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1 Introduction and discussion

The recent revival of interest in metastable supersymmetry breaking in quantum field

theory is largely due to the work of Intriligator, Seiberg and Shih [1] (ISS). This work

presents a mechanism to naturally circumvent some of the problems afflicting other models

for dynamic supersymmetry breaking (DSB) [2–5]. A natural question that was posed

immediately after [1] is whether metastable vacua also exist in string realizations of super-

symmetric field theories.
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For type IIA brane-engineering models of supersymmetric field theories, the answer to

this question is negative [6]. Indeed, these models are constructed using D4 branes ending

on codimension-two defects inside NS5 branes [6–8], which source NS5 worldvolume fields

that grow logarithmically at infinity. In supersymmetric vacua this logarithmic growth en-

codes the running of the gauge theory coupling constant with the energy [9–12], but these

logarithmic modes are different in the candidate metastable brane configuration and in the

supersymmetric one. This implies that the candidate metastable brane configuration and

the supersymmetric one differ by an infinite amount, and hence cannot decay into each

other. Hence, the type IIA brane construction does not describe a metastable vacuum of a

supersymmetric theory, but instead a nonsupersymmetric vacuum of a nonsupersymmet-

ric theory.

Another arena where one might try to find string theory realizations of metastable

vacua are IIB holographic duals of certain supersymmetric gauge theories. The best-known

example in this class was proposed by Kachru, Pearson and Verlinde [13, 14], who argued

that a background with anti-D3 branes at the bottom of the Klebanov-Strassler warped

deformed conifold [15] is dual to a metastable vacuum of the dual supersymmetric gauge

theory. Since the Klebanov-Strassler solution has positive D3 brane charge dissolved in

flux, the anti-D3 branes can annihilate against this charge (this annihilation happens via

the polarization of the anti-D3 branes into an NS5 brane [16, 17]), and this bulk process

is argued to correspond to the decay of the metastable vacuum to the supersymmetric one

in the dual field theory.

Another proposal for a metastable vacuum obtained by putting anti-branes at the

bottom of a smooth warped throat with positive brane charge dissolved in flux has recently

been made by Klebanov and Pufu [18], who argued that probe anti-M2 branes at the tip

of a supersymmetric warped M-theory background with transverse Stenzel space [19], give

rise to a long-lived metastable vacuum. The supersymmetric solution, first found by Cvetič,

Gibbons, Lü and Pope (CGLP) in [20] has M2 charge dissolved in fluxes and a large S4

in the infrared. The anti-branes can annihilate against the charge dissolved in fluxes by

polarizing into M5 branes [21] wrapping three-spheres inside the S4.

The probe brane analyses described above, while indicative that a metastable vacuum

might exist, are however not enough to establish this. One possible issue which can cause

the backreacted solution to differ significantly from the probe analysis is the presence of

non-normalizable modes. If the anti-branes indeed source such modes then the candidate

metastable configuration is not dual to a non-supersymmetric vacuum of a supersymmetric

theory, but to a non-supersymmetric vacuum of a non-supersymmetric theory, and the

supersymmetry breaking is not dynamical but explicit. The existence of non-normalizable

modes is not visible in the probe approximation (much like the existence of type IIA

log-growing modes was not visible in gs = 0 brane constructions [7, 8]), but only upon

calculating the backreaction of the probe branes — a not too easy task.

In [22] two of the authors and M. Graña found the possible first-order backreacted

solution sourced by a stack of anti-D3 branes smeared on the large S3 at the bottom of

the Klebanov-Strassler (KS) solution, and found two very interesting features: first, of the

14 physical modes describing SU(2) × SU(2) × Z2-invariant perturbations of the warped
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deformed conifold, only one mode enters in the expression of the force that a probe D3

brane feels in this background. Hence, since anti-D3 branes attract probe branes, if the

perturbed solution is to have any chance to describe backreacted anti-D3 branes, this mode

must be present.1 The second feature of this solution is that if the force mode is present,

the infrared2 must contain a certain singularity, which has finite action.3 Note that hav-

ing a finite action does not automatically make a singularity acceptable — negative-mass

Schwarzschild is an obvious counterexample [27]. As discussed in [22], if this singularity is

unphysical, then the solution sourced by the anti-D3 branes cannot be thought of as a small

perturbation of the KS solution, and therefore does not describe a metastable vacuum of

the dual theory. If this singularity is physical, the first-order solution does describe anti-D3

branes at the bottom of the KS solution, and work is in progress to determine what are the

features of this solution, and whether the perturbative anti-D3 brane solution describes or

not metastable vacua of the dual theory.

The purpose of this paper is to calculate the first-order backreaction of the other

proposed metastable configuration with anti-branes in a background with charge dissolved

in fluxes: the anti-M2 branes in the Stenzel-CGLP solution [20]. In order to do this we

smear the anti-M2 branes on the large S4 at the bottom of the Stenzel-CGLP solution, and

solve for all possible deformations of this background that preserve its SO(5) symmetry. We

consider an ansatz for these deformations; the space of deformations is parameterized by

6 functions of one variable satisfying second-order differential equations. However, when

perturbing around a supersymmetric solution, Borokhov and Gubser [28] have observed

that these second-order equations factorize into first-order ones, that are much easier to

solve. Nevertheless, in order to apply the Borokhov-Gubser method, one needs to find

the superpotential underlying the supersymmetric solution, which for the warped fluxed

Stenzel-CGLP solution was not known until now. The first result of this paper, presented

in section 2, is to find this superpotential,4 and derive two sets of first-order equations

governing the space of deformations.

We then show in section 3 that the force felt by a probe M2 brane in the most general

perturbed background depends on only one of the “conjugate-momentum” functions that

appear when solving the first-order system, and hence on only one of the 10 constants

parameterizing the deformations around the supersymmetric solution. We then solve in

section 4 the two sets of first-order differential equations. Amazingly enough, the solutions

for the first set of equations (for the conjugate-momentum functions) can be found explicitly

in terms of incomplete elliptic integrals (a huge improvement on the situation in [22]). We

also find the homogeneous solutions to the other equations and give implicitly the full

solution to the system in terms of integrals. We also provide the explicit UV and IR

1The asymptotic behavior of the force matches the one argued for in [23], and the existence of this mode

was first intuited in [24] which set out to study the UV asymptotics of the perturbations corresponding to

anti-D3 branes in the KT background [25].
2An IR analysis of some of the non-supersymmetric isometry-preserving perturbations of the Klebanov-

Strassler background can also be found in [26].
3This was first observed by I. Klebanov.
4This is the equivalent of the Papadopoulos-Tseytlin superpotential for the KS solution [29–31].
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expansions of the full space of deformations, and find which deformations correspond to

normalizable modes and which deformations correspond to non-normalizable modes.

In section 5 we then use the machinery we developed to recover the perturbative

expansion of the known solution sourced by BPS M2 branes smeared on the S4 at the tip

of the Stenzel-CGLP solution [20], and analyze the infrared of the possible solution sourced

by anti-M2 branes. After removing some obviously unphysical divergences and demanding

that in the first-order backreacted solution a probe M2 brane feels a nonzero force, we find

that the only backreacted solution that can correspond to anti-M2 branes must have an

infrared singularity, coming from a four-form field strength with two or three legs on the

three-sphere that is shrinking to zero size at the tip of the Stenzel space.

