA virus
[10,11] infecting mammals and plants to extents
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comparable to those observed in their hosts’ mRNA se-
quences (Figure 2, Additional file 7: Figure S4A, S4B;
[28]). Prominent exceptions to CpG under-representation
are viruses with dsRNA genomes (Figure 6) and many of
the helical-classed plant viruses (data not shown). In these,
however, RNA genomic sequences remain packaged
within virions throughout their replication cycle and they
therefore may not be subject to the same selection pres-
sures operating on exposed RNA.
It could be argued that host cell defences against viral

infections that mutate their RNA genomes may account
for the various under- and over-representations of spe-
cific dinucleotides. Of these, members of the APOBEC
family deaminate cytosines in single-stranded DNA and
RNA potentially in specific sequence contexts [29]
although those identified (C,C->U and U,C->U) would
not create the dinucleotide biases in RNA viruses and of
course the action of APOBEC is specific to retroviral ge-
nomes, not the RNA viruses modelled in the current
study. A different RNA editing enzyme that is interferon-
induced and known to be active against RNA viruses is ad-
enosine deaminase acting on RNA 1 (ADAR1). However,
its mutagenic effect is not known to be dependent on di-
nucleotide context [30] and therefore similarly cannot
create the frequency biases observed.
Although the nature of the selection against CpG di-

nucleotides remains poorly understood and has not been
investigated functionally, there are a number of tantaliz-
ing clues towards the existence of mechanisms coupled
to innate immunity that recognize RNA with CpG
motifs [28,31,32]. There may be, for example, RNA-
degrading enzymes that recognise CpG motifs, analogous
to UpA targeting by RNAseL and other RNA degrading
enzymes that influence mRNA half-lives in the cytoplasm
(see above). Alternatively, CpG dinucleotides in viral
RNA may be selected against as they may serve as
targets for currently uncharacterized pathogen recog-
nition receptors couple to interferon or other cell de-
fence pathways [12]. The induction of interferon-β in
macrophages exposed to synthetic RNA oligonucleotides
containing CpG residues [33] may be an example of this
process, functionally and perhaps evolutionarily related to
Toll-like receptor 9 that recognizes non-methylated CpG
dinucleotides in DNA sequences.
Further evidence that the presence of CpG dinucleo-

tides in viral sequences either activate or are targets of
cell defence mechanisms is provided by the observation
that polioviruses with artificially elevated CpG frequen-
cies in their genomic RNA were markedly attenuated
and replicated to titres several orders of magnitude
lower than wild type virus in in vitro cell culture [34-36].
Intriguingly, cellular genes coding for proteins induced
as part of the innate response to infection, such as type
1 interferons, show substantially greater depletion of
CpG dinucleotides than other genes of similar G+C
composition [31], suggesting that this adaptation is re-
quired for effective gene expression in a hostile cytoplas-
mic environment. Mammals (and potentially other
vertebrates) and plants with their methylated genomes
and associated depletion of CpG may therefore have in-
dependently co-opted this dinucleotide as a marker of
self/non-self recognition. This potentially explains the
selection against CpG in viruses infecting members of
these eukaryotic phyla [28]. The existence of such recog-
nition systems may in turn have placed additional selec-
tion pressures on host expressed mRNA sequences to
evade these viral countermeasures.

Conclusions
The findings in the current study provide the first com-
prehensive analysis of context-dependent mutational
biases and selection pressures in organisms with both
methylated and non-methylated genomes. The finding of
pressures operating on genomic DNA in addition to the
previously described C→T,G mutation in mammals, a
set of quite different biases in non-methylated genomes
and additional selection pressure operating on sequences
expressed as mRNAs in all organisms provides a series
of predictions that can be directly analyzed in biological
studies. The evidence obtained for selection pressures
against UpA and CpG dinucleotides in mRNA sequences
of methylated organisms provides a coherent explan-
ation of their under-representation in cytoplasmically
replicating RNA viruses which has eluded previous ana-
lyses [10,11]. It provides exciting new insights into the
process of self / non-self recognition that underlies host
innate immunity to viral pathogens.

