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1 Introduction
Let M be the space of all locally integrable functions f on � ⊂ Rn with the Lebesgue
measure, finite almost everywhere, and let M+ be the space of all non-negative locally
integrable functions on (,∞) with respect to the Lebesgue measure, finite almost every-
where. We shall also need the following two subclasses of M+. The subclass M consists
of those elements g of M+ for which there exists an m >  such that tmg(t) is increasing.
The subclassM consists of those elements g ofM+ which are decreasing.
The Riesz potential operator Rs

�,  < s < n, n≥  is defined formally by

Rs
�f (x) =

∫
�

f (y)|x – y|s–n dy, f ∈M+; |�| = . (.)

We shall consider rearrangement invariant quasi-Banach spaces E, continuously embed-
ded in L(Rn) + L∞(Rn), such that the quasi-norm ‖f ‖E in E is generated by a quasi-norm
ρE , defined onM+ with values in [,∞], in the sense that ‖f ‖E = ρE(f ∗). In this way equiv-
alent quasi-norms ρE give the same space E. We suppose that E is nontrivial. Here f ∗ is
the decreasing rearrangement of f , given by

f ∗(t) = inf
{
λ >  : μf (λ)≤ t

}
, t > ,

where μf is the distribution function of f , defined by

μf (λ) =
∣∣{x ∈ Rn :

∣∣f (x)∣∣ > λ
}∣∣

n,

| · |n denoting the Lebesgue n-measure.
Note that f ∗(t) = , if t > .
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There is an equivalent quasi-norm ρp that satisfies the triangle inequality ρ
p
p (g + g) ≤

ρ
p
p (g) + ρ

p
p (g) for some p ∈ (, ) that depends only on the space E (see []).

We say that the norm ρE is K-monotone (cf. [], p., and also [], p.) if

∫ t


g∗
 (s)ds≤

∫ t


g∗
 (s)ds implies ρE

(
g∗

) ≤ ρE

(
g∗

)
, g, g ∈M+. (.)

Then ρE is monotone, i.e., g ≤ g implies ρE(g) ≤ ρE(g).
We use the notations a � a or a � a for non-negative functions or functionals to

mean that the quotient a/a is bounded; also, a ≈ a means that a � a and a � a.
We say that a is equivalent to a if a ≈ a.
We say that the norm ρE satisfies the Minkovski inequality if for the equivalent quasi-

norm ρp,

ρp
p

(∑
gj
)
�

∑
ρp
p (gj), gj ∈M+. (.)

For example, if E is a rearrangement invariant Banach function space as in [], then by
the Luxemburg representation theorem ‖f ‖E = ρE(f ∗) for some norm ρE satisfying (.)
and (.). More general example is given by the Riesz-Fischer monotone spaces as in [],
p..
Recall the definition of the lower and upper Boyd indices αE and βE . Let

hE(u) = sup

{
ρE(g∗

u)
ρE(g∗)

: g ∈M+
}
, gu(t) := g(t/u)

be the dilation function generated by ρE . Then

αE := sup
<t<

loghE(t)
log t

and βE := inf
<t<∞

loghE(t)
log t

.

If ρE is monotone, then the function hE is submultiplicative, increasing, hE() = ,
hE(u)hE(/u) ≥ , hence  ≤ αE ≤ βE . If ρE is K-monotone, then by interpolation (anal-
ogously to [], p.), we see that hE(s)≤max(, s). Hence in this case we have also βE ≤ .
Using the Minkovski inequality for the equivalent quasi-norm ρp and monotonicity of

f ∗, we see that

ρE
(
f ∗) ≈ ρE

(
f ∗∗) if βE < , (.)

where f ∗∗(t) = 
t
∫ t
 f

∗(s)ds. The main goal of this paper is to prove continuity of the
Riesz potential operator Rs

� : E 
→ G in optimal couples of rearrangement invariant func-
tion spaces E and G, where ‖f ‖G := ρG(f ∗). It is convenient to introduce the following
classes of quasi-norms, where the optimality of Rs