Hence, the first-order backreacted solution for the anti-M2 branes has the same two key

features as the anti-D3 branes in KS: the force felt by a probe M2 brane in this background

depends only on one of the 10 physical perturbation modes around this solution, and the

solution where the force-carrying mode is turned on must have an infrared singularity

coming from a divergent energy in the M-theory four-form field strength. Nevertheless,

unlike in the “anti-D3 in KS” solution, the action of this infrared singularity also diverges.

Again, if this singularity is physical, our first-order backreacted solution describes anti-M2

branes in the CGLP background, and, to our knowledge, would be the first backreacted

supergravity solution dual to metastable susy-breaking in 2+1 dimensions since the work

of Maldacena and Năstase [32]. This may be of interest both in the programme of using

the AdS/CFT correspondence to describe strongly-interacting condensed-matter systems,

and also in view of the relevance of three-dimensional QFT’s at strong coupling to a recent

holographic model of four-dimensional cosmology [33]. On the other hand, if the singularity

is not physical then the backreaction of the anti-M2 branes cannot be taken into account

perturbatively; this indicates that the only solution with proper anti-M2 brane boundary

conditions in the infrared is the solution for anti-M2 branes in a CGLP background with

anti-M2 brane charge dissolved in flux, and hence the anti-M2 branes flip the sign of the

M2 brane charge dissolved in flux.

Given the similarity of the results of the “anti-D3 in KS” and of the “anti-M2 in CGLP”

analyses and the drastically-different calculations leading to them, it is rather natural to

expect that the underlying physics of the two setups is the same: either both singularities

are physical, which indicates that anti-branes in backgrounds with charge dissolved in

fluxes give rise to metastable vacua, or they are both unphysical, which supports the idea

that anti-branes in such backgrounds cannot be treated as a perturbation of the original

solution, and may flip the sign of the charge dissolved in flux. Furthermore, our analysis

suggests that one cannot use the finiteness of the action as a criterion for accepting a

singularity. This would allow the anti-D3 singularity and exclude the anti-M2 one, which

would be rather peculiar, given the striking resemblance of the two systems.

There are a few possible explanations for the singularities we encounter in the anti-

M2 and anti-D3 solutions. One is that these singularities are accompanied by stronger,

physical singularities, coming from the smeared anti-M2 or anti-D3 sources, and one can

hope that whatever mechanism renders the stronger singularities physical may cure the

subleading ones as well. Another explanation is that the subleading singularities are a
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result of smearing the antibranes. This is a difficult argument to support with calculational

evidence, as the unsmeared solution is a formidable problem even for BPS branes in Stenzel

spaces [34, 35]. Furthermore, a naive comparison of the anti-M2 and anti-D3 solutions

indicates that the stronger the physical singularity associated with the brane sources is,

the stronger the subleading singularity will be. Hence, it is likely that unsmearing will

make things worse, not better, as is illustrated for a class of non-BPS AdS4 solutions in

reference [36]. Note also that one cannot link the divergent four-form field strength with

the M5 branes into which the anti-M2 branes at the tip of the Stenzel-CGLP solution

polarize — they have incompatible orientations.

It is also interesting to remember that when one attempts to build string realisations of

four-dimensional metastable vacua, either via brane constructions [6] or via AdS-CFT [22],

the non-normalizable modes one encounters are log-growing modes, which one could in

hindsight have expected from the generic running of coupling constants of four-dimensional

gauge theories with the energy.

For anti-M2 branes there is no such link. There exist both AdS/CFT duals of

metastable vacua of 2+1 dimensional gauge theories [32], as well as brane-engineering con-

structions of such metastable vacua (using D3 branes ending on codimension-three defects

inside NS5 branes) [37]. The nonexistence of an anti-M2 metastable vacuum could only

be seen in supergravity, and comes from the way the fields of the anti-M2 brane interact

with the magnetic fields that give rise to the charge dissolved in fluxes. This may indicate

there is a problem with trying to construct metastable vacua in string theory by putting

antibranes in backgrounds with charge dissolved in fluxes. In an upcoming paper [38]

we will also argue that anti-D2 branes in backgrounds with D2 brane charge dissolved in

fluxes [39], that one of us investigated in [40], have similar problems.

2 Perturbations around a supersymmetric solution

We are interested in the backreaction of a set of anti-M2 branes spread on a four-sphere

at the bottom of the warped Stenzel geometry [19] with nontrivial fluxes. Smearing the

anti-M2’s is necessary in order for the perturbed solution to have the same SO(5) global

symmetry as the supersymmetric solution of Cvetič, Gibbons, Lü and Pope (CGLP) [20].

The perturbed metric and flux coefficients are then functions of only one radial variable,

and generically satisfy n second-order differential equations.

However, when perturbing around a supersymmetric solution governed by a super-

potential, Borokhov and Gubser [28] have observed that these n second-order equations

factorize into n first-order equations for certain momenta and n first-order equations for

the metric and flux coefficients, and that furthermore the n equations for the momenta do

not contain the metric and flux coefficients, and hence can be solved independently. This

technique has been used in several related works [22, 28, 41] and we consider this to be the

technique of choice for deformation problems that depend on just one coordinate.
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2.1 The first-order Borokhov-Gubser formalism

While the following summary can be found by now in several sources, we include it here

for completeness. When the equations of motion governing the fields φa of a certain super-

symmetric solution come from the reduction to a one-dimensional Lagrangian

L = −1

2
Gab

dφa

dτ

dφb

dτ
− V (φ) (2.1)

whose potential V (φ) comes from a superpotential,

V (φ) =
1

8
Gab ∂W

∂φa

∂W

∂φb
, . (2.2)

The Lagrangian is written as

L = −1

2
Gab

(

dφa

dτ
− 1

2
Gac ∂W

∂φc

)(

dφa

dτ
− 1

2
Gac ∂W

∂φc

)

− dW

dτ
, (2.3)

and the supersymmetric solutions satisfy

dφa

dτ
− 1

2
Gab ∂W

∂φb
= 0 . (2.4)

We now want to find a perturbation in the fields φa around their supersymmetric

background value φa
0

φa = φa
0 + φa

1(X) + O(X2) , (2.5)

where X represents the set of perturbation parameters in which φa
1 is linear. The deviation

from the gradient flow equations for the perturbation φa
1 is measured by the conjugate

momenta ξa

ξa ≡ Gab(φ0)

(

dφb
1

dτ
− M b

d(φ0)φ
d
1

)

, (2.6)

M b
d ≡ 1

2

∂

∂φd

(

Gbc ∂W

∂φc

)

. (2.7)

The ξa are linear in the expansion parameters X, hence they are of the same order as the

φa
1. When all the ξa vanish the deformation is supersymmetric.