Methods
Sequences and dinucleotide frequency calculation
DNA sequences from human (Homo sapiens), other mam-
mals (chimpanzee [P. troglodytes], mouse [M. musculus]),
another vertebrate (zebra fish [D. rerio]) and other animals
(sea squirt [C. intestinalis], fruit fly [D. melanogaster],
mosquito [A. gambiae] and nematode [C. elegans]) were
the subject of the investigation. Genome sequences were
obtained from UCSC for the following genome versions:
H. sapiens - hg19; P. troglodytes - panTro3; M. musculus -
mm9; D. rerio - danRer7; C. intestinalis - ci2; C. elegans -
ce10; A. gambiae - anoGam1; D. melanogaster, dm3.
Exon coordinates were extracted from UCSC using the

table browser function using the following tables: hg19:
knownGenes; panTro3: refGene; mm9: knownGenes;
danRer7: refGene; ci2: refGene; ce10: refGene; anoGam1:
refGene; dm3: refGene. Sequences corresponding to
exon coordinates were removed and the remaining non-
cytoplasmically expressed DNA genomic sequences were
divided into 50,000 bp lengths for analysis.
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From each species, non-redundant mRNA sequences
were downloaded from the http://www.ncbi.nlm.nih.gov/
gene database, with sequences shorter than 2500 bases
excluded. Complete genome sequences from available
positive and negative stranded RNA viruses infecting
mammals were obtained from GenBank (Additional file
9: Table S4). The analysis used non-redundant sequences
curated in the RefSeq project comprising prototype or
reference sequences from each virus family, and species.
SNPs in human DNA and their immediate 5′ and 3′

bases were obtained from the NCBI dbSNP database
(ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/rs_fasta/)
on 18/01/12. The bases immediately adjacent to the
44,415,612 SNPs were extracted by parsing FASTA
files, ignoring insertion/deletion polymorphisms.
Mono- and dinucleotide frequencies and ratios of ob-

served dinucleotide frequencies to those expected from
mononucleotide composition (G+C content in the case
of DNA sequences) were calculated using the program
Composition Scan in the SSE package [37].

Modelling substitution rates in different dinucleotide
contexts
We developed a systematic model to determine optimal
mutation rates in each dinucleotide context that best
correlate with DNA and RNA composition of eukaryotic
and viral sequences. These rates can viewed as variations
from a default rate transformation matrix, Q:

C G U A

Q ¼
C
G
U
A

• θ κ 1−θð Þ 1−θ
θ • 1−θ κ 1−θð Þ
κθ θ • 1−θ
θ κθ 1−θ •

2
664

3
775

where QYW for distinct Y and W is the default rate of
transformation from nucleotide Y to nucleotide W. κ is
the transition to transversion ratio and, for the default
transformation rates given by the matrix Q, θ is the
equilibrium proportion of G+C mononucleotides. It is
assumed that these rates can be influenced independ-
ently by the two neighbouring nucleotides to Y as fol-
lows. For a given trinucleotide XYZ the mutation rate
from Y to a different nucleotide W is given by:

r X;Y→W ;Zð Þ ¼ f X;Y→Wð Þ QYW f Y→W ;Zð Þ
where f(X, Y→W) is the factor giving the change of the
mutation rate of Y→W from its default value when the
upstream nucleotide is X, and f(Y→W, Z) is the factor
when the downstream nucleotide is Z, and both factors
contribute independently. For example if f(X, Y→W) and
f(Y→W, Z) were changed from their default values of 1
to values 0.7 and 2, then the mutation rate r(X, Y→W,
Z) would increase by a factor of 1.4 from its default
value of QYW. This model generalizes Duret and Galtier’s
model [14], in which κ = 2.1, f(C→T, G) = 27.6/2.1 and
the rest of factors all equal to 1.0.
For each of the 4 nucleotides, Y, there are 3 possible

transitions to a different nucleotide, W giving 12 possible
transitions Y→W. Since there are 4 possible upstream
nucleotides X, there are 48 factors of the form f(X,Y→W)
and since there are 4 downstream nucleotides Z there
are 48 factors of the form f(Y→W, Z), giving a total of
96 factors in the model. (Note that this is half the num-
ber of factors that would be needed in a model that had
a factor for each of the 12 possible transitions and each
of the 16 combination of upstream and downstream nu-
cleotides.) In RNA all the 96 factors in the model are
independent. However in DNA there is strand symmetry
which leads to equal rates of mutation in complemen-
tary DNA strands. Consequently if X’, Y’ and W’ are the
complementary nucleotides to X, Y and W respectively,
then f(X, Y→W) = f(Y’→W’, X’). Hence for DNA there
are only 48 independent factors.
For any specified set of mutational rates r(X, Y→W, Z)

we can simulate the mutational process starting from
some arbitrary compositions until an equilibrium is
reached. The method used is as follows.
Let dij(u) be the proportion at time u of all the dinu-

cleotides that is dinucleotide ij, and let mj(u) be the pro-
portion of all the nucleotides that is nucleotide j. In our
model the mj(u) and dij(u) are related by:

mj uð Þ ¼ ∑
i
dij uð Þ ¼ ∑

i
dji uð Þ ð1Þ

The first sum is over all the dinucleotides ij where j is
the downstream nucleotide, and the second sum is over
all dinucleotides ji where j is the upstream nucleotide.
The reason that these are the same is that in our model
we assume an arbitrary long RNA or DNA sequence so
every nucleotide occurs once in a dinucleotide as its up-
stream nucleotide and once in a dinucleotide as its
downstream nucleotide. Each time there is a transition
in our model the change affects equally the nucleotide
where it is the upstream nucleotide and the dinucleotide
where it is the downstream nucleotide. Hence provided
the two sums are the same at the start of the simulation
they will remain the same throughout.
Let tijk(u) be the proportion at time u of all trinucleo-

tides that is ijk. The trinucleotide ijk consists of an up-
stream dinucleotide ij and a downstream dinucleotide jk
sharing a common middle nucleotide j. Following previ-
ous approaches [14] we assume that in trinucleotides the
up and downstream dinucleotides that share a common
middle nucleotide are independent. From this it follows
that tijk(u) = dij(u) Pjk|j(u), where Pjk|j(u) is the proportion
at time u of dinucleotide jk among all the dinucleotides
whose left nucleotide is j. Since Pjk|j(u)= djk(u)/ mj(u), it

http://www.ncbi.nlm.nih.gov/gene
http://www.ncbi.nlm.nih.gov/gene
ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/rs_fasta/
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follows that:

tijk uð Þ ¼ dij uð Þdjk uð Þ
mj uð Þ ð2Þ

The rate of change in the proportion of dinucleotide ij
is given by the equation:

ddxy
du

uð Þ ¼ ∑
i;j;k

tijk uð Þ∑
l
r i; j→l; kð Þb x; yð Þ; i; j→l; kð Þð Þ

ð3Þ
where b((x, y), (i, j→l, k))) is the change in the number
of dinucleotides xy when a trinucleotide ijk turns to a
trinucleotide ilk, i.e., the number of dinucleotides xy in
trinucleotide ilk minus the number in trinucleotide ijk.
For example, b((C, A), (C, A→T, G)) = −1 since one
CpA is lost by changing from CAG to CTG. Also b((T,
T), (T, C→T, T)) = 2, and b((A, A), (G, G→T, C)) = 0. It
is not difficult to recognize that the value b((x, y), (i, j→
m, k))) can take is − 2, − 1, 0, 1 or 2.
Let F denote the vector consisting of κ and all the fac-

tors f. For any given values of θ and F, the steady state
dinucleotide proportions can be found by substituting
(1) and (2) into (3) and integrating the resulting 16
nonlinear equations from an arbitrary starting compos-
ition until the proportions stabilize. Let dXY be the limit-
ing proportion of dinucleotide XY and let mX be the
limiting proportion of nucleotide X. The limiting C+G
proportion, ω equals mC + mG and for each dinucleotide
XY we can calculate the model’s prediction of the ob-
served to expected dinucleotide ratio, XpYo/e, from
dXY/(mXmY). (If there was no correlation between the
nucleotides in dinucleotides then this ratio would be 1.)
By tabulating C+G and the resulting XpYo/e for a range
of values θ and interpolating we can find for any value ω
of C+G, the model’s estimate of XpYo/e. We denote this
function by MXY(ω,F).
To assess how good a fit our model is to a set of sam-

ples, the root mean square error, RMS, between the
model and the data was calculated. Assume there are N
samples and sample n has a C+G proportion of ωn and
the o/e ratio of the XY dinucleotide is Rn,xy. Then for a
vector of parameters F the RMS is:

RMS Fð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
n¼1
∑
x;y

Rn;xy−Mxy ωn; Fð Þ� �2

16N

vuuuut

The goal is to find the minimum value of RMS(F) and
the corresponding value of the parameters F, which gives
the best fit to the data. However we are interested in so-
lutions in which only a small number of the factors, f,
deviate from their default value of 1. The calculation is
done in a series of stages. First we find the minimum
values of RMS(F) for κ and each single factor in turn,
and choose the factor that gives the best fit. Then we
repeat the calculation allowing the values of κ and
the previously selected factor and each other factor in
turn to vary from their default values, and find which
other factor allows the best reduction in RMS value.
Then this is repeated to select at each step the best add-
itional factor to add to the previously selected ones
allowing at every step the re-optimisation of the values of
κ and f for each of the previously selected nucleotides.
The steps are shown below. Here M is the total num-