� : E 
→ G is investigated. Let Nd stand
for all domain quasi-norms ρE , which are monotone, rearrangement invariant, satisfying
Minkowski’s inequality, ρE(χ(,)) < ∞ and

E ↪→ L(�). (.)

http://www.journalofinequalitiesandapplications.com/content/2014/1/60
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Let Nt consist of all target quasi-norms ρG that are monotone, satisfy Minkowski’s in-
equality, ρG(χ(,)) <∞, ρG(χ(,∞)ts/n–) < ∞ and

G ↪→ 	∞(
t–s/n

)(
Rn), (.)

where χ(a,b) is the characteristic function of the interval (a,b),  < a < b ≤ ∞. Note that
technically it is more convenient not to require that the target quasi-norm ρG is re-
arrangement invariant. Of course, the target space G is rearrangement invariant, since
‖f ‖G = ρG(f ∗). Finally, letN :=Nd ×Nt .

Definition . (Admissible couple) We say that the couple (ρE ,ρG) ∈ N is admissible for
the Riesz potential if the following estimate is valid:

ρG
((
Rs

�f
)∗∗) � ρE

(
f ∗). (.)

Moreover, ρE(E) is called domain quasi-norm (domain space), and ρG (G) is called a target
quasi-norm (target space).

For example, by Theorem . below (the sufficient part), the couple E = 	q(ts/nw)(�),
G = 	q(v),  ≤ q ≤ ∞, is admissible if βE <  and v is related to w by the Muckenhoupt
condition []:

(∫ t



[
v(s)

]q ds/s
)/q(∫ ∞

t

[
w(s)

]–r ds/s
)/r

� , /q + /r = . (.)

Definition . (Optimal target quasi-norm) Given the domain quasi-norm ρE ∈ Nd , the
optimal target quasi-norm, denoted by ρG(E), is the strongest target quasi-norm, i.e.,

ρG
(
g∗) � ρG(E)

(
g∗), g ∈M+, (.)

for any target quasi-norm ρG ∈Nt such that the couple ρE , ρG is admissible.

Definition . (Optimal domain quasi-norm) Given the target quasi-norm ρG ∈ Nt , the
optimal domain quasi-norm, denoted by ρE(G), is the weakest domain quasi-norm, i.e.,

ρE(G)
(
g∗) � ρE

(
g∗), g ∈M+, (.)

for any domain quasi-norm ρE ∈Nd such that the couple ρE , ρG is admissible.

Definition . (Optimal couple) The admissible couple ρE , ρG is said to be optimal if
ρE = ρE(G) and ρG = ρG(E).

The optimal quasi-norms are uniquely determined up to equivalence, while the corre-
sponding optimal quasi-Banach spaces are unique.

2 Admissible couples
Here we give a characterization of all admissible couples (ρE,ρG) ∈ N . It is convenient to
define the case βE =  as limiting and the case βE <  as sublimiting.

http://www.journalofinequalitiesandapplications.com/content/2014/1/60
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Theorem . (General case βE ≤ ) The couple (ρE,ρG) ∈N is admissible if and only if

ρG(χ(,)Sg)� ρE(g), g ∈M+ or g ∈ M, (.)

where

Sg(t) :=

⎧⎨
⎩
ts/n–

∫ t
 g(u)du +

∫ 
t u

s/ng(u)du/u,  < t < ,  < s < n,n≥ ,

ts/n–
∫ 
 g(u)du, t > ,  < s < n,n ≥ .

(.)

Proof First we prove

(
Rs

�f
)∗∗ � Sf ∗. (.)

