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Abstract

Background: Cancer patient’s outcome is written, in part, in the gene expression profile of the tumor. We
previously identified a 62-probe sets signature (NB-hypo) to identify tissue hypoxia in neuroblastoma tumors and
showed that NB-hypo stratified neuroblastoma patients in good and poor outcome [1]. It was important to
develop a prognostic classifier to cluster patients into risk groups benefiting of defined therapeutic approaches.
Novel classification and data discretization approaches can be instrumental for the generation of accurate
predictors and robust tools for clinical decision support. We explored the application to gene expression data of
Rulex, a novel software suite including the Attribute Driven Incremental Discretization technique for transforming
continuous variables into simplified discrete ones and the Logic Learning Machine model for intelligible rule
generation