
BioMed CentralJournal of Nanobiotechnology

ss
Open AcceReview
Protein-polymer nano-machines. Towards synthetic control of 
biological processes
Sivanand S Pennadam2, Keith Firman1, Cameron Alexander2 and 
Dariusz C Górecki*2

Address: 1School of Biological Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth PO1 2DT, UK 
and 2School of Pharmacy and Biomedical Sciences, Institute of Biomedical and Biomolecular Sciences, University of Portsmouth, Portsmouth, 
PO1 2DT UK

Email: Sivanand S Pennadam - sivanand.pennadam@port.ac.uk; Keith Firman - keith.firman@port.ac.uk; 
Cameron Alexander - cameron.alexander@port.ac.uk; Dariusz C Górecki* - darek.gorecki@port.ac.uk

* Corresponding author    

Abstract
The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting
challenge for biologists, chemists and physicists, while advances in our understanding of these
biological motifs are now providing an opportunity to develop real single molecule devices for
technological applications. Single molecule studies are already well advanced and biological
molecular motors are being used to guide the design of nano-scale machines. However, controlling
the specific functions of these devices in biological systems under changing conditions is difficult. In
this review we describe the principles underlying the development of a molecular motor with
numerous potential applications in nanotechnology and the use of specific synthetic polymers as
prototypic molecular switches for control of the motor function. The molecular motor is a
derivative of a TypeI Restriction-Modification (R-M) enzyme and the synthetic polymer is drawn
from the class of materials that exhibit a temperature-dependent phase transition.

The potential exploitation of single molecules as functional devices has been heralded as the dawn
of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of
numerous multidisciplinary teams [1,2]. have been focused in attempts to develop these systems.
as machines capable of functioning at the low sub-micron and nanometre length-scales [3].
However, one of the obstacles for the practical application of single molecule devices is the lack of
functional control methods in biological media, under changing conditions. In this review we
describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-
Modification enzyme) with numerous potential applications in nanotechnology and the use of
specific synthetic polymers as prototypic molecular switches for controlling the motor function [4].

1. Type I Restriction-Modification enzymes
Type I R-M enzymes are multifunctional, multisubunit
enzymes that provide bacteria with protection against
infection by DNA-based bacteriophage [5] They accom-

plish this through a complex restriction activity that cuts
the DNA at random locations, which can be extremely dis-
tal (>20 kbp) from the enzyme's recognition sequence. In
fact, the enzyme is capable of two opposing functions

Published: 06 September 2004

Journal of Nanobiotechnology 2004, 2:8 doi:10.1186/1477-3155-2-8

Received: 13 May 2004
Accepted: 06 September 2004

This article is available from: http://www.jnanobiotechnology.com/content/2/1/8

© 2004 Pennadam et al; licensee BioMed Central Ltd. 
This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 7
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15350203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10.1186/1477-3155-2-8
http://www.jnanobiotechnology.com/content/2/1/8
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Journal of Nanobiotechnology 2004, 2:8 http://www.jnanobiotechnology.com/content/2/1/8
(restriction and modification), which are controlled enzy-
matically through an allosteric effector (ATP) and tempo-
rally through the assembly of the holoenzyme. In
addition, the R-M enzyme has a powerful ATPase activity,
which is associated with DNA translocation prior to cleav-
age; it is this translocation process that leads to random
cleavage sites. Therefore, these enzymes are unusual
molecular motors that bind specifically to DNA and then
move the rest of the DNA through this bound complex
(Fig 1).

Type I R-M enzymes fall into families based on comple-
mentation grouping, protein sequence similarities, gene
order and related biochemical characteristics [6-8].
Within one sub-type (the IC family) there are three well-
described members, including EcoR124I, which is the
focus of our interest. This enzyme recognises the DNA
sequence GAAnnnnnnRTCG [9] and is comprised of three
subunits (HsdR,M,S) in a stoichiometric ratio of R2M2S
[10,11], (Fig 2). However, Janscák et al. also showed that
the EcoR124I R-M holoenzyme exists in equilibrium with
a sub-assembly complex of stoichiometry R1M2S [11]
which is unable to cleave DNA, but retains the ATPase and
motor activity [12]. The HsdS subunit is responsible for
DNA specificity; HsdM is required for DNA methylation
(modification activity) and together they can produce an
independent DNA methyltransferase (M2S) [13,14].
HsdR, along with the core MTase is absolutely required for
DNA cleavage (restriction activity) and is also responsible
for ATP-binding and subsequent DNA translocation.
Therefore, the HsdR subunit is the motor subunit of the
enzyme and this subunit is associated with helicase activ-
ity [15-18]. However, the precise mechanism of DNA
translocation is uncertain and the true nature of the motor
function has yet to be fully determined but a number of
important functional units – nuclease, helicase and
assembly domains have been identified within the HsdR
subunit [19].