We are going to use real interpolation for quasi-Banach spaces. First we recall some basic
definitions. Let (A,A) be a couple of two quasi-Banach spaces (see [, ]) and let

K (t, f ) = K(t, f ;A,A) = inf
f =f+f

{‖f‖A + t‖f‖A

}
, f ∈ A +A

be the K-functional of Peetre (see []). By definition, the K-interpolation space A
 =
(A,A)
 has a quasi-norm

‖f ‖A

=

∥∥K (t, f )
∥∥



,

where 
 is a quasi-normed function space with a monotone quasi-norm on (,∞) with
the Lebesgue measure and such that min{, t} ∈ 
. Then (see [])

A ∩A ↪→ A
 ↪→ A +A,

where by X ↪→ Y we mean that X is continuously embedded in Y . If ‖g‖
 = (
∫ ∞
 t–θq ×

gq(t)dt/t)/q,  < θ < ,  < q ≤ ∞, we write (A,A)θ ,q instead of (A,A)
 (see []).
Using the Hardy-Littlewood inequality

∫
Rn |f (x)g(x)|dx ≤ ∫ ∞

 f ∗(t)g∗(t)dt, we get the
well-known mapping property

Rs
� :	(ts/n)(�) 
→ L∞(

Rn)

and by the Minkovski inequality for the norm f ∗∗ we get

Rs
� : L(�) 
→ 	∞(

t–s/n
)(
Rn).

Hence

t–s/n
(
Rs

�f
)∗∗(t)� K

(
t–s/n, f ;L(�),	(ts/n)(�)

)
,

therefore (see [], Section .)

t–s/n
(
Rs

�f
)∗∗(t)�

⎧⎨
⎩

∫ t
 f

∗(u)du + t–s/n
∫ 
t u

s/nf ∗(u)du/u,  < t < ,∫ 
 f

∗(u)du, t > ,

http://www.journalofinequalitiesandapplications.com/content/2014/1/60
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implies

(
Rs

�f
)∗∗(t)� Sf ∗(t).

It is clear that (.) follows from (.) and (.).
Nowwe prove that (.) implies (.). To this end we choose the test function in the form

f (x) = g(c|x|n), g ∈M+, so that f ∗(t) = g∗(t) for some positive constant c (cf. []). Then

Rs
�f (x) =

∫
|y|<|x|

g
(
c|y|n)|x – y|s–n dy +

∫
|y|>|x|

g
(
c|y|n)|x – y|s–n dy,

whence

∣∣Rs
�f (x)

∣∣� |x|s–n
∫ c|x|n


g(u)du +

∫ |�|=

c|x|n
us/n–g(u)du� χ(,)(Sg)

(
c|x|n).

Note that χ(,)Sg ≈ χ(,)QT ′
g + χ(,)

∫ 
 g(u)du, where

Qg :=
∫ 

t
g(u)du/u, t < ,

and

T ′
g(t) :=

⎧⎨
⎩
ts/n–

∫ t
 g(u)du,  < t < ,  < s < n,n≥ ,

ts/n–
∫ 
 g(u)du, t > ,  < s < n,n ≥ ,

hence χ(,)Sg is decreasing, therefore

∣∣Rs
�f

∣∣∗(t)� χ(,)Sg(t). (.)

Thus, if (.) is given, then (.) implies (.). �

In the sublimiting case βE <  we can simplify the condition (.), replacing S by T.
Here

Tg(t) :=

⎧⎨
⎩
ts/n–

∫ 
t u

s/ng(u)du/u,  < t < ,  < s < n,n≥ ,

, t > .
(.)

Theorem . (Sublimiting case βE < ) The couple (ρE ,ρG) ∈ N is admissible if and only
if

ρG(χ(,)Tg)� ρE(g), g ∈M, (.)

where we recall that

M :=
{
g ∈M+ and tmg(t) is increasing for some m > 

}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/60
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Proof Let ρE , ρG be an admissible couple, then

ρG(χ(,)Sg)� ρE(g).

Since ρG(χ(,)Tg) � ρG(χ(,)Sg), it follows that ρG(χ(,)Tg) � ρE(g), g ∈ M. Now we
need to prove sufficiency of (.). We have

χ(,)Sg∗ ≈ χ(,)Tg∗∗ + χ(,)g∗∗(),

so

ρG
(
χ(,)Sg∗)� ρG

(
χ(,)Tg∗∗) + ρG(χ(,))g∗∗()

implies

ρG
(
χ(,)Sg∗)� ρE

(
g∗). �

In the subcritical case αE > s/n we have another simplification of (.).