The main point of this construction is that the second-order equations of motion gov-

erning the perturbations reduce to a set of first-order linear equations for (ξa, φ
a):

dξa

dτ
+ ξbM

b
a(φ0) = 0 , (2.8)

dφa
1

dτ
− Ma

b(φ0)φ
b
1 = Gabξb . (2.9)

Note that equation (2.9) is just a rephrasing of the definition of the ξa in (2.6), while (2.8)

implies the equations of motion. Since one considers these perturbations in a metric ansatz

in which the reparametrization invariance of the radial variable is fixed, in addition to these

equations one must enforce the zero-energy condition

ξa
dφa

0

dr
= 0 . (2.10)
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2.2 The perturbation ansatz

Using the analysis of the CGLP solution in [18], one can easily see that the ansatz for the

SO(5)-invariant eleven-dimensional supergravity solution we are looking for is

ds2 = e−2z(r)dxµdxµ + ez(r)
[

e2 γ(r) dr2 + e2 α(r)σ2
i + e2 β(r)σ̃2

i + e2 γ(r)ν2
]

G4 = dK(τ) ∧ dx0 ∧ dx1 ∧ dx2 + m F4 , (2.11)

where F4 = dA3 and

A3 = f(r) σ̃1 ∧ σ̃2 ∧ σ̃3 + h(r) ǫijk σi ∧ σj ∧ σ̃k (2.12)

⇒ F4 = f ′ dr ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 + h′ ǫijk dr ∧ σi ∧ σj ∧ σ̃k

+
1

2
(4h − f) ǫijk ν ∧ σi ∧ σ̃j ∧ σ̃k − 6h ν ∧ σ1 ∧ σ2 ∧ σ3 . (2.13)

Our notation for the one-forms on the Stenzel space is by now standard [18], in the sense

that with the definitions

σi = L1i , σ̃i = L2i , ν = L12 , (2.14)

they satisfy

dσi = ν ∧ σ̃i + Lij ∧ σj , (2.15)

dσ̃i = −ν ∧ σi + Lij ∧ σ̃j , (2.16)

dν = −σi ∧ σ̃i , (2.17)

dLij = Lik ∧ Lkj − σi ∧ σj − σ̃i ∧ σ̃j . (2.18)

Integrating one particular component of the equation of motion for the flux

d ∗ G4 =
1

2
G4 ∧ G4 (2.19)

gives

K ′ = 6m2

[

h (f − 2h) − 1

54

]

e−3(α+β)−6z , (2.20)

where we have chosen the integration constant such that the BPS solution [20] is regular,

i.e. there are no explicit source M2 branes. We refer to appendix A for more details.

Performing a standard dimensional reduction on this ansatz down to one dimension,

we obtain the following Lagrangian

L = (Tgr + Tmat) − (Vgr + Vmat) (2.21)

with the gravitational and matter sectors given by

Tgr = 3 e3 (α+ β)

[

α′ 2 + β′ 2 − 3

4
z′ 2 + 3α′β′ + α′γ′ + β′γ′

]

, (2.22)

Vgr =
3

4
eα+β

[

e4α + e4β + e4γ − 2 e2α+2β − 6 e2α+2γ − 6e2β+2γ
]

(2.23)
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and

Tmat = −m2

4
e3 α+β−3 z

(

f ′ 2 e−4β + 12h′ 2 e−4α
)

, (2.24)

Vmat = 3m2 eα+3 β−3 z

[

3h2 e−4α +
1

4
(4h − f)2 e−4β

]

+9m4 e−3 (α+β+2 z)

[

h (f − 2h) − 1

54

]2

. (2.25)

The superpotential is given by

W = −3 e2α+2β (e2α + e2β + e2γ) − 6m2 e−3z

[

h (f − 2h) − 1

54

]

. (2.26)

It is worth noting that equation (2.2) only defines the superpotential up one independent

minus sign which can then be absorbed in (2.8) and (2.9) by changing the sign of the radial

variable and the ξa. However, with the wisdom of hindsight, we choose a radial variable

such that fields decay at infinity and not minus infinity, thus simultaneously fixing the sign

of the superpotential.

2.3 The supersymmetric background

Here we summarize the expressions that the fields in our ansatz take when specialized to

the zeroth-order CGLP solution [20] around which we endeavor to study supersymmetric

and non-supersymmetric perturbations.

We should note that the CGLP solution with transverse Stenzel geometry is to the

warped M-theory solution with transverse Stiefel space [42] what the IIB Klebanov-Strassler

solution [15] and the deformed conifold [43] are to the Klebanov-Tseytlin solution [25] and

the singular conifold. The Stenzel space is a higher-dimensional generalization of the

deformed conifold. A useful summary of many details of the supergravity solution can be

found in [44] and proposals for the dual field theory can be found in [44, 45]

The supersymmetric solution around which we will perturb was found in [20]. It can

be summarized in our ansatz by

e2 α0 =
1

3
(2 + cosh(2 r))1/4 cosh(r) , (2.27)

e2 β0 =
1

3
(2 + cosh(2 r))1/4 sinh(r) tanh(r) , (2.28)

e2 γ0 = (2 + cosh(2 r))−3/4 cosh3(r) , (2.29)

f0 =
1

33/2

(

1 − 3 cosh2(r)
)

cosh3(r)
, (2.30)

h0 = − 1

33/2 2

1

cosh(r)
, (2.31)

e3z0(y) = 25/2 3m2

∫ ∞

y

du

(u4 − 1)5/2
, (2.32)

where

y4 ≡ 2 + cosh(2 r) . (2.33)
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With this change of coordinate we can write

e3 z0 =
√

2 m2 y
(

7 − 5 y4
)

(y4 − 1)3/2
+ 5

√
2 m2F

(

arcsin

(

1

y

)

| −1

)

, (2.34)

where the incomplete elliptic integral of the first kind is

F (φ | q) =

∫ φ

0

(

1 − q sin(θ)2
)−1/2

dθ (2.35)

and we have fixed the integration constant (denoted c0 in [20]) by requiring e3z0 → 0 as

r → ∞.

2.4 Explicit equations

We now write out explicitly the two sets of equations (2.8) and (2.9). In both cases a

particular field redefinition simplifies things substantially.

2.4.1 ξa equations

The ξa equations (2.8) simplify in the basis

ξ̃a = (ξ1 + ξ2 + ξ3, ξ1 − ξ2 + 3 ξ3, ξ1 + ξ2 − 3 ξ3, ξ4, ξ5, ξ6) . (2.36)

In the order which we solve them, the equations are

ξ̃′4 = 6m2 e−3(α0+β0+z0)

(

(f0 − 2h0)h0 −
1

54

)

ξ̃4 , (2.37)

ξ̃′1 = 12m2 e−3(α0+β0+z0)

(

(f0 − 2h0)h0 −
1

54

)

ξ̃4 , (2.38)

ξ̃′5 =
1

2
eα0−β0 ξ̃6 − 2m2 h0 e−3(α0+β0+z0) ξ̃4 , (2.39)

ξ̃′6 = 6 e−3(α0−β0) ξ̃5 − 2 eα0−β0 ξ̃6 − 2m2 e−3(α0+β0+z0) (f0 − 4h0) ξ̃4 , (2.40)

ξ̃′3 =
2

9
e−3(α0+β0+z0)

[

18 e2(α0+β0+γ0)+3z0 ξ̃3 + m2 (54h0 (f0 − 2h0) − 1) ξ̃4

]

, (2.41)

ξ̃′2 =
1

2
e−3α0−β0

[

2 e2(α0+β0)ξ̃2 − 6 e2(α0+γ0)ξ̃3 − 72h0 e4β0 ξ̃5

+e4α0

(

−3 ξ̃1 + 2 ξ̃2 + 3 ξ̃3 + 2 (f0 − 4h0) ξ̃6

) ]

, (2.42)

where we remind the reader that a prime denotes a derivative with respect to r not y (2.33).

