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Abstract

Background: Over the course of the last few years there has been a significant amount of research performed on
ontology-based formalization of phenotype descriptions. In order to fully capture the intrinsic value and knowledge
expressed within them, we need to take advantage of their inner structure, which implicitly combines qualities and
anatomical entities. The first step in this process is the segmentation of the phenotype descriptions into their atomic
elements.

Results: We present a two-phase hybrid segmentation method that combines a series individual classifiers using
different aggregation schemes (set operations and simple majority voting). The approach is tested on a corpus
comprised of skeletal phenotype descriptions emerged from the Human Phenotype Ontology. Experimental results
show that the best hybrid method achieves an F-Score of 97.05% in the first phase and F-Scores of 97.16% / 94.50% in
the second phase.

Conclusions: The performance of the initial segmentation of anatomical entities and qualities (phase I) is not
affected by the presence / absence of external resources, such as domain dictionaries. From a generic perspective,
hybrid methods may not always improve the segmentation accuracy as they are heavily dependent on the goal and
data characteristics.

Background
Phenotype descriptions are fundamentally important for
our deeper understanding of genetics and evolutionary
relationships. These facilitate the computation and anal-
ysis of evolutionary questions related to a varied range
of issues, such as the genetic and developmental bases
of correlated characters or the paleontological correlates
of particular types of change in genes, gene networks
and developmental pathways [1]. The literature contains
a wealth of such phenotype descriptions, usually reported
as free-text entries, similar to typical clinical summaries.
A first and crucial step required to be able to take advan-
tage of this knowledge is to model and capture them in a
machine-processable format.
Over the course of the last few years there has been a sig-

nificant amount of research performed on ontology-based
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formalization of phenotypes. The Mammalian Phenotype
Ontology [2], the Human Phenotype Ontology (HPO)
[3], the Elements of Morphology Project [4] – focus-
ing on phenotypic variations of the head and face – or
the Phenoscape Project [5] – aimed at representing and
capturing phylogenetic studies on ostariophysan fishes –
are some of the most representative projects in this
area. Formalized phenotypic descriptions have then been
successfully used for studying cross-species phenotype
networks [6,7], linking human diseases to animal mod-
els [8] or predicting diagnoses using semantic similarity
measures [9].
However, as noted also by Gkoutos et al. [10], in order to

fully capture the intrinsic value and knowledge expressed
by these descriptions, we require a more precise and
fine-grained representation for them. Most phenotype
terms implicitly combine anatomical entities with quali-
ties. For example, HP:0010230 (Cone-shaped epiphyses
of the phalanges of the hand) describes the anatomical
entity epiphyses of the phalanges of the hand that bears the
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quality cone-shaped. Other terms represent atomic phe-
notypes that do not externalize directly this association,
e.g., HP:0010884 (Acromelia), although their semantics
can still be encoded using the same format, e.g., use the
explicit meaning of Acromelia that denotes shortness of
the distal part of a limb. This has led to the emergence
of the Entity-Quality (EQ) formalism that enables the
decomposition of phenotypic descriptions using ontolo-
gies, such as the Foundational Model of Anatomy (FMA)
[11] – describing anatomical concepts and the Phenotype
and Trait Ontology (PATO) [10] – comprising quality def-
initions. Subsequently, tools for manually creating such
associations have been proposed, e.g., Phenoscape [5] and
Phenex [12].
In this paper, we make the first step towards the auto-

matic creation of decomposed phenotype descriptions by
focusing on their initial segmentation, i.e., splitting a given
phenotype term into chunks corresponding to anatomical
entities and qualities. The second step required to com-
plete this process would be the alignment of the resulting
segments to ontological concepts.
The context of our research is provided by the SKELE-

TOME project [13], which aims to create a community-
driven knowledge curation platform for the skeletal
dysplasia domaina. To date, we have developed an
ontology, the Bone Dysplasia Ontology [14], capable
of capturing associations between skeletal dysplasias,
gene mutations and phenotypic descriptions, the latter
grounded in HPO concepts. The decomposition of phe-
notype descriptions, in our case represented mostly by
radiographic findings of the skeletal system, would enable
a fine-grained exploration of the phenotype space, and
hence the exploration of commonalities between disor-
ders based on the anatomical localization of phenotypes
and the development of anatomical localization - ori-
ented decision support methods. Consequently, our work
focuses on elements associated only with the human
skeletal phenome.
The segmentation of skeletal phenotype descriptions