Theorem . (Case αE > s/n) The couple (ρE ,ρG) ∈N is admissible if and only if

ρG
(
χ(,)T ′

g
)
� ρE(g), g ∈M :=

{
g ∈M+, g is decreasing

}
, (.)

where

T ′
g(t) :=

⎧⎨
⎩
ts/n–

∫ t
 g(u)du,  < t < ,  < s < n,n≥ ,

ts/n–
∫ 
 g(u)du, t > ,  < s < n,n ≥ .

Proof Let (ρE,ρG) ∈N be admissible, then

ρG(χ(,)Sg)� ρE(g), g ∈M.

As

ρG
(
χ(,)T ′

g
)
� ρG(χ(,)Sg),

we have

ρG
(
χ(,)T ′

g
)
� ρE(g).

For the reverse, it is enough to check that (.) implies (.) for g ∈ M, or

ρG(χ(,)Tg)� ρE(g), g ∈M.

As

χ(,)Tg � χ(,)T ′

(
t–s/nχ(,)Tg

)
,

http://www.journalofinequalitiesandapplications.com/content/2014/1/60
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so

ρG(χ(,)Tg)� ρE
(
t–s/nχ(,)Tg

) ≈ ρE
(
t–s/nQ

(
ts/ng

))
� ρE(g).

Here we use

ρE
(
Q

(
t–s/ng

))
� ρE

(
t–s/ng

)
, g ∈M,αE > s/n, t < . �

2.1 Optimal quasi-norms
Here we give a characterization of the optimal domain and optimal target quasi-norms.
We can define an optimal target quasi-norm by using Theorem ..

Definition . (Construction of the optimal target quasi-norm) For a given domain
quasi-norm ρE ∈Nd we set

ρGE (χ(,)g) := inf
{
ρE(h) : χ(,)g ≤ χ(,)Sh,h ∈M+}, g ∈M+. (.)

Then

ρG(E)(g) := ρGE (χ(,)g) + sup
t>

t–s/ng.

Theorem . Let ρE ∈Nd be a given domain quasi-norm. Then ρG(E) ∈Nt , the couple ρE ,
ρG(E) is admissible and the target quasi-norm is optimal. By definition,

G(E) :=
{
f ∈M : lim

t→∞ f ∗(t) = ,ρG(E)
(
f ∗) < ∞

}
. (.)

Proof To see that ρG(E) is a quasi-norm, we first prove (.), for that we first prove

sup
<t<

t–s/ng∗ � ρGE

(
g∗), g ∈M+. (.)

Take g ∈M+ and consider an arbitrary h ∈M+ such that, for t < , g∗ ≤ Sh. By the Hardy
inequality g∗ � S(h∗). Then,

t–s/ng∗ ≤ K
(
t–s/n,h;L(�),	(ts/n)(�)

)
.

Hence

sup
<t<

t–s/ng∗ ≤ K
(
,h;L(�),	(ts/n)(�)

)
� ρE(h).

Taking the infimum over all h such that g∗ ≤ Sh, we get (.). HenceGE ↪→ 	∞(t–s/n)(,
), also ρG(χ (,∞)g) = supt> t–s/ng . And these two together give (.). ρG(E) is indeed a
quasi-norm onM+. Since χ(,)(Rs

�f )∗ � χ(,)Sf ∗, which gives ρGE (χ(,)(Rs
�f )∗)� ρE(f ∗).

Also

sup
t>

t–s/n
(
Rs

�f
)∗ � sup

t>
t–s/nSf ∗ =

∫ 


f ∗(u)du� ρE

(
f ∗).

http://www.journalofinequalitiesandapplications.com/content/2014/1/60
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Hence ρE , ρG(E) is admissible couple. Now we are going to prove that ρG(E) is optimal. For
this purpose, suppose that the couple (ρE ,ρG ) ∈N is admissible. Then by Theorem .,

ρG (χ(,)Sg)� ρE(g), g ∈M+.