2.4.2 φa equations

The φa equations benefit from a field redefinition as well,

φa = (α, β, γ, z, f, h) , (2.43)

φ̃a = (φ1 − φ2, φ1 + φ2 − 2φ3, φ3, φ4, φ5, φ6) (2.44)
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and we find

φ̃′
1 =

1

12
e−3(α0+β0)

[

−3 ξ̃1 + 4 ξ̃2 + 3
(

ξ̃3 − 4 e2(α0+β0)
(

e2α0 + e2β0

)

φ̃1

)]

, (2.45)

φ̃′
2 =

1

12
e−3(α0+β0)

[

−3 ξ̃1 + 7 ξ̃3 + 12 e2(α0+β0)
(

3
(

e2β0 − e2α0

)

φ̃1 − 4 e2γ0 φ̃2

)]

,

(2.46)

φ̃′
3 =

1

12
e−3(α0+β0)

[

ξ̃1 − 3
(

ξ̃3 + 6 e2(α0+β0)
((

e2β0 − e2α0

)

φ̃1 − e2γ0 φ̃2

))]

,

(2.47)

φ̃′
5 =

2

m2
e−3(α0−β0)

[

e3z0 ξ̃5 + 3m2 (3h0 φ̃1 − φ̃6)
]

, (2.48)

φ̃′
6 =

1

6m2
eα0−β0

[

e3z0 ξ̃6 − 3m2 (f0 φ̃1 − 4h0 φ̃1 + φ̃5 − 4 φ̃6)
]

, (2.49)

φ̃′
4 =

1

9
e−3(α0+β0+z0)

[

2 e3z0 ξ̃4 + m2
(

[1 − 54h0 (f0 − 2h0)] φ̃4 + 18 f0 φ̃6

+φ̃2 + 2 φ̃3 + 18h0

[

φ̃5 − 4 φ̃6 − 3 (f0 − 2h0) (φ̃2 + 2 φ̃3)
] )]

. (2.50)

3 The force on a probe M2

Before solving the above equations, we compute the force on a probe M2-brane in the

perturbed solution space. As was found in the analogous IIB scenario [22], the force turns

out to benefit from remarkable cancellations and is ultimately quite simple.

The membrane action for a probe M2 brane (which by abusing notation we refer to as

the DBI action) is

V DBI =
√− g00 g11 g22 ,

= e−3z (3.1)

and, in the first-order approximation, its derivative with respect to r is

FDBI = −dV DBI
0

dr
+ 3 e−3z0

(

φ̃′
4 − 3 z′0 φ̃4

)

. (3.2)

We next consider the derivative of the WZ action with respect to r, which gives the force

exerted on the M2-brane by the G(4) field:

FWZ = −dV WZ

dr
,

= G
(4)
012r ,

= −6m2

[

h (f − 2h) − 1

54

]

e−3(α+β)−6z . (3.3)

The zeroth-order and first-order WZ forces thus are

FWZ
0 = −6m2

[

h0 (f0 − 2h0) −
1

54

]

e−3(α0+β0)−6z0 (3.4)
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and

FWZ
1 = − 6m2

[

h0 (φ̃5 − 2 φ̃6) + φ̃6 (f0 − 2h0)

− 3 (φ̃2 + 2 φ̃3 + 2 φ̃4)

(

h0 (f0 − 2h0) −
1

54

)]

e−3(α0+β0)−6z0 . (3.5)

Combining these two contributions to the force we see that the zeroth-order contribu-

tions cancel as expected. Then using the explicit φa equations from section 2.4.2 we find

the beautiful result

F = FDBI
1 + FWZ

1

=
2

3
e−3 (α0+β0+z0)(r) ξ̃4(r) .

At this point it is worthwhile to preemptively trumpet the result (4.3) from section 4 where

the exact solution for the mode ξ̃4 is found:

F =
2

3
e−3 (α0+β0)(r) Z0 X4

=
18Z0 X4

(2 + cosh 2r)3/4 sinh3 r
, (3.6)

where Z0 is some numerical factor which we found convenient not to absorb into the X4

integration constant,

Z0 ≡ e−3z0(0) . (3.7)

So, the UV expansion of the force felt by a probe M2 brane in the first-order perturbed

solution is always

Fr ∼ X4 e−9r/2 + O(e−17r/2) . (3.8)

In terms of ρ, the “standard” radial coordinate,5 this force comes from a potential propor-

tional to ρ−6, which agrees with a straightforward extension of the brane-antibrane force

analysis of [23] to this system. This will be further discussed in a forthcoming publica-

tion [46].

4 The space of solutions

In this section we find the generic solution to the system (2.37)–(2.50). This solution space

has twelve integration constants of which ten are physical. We have managed to solve the

ξ̃a equations exactly whereas for the φa equations we have resorted to solving them in the

IR and UV limits.

5Related to r via cosh(2 r) ∼ ρ
8/3.
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4.1 Analytic solutions for the ξ̃’s

The first equation (2.37) is solved by

ξ̃4 = X4 exp

(

6m2

∫ r

0
dr′ e−3(α0+β0+z0)

[

(f0 − 2h0)h0 −
1

54

])

, (4.1)

which appears to be a double integral. However, using a standard notation for the warp

factor H0 = e3z0 , since we have

dH0

dr
= −233m2 e2γ0

sinh3 2r
tanh4 r , (4.2)

we actually find

ξ̃4 = X4 exp

(
∫ r

0
dr′

1

H0

dH0

dr′

)

,

= X4 e3(z0(r)−z0(0)) . (4.3)

It immediately follows that

ξ̃1 = X1 + 2X4 e3(z0(r)−z0(0)) . (4.4)

We find convenient not to include e−3z0(0) into the integration constant X4, and will use

the notation

Z0 ≡ e−3z0(0) . (4.5)

We were also able to find exact analytic expressions for ξ̃3 and ξ̃5,6, in term of y4 ≡
2 + cosh(2 r):

ξ̃3 = y4
(

y4 − 3
)2

X3 −
m2 Z0 X4

18
√

2

y
(

y4 − 3
)

(y4 − 1)3/2

[

− 96 + 599 y4 − 550 y8 + 119 y12

− y3
√

y4 − 1
(

3 − 4 y4 + y8
)

(

163F

(

arcsin

(

1

y

)

| −1

)

+ 22

[

Π

(

−
√

3;−arcsin

(

1

y

)

| −1

)

+ Π

(√
3;−arcsin

(

1

y

)

| −1

)])]

,

(4.6)

where F (φ | q) is given in (2.35) and Π(n;φ | m) is an incomplete elliptic integral of the

third kind

Π(n;φ|m) =

∫ φ

0

dθ
(

1 − n sin (θ)2
)

√

1 − m sin (θ)2
. (4.7)
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The expressions for ξ̃5,6 are as follows:

ξ̃5 =
1

4
√

2 (y4 − 3)
√

y4 − 1

[√
6Z0 X4 m2 y

(

13 − 11 y4
)

√

y4 − 1

+ 4
[

(

y4 − 1
)2

X5 +
(

y4 − 3
) (

1 + y4
)

X6

]

+
√

6 Z0 m2 X4

[

(

19 + 7y4
(

y4 − 2
))

F

(

arcsin

(

1

y

)

| −1

)

− 2
(

y4 − 3
) (

1 + y4
)