raises a series of structural and semantic challenges. From
a structural perspective, there are four classes of seg-
ments that need to be considered: qualities, qualifiers,
anatomical coordinates and anatomical entities, the latter
being decomposable into parts and sub-parts. Consid-
ering, for example, irregular ossification of the proximal
radial metaphysis, ossification denotes the quality and has
associated a qualifier (irregular), while radial metaph-
ysis denotes the anatomical entity and has associated an
anatomical coordinate (proximal). Secondly, due to the
composite nature of the anatomical concepts, there is no
uniform pattern that can be assumed for segmentation.
For example, epiphyseal widening of the hand phalanges is
the same as broadening of the epiphyses of the phalanges
of the hand. From a semantic perspective, one challenge

is provided by ambiguity, e.g., irregular ossification of
the proximal radial metaphysis vs. radial club hand.
Here, radial refers to the anatomical entity radius in the
first case, and to an anatomical coordinate in the second
case. Finally, the existing terminology contains metaphor-
ical expressions that may pose issues for an accurate
detection/classification, e.g., bone-in-bone appearance or
angel-shaped epiphyses.
Machine learning methods have proved to be suc-

cessful at dealing with the above mentioned challenges,
although rule-based methods could also be employed
with a high precision, but most likely at a trade-off
of a lower recall. Conditional Random Fields (CRF)
[15], in particular, have been reported to achieve good
results both for segmentation tasks, as well as for
classification tasks in the biomedical domain (see, for
example, [16,17] or [18]). Recent works, however, has
concentrated on using ensembles of classifiers (hybrid
approaches) to overcome the issues associated with
using single classifiers. As an example, the approaches
described in [19] and [20] have used sets of classifiers
(three by the former and six by the latter) aggregated
via different voting schemes for gene/protein mention
tagging.
Our solution also relies on training divergent models

via an ensemble of classifiers and aggregating the results
via set operations or simple majority voting. More con-
cretely, we propose a two-phase process, as exemplified
in Figure 1, that first segments the input into coarse
qualities and anatomical entities, then re-orders them
according to their class and finally splits each resulting
segment into its atomic parts. These atomic elements cor-
respond to quality-qualifier pairs (e.g., streaky - sclerosis
in our example), anatomical coordinate - anatomical con-
cept associations and part-sub part relationships between
anatomical concepts (e.g., metaphyses - of - long bones
in Figure 1). Our ensemble of classifiers comprises two
CRFs and two Support Vector Machines (SVM)-based
chunkers. We perform an extensive series of experiments
to find the optimal aggregation strategy for the ensem-
ble, i.e., the strategy the maximises the segmentation
performance.

Methods
As mentioned previously, our solution proposes a two-
phase process. Within each phase we train the ensemble
of classifiers to achieve the corresponding segmentation
goals. In this section, we discuss the corpus used for
training and testing, the complete set of features used
for segmentation, as well as the different aggregation
strategies. The following section presents the segmenta-
tion efficiency achieved by each classifier, via a ten-fold
cross-validation with stratification.
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Figure 1 Example of segmentation of a phenotype description according to the two phases of our approach. In phase I, tokens are labeled
using BIO labeling corresponding to each class: Q (quality), A (anatomy), C (connective). Label O (not present in the figure) is used to denote tokens
outside the target classes. Similarly, in phase II, specific classifiers are used to segment quality-qualifier pairs (Q-QF) and anatomical parts (A),
sub-parts (AP) and coordinates (P).

Phenotype description corpora
As a first step, we have created a corpus comprising
a total of 3,742 phenotype descriptions by listing all
children under HP:0000924 (Abnormality of the skele-
tal system). We could have also collected such descrip-
tions from the literature, however working directly with
terms that denote concepts in one of the most widely
used phenotype ontologies (like HPO) will bring us closer
to achieving the overall goal of proving an automatic
mechanism for the conceptual decomposition of phe-
notype ontologies. At the same time, given the context
provided by the SKELETOME project, we are particu-
larly interested in segmenting HPO concepts, since they
will represent our input data when building anatomical
localization-oriented decision support methods.
This corpus has been manually annotated using the BIO