Therefore if χ(,)g∗ ≤ χ(,)Sh, h ∈M+, then

ρG

(
χ(,)g∗) ≤ ρG (χ(,)Sh)� ρE(h),

so taking the infimum on the right-hand side, we get

ρG

(
χ(,)g∗) � ρGE

(
χ(,)g∗),

hence ρG (g∗)� ρG(E)(g∗). �

In the sublimiting case βE <  we can simplify the optimal target quasi-norm.

Theorem . If ρE ∈Nd be a given domain quasi-norm. Then for g ∈M+,

ρGE

(
χ(,)g∗) ≈ ρ

(
χ(,)g∗),

ρ(χ(,)g) := inf
{
ρE(h) : χ(,)g ≤ χ(,)Th,h ∈M

}
,

(.)

i.e.,

ρG(E)(g) ≈ ρ(χ(,)g) + sup
t>

t–s/ng.

Proof If χ(,)g∗ ≤ χ(,)Th, h ∈M, then χ(,)g∗ ≤ χ(,)Sh, therefore

ρGE

(
χ(,)g∗) ≤ ρE(h)

and taking the infimum, we get

ρGE

(
χ(,)g∗) ≤ ρ

(
χ(,)g∗).

Now for the reverse, let χ(,)g∗ ≤ χ(,)Sh, h ∈M+.
Then

χ(,)g∗ � χ(,)S
(
h∗) ≈ χ(,)T

(
h∗∗) + χ(,)f ∗∗(),

so

χ(,)g∗ – χ(,)f ∗∗()� χ(,)T
(
h∗∗),

which gives, since h∗∗ ∈M,

ρ
(
χ(,)g∗ – χ(,)f ∗∗()

)
� ρE

(
h∗∗) ≈ ρE

(
h∗) ≈ ρE(h),

http://www.journalofinequalitiesandapplications.com/content/2014/1/60
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and this implies

ρ
(
χ(,)g∗) � ρE(h) + f ∗∗(),

which gives

ρ
(
χ(,)g∗) � ρE(h).

Taking the infimum, we get ρ(χ(,)g∗) � ρGE (χ(,)g∗), hence ρ(χ(,)g∗) ≈ ρGE (χ(,)g∗).
�

A simplification of the optimal target quasi-norm is possible also in the subcritical case
αE > s/n.

Theorem . Let ρE ∈Nd be a given domain quasi-norm. Then for g ∈M+,

ρGE

(
χ(,)g∗) ≈ ρ

(
χ(,)g∗),

ρ(χ(,)g) := inf
{
ρE(h) : χ(,)g ≤ T ′

h,h ∈M
}
,

(.)

i.e.,

ρG(E)(g) ≈ ρ(χ(,)g) + sup
t>

t–s/ng.

Proof If χ(,)g∗ ≤ χ(,)T ′
h, h ∈M, then

χ(,)g∗ ≤ χ(,)Sh.

Therefore

ρGE

(
χ(,)g∗) ≤ ρE(h),

and taking the infimum, we get

ρGE

(
χ(,)g∗) ≤ ρ

(
χ(,)g∗).

For the reverse, let χ(,)g∗ ≤ χ(,)Sh. Then χ(,)g∗ � χ(,)T(h∗) + χ(,)T ′
(h∗). As

χ(,)Tg � χ(,)T ′

(
t–s/nχ(,)Tg

)
,

we get

χ(,)g∗ � χ(,)T ′

(
h∗ + t–s/nχ(,)T

(
h∗)),

whence

ρ
(
χ(,)g∗)� ρE

(
t–s/nχ(,)T

(
h∗)) + ρE(h)

≈ ρE
(
t–s/nQ

(
ts/nh∗)) + ρE(h)

� ρE(h),

http://www.journalofinequalitiesandapplications.com/content/2014/1/60
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where we use

ρE
(
Q

(
t–s/ng

))
� ρE

(
t–s/ng

)
, g ∈M,αE > s/n, t < .