(

Π

(

−
√

3;−arcsin

(

1

y

)

| −1

)

+ Π

(√
3;−arcsin

(

1

y

)

| −1

))]]

, (4.8)

ξ̃6 =

√
2

(y4 − 3) (y4 − 1)3/2

[

(

y4 − 7
) (

y4 − 1
)2
[

X5 +

√

3

2
Z0 m2 X4

(

7 y − 5 y5

(y4 − 1)3/2

+ 5F

(

arcsin

(

1

y

)

| −1

))]

+
1

4

(

y4 − 3
)2
[

−
√

6Z0 m2 X4 y
√

y4 − 1

+ 4
(

y4 − 3
)

X6 −
√

6 Z0 m2 X4

(

y4 − 3
)

(

3F

(

arcsin

(

1

y

)

| −1

)

+ 2

(

Π

(

−
√

3;−arcsin

(

1

y

)

| −1

)

+ Π

(√
3;−arcsin

(

1

y

)

| −1

)))]]

. (4.9)

Lastly, ξ̃2 is given by the zero-energy condition (2.10) but its explicit form does not appear

to be too enlightening. In appendix B we provide the IR and UV series expansions of the

above solutions for ξ̃i.

4.2 Solving the φi equations

4.2.1 The space of solutions

We now solve the system of equations for φi (2.45)–(2.49) using the Lagrange method of

variation of parameters.

Equation (2.45) is solved by

φ̃1 =
λ̃1(r)

sinh(2 r)
, (4.10)

with

λ̃1 =
9

2

∫

cosh(r)

sinh(r)2 (2 + cosh(2 r))3/4

[

−3 ξ̃1 + 4 ξ̃2 + 3 ξ̃3

]

+ Y IR
1 . (4.11)

ξ̃2 and ξ̃3 are given in section 4.1 above and sinh(2 r)−1 is the homogeneous solution to the

φ̃1 equation.

The same Lagrange method is used for φ̃2, which is given by

φ̃2 =
λ̃2(r)

sinh(r)4 (2 + cosh(2 r))
, (4.12)
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where

λ̃2 =
9

4

∫

sinh(r) (2 + cosh(2 r))1/4

[

−3 ξ̃1 + 7 ξ̃3 −
4

3

sinh(r)2

cosh(r)
(2 + cosh(2 r))3/4 φ̃1

]

+ Y IR
2 . (4.13)

From this, we obtain an integral expression for φ̃3:

φ̃3 =
9

4

∫

[

ξ̃1 − 3 ξ̃3 + 2
3

sinh(r)2

cosh(r) (2 + cosh(2 r))3/4 φ̃1 + 2 sinh(r)2 cosh(r)3

(2+cosh(2 r))1/4
φ̃2

]

sinh(r)3 (2 + cosh(2 r))3/4
+ Y IR

3 .

(4.14)

The fluxes
(

φ̃5, φ̃6

)

= (f, h) are given by

(

φ̃5

φ̃6

)

=

(

cosh(r)3 tanh(r)6 cosh(r)3
[

2 − 3 tanh(r)2
]

1
2

[

sech(r) − cosh(r)3
]

1
2 cosh(r)3

) (

λ̃5

λ̃6

)

, (4.15)

where the derivatives of λ̃5 and λ̃6 are given by

(

λ̃′
5

λ̃′
6

)

=

(

1
4 cosh(r) coth(r)2 1

2 [cosh(r) − 2coth(r) csch(r)]
1
8 [3 + cosh(2 r)] sech(r) 1

2 sinh(r) tanh(r)3

) (

b5

b6

)

, (4.16)

and b5, b6 are the right-hand side of (2.48) and (2.49) respectively. The 2 × 2 matrix

appearing in (4.16) is the inverse of the matrix of homogeneous solutions written in (4.15).

We will call Y5 and Y6 the constants arising from integrating (4.16), even though the two

functions φ̃5 and φ̃6 depend on both of them.

Finally, relying on the same method, the equation for φ̃4 is solved to

φ̃4 = e−3z0(r) λ̃4 , λ̃4 =

∫

e3z0(r) b4(r) + Y IR
4 , (4.17)

where b4(r) is the right-hand side of (2.50) (setting φ̃4 to zero).

4.2.2 IR behavior

We now give the IR expansions of the φi’s. We only write the divergent and constant

terms since terms which are regular in the IR do not provide any constraint on our solution

space. Z0 is defined in (3.7). The Xi integration constants are those appearing in the exact

solutions for the ξ̃i’s (4.3)–(4.9):

φ̃1 = − 1

r2

[

27X1 + 30X4 − 16
√

3 X5

4 33/4

]

+
1

2 r
Y IR

1

+

[

189X1 +
(

498 − 198 31/4 Z0 m2
)

X4 + 80
√

3 X5

12 33/4

]

+ O(r) , (4.18)
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φ̃2 =
Y IR

2

3 r4
+

1

r2

[

9

4
31/4 X1 +

3

2
31/4 X4 − 2

√
3 31/4 X5 −

4

9
Y IR

2

]

− 1

2 r
Y IR

1

−
[

6 31/4 X1 +
23

2
31/4 X4 − 6

√
3 Z0 m2 X4 −

1

31/4
X5 −

41

135
Y IR

2

]

+ O(r) , (4.19)

φ̃3 = − Y IR
2

8 r4
− 1

r2

[

9 31/4 X1 − 12 33/4 X5 − 4Y IR
2

24

]

+

[

Y IR
3 +

31/4

8

(

−18 31/4 Z0 m2 X4 + 21X1 + 48X4 + 4
√

3X5

)

log(r)

]

+ O(r) , (4.20)

φ̃4 = − 1

r2

[

18X4 − 4
√

3 X5 + Z0 m2
(

Y IR
2 − 24

√
3 Y IR

6

)

8 33/4

]

−
[

1

4

(

Z0 m2

(

3
√

3

2
X4 − X5

)

− 4Z0 Y IR
4

)

+
1

48
Z2

0 m4
(√

3 Y IR
2 − 72Y IR

6

)

+

[

3

2
31/4 X4 −

X5

31/4

+
1

36
Z0 m2

(

81
√

3X1 + 78
√

3 X4 − 168X5 + 1131/4 Y IR
2 − 72 33/4 Y IR

6

)

]

log(r)

]

+ O(r) , (4.21)

φ̃5 = 2Y IR
6 +

[

9

8
33/4 X1+

3

4
33/4 X4−2 31/4 X5+

1

2Z0 m2

(

X5+

√
3

2
X4

)]

r2 + O(r3),

(4.22)

φ̃6 =
1

r2

X5 +
√

3
2 X4

6Z0 m2

+

[

33/4

16
X1 −

1

18

X5 +
√

3
2 X4

Z0 m2
− 7

72
33/4 X4 −

5

18
31/4 X5 +

1

2
Y IR

6

]

+ O(r) . (4.23)

Note that in the φ̃5 expansion we have also displayed the term of order r2 — this term

will be relevant for the singularity analysis in section 6.

4.2.3 UV behavior

We provide the UV asymptotics for all six φ̃i’s, incorporating terms which decay not faster

than e−13r/2. However, as appears in table 1 below, a few modes have leading behavior in

the UV which is even more convergent than this.