labelling scheme, where ’B’ stands for the beginning of a
concept, ’I’ for inside a concept and ’O’ for outside any
concept. In practice, the scheme has been used in associ-
ation with the target classes for phase I, i.e., anatomy and
quality. More concretely, we have used the following labels
(some exemplified in Figure 1): (i) A-B/A-I, beginning of
and inside an anatomical concept (e.g., metaphyses of the
long bones in Figure 1); (ii) Q-B/Q-I, beginning of and
inside a quality concept (e.g., irregular, flared and streaky
sclerosis in Figure 1); (iii) C-B/C-I, beginning of and inside
a connective element (i.e., conjunction – with in Figure 1);
(iv) O, outside all classes of interest. Table 1 provides an
overview of the distribution of types of concepts (and
associated labels) in the corpus. The corpus is available at:
http://purl.org/skeletome/corpora/HPTagged.
The above listed target classes (or labels) have emerged

directly from the EQ syntax, and as such, provide a 1-to-
1 mapping between the output of phase I classifier and
possible EQ statements. As described in [12], EQ asso-
ciates a concept from an organism-specific ontology (e.g.,
FMA:46565 – Skull) with a quality term from PATO. The
latter describes the quality or value of some attribute of

the entity, e.g., shape (rectangular), size (large), etc. As it
can be observed our labels A and Q represent the Entity
and Quality counterparts in the EQ syntax.
On the other hand, as mentioned in the Introduc-

tion, not all phenotype descriptions externalise in a direct
manner the Entity-Quality relationship, for example,
HP:0010884 (Acromelia) or HP:0000943 (Dysostosis
multiplex). We call such phenotype descriptions atomic
phenotypes and they represent, in principle, terms that
denote distinctive qualities associated to vaguely speci-
fied anatomical entities (e.g., distal part of a limb in the
case of Acromelia) or more complex concepts, such as
processes or qualities of qualities. These terms require
manual decomposition (since theirmeaning is implicit not
explicit), and thus cannot be directly segmented into their
elementary anatomic and quality concepts. Within our
annotated corpus, atomic phenotypes have been labeled
as qualities (i.e., Q-B/Q-I), because from our perspective
they bear a qualitative purpose. This no longer conforms
to the EQ syntax, since atomic phenotypes are not quali-
ties per se and hence they do not exist in PATO. However,
our aim is to segment phenotype descriptions into a for-
mat that can enable further processing (e.g., for ontology
population) and not to achieve 100% conformance to EQ.
Furthermore, this labelling enables us to continue the
decomposition process in phase II with finding possible
qualifier – quality associations, e.g., severe – coxa vara.

Table 1 Phenotype description corpus statistics

Label category Count Percentage

Anatomy (A-B/A-I) 13,003 70.08%

Quality (Q-B/Q-I) 5,465 29.45%

Connectives (C-B/C-I) 43 0.23%

Outside (O) 45 0.24%

TOTAL 18,556

http://purl.org/skeletome/corpora/HPTagged
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In the second step, we have processed the resulting
annotated corpus to create two corpora relevant for phase
II, i.e., a quality corpus and an anatomy corpus. Each of
these corpora contains unique entries, hence eliminating
the duplicates that may be present in the original phe-
notype descriptions. More concretely, terms that appear
several times as a result of the segmentation in phase I
(e.g., phalanx of finger or short) are retained only once.
The set of labels used within the two corpora are
described below.
The goal of the anatomy segmentation in the second

phase is to identify part – subpart relationships between
anatomical concepts resulted from the initial segmenta-
tion. In the example listed in Figure 1, the phase I seg-
mentation will identify the anatomical entity metaphyses
of the long bones. Phase II anatomical segmentation pro-
cesses further this entity and aims to identify the main
anatomical concept, i.e., long bones and its subparts – in
this case metaphyses. In addition to these, we also aim
to find anatomical coordinates, such as proximal, lat-
eral, etc. (e.g., proximal metaphyses of the long bones).
The Anatomy corpus uses the following labels: (i) A-B/A-
I, beginning of and inside a main anatomical concept
(e.g., long bones in Figure 1); (ii) AP-B/AP-I, beginning
of and inside an anatomical part concept (e.g., metaphy-
ses in Figure 1); (iii) PB, an anatomical coordinate (e.g.,
proximal) - as a remark anatomical coordinates are usu-
ally identified by single tokens and consequently we have
not used additional labels; if multiple anatomical coor-
dinates are present, they are identified individually and
connected via conjunctive tokens; (iv) C-B/C-I, beginning
of and inside a connective token (e.g., of the in Figure 1);
(v) O, outside all classes of interest.
Similarly, the goal of the quality segmentation in this

second phase is to identify qualifier – quality associations,
e.g., streaky – sclerosis in Figure 1. The quality corpus
hence uses the following labels: (i) Q-B/Q-I, beginning of
and inside a quality concept (e.g., irregular, flared, sclero-
sis in Figure 1); (ii) QF-B/QF-I, beginning of and inside a
qualifier concept (e.g., streaky in Figure 1); (iii) C-B/C-I,
beginning of and inside a connective token; (iv) O, outside
all classes of interest.
The above described corpora are available at http://purl.

org/skeletome/corpora/HPAnatomy (the anatomy cor-
pus) and http://purl.org/skeletome/corpora/HPQualities
(the qualities corpus). Finally, Tables 2 and 3 present
the distribution of the types of entities (and asso-
ciated labels) present in the Anatomy and Quality
corpora.