ber of parameters to vary (i.e. either 49 or 97) and
Max_K is the maximum number of parameters we want
to allow to deviate from their default values. (In the
DNA case the remaining parameters are set equal to
their complementary parameter.) We number the pa-
rameters f0 = κ, f1 = f(A, A→C ), f2 = f(A, A→G ), …
Variable ROpt denotes the minimum value of RMS found
when only the parameters in D are allowed to vary, and
FOpt the corresponding vector of parameter values.
Although the mutation rate f(W→X, Y) is a separate par-
ameter in the model from f(X→W, Y), their effects are re-
lated: setting f(W→X, Y) equal to a value v usually has a
similar effect on the equilibrium compositions to setting f
(X→W, Y) equal to the value 1/v. Consequently when pre-
senting the results only the factor greater than 1 is reported.
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Strand symmetry in DNA sequences
Models used and the information that can be obtained
from modelling mutational biases and selection pressure
depends on the nature of the nucleic acid. Studies to
date have been performed on genomic DNA; without
evident polarity in its replication in eukaryotes, the ac-
tual number of independent dinucleotides amounts to
only 10. These are ApT, TpA, CpG and GpC (self-com-
plementary dinucleotides) and the following pairs which
are present in equal frequencies in a large enough se-
quence sample; ApA and UpU, GpG/CpC, CpA/UpG,
ApC/GpU, GpA/UpC and ApG/CpU. As described
above in the model description, this symmetry leads to
mutational biases dependent on a downstream base being
indistinguishable from a complementary bias dependent
on an upstream base. Thus, the well characterised
methylation-induced mutation, represented here as C→T,
G is formally equivalent a complementary process on the
opposite DNA strand, i.e. C,G→A. In the current study,
DNA mutations are by convention generally presented in
the former format.

Modeling dinucleotide biases in single stranded
(RNA) sequences
For RNA sequences, different considerations apply. Mu-
tational biases originating from context-dependent mu-
tational biases will typically be symmetrical if originating
from biases in the underlying DNA sequence from which
it was transcribed, or in an RNA virus sequences where
the same RNA polymerase transcribes sense and antisense
genomic sequences. On the other hand, mutational biases
from RNA polymerase II that transcribes mRNA sequences
and dinucleotide composition abnormalities originating
from selection in the cytoplasm lead to asymmetries that
need to be separately modelled. As described above, model-
ling of mutational / selection biases in RNA therefore con-
siders each dinucleotide separately (e.g. the frequency of
UpC does not necessarily equal the frequency of GpA and
as described in the previous section, mutations occurring in
both upstream and downstream dinucleotide contexts have
to be modelled separately, creating a total of 96 instead of
48 model parameters.

Availability of supporting data
(Additional file 2: Figure S1, Additional file 3: Figure S2
and Additional file 5: Figure S3) and (Additional file 1:
Table S1, Additional file 4: Table S2, Additional file 6: Table
S3 and Additional file 9: Table S4) are available from:

Additional files

Additional file 1: Table S1. Significance testing of differences in cpg
and upa frequencies.
Additional file 2: Figure S1. Observed / expected frequencies of all 16
dinucleotides in human DNA (Additional file 2: Figure S1A) and mRNA
sequences (Additional file 2: Figure S1B), D. rerio DNA and mRNA
sequences (S1C, S1D) and A. gambiae DNA and mRNA sequences (S1E,
S1F). Values (y-axis) were plotted as a function of G+C content (x-axis).
Frequencies of each dinucleotide predicted from mutational models with
1, 2 and 4 parameters (1p, 2p and 4p; see inset key) are superimposed on
each distribution along with the quadratic line of best fit for each dataset
generated from starting sequences ranging in G+C composition from
20%-80%.

Additional file 3: Figure S2. Relationship between fragment length
and modelled RMS scores of human DNA fragments of different lengths
using 4 parameters. (A) Fragment lengths depicted in a linear scale. (B)
To estimate RMS distances for sequences without sampling error (ie. for
sequences of infinite length), sequence lengths were transformed using
the empirically derived transformation 1/length0.42 to generate a linear
relationship with RMS distances. The intercept with the y-axis line
represents the RMS score for sequences of infinite length (0.0095). This
represents the model error for this dataset.

Additional file 4: Table S2. Measured and predicted minimum rms
scores for dna and mrna datasets from different organisms.

Additional file 5: Figure S3. Uncorrected model errors (y-axis) using
mutational models with between 1 to 4 context-dependent mutational
biases (labelled under graph line) formatted as in Figure 3.

Additional file 6: Table S3. Reproducibility of corrected model error
and mutational rates on data re-sampling.

Additional file 7: Figure S4. Observed / expected frequencies of all 16
dinucleotides of mammalian viral RNA sequences (see legend to
Additional file 2: Figure S1).

Additional file 8: Figure S5. Uncorrected model errors (y-axis) for
mammalian RNA viruses using mutational models with between 1 to 4
context-dependent mutational biases formatted as in Figure 3.

Additional file 9: Table S4. Listing of mammalian viral sequences
analysed in study.
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