φ̃1 =
18

21/4
X3 e−r/2 + 2Y UV

1 e−2r − 4 23/4

[

27

2
X1 − 27X3 + 8

√
3 (X5 + X6)

]

e−5r/2

−
[

1089

10 21/4
X3 −

128

5
23/4

√
3 (X5 + X6)

]

e−9r/2 + 2Y UV
1 e−6r

+ O(e−13r/2) , (4.24)
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φ̃2 =
21

5 21/4
X3 e3r/2 − 17523

140 21/4
e−5r/2X3 − 12Y UV

1 e−4r

+ 423/4

[

99X1 −
1719

10
X3 + 64

√
3 (X5 + X6)

]

e−9r/2 + 32Y UV
2 e−6r

+ O(e−13r/2) , (4.25)

φ̃3 = − 27

10 21/4
X3 e3r/2 + Y UV

3 +
9693

280 21/4
X3 e−5r/2 +

15

4
Y UV

1 e−4r

− 23/4

[

130X1 −
1113

5
X3 +

256√
3

(X5 + X6)

]

e−9r/2 − 12Y UV
2 e−6r

+ O(e−13r/2) , (4.26)

φ̃4 =
3

16 23/4

Y UV
4

m2
e9r/2 +

27

26 23/4

Y UV
4

m2
e5r/2 +

9

521/4
X3 e3r/2 +

350271

183872 23/4

Y UV
4

m2
er/2

− 2
[

Y UV
3 +

√
3
(

Y UV
5 − Y UV

6

)

]

+
216

325
23/4 X3 e−r/2 +

484605

298792 23/4

Y UV
4

m2
e−3r/2

+
144

13

√
3Y UV

6 e−2r +
3985953003

14077700 21/4
X3 e−5r/2 +

7978373883

21130570240 23/4

Y UV
4

m2
e−7r/2

+

[

273

34
Y UV

1 +
78912

√
3

2873
Y UV

6

]

e−4r

− 23/4

[

4
229

5
X1 −

1707341851

2691325
X3 + 4

256

3
√

3
(X5 + X6)

]

e−9r/2

+
473729599251

995778122560 23/4

Y UV
4

m2
e−11r/2 + O(e−6r) , (4.27)

φ̃5 =
1

8

(

Y UV
5 − Y UV

6

)

e3r − 9

8

(

Y UV
5 − Y UV

6

)

er +
1

8

(

39Y UV
5 + 9Y UV

6

)

e−r

+ 19
4 23/4

√
3

X3 e−3r/2 +

[

14

3
√

3
Y UV

1 − 1

8

(

111Y UV
5 + Y UV

6

)

]

e−3r

− 4 23/4

[

2
279

65

√
3X1 +

147

65

√
3 X3 + 2

308

39
(X5 + X6)

]

e−7r/2

+ 10

[

− 2√
3

Y UV
1 + 3Y UV

5

]

e−5r

+
56

1105
23/4

[

3071
√

3X1 −
166409

√
3

56
X3 +

18716

3
(X5 + X6)

]

e−11r/2

+ O(e−13r/2) , (4.28)

φ̃6 = − 1

16

(

Y UV
5 − Y UV

6

)

e3r − 3

16

(

Y UV
5 − Y UV

6

)

er +
1

16

(

13Y UV
5 + 3Y UV

6

)

e−r

+
10√
3

23/4X3 e−3r/2 +

[

1

3
√

3
Y UV

1 − 1

16

(

17Y UV
5 − Y UV

6

)

]

e−3r

− 4 23/4

[

33

65

√
3X1 +

9
√

3

130
X3 +

116

117
(X5 + X6)

]

e−7r/2

−
[

2

3
√

3
Y UV

1 − Y UV
5

]

e−5r
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dim ∆ non-norm/norm int. constant

6 ρ3
AdS/ρ

−6
AdS Y UV

4 /X4

5 ρ2
AdS/ρ

−5
AdS Y UV

5 − Y UV
6 /X5 − X6

4 ρAdS/ρ
−4
AdS X3/Y UV

2

3 ρ0
AdS/ρ

−3
AdS Y3/X2

7/3 ρ
−2/3
AdS /ρ

−7/3
AdS Y UV

5 + Y UV
6 /X5 + X6

5/3 ρ
−4/3
AdS /ρ

−5/3
AdS Y UV

1 /X1

Table 1. The UV behavior of the twelve SO(5)-invariant modes in the deformation space of the

CGLP solution. As discussed below, only ten of these modes are physical, and the mode of dim. 3

is a gauge artifact.

+
4

1105
√

3
23/4

[

3713X1 −
30221

8
X3 + 2932

√
3 (X5 + X6)

]

e−11r/2

+ O(e−13r/2) . (4.29)

To understand the holographic physics of the φ̃i modes, we tabulate the leading UV

behavior coming from each mode. To each local operator Oi of quantum dimension ∆ in

the field theory, the holographic dictionary associates two modes in the dual AdS space,

one normalizable and one non-normalizable [47, 48]. These two supergravity modes are

dual respectively to the vacuum expectation value (VEV) 〈0 | Oi | 0〉 and the deformation

of the action δS ∼
∫

ddxOi:

normalizable modes ∼ ρ−∆
AdS ↔ field theory VEV’s

non-normalizable modes ∼ ρ∆−3
AdS ↔ field theory deformations of the action .

Here we refer to the standard AdS radial coordinate ρAdS, to be distinguished from the

radial coordinate on the cone, ρ. In the UV, we have ρ ∼ e3r/4 and ρAdS ∼ ρ2/m1/3 with

the factor of m1/3 taken with respect to the conventions of [18].

In table 1 we have summarized which integration constants correspond to normalizable

and non-normalizable modes. As stated in a previous section, the Xi are integration

constants for the ξi modes and break supersymmetry, while the Yi are integration constants

for the modes φi. It is very interesting to note that in all cases a normalizable/non-

normalizable pair consists of one BPS mode and one non-BPS mode.

As already mentioned, the mode ξ̃4, whose integration constant is X4 and which is the

only mode accountable for the force felt by a probe M2-brane in the first-order perturbation

to the CGLP background [20], is the most convergent mode in the UV, though this cannot

be seen from the expansions we have provided but is apparent at higher order in the

asymptotics that we have computed.

Taking into account a rescaling which culls Y3 and the zero energy condition which

eliminates X2, we are left with a total of ten integration constants or five modes. The

absence of a physical mode behaving as ρ0
AdS is related to the quantization of the level

of the Chern-Simons matter theory. This is unlike in four-dimensional gauge theories,
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where we expect a dimension-four operator corresponding to the dilaton. Note also that in

table 1 we see explicitly the dimension ∆ = 7/3 operator discussed in [18]. We have been

somewhat glib in writing X5 − X6 or Y5 + Y6. The numerical factors in the combination

of those integration constants are actually different, but can be rescaled to the shorthand

notation we use.

5 Boundary conditions for M2 branes

Within the space of solutions that we have derived in section 4 we now proceed to find

the modes which arise from the backreaction of a set of anti-M2 branes smeared on the

finite-sized S4 at the tip of the Stenzel-CGLP solution (r = 0). For describing them it is

necessary to carefully impose the correct infrared boundary conditions.

The gravity solution for a stack of localized M2-branes in flat space has a warp factor

H(ρ) = 1 + Q/ρ6 and as ρ → 0 the full solution is smooth due to the infinite throat.