Classifier features
The sets of features used by the classifiers, individually and
within each phase, are in principle almost the same with a
few exceptions:

Table 2 Statistics for the Anatomy corpora used in phase II

Label category Count Percentage

Main anatomy (A-B/A-I) 2,984 41.01%

Anatomy part (AP-B/AP-I) 1,209 16.61%

Anatomy coordinate (PB) 698 9.60%

Connectives (C-B/C-I) 2,354 32.35%

Outside (O) 31 0.43%

TOTAL 7,276

• Within each phase, in order to produce divergent
classifiers, we use different window and n-gram sizes
(for prefix and suffix) and include or omit the domain
dictionaries (i.e., Anatomy and Quality), and

• Within the second phase, we omit completely the
domain dictionaries.

In addition to local token-based features, we use
three external resources: (i) the Foundational Model of
AnatomyOntology, (ii) the Phenotype and Trait Ontology,
and (iii) the SPECIALIST (LexAccess) lexicon [21], which
is a syntactic lexicon of biomedical and general English
that records for each lexical item (word or term) the
syntactic, morphological, and orthographic information.
The local features used by the classifiers are described

below. All examples associated with the definitions use
the phenotype description from Figure 1 and consider
metaphyses to be the token in focus. Also, for clarification
purposes, the symbol @ represents the absence of a token
at the corresponding position.

• Token – The token currently in focus. Example:
metaphyses

• Token lemma (linguistic) – The linguistic stem of
the token. Example: metaphyse

• Token base (LexAccess) – The base of the token as
defined in LexAccess. Example: metaphysis

• Token POS tag (linguistic) – The linguistic part of
speech tag. Example: NNP

• Token category (LexAccess) – The token category
as defined in LexAccess. Example: noun

• Token shape – All capitalized letters are replaced by
’A’, all non-capitalized letters are replaced by ’a’, all

Table 3 Statistics for the Quality corpora used in phase II

Label category Count Percentage

Quality (Q-B/Q-I) 2,141 76.31%

Qualifier (QF-B/QF-I) 590 21.03%

Connectives (C-B/C-I) 52 1.84%

Outside (O) 23 0.82

TOTAL 2,806

http://purl.org/skeletome/corpora/HPAnatomy
http://purl.org/skeletome/corpora/HPAnatomy
http://purl.org/skeletome/corpora/HPQualities
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digits are replaced by ’0’, the rest of the types of
characters remain unaltered. Example: aaaaaaaaaa

• Token brief shape – The compressed version of the
token shape created by suppressing all consecutive
equal symbols. Example: a

• Unigram context (variable window size) – Unigram
of the token and surrounding context. Example for
window size 3: @ irregular flared metaphyses of the
long

• Bigram context (variable window size) – Bigrams
formed by the token and the surrounding context.
Example for window size 3: @-irregular
irregular-flared flared-metaphyses metaphyses-with
with-streaky streaky-sclerosis

• Trigram context (variable window size) – Trigrams
formed by the token and the surrounding context.
Example for window size 3: @-irregular-flared
irregular-flared-metaphyses flared-metaphyses-with
metaphyses-with-streaky with-streaky-sclerosis

• Morphological feature: punctuation – Values:
punct / no depending on whether the token ends
with a punctuation sign. Example: no

• Morphological feature: digits – All digits in the
token are replaced by ’*’. Example: no*

• Morphological feature: vowels – All characters of
the token except vowels are replaced by ’-’. Example:
-e-a—-e-

• Token prefix (variable size) – Token prefixes of
variable length. Example for size 5: m me met meta
metap

• Token suffix (variable size) – Token suffixes of
variable length. Example for size 5: s es ses yses hyses

The next set of features are dictionary-based. Their
value signals the presence of the given input in the corre-
sponding dictionary. Among the six dictionaries we use,
two are domain dictionaries and have been built from
FMA and PATO, respectively.