2. A versatile molecular motor
The motor activity of Type I R-M enzymes is the mecha-
nism through which random DNA cleavage is accom-
plished. Szczelkun et al. [20] showed that cleavage only
occurs in a cis fashion indicating that the motor compo-
nent of the HsdR subunit is able to 'grasp' adjacent DNA
and pull this DNA through the enzyme-DNA-bound com-
plex. According to the Studier model [21] cleavage occurs
when two translocating enzymes collide (Fig 3). However,
highly efficient cleavage of circular DNA carrying only a
single recognition sites for the enzyme suggests collision-
based cleavage is not the whole story [20,22].

DNA translocation has been assayed in bulk solution
using protein-directed displacement of a DNA triplex and
the kinetics of one-dimensional motion determined. The

data shows processive DNA translocation followed by
collision with the triplex and oligonucleotide displace-
ment. A linear relationship between lag duration and
inter-site distance gives a translocation velocity of 400 ±
32 bp/s at 20°C. Furthermore, this can only be explained
by bi-directional translocation. An endonuclease with
only one of the two HsdR subunits responsible for motion
could still catalyse translocation. The reaction is less
processive, but can 'reset' in either direction whenever the
DNA is released (Fig 4).

As previously mentioned, the final step of the subunit
assembly pathway of the Type I Restriction-Modification
enzyme EcoR124I produces a weak endonuclease com-
plex of stoichiometry R2M2S1. We have produced a hybrid
HsdR subunit combining elements of the HsdR subunits
of the EcoR124I and EcoprrI [23-25] Type I Restriction-
Modification enzymes. This subunit has been shown to
assemble with the EcoR124I DNA methyltransferase
(MTase) to produce an active complex with low-level
restriction activity. We have also assembled a hybrid
REase and the data obtained show that the hybrid endo-
nuclease (REase) containing only HsdR(prrI) is an
extremely weak complex, producing primarily R1-com-
plex. The availability of the hybrid REase produced from
core MTase(R124I) and HsdR(prrI), which provides a sta-
ble R1-complex, also gives a useful molecular motor that
will not cleave the DNA that it translocates.

DNA Translocation by TypeI Restriction-Modification enzymeFigure 1
DNA Translocation by TypeI Restriction-Modification 
enzyme. The yellow block represents the recognition 
sequence for the enzyme. The enzyme binds at this site and 
upon addition of ATP, DNA translocation begins. During 
translocation, an expanding loop is produced.
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3. Sub-cellular localisation of R-M enzymes
As can be seen from the above, DNA cleavage by Type I
restriction enzymes occurs by means of a very unusual,
and highly energy-dependent, mechanism. Therefore,
these enzymes are believed to be involved not only as a
defence mechanism for the bacterial cell, but also in some
types of specialised recombination system controlling the
flow of genes between bacterial strains [26,27]. A periplas-
mic location would be well adapted for the restriction
activity of R-M enzymes, but recombination requires a
cytoplasmic location. Restriction enzymes protect the
cells by cutting foreign DNA and could be assumed to be
located at the cell periphery. Using immunoblotting to
analyse subcellular fractions, Holubova et al. [28]

detected that the subunits of the R-M enzyme were pre-
dominantly in the spheroplast extract. The HsdR and
HsdM subunits were found in the membrane fraction
only when co-produced with HsdS and, therefore, part of
a complex enzyme, either methylase or endonuclease.
Further studies have shown that the R-M enzyme is bound
to the membrane via the HsdS subunit and that for some
enzymes this may involve DNA [29].

4. Uses of the EcoR124I molecular motor: 
polymer-protein conjugates in 
nanobiotechnology
One of the major obstacles for the practical application of
single molecule devices is the absence of control methods
in biological media, where substrates or energy sources
(such as ATP) are ubiquitous. Synthetic polymers offer a
robust and highly flexible means by which devices based
on single biological molecules can be controlled. They can
also be used to link individual biomacromolecules to sur-
faces, package them or to control their specific functions,

Schematic of the motor subunitsFigure 2
Schematic of the motor subunits. HsdS denotes the DNA 
binding subunit; HsdM – is the subunit responsible for DNA 
methylation and HsdR subunit, together with the core 
enzyme acts to restrict DNA.