However when these branes are smeared in n-dimensions, the warp factor scales as ρ−6+n

as ρ → 0 since it is now the solution to a wave equation in dimension d = 8 − n. This is

the IR boundary condition that we will impose on the solution.

We must furthermore bring to bear appropriate boundary conditions on the various

fluxes. This is rather simple for M2 branes in flat space, where the energy from G(4) is the

same as that from the curvature. In the presence of other types of flux, the IR boundary

conditions are more intricate. When the background is on-shell, contributions to the stress

tensor from all types of flux taken together cancel the energy from the curvature: this is the

basic nature of Einstein’s equation but this is too wobbly a criterion to signal the presence

of M2 branes. Instead, the right set of boundary conditions for M2 branes should enforce

that the dominant contribution to the stress-energy tensor comes from the G(4) flux.

5.1 BPS M2 branes

The M2 brane charge varies with the radial coordinate r of a section of the Stenzel

space [19]:

QM2(r) =
1

(2π ℓp)6

∫

M7

⋆G4 ,

= −6m2 Vol (V5,2)

(2π ℓp)
6

(

h0(r) (f0(r) − 2h0(r)) −
1

54

)

, (5.1)

with ℓp the Planck length in eleven dimensions, M7 a constant r section of the transverse

Stenzel space of volume Vol (V5,2) = 27 π4

128 [49]. The number of units of G4 flux through

the S4 is

q(r) =
1

(2π ℓp )3

∫

S4

G4 ,

= − 16π2 m

(2π ℓp)
3 h0(r) . (5.2)
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In the smooth solution their IR values (r → 0) are

Q IR
M2 = 0 , qIR =

1

(2π ℓp)
3

8π2m

33/2
, (5.3)

reflecting the fact that all M2 charge is dissolved in fluxes. One can obtain a BPS solution

in which smeared M2 branes are added at the tip of the Stenzel space [19] simply by

shifting ⋆G4 in such a way that f − 4h does not change.6 Under shifts of f → f + 2N and

h → h + N
2 , the IR M2 brane charge changes to

QM2 → QM2 + ∆QM2 , (5.4)

where we define

∆QM2 = −6m2 Vol (V5,2)

(2π ℓp)
6

(

1

2
N2 − 2

33/2
N

)

, (5.5)

whereas the variation in the units of flux through the S4 amounts to 8 π2 m N
(2 π ℓp)3

. This intro-

duces in the IR a −∆QM2/r
2 singularity in the warp factor

H0(r) = 162m2

∫ r h0 (f0 − 2h0) − 1
54

sinh(r′)3 (2 + cosh(2 r′))3/4
dr′ . (5.6)

This singularity is to be expected as we have smeared BPS M2 branes (whose harmonic

function diverges as 1/r6 near the sources) on the S4 of the transverse space. It is interesting

to see how this BPS solution arises in the first-order expansion around the BPS CGLP

background [20] in the context of our perturbation apparatus. Given that the ξi modes are

associated to supersymmetry-breaking, all the Xi must be set to zero:

Xi = 0 . (5.7)

Since all the ξ̃i are zero,

Y IR
1 = Y UV

1 . (5.8)

In the IR and the UV, ez0+2α0 , ez0+2β0 and ez0+2γ0 do not blow up but reach constant or

vanishing values instead. So we impose

Y IR
1 = 0 , Y IR

2 = 0 , Y UV
4 = 0 . (5.9)

As a result of (5.9) and (5.8), the mode φ̃1 is identically zero. This yields Y IR
2 = Y UV

2 ,

Y IR
3 = Y UV

3 .

Since BPS M2 branes do not change the geometry of the Stenzel space but only the

warp factor (much like BPS D3 branes also only change the warp factor and not the

6This combination multiplies a four-form field strength with one leg along ν, one along σ
i and two legs

along two of the σ̃
j directions which shrink in the IR (e2β0

∼ r
2)
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transverse geometry [50]) we expect the first-order perturbation to ez+2β to vanish both in

the UV and in the IR, and thus

2Y3 + e−3z0(0) Y IR
4 +

3

2
m4 e−6z0(0) Y IR

6 = 0 , Y UV
5 = Y UV

6 . (5.10)

The constant Y IR
4 is in turn determined by Y UV

4 . Furthermore, the fields φ̃5, φ̃6 now

obey the corresponding homogeneous equations and the solution is found by replacing

λ̃5,6 by Y5,6.

The mode φ̃4 corresponds to the first-order perturbation of the warp factor. We allow

an 1/r2 IR divergence, which means that Y IR
6 doesn’t necessarily need to vanish. We will

see in a moment that this mode is related to the number ∆QM2 of added M2 branes.

But first, we note that this does not give rise to a singularity that would be associated

with φ̃5 − 4 φ̃6, the perturbation to the term in F4 (2.13) with legs on ν ∧ σi ∧ σ̃j ∧ σ̃k.

Indeed, the conditions we have imposed render this term harmless and independent of Y IR
6 :

φ̃5 − 4 φ̃6 = 2Y6 − 2Y6 + O(r) = O(r).

Given that Y IR
4 first shows up in the O(r0) part of the IR expansion of φ̃4 there is no

restriction on it. Moreover, Y5 does not arise in any of the divergent or constant pieces in

the φ̃i IR expansions, but requiring no exponentially divergent terms in the UV imposes

Y5 = Y6, in agreement with (5.10).

As a result, the perturbation corresponding to adding ∆QM2 M2 branes at the tip is

obtained by just setting Y5 = Y6 ∼ −∆QM2. This perturbation causes the warp factor to

diverge in the infrared as −∆QM2/r
2 while all the other φi change by sub-leading terms

apart from φ5 and φ6 which shift by some N related to ∆QM2 through (5.5).

The UV expansion of the new warp factor is

H = e3z0

(

1 + 3 φ̃4

)

,

=
16

3
23/4 m2 e−9r/2 (1 − 6Y3) + O(e−13r/2) ,

=
16

3
23/4 m2 e−9r/2

(

1 + 3 e−3z0(0) Y IR
4 +

9

2
m4 e−6z0(0) Y6

)

+ O(e−13r/2) , (5.11)

where in the last line we used (5.10), and one can see that Y6 multiplies a 1/ρ6 term, as

expected from the exact solution.