• Conjunctions – Tokens denoting conjunctions.
Example: and, or

• Connections – Tokens denoting connecting
cue-phrases. Example: in, at, of

• Coordinates – Tokens denoting anatomical
coordinates. Example: central, left

• Ordinals – Gazetteer consisting of ordinals.
Example: 1st, 2nd

• Anatomy – Gazetteer comprising FMA anatomical
concepts. Example: Epiphysis, Limb

• Qualities – Gazetteer comprising PATO qualities.
Example: short, long

Finally, the last set of features represent combinations of
basic and dictionary-based features. Again, similar to the
listing above, all examples associated with the definitions

are from Figure 1 and considermetaphyses to be the token
in focus.

• Token base (LexAccess) + Anatomy dictionary –
Signals the presence of the base of the token in the
anatomy dictionary. Example: anat

• Token base (LexAccess) + Quality dictionary –
Signals the presence of the base of the token in the
quality dictionary. Example: no

• Unigram context (variable window size) +
Anatomy dictionary – Unigram-based context
signalling the presence of the tokens in the anatomy
dictionary. Example for window size 3: no no no no
no no no

• Unigram context (variable window size) + Quality
dictionary – Unigram-based context signalling the
presence of the tokens in the quality dictionary.
Example for window size 3: no no qual no no no qual

• Bigram context (variable window size) + Anatomy
dictionary – Bigram-based context signalling the
presence of the tokens in the anatomy dictionary.
Example for window size 3: no-no no-no no-no
no-no no-no no-no

• Bigram context (variable window size) + Quality
dictionary – Bigram-based context signalling the
presence of the tokens in the quality dictionary.
Example for window size 3: no-no no-qual qual-no
no-no no-no no-qual

• Unigram context (variable window size) + Token
base (LexAccess) – Unigram-based context formed
by token bases from LexAccess. Example for window
size 3: @ irregular flare metaphysis of the long

• Unigram context (variable window size) + Token
base (LexAccess) + Anatomy dictionary –
Unigram-based context signalling the presence of the
tokens bases from LexAccess in the anatomy
dictionary. Example for window size 3: no anat no
anat no no no

• Unigram context (variable window size) + Token
base (LexAccess) + Quality dictionary – Unigram-
based context signalling the presence of the tokens
bases from LexAccess in the quality dictionary.
Example for window size 3: no qual no no no no qual

As opposed to most segmentation / named entity
extraction approaches, we do not perform any post-
processing. The only intermediary processing element we
include is in between phases when we re-order and join
(if necessary) the segments according to their class. As
presented in Figure 1, at the end of phase I, individual
tokens are labelled with their corresponding class, e.g.,
Q - quality and A - anatomy. Hence, before running the
specific segmentation in phase II, we join the consecu-
tive tokens that belong to the same entity. For example,
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the tokens streaky (Q-B), sclerosis (Q-I), are joined into
a corresponding monolithic quality entity, which is then
segmented in phase II.

Divergent classifiers
For the experiments discussed in the next section, we
have used three toolkits and adopted different training
algorithms to produce four classifiers. These toolkits are:

• CRF++ (http://crfpp.googlecode.com/): a freely
available CRF package. We have used it to train a
forward parsing model;

• MALLET [22]: another freely available CRF package.
We have used it to train both a forward, as well as a
backward parsing model, however we then used only
the forward parsing model because of its increased
accuracy;

• YamCha [23]: a chunking package that uses SVM
classification. We have trained two models that differ
in the method used for the multi-class classification,
i.e., one vs. one or one vs. all.

Algorithm 1 Simple majority voting scheme

1: for Ti ∈ input all
2: Vi(X) = voteX(Ti), where X ∈ {CRF++,

MALLET, YAMCHA1VS1,
YAMCHA1VSALL }

3:
4: if Vi(X) is the same for any 3 methods X then
5: return Vi(X)
6: end if
7:
8: if Vi(X) is the same for any 2 methods X

AND the other 2 methods are in
contradiction then

9: return Vi(X)
10: end if
11:
12: if Vi(X) is the same for any 2 methods X

AND the other 2 methods agree then
13: return VETO
14: end if
15:
16: if Vi(X) is different for any method X then
17: return VETO
18: end if
19: end for

Aggregation strategies
In addition to individual classifier-based experiments, we
have also treated them as an ensemble and used two types
of strategies for aggregating the classification / segmen-
tation results: (i) set operations, and (ii) simple majority
voting.
The set operations used within our experiments have

been union and intersection. Union assumes the results of
both inputs to be correct. As opposed to a single classifier,
union will have the tendency to increase the recall at the

expense of the precision. On the other hand, intersection
will consider only the common results to be correct, which
will, obviously, increase precision and lower the recall.
As detailed in the next section, we have used different
strategies for combining these set operations.
In the case of simple majority voting, the intuition is

that the results commonly produced by most classifiers
should be the correct one. Alg. 1 lists the pseudo-code
of the voting mechanism we have used. In principle, if
two or more classifiers agree on a label then consensus is
being reached. However, because we have a even number
of classifiers, we have introduced also a veto vote for those
cases in which no consensus is being reached by the classi-
fiers. Experiments have been performed with the veto vote
assigned to different classifiers.