Mechanism of DNA cleavageFigure 3
Mechanism of DNA cleavage. The enzyme subunits are rep-
resented by: green ellipse – M2S complex, green box – HsdR 
subunit (with ATPase and restrictase activities; C denoting 
cleavage site). The black line represents DNA with the yel-
low box denoting the recognition sequence. Arrow shows 
direction of DNA translocation. For more details see text.
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thus expanding the applicability of the natural molecules
outside conventional biological environments.

Moreover, a number of synthetic polymers have been
recently developed that can potentially perform nanoscale
operations in a manner identical to natural and
engineered biopolymers. A key property of these materials
is 'smart' behaviour, especially the ability to undergo con-
formational or phase changes in response to variations in
temperature and/or pH. Synthetic polymers with these
properties are being developed for applications ranging
from microfluidic device formation, [30] through to pul-
satile drug release [31-34], control of cell-surface interac-
tions [35-39], as actuators [40] and, increasingly, as
nanotechnology devices [41].

In the context of bio-nanotechnology we focus here on
the uses of one particular subclass of smart materials, i.e.
substituted polyacrylamides, but it should be noted that
there are many more examples of synthetic polymers and
engineered/modified biopolymers that exhibit responsive
behaviour and new types and applications of smart mate-
rials are constantly being reported.

Poly(N-isopropylacrylamide) (PNIPAm) is the prototypi-
cal smart polymer and is both readily available and of
well-understood properties [42]. PNIPAm undergoes a
sharp coil-globule transition in water at 32 °C, being
hydrophilic below this temperature and hydrophobic
above it. This temperature (the Lower Critical Solution
Temperature or LCST) corresponds to the region in the
phase diagram at which the enthalpic contribution of

water hydrogen-bonded to the polymer chain becomes
less than the entropic gain of the system as a whole and
thus is largely dependent on the hydrogen-bonding
capabilities of the constituent monomer units (Fig 5).
Accordingly, the LCST of a given polymer can in principle
be "tuned" as desired by variation in hydrophilic or
hydrophobic co-monomer content.

4.1 Soluble PNIPAm-biopolymer conjugates
Covalent attachment of single or multiple responsive pol-
ymer chains to biopolymers offers the possibility of exert-
ing control over their biological activity as, in theory at
least, the properties of the resultant polymer-biopolymer
conjugate should be a simple additive function of those of
the individual components. This principle is now being
widely exploited in pharmaceutical development, as cov-
alent attachment of, for example, PEG chains to therapeu-
tic proteins has been shown to stabilize the proteins
without losing their biological function [43-48]. Polymer-
biopolymer conjugates can be prepared as monodisperse
single units, or as self-assembling ensembles depending
on the chemistries used for attaching the synthetic com-
ponent and on the associative properties of the polymer
and/or biopolymer. Furthermore, by altering the response
stimulus of the synthetic polymer, and how and where it
is attached to the biopolymer, the activity of the overall
conjugate can be very closely regulated. These chimeric
systems can thus be considered as true molecular-scale
devices.

Pioneering work in this area has been carried out by Hoff-
man, Stayton and co-workers, who engineered a mutant

Motor activity of type I R-M EnzymeFigure 4
Motor activity of type I R-M Enzyme. (a) The yellow block represents the DNA-binding (recognition) site of the enzyme, which 
is represented by the green object approaching from the top of the diagram and about to dock onto the recognition sequence. 
(b) The motor is bound to the DNA at the recognition site and begins to attach to adjacent DNA sequences. (c) The motor 
begins to translocate the adjacent DNA sequences through the motor/DNA complex, which remains tightly bound to the rec-
ognition sequence. (d) Translocation produces an expanding loop of positively supercoiled DNA. The motor follows the helical 
thread of the DNA resulting in spinning of the DNA end (illustrated by the rotation of the yellow cube). (e) When transloca-
tion reaches the end of the linear DNA it stops, resets and then the process begins again.
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of cytochrome b5 such that a single cysteine introduced
via site-directed mutagenesis was accessible for reaction
with maleimide end-functionalised PNIPAm [49]. Since
the native cytochrome b5 does not contain any cysteine
residues this substitution provided a unique attachment
point for the polymer. The resultant polymer-protein con-
jugate displayed LCST behaviour and could be reversibly
precipitated from solution by variation in temperature.
This approach has proved to be very versatile and a large
number of polymer-biopolymer conjugates have now
been prepared, incorporating biological components as
diverse as antibodies, protein A, streptavidin, proteases
and hydrolases [50,51,50,51]. The biological functions or
activities of these conjugate systems were all similar to
their native counterparts, but were switched on or off as a
result of thermally induced polymer phase transitions. Of
especial note have been the recent reports of a tempera-
ture and photochemically switchable endoglucanase,
which displayed varying and opposite activities depend-
ing on whether temperature or UV/Vis illumination was
used as the switch [52].