Therefore, taking the infimum we arrive at

ρ
(
g∗)� ρGE

(
g∗). �

We can construct an optimal domain quasi-norm ρE(G) by Theorem . as follows.

Definition . (Construction of an optimal domain quasi-norm) For a given target quasi-
norm ρG ∈Nt , we construct an optimal domain quasi-norm ρE(G) by

ρE(G)(g) := ρG
(
χ(,)Sg∗), g ∈M+. (.)

Theorem . If ρG ∈ Nt is a given target quasi-norm, then the domain quasi-norm ρE(G)

is optimal.Moreover, if βG <  – s/n, then the couple ρE(G), ρG is optimal.

Proof Since χ(,)Sg∗ ≈ χ(,)Tg∗∗ + χ(,)g∗∗(), so

ρE(G)(g) ≈ ρG
(
χ(,)Tg∗∗ + χ(,)g∗∗()

)
,

it follows that ρE(G) is a quasi-norm. To prove the property (.), we notice that

ρE(G)
(
f ∗) = ρG

(
χ(,)Sf ∗) ≥ ρG(χ(,))

(
Sf ∗)()

�
∫ 


f ∗(t)dt ≈ ‖f ‖L(�).

The couple ρE(G), ρG is admissible since ρE(G)(g) = ρG(χ(,)Sg∗) ≥ ρG(χ(,)Sg). More-
over, ρE(G) is optimal, since for any admissible couple (ρE ,ρG) ∈N we have ρG(χ(,)Sh)�
ρE (h), h ∈M+. Therefore,

ρE(G)
(
g∗) ≤ ρE

(
g∗).

To check that if βG <  – s/n, the couple ρE(G), ρG is optimal, we need only to prove that
ρG is an optimal target quasi-norm, i.e., ρ(g∗) � ρG(g∗), where ρ = ρG(E(G)) is defined by
(.), since βE(G) < .We have χ(,)g∗∗(t)–χ(,)g∗∗() = χ(,)Th, where h(t) = t–s/n[g∗∗(t)–
g∗(t)] ∈M, t < , therefore,

ρGE(G)

(
χ(,)g∗∗(t) – χ(,)g∗∗()

) ≤ ρE(G)(h) = ρG
(
χ(,)Sh∗)

implies

ρGE(G)

(
χ(,)g∗∗(t)

)
� ρG

(
χ(,)Sh∗) + g∗∗(),

since

χ(,)Sh∗ = χ(,)ts/nh∗∗ + χ(,)Th∗ � χ(,)ts/nh∗∗ + χ(,)Th∗∗,

http://www.journalofinequalitiesandapplications.com/content/2014/1/60
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so

ρGE(G)

(
χ(,)g∗∗(t)

)
� ρG

(
χ(,)ts/nh∗∗) + ρG

(
χ(,)Th∗∗) + g∗∗().

Now we define

Pg(t) :=

t

∫ t


g(u)du, t < .

For t < , since h∗ � Qh, we have h∗∗ = Ph∗ � QPh, therefore Th∗∗ � TQ(Ph) �
T(Ph). Also T(Ph)≈ Th + ts/nPh and Ph≤ h∗∗. Therefore,

ρGE(G)

(
χ(,)g∗) � ρG(χ(,)Th) + ρG

(
χ(,)ts/nh∗∗) + g∗∗()

� ρG
(
χ(,)g∗∗) + ρG

(
χ(,)ts/nh∗∗) + g∗∗().

For t < , since h(t) ≤ t–s/ng∗∗(t) we have h∗(t) ≤ t–s/ng∗∗, therefore using βG <  – s/n,
Minkowski’s inequality, and monotonicity of ρG, we have

ρG
(
χ(,)ts/nh∗∗) � ρG

(
χ(,)g∗∗).