Results
All the experiments detailed below have been carried out
on the corpora introduced in the previous section. We
performed a ten-fold cross validation with stratification
and averaged the results. The evaluation results of each
phase are listed in individual tables in the Additional file 1.

Phase I
The classifiers trained in phase I have used all features pre-
viously described with diverse window (1 to 3) and n-gram
(3 to 5) sizes. In order to track the influence of the domain
dictionaries on the segmentation results, we ran two sets
of experiments: one with and one without the support
of these dictionaries (and thus, of the other features that
depend on them).

Individual classifier results
Results of the individual classifiers are presented in Tables
S1 and S2 in the Additional file 1. We can observe that
YamCha, in the 1 vs. All setting, constantly outperforms
all the classifiers in both categories, although the differ-
ence is minimal. Also, it is interesting to observe that the
segmentation results are hardly affected by the absence of
the domain dictionaries, since there is a constant gap in
performance of only 0.18%.

Set operations-based results
Tables S3 and S4 in the Additional file 1 present the
top results when aggregating the individual segmenta-
tion via set operations. Here, we have used the two basic
types of set operations (i.e., union and intersection) in
two different settings: (i) paired aggregation, testing the
joint performance of pairs of classifiers, and (ii) combined
aggregation, testing the performance of combined paired
aggregations.
In the first setting (paired aggregation), as expected, the

top performances have been achieved by pairs that con-
tained the YamCha classifier. The aggregation of the top
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two individual classifiers led to the best performance in
this group, i.e., 96.85% (with domain dictionaries) and
96.70% (without) for YamCha1vs1 ∪ YamCha1vAll . The
effect of the union operation can be clearly seen in the
results, since the combined precision is lower than the
individual precision of the two classifiers, while the recall
has improved. This was particularly the case for theMAL-
LET ∪ YamCha1vsAll pair when using domain dictio-
naries and the CRF++ ∪ YamCha1vsAll when omitting
domain dictionaries.
The second setting shows once more the superiority

of the YamCha classifiers. While in the previous setting
the paired aggregation of each YamCha classifier with a
different one did not lead to the top performance, here
this pairing has a positive effect. In practice, the union in
each bracket gathers the best results of the two classifiers
(YamCha complementing in principle the gaps left by its
pair), with the final intersection pruning some of the false
positives. The top result (96.91%) is almost identical to the
top performance achieved by an individual classifier, the
main difference being in the increased recall and lowered
precision (as explained, due to the union operation).

Voting-based results
The final experiment in this phase used the voting mecha-
nism to aggregate the results. As presented in the previous
section, we opted for a simple majority with veto, i.e., the
final result is the one voted by at least to classifiers with
the remark that the other two need to disagree. The veto
option is used in two cases: (i) when there is absolutely no
consensus among classifiers, i.e., each classifier votes for
a different label, and (ii) in the case of a tie between pairs
of classifiers.
The results of the voting mechanism are presented in

Tables S5 and S6 in the Additional file 1. The first remark
that needs to be made is that, in both categories – with
and without domain dictionaries – this mechanism con-
stantly outperforms all the other strategies. Voting with
YamCha1vsAll as veto owner in the dictionary-based cat-
egory and YamCha1vs1 or YamCha1vsAll in the other
category obtain the best performances, i.e., 97.05% and
96.90%, respectively. This result is, to some extent,
expected since YamCha1vsAll was the best individual
performer.

Phase II
The specific classifiers trained for phase II did not use the
domain dictionaries (i.e., Anatomy and Quality) nor the
combined features that required them. In addition, for the
quality classifiers we have also left out the Coordinates and
Ordinals dictionaries. The experiments have followed the
same structure used within phase I, i.e., we’ve tested the
individual performance for each specific class, then the set
operations and finally the voting mechanism.