4.2. Controllable DNA packaging and 
compartmentalization devices
We are currently developing responsive polymers as a
switch to control the EcoR124I motor function and are
investigating this polymer-motor conjugate as part of an
active drug delivery system. We aim for the practical
demonstration of a nano-scale DNA packaging/separa-
tion and delivery system uniting the optimal features of
both natural and synthetic molecules. In essence, we
assemble a supramolecular device containing the molecu-
lar motor capable of binding and directionally translocat-
ing DNA through an impermeable barrier. To control the

process of translocation in biological systems, where a
constant supply of ATP is present, we have added to the
motor subunit of EcoR124I the thermoresponsive
poly(N-isopropylacrylamide) (PNIPAm), which, through
its coil-globule transition, acts as a temperature-depend-
ent switch controlling motor activity.

PNIPAm copolymers with reactive end-groups are being
attached to a preformed R subunit of the motor via cou-
pling of a maleimide-tipped linker on the synthetic poly-
mer terminus to a cysteine residue. This residue has been
selected, as it is both accessible and located close to the
active centre on the R subunit of the motor. The protein-
polymer conjugates are stable to extensive purification
and, when combined with M2S complex, the activity of
this conjugate motor system is similar to the native coun-
terpart, but can be switched on or off as a result of ther-
mally induced polymer phase transitions [53,54].

Thus the conjugation of the responsive polymer to the
molecular motor generates a nano-scale, switchable
device (Fig 6), which can translocate DNA under one set
of conditions (i.e. into a protective capsule or into a com-
partment). Conversely, in another environment (e.g.
inside cells), in response to changed conditions (e.g.
changed temperature, pH) the polymer switch will change
its conformation, allowing ATP to power the motor,
releasing DNA from capsules or compartments.

Inverse temperature solubility behavior of responsive poly-mers at the Lower Critical Solution Temperature (LCST)Figure 5
Inverse temperature solubility behavior of responsive poly-
mers at the Lower Critical Solution Temperature (LCST). 
Left hand side shows hydrated polymer below LCST with 
entropic loss of water and chain collapse above LCST (right 
hand side).

Schematic representation of the molecular motor function controlled by a thermoresponsive polymer switchFigure 6
Schematic representation of the molecular motor function 
controlled by a thermoresponsive polymer switch. R, M and 
S denote the specific motor subunits. Chain-extension of the 
polymer below LCST provides a steric shield blocking the 
active site. Chain collapse (above LCST) enables access to 
the active site and restoration of enzyme function. For more 
details see text.
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The conjugation of the motor with synthetic polymers
brings additional advantages. One such benefit arises
from the ability to functionalise the polymer side chains
or terminus in a way that allows attachment of the entire
complex to surfaces for sensing and device applications.

Therefore, although our hybrid polymer-protein conju-
gate was originally aimed at gene targeting (as it has the
potential to increase the delivery of intact DNA to cell
nuclei and thereby increase gene expression) this system
may also be used in building automated nano-chip
sensors, therapeutic and diagnostic devices, where DNA
itself would be a target, or where DNA might be used as a
'conveyor-belt' for attached molecules. The strength of the
molecular motor has proven sufficient to disrupt most
protein-DNA interactions and thus numerous processes
and applications where highly localised force is required
can also be envisaged.

5. Conclusions
The use of synthetic polymers offers a number of possibil-
ities, which otherwise could not be exploited or would be
difficult to take advantage of, if purely biological systems
were used. Moreover, the combination of the properties of
molecular motors with "smart" polymers has hitherto
been unexplored and represents a novel concept in nan-
otechnology, which could ultimately lead to a wholly new
class of molecular devices. Nanoscale control of
molecular transport in vitro and especially in vivo opens up
a whole host of possibilities in medicine, including drug
or DNA delivery (e.g. gene therapy), but also where pro-
tection of a therapeutic is required under one biological
regime and release in another (e.g. prodrugs conjugated to
DNA which can be released by nuclease-mediated degra-
dation at the site of action). In addition, this system may
allow the generation of switchable nanodevices and actu-
ators, controllable by changes in the synthetic copolymer
structure as well as ATP-mediated DNA motion and may
pave the way for biofeedback-responsive nanosystems. It
can be used for nano-scale isolation of various biochemi-
cal processes in separate compartments connected via a
tightly controlled shuttle device.

In essence, this concept bridges the disciplines of chemis-
try and biology by using a biological motor to control
chemistry and a synthetic polymer to regulate biological
processes.
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