Thus

ρGE(G)

(
χ(,)g∗) � ρG

(
χ(,)g∗∗) ≈ ρG

(
χ(,)g∗),

hence ρ(g∗)� ρG(g∗). �

Example . If G = C consists of all bounded continuous functions such that f ∗(∞) =
 and ρG(g) = g∗() = g∗∗(), then αG = βG =  and ρE(G)(g) ≈ ∫ 

 t
s/ng∗∗ dt/t, i.e., E =

�(ts/n)(�) and the couple E, G is optimal.

Example . Let G =	∞(v) with βG <  – s/n and let

ρE(g) = sup v(t)
∫ 

t
us/ng∗∗(u)du/u.

Then, the couple E, G is optimal and βE < . In particular, this is true if v is slowly varying
since then αG = βG =  and αE = βE = s/n < .

2.2 Subcritical case
Here we suppose that s/n < αE .

Theorem . (Sublimiting case βE < ) For a given domain quasi-norm ρE ∈ Nd with
ρE(χ(,)(t)t–s/n) < ∞, we have

ρGE

(
χ(,)g∗) ≈ ρE

(
t–s/ng∗) ≈ ρE

(
t–s/ng∗∗), (.)

i.e.,

ρG(E)
(
g∗) ≈ ρGE

(
χ(,)g∗) + sup

t>
t–s/ng.

Moreover, the couple ρE , ρG(E) is optimal.
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Proof If χ(,)g∗ ≤ χ(,)T ′
h, h ∈M, then for t < , t–s/ng∗ ≤ h∗∗, whence

ρE
(
t–s/ng∗)� ρE

(
h∗∗) ≈ ρE

(
h∗) ≈ ρE(h).

Taking the infimum, we get

ρE
(
t–s/ng∗)� ρGE

(
χ(,)g∗).

For the reverse, we notice that χ(,)T ′
(t–s/ng∗) � χ(,)g∗ = g∗, hence ρGE (χ(,)g∗) �

ρE(t–s/ng∗).
It remains to prove that the domain quasi-norm ρE is also optimal. Let ρE , ρG(E) be an

admissible couple inN . Then

ρE
(
g∗) � ρG(E)

(
χ(,)Sg∗)

= ρGE

(
χ(,)Sg∗) + sup

t>
t–s/nχ(,)Sg∗

≈ ρE
(
t–s/nχ(,)Sg∗) + 

� ρE
(
t–s/nχ(,)T ′

g
∗)

� ρE
(
χ(,)g∗∗)

≈ ρE
(
χ(,)g∗)

≈ ρE
(
g∗). �

Now we give an example.

Example . Let

E =	q(tαw
)
(�)∩ 	r(tβw

)
(�), s/n < α < β < ,  < q, r ≤ ∞,

where w and w are slowly varying. Then we have αE = α, βE = β . Now by applying the
previous theorem, we get

G(E) =	
q

(
tα–s/nw

) ∩ 	r

(
tβ–s/nw

)
,

and the couple (E,G(E)) is optimal.

In the limiting case βE = , the formula for the optimal target quasi-norm is more com-
plicated.

Theorem . (Limiting case) Let

ρE(g) := ρH
(
χ(,)g∗∗), ρG (g) := ρH

(
t– sup

<u<t
u–s/ng(u)

)
,

where ρH is a monotone quasi-norm with αH = βH = , ρH (χ(,)) < ∞, ρH (χ(,∞)t–) < ∞
and let

E :=
{
f ∈M : tf ∗∗(t)→  as t →  and ρE

(
f ∗) < ∞}

,

G :=
{
f ∈M : sup

<u<t
u–s/nf ∗∗(u) →  as t →  and ρG

(
f ∗) <∞

}
.
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Define

ρG(g) := ρG (χ(,)g) + sup
t>

t–s/ng.

Then the couple ρE , ρG is optimal.

Proof Note that

E ↪→ L(�).