Table 4 Comparative segmentation results for phase I,
with domain dictionaries

Method P (%) R (%) F-1 (%)

Individual (YamCha1vsAll) 96.98 96.98 96.98

Set operations 96.64 97.17 96.91

Voting (veto: YamCha1vsAll) 97.05 97.05 97.05

Tables S7 and S8 in the Additional file 1 list the per-
formances achieved by the individual classifiers. In the
Anatomy category, CRF++ has outperformed the other
classifiers with 97.11% F-score, followed by YamCha1vsAll
(96.94%), which on the other hand, has achieved the best
score in the Quality category (i.e., 94.50%). While here we
can see a series of differences when compared to phase I
(e.g., CRF++ achieves the best score, or the gap in perfor-
mance in the Quality category is bigger than in any other
case), the results of the set operations (see Tables S9 and
S10 in the Additional file 1) are fairly close to the ones in
phase I. It can be observed that all aggregations involv-
ing the YamCha classifier achieve the best results in both
categories, the slight distinction being the best performer
in the Anatomy category, i.e., CRF++ ∪ YamCha1vs1 –
this is explained by the high individual results obtained by
CRF++. A similar tendency can also be observed in the
voting mechanism (Tables S11 and S12 in the Additional
file 1), which again is the best of the three strategies and
where the best results (97.16% and 94.50%, respectively)
are achieved with CFR++ and MALLET owning the veto
vote in the Anatomy category and YamCha1vsAll in the
Quality category, respectively.

Discussion
The experiments described in the previous section lead to
four major conclusions. Firstly, as expected, hybrid meth-
ods are influenced by the individual performance of the
classifiers chosen for aggregation. Secondly, on the posi-
tive side of things, such methods can, in practice, exploit
the diversity and consistency among different classifiers
to make final decision as opposed to single classifiers. In
our case, for all types of segmentation in phase I and II
(see Tables 4, 5, 6 and 7), the voting method has worked
best due to its simple counting approach, while the set
operations were penalised because of the ordering of the
classifiers and of the operations used. However, this is not

Table 5 Comparative segmentation results for phase I,
without domain dictionaries

Method P (%) R (%) F-1 (%)

Individual (YamCha1vsAll) 96.80 96.80 96.80

Set operations 96.31 97.11 96.70

Voting (veto: YamCha1vs1) 96.90 96.90 96.90
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Table 6 Comparative segmentation results for phase II on
the Anatomy category

Method P (%) R (%) F-1 (%)

Individual (CRF++) 97.11 97.11 97.11

Set operations 96.71 97.38 97.04

Voting (veto: CRF++ / MALLET) 97.16 97.16 97.16

always the case. For example, in the gene mention tag-
ging approach described in [24], all hybrid methods have
outperformed the single classifiers. Hence, the efficiency
and applicability of such hybrid approaches needs to be
considered on a per use-case basis.
Thirdly, while the results presented throughout the

entire set of experiments are not directly comparable,
due to the difference in task and data characteristics,
they do reveal that within the context provided by our
segmentation goals YamCha is the most consistent clas-
sifier, and it should be always considered as foundation
for any ensemble. Fourthly, for the initial segmentation
of anatomical entities and qualities, domain dictionaries,
and hence external resources, are not required. As shown
in the experimental results, the difference in performance
between the best approaches with and without domain
dictionaries is minimal (around 0.15%), while from a pos-
itive perspective their absence reduces by half the feature
set.
In order to get a deeper insight into the behaviour of the

classifiers we have looked at their individual errors and at
the label-based segmentation efficiency. When analysing
the individual errors made by the classifiers, it was inter-
esting to observe that each package had the tendency to
make a certain type of error, usually different than that of
the others. MALLET, for example, in phase I had a higher
rate of error (76%) in choosing the generic class (i.e., Q
was labeled as A and vice-versa), while CRF++ had issues
mostly within the context of a generic class, in distinguish-
ing the BIO labels, i.e., Q-I was labeled as Q-B, or A-B
was labeled as A-I (in 81% of the cases). Finally, YamCha’s
errors seemed to be uniformly distributed between the
two previously mentioned types.
Tables 8, 9 and 10 list the label-based segmentation

results and coverage for both phases. Overall, it can be
observed that the classification results are not homo-
geneous, yet the F-1 scores meet our expectations. In

Table 7 Comparative segmentation results for phase II on
the Quality category

Method P (%) R (%) F-1 (%)

Individual (YamCha1vsAll) 94.50 94.50 94.50

Set operations 93.84 94.64 94.24

Voting (YamCha1vsAll) 94.50 94.50 94.50

Table 8 Label-based segmentation results for phase I,
including the coverage of the label