6 Constructing the anti-M2 brane solution

In order to construct a first-order backreacted solution sourced by anti-M2 branes at the

tip of the CGLP solution, the first necessary condition is that the force a probe M2 brane

feels be nonzero, which implies:

X4 6= 0 . (6.1)

Furthermore, since the infrared is that of a smooth solution perturbed with smeared anti-

M2 branes, we require that no other field except those sourced by these anti-M2 branes

have a divergent energy density in the infrared.
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Requiring no 1
r2 or stronger divergences in φ̃1, φ̃2, φ̃3 and φ̃6 immediately implies:

X5 = −
√

3

2
X4 ,

Y IR
2 = 0 , (6.2)

X1 = −2X4 ,

Barring any 1
r divergence in φ̃1,2 results in

Y IR
1 = 0 . (6.3)

The divergence in φ̃4 is now

φ̃4 = 31/4

√
3Z0 m2 Y IR

6 − X4

r2
+ O(r0) (6.4)

and this is the proper divergence for the warp factor of anti-M2 branes spread on the S4

in the infrared. The energy density that one can associate with this physical divergence is

ρ(E) ∼ dφ̃4

dr
∼ 1

r6
(6.5)

Another more subtle divergence in the infrared comes from the M-theory four-form

field strength, which is

G4 = dK(τ) ∧ dx0 ∧ dx1 ∧ dx2 + m F4 , (6.6)

where (2.13)

F4 = ḟ dτ ∧ σ̃1 ∧ σ̃2 ∧ σ̃3 + ḣ ǫijk dτ ∧ σi ∧ σj ∧ σ̃k

+
1

2
(4h − f) ǫijk ν ∧ σi ∧ σ̃j ∧ σ̃k − 6h ν ∧ σ1 ∧ σ2 ∧ σ3 . (6.7)

The unperturbed metric in the IR is regular and is given by

ds2 = Z
2/3
0 ds2

4 +
1

33/4
Z

−1/3
0

[

dr2 + ν2 + σ2
i + r2 σ̃2

i

]

, (6.8)

with the constant Z0 given in (3.7). The vanishing metric components gσ̃σ̃ lead to a

divergent energy density from the four-form field strength components:

Fνσσ̃σ̃ Fνσσ̃σ̃ gνν gσσ gσ̃σ̃ gσ̃σ̃ =
9
√

3Z
4/3
0 X2

4

r4
+ O(r−2) (6.9)

Frσ̃σ̃σ̃ Frσ̃σ̃σ̃ grr gσ̃σ̃ gσ̃σ̃ gσ̃σ̃ =
81

√
3 Z

3/4
0 X2

4

r4
+ O(r−2). (6.10)

Unlike the analogous computations in IIB [22], when integrating these energy densities

the factor of
√
−G ∼ r−3 is not strong enough to render the action finite. Hence, this

singularity has both a divergent energy density, and a divergent action.

As discussed in the Introduction, if this singularity is physical then the perturbative

solution we find corresponds to the first-order backreaction of a set of anti-M2 branes in the

Stenzel-CGLP background. If this singularity is not physical, then our analysis indicates

that anti-M2 branes cannot be treated as a perturbation of this background, and hints

towards the fact that antibranes in backgrounds with positive brane charge dissolved in

fluxes do not give rise to metastable vacua.
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A Subtleties in section 2

To justify our choice of integration constant in (2.20), we derive the expression for the

non-dynamical scalar K ′
0 in two different ways. First of all, we use the expression (2.20)

for K ′ that arises from its algebraic equation of motion. Inserting the zeroth-order expres-

sions (2.27) of the fields appearing in this expression, we find

K ′
0 = −3m2 sinh(r)

cosh(r)4
e−6z0(r)

(2 + cosh(2 r))3/4
. (A.1)

On the other hand, let us proceed to see if this agrees with the expression obtained

from the condition that the zeroth-order CGLP solution K ′ has to satisfy

K ′
0 = e−6z0(r) dH0

dr
, (A.2)

with H0 solving

∇2
8 H0 = −1

2
m2 | F4 |2 . (A.3)

This reduces to

dH0

dr
= 323 m2 e2γ0

sinh(2 r)3
(

ℓ − tanh(r)4
)

(A.4)

and one must set ℓ = 0 in order for the solution to be regular. As a result,

K ′
0 = −3m2 sinh(r)

cosh(r)4
e−6z0(r)

(2 + cosh(2 r))3/4
, (A.5)

in agreement with the expression for K ′
0 found above from the equation of motion for this

non-dynamical field determined in term of f0 and h0 (2.27).

B Behavior of ξ̃

We collect here the infrared and ultraviolet asymptotic expansions of the exact solutions

for ξ̃i which we have derived in section 4.1.
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B.1 IR behavior of ξ̃

The IR behavior of the ξ̃a’s is the following:

ξ̃IR
1 = X1 + 2X4

[

1 − 31/4

2
m2 e−3z0(0) r2

]

+ O(r4) ,

ξ̃IR
2 =

[

3

2
X1 −

4

3
√

3
X5 +

7

3
X4

]

+

[

3

2
X1 +

8

3
√

3
X5

+
1

3
X4

(

13 − 10 31/4 e−3z0(0) m2
)

]

r2 + O(r4) ,

ξ̃IR
3 = 31/4 e−3z0(0) m2 X4 r2 + O(r4) , (B.1)

ξ̃IR
4 = X4

[

1 − 31/4

2
m2 e−3z0(0) r2

]

(B.2)

ξ̃IR
5 =

1

r2

[

X5 + X4

(√
3

2
− 33/4

2
e−3z0(0) m2

)]

+

[

1

6
(7X5 + 12X6) + X4

[

17

20
√

3
− 97

12
33/4 e−3z0(0) m2

−
√

6 e−3z0(0) m2 Π

(

−
√

3;−arcsin

(

1

31/4

)

| −1

)]

− 33/4 e−3z0(0) m2 X4 log(r)

]

+

[

53

120
X5 +

1

48
X4

(

53

5

√
3 +

47

5
33/4 e−3z0(0) m2

)]

r2 + O(r4) ,

ξ̃IR
6 = − 2

r2

[

2X5 +
√

3 X4

]

+

[

4

3
X5 + X4

(

2√
3

+ 33/4 e−3z0(0) m2

)]

+

[

37

30
X5 + X4

(

37

20
√

3
− 2 33/4 e−3z0(0) m2

)]

r2 + O(r4) .

B.2 UV behavior of ξ̃

The UV behavior of the ξ̃a’s is as follows:

ξ̃UV
1 = X1 +

32

3
23/4 m2 X4 e−3z0(0) e−

9

2
r + O(e−13r/2) ,

ξ̃UV
2 = − 3

32
X3 e6r +

3

16
X3 e4r +

[

3

8
X1 +

3

32
X3 +

2

3
√

3
(X5 + X6)

]

e2r

+

[

3

4
X1 −

3

8
X3 −

8

3
√

3
(X5 + X6)

]

+

[

3

8
X1 +

3

32
X3 +

2

3
√

3
(X5 + X6)

]

e−2r

+

[

3

16
X3 +

64

3
√

3
X6

]

e−4r +
32

7
23/4 e−3z0(0) m2 X4 e−9r/2

−
[

3

32
X3 +

256

3
√

3
X6

]

e−6r + O(e−13r/2) ,

ξ̃UV
3 =

1

8
X3 e6r − 9

8
X3 e2r + 2X3 −

9

8
X3 e−2r

+
32

7
23/4 e−3z0(0) m2 X4 e−9r/2 +

1

8
X3 e−6r + O(e−13r/2) ,
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ξ̃UV
4 =

16

3
23/4 m2 X4 e−3z0(0) e−

9

2
r + O(e−13r/2) , (B.3)

ξ̃UV
5 =

1

2
(X5 + X6) er +

5

2
(X5 + X6) e−r + 2 (3X5 − X6) e−3r

+ 2 (5X5 + X6) e−5r − 96

13
23/4

√
3 e−3z0(0) m2 X4 e−11r/2 + O(e−13r/2) ,

ξ̃UV
6 = (X5 + X6) er − 7 (X5 + X6) e−r − 24 (X5 − X6) e−3r

− 8 (5X5 + 7X6) e−5r − 192

13
23/4

√
3 m2 X4 e−3z0(0) e−11r/2 + O(e−13r/2) .
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