Indeed, ρE(f ∗) = ρH(χ(,)g∗∗)� f ∗∗() =
∫ 
 f

∗(u)du. Hence the above embedding follows.
Consequently, ρE ∈Nd . On the other hand,

ρG
(
f ∗) ≥ ρH

(
χ(,∞)t– sup

<u<t
u–s/nf ∗(u)

)

≥ sup
<u<

u–s/nf ∗(u)ρH
(
χ(,∞)t–

)
.

Hence G ↪→ 	∞(t–s/n)(, ). This together with ρG(χ(,∞)) = supt> t–s/ng gives G ↪→
	∞(t–s/n). Then from the conditions on G it follows that ρG ∈ Nt . Also, αE = βE =  and
αG = βG =  – s/n. On the other hand, if  < u < , then

u–s/n
(
Rs

�f
)∗∗(u)�

∫ u


f ∗(v)dv + u–s/n

∫ 

u
vs/n–f ∗(v)dv.

For every ε > , we can find a δ > , such that vf ∗∗(v) < ε for all  < v < δ. Then for  < t < ,

sup
<u<t

u–s/n
(
Rs

�f
)∗∗(u)�

∫ t


f ∗(v)dv + ε + t–s/n

∫ 

δ

vs/n–f ∗(v)dv. (.)

Now it is easy to check that limt→ sup<u<t u–s/n(Rs
�f )∗∗ =  if f ∈ E.

To prove that Rs : E →Gwe need to check that the couple ρE , ρG is admissible.We write
for t < ,

T ′
g(t) = T ′

g
∗(t) = ts/ng∗∗(t), g ∈M.

Then

ρG
(
χ(,)T ′

g
)
= ρG

(
χ(,)T ′

g
)
+ sup

t>
t–s/nχ(,)T ′

g

= ρH

(
χ(,)t– sup

<u<t
u–s/nT ′

g(u)
)
+ sup

t>
t–s/nχ(,)T ′

g

= ρH
(
χ(,)g∗∗)

= ρE(g).

To prove that the target space is optimal, notice first that

sup
<u<t

u–s/nf ∗∗(u)≈ K
(
t–s/n, f ;	∞(

t–s/n
)
,L∞)

.
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If f ∈G, then by []

sup
<u<t

u–s/nf ∗∗(u)≈
∫ t–s/n


h(u)du (where h, is decreasing)

≈

∫ t


h

(
v–s/n

)
v–s/n dv (by a change of variables).

If h(v) = h(v–s/n)v–s/n then obviously h ∈M and

sup
<u<t

u–s/nf ∗∗(u)≈
∫ t


h(v)dv = th∗∗(t),

whence

ρE(h)≈ ρH
(
χ(,)h∗∗)

≈ ρH

(
χ(,)t– sup

<u<t
u–s/nf ∗∗(u)

)
≈ ρG

(
χ(,)f ∗).

On the other hand,

sup
<u<t

u–s/nf ∗∗(u)≈ th∗∗(t)

implies t–s/nf ∗(t)� th∗∗(t), which gives f ∗ � ts/nh∗∗, which implies χ(,)f ∗ � χ(,)T ′
h, and

therefore

ρGE

(
χ(,)f ∗)� ρE(h)� ρG

(
χ(,)f ∗),

proving optimality of G. To check optimality of E, we notice that

ρE(G)(h) = ρG
(
χ(,)Sh∗) � ρG

(
χ(,)Th∗∗)

≈ ρH

(
t– sup

<u<t
u–s/nχ(,)Th∗∗(u)

)

� ρH
(
χ(,)h∗∗).

Hence

ρE(G)(h)� ρE(h). �

Example . Let E = �∞
 (tw)(�), consisting of all f ∈ �∞(tw)(�) such that tf ∗∗(t) →

 as t → , w is slowly varying. Then βE = . If G = �∞
 (t–s/nv) ∩ �∞(tw), where v(t) =

supu>t w(u) and

�∞
 (v) :=

{
f ∈ �∞(v) : sup

<u<t
u–s/nf ∗(u) →  as t → 

}
,

then this couple is optimal. In particular, if w = , then E = L(�) and G = �∞
 (t–s/n).
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