Label Coverage (%) Average F-1 (%)

Q-B 20.83 96.40

Q-I 8.62 88.93

A-B 15.17 94.91

A-I 54.91 98.79

C-B 0.22 47.73

C-I 0.01 10.00

O 0.24 12.50

the phase I corpus, in addition to having fairly distinct
characteristics, the coverage of Q-B, A-B and A-I sums
up to more than 90% of the labels, which leads to very
good segmentation results. Subsequently, it is not surpris-
ing to observe that labels with a coverage of less than
1% of the annotated corpus have very low F-1 scores.
The tokens labeled with O may also induce ambiguity
in respect to both A-B/A-I, as well as C-B/C-I. They
usually represent additional (temporal) information about
the on-set of the phenotype (e.g., in first year) and con-
tain elements ambiguous elements, such as, in – which
is usually a connective token or first – which is usu-
ally found in anatomical concepts (e.g., first metatarsal).
Similar results on this label can also be observed in the
Anatomy and Quality corpora in phase II (Tables 9 and
10), achieving a lowest F-1 score of 0% (i.e., 0% precision,
0% recall) in the Anatomy corpus – here this label denotes
extremely rarely found descriptive tokens, such as esp. or
region. On the positive side, we can observe a consistent
behaviour of the rest of the labels in the Anatomy cor-
pus. This is because skeletal anatomical concepts have a
fairly well-established part – subpart intrinsic structure
that can only be exploited once they are delimited from
the quality aspects of the phenotype descriptions. Finally,
there are two remarks that are worth noting w.r.t. the
Quality corpus: (i) the QF-I label has achieved a good

Table 9 Label-based segmentation results for phase II, the
Anatomy category, including the coverage of the label

Label Coverage (%) Average F-1 (%)

A-B 24.90 96.17

A-I 16.11 95.19

AP-B 15.67 96.10

AP-I 0.94 84.36

P-B 9.60 97.06

C-B 18.04 98.48

C-I 14.31 100.00

O 0.43 0.00
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Table 10 Label-based segmentation results for phase II,
the Quality category, including the coverage of the label

Label Coverage (%) Average F-1 (%)

Q-B 68.48 96.51

Q-I 7.83 79.06

QF-B 20.31 91.36

QF-I 0.72 55.62

C-B 1.70 95.65

C-I 0.14 28.00

O 0.82 17.99

score considering its coverage; the main issue here is
ambiguity, as QF-I tokens are usually part of an enumer-
ation of qualifiers, which can also act as QF-B tokens
in most of the other cases; (ii) the Q-I label has also
achieved a very good score considering its coverage, how-
ever, in this case, the score may be heavily supported by
atomic phenotypes; in the vast majority of cases qualities
are denoted by single tokens, and the presence of mul-
tiple quality tokens is usually associated with an atomic
phenotype.

Conclusions
In this paper we have presented a two-phase hybrid
approach to the segmentation of phenotype descriptions
for the human skeletal phenome. The first phase performs
a coarse-grained segmentation by splitting the descrip-
tion into its main anatomical and qualities entities, while
the second phase focuses on a fine-grained segmentation
within each category of entities. Experimental results have
showed that, for phase I, without using domain dictionar-
ies the best hybrid method can achieve the best F-Score of
96.90%, score that can be improved to 97.05% by adding
the support of such dictionaries. Similar results have also
been achieved in the second phase, i.e., 97.16% F-Score
for the Anatomy category and 94.50% for the Quality cat-
egory. Overall, our experiments lead to the conclusion
that using an ensemble of classifiers for segmentation
tasks may not necessarily improve the overall accuracy
because of its dependency on the goal and underlying data
characteristics.
While the research presented in this paper has been

motivated by the SKELETOME project, the resulting clas-
sifiers can be used in any application scenario that requires
as input decomposed skeletal phenotypes. Twomain areas
that can take immediate advantage of our results are
ontology alignment and population – focused on aligning
phenotype ontologies and populating phenotype ontolo-
gies with instances mined from the literature –, and build-
ing exploratory and educational tools in the context of
skeletal diseases, using gamuts as input data.

Endnote
aBone dysplasias are a group of heterogeneous genetic dis-
orders that affect predominantly the skeletal development.
Patients diagnosed with such disorders suffer from com-
plex medical issues that can be described via clinical
findings, e.g., pains in limbs, radiographic findings, e.g.,
bilateral arachnodactyly and genetic findings, e.g., dele-
tion mutation in FGFR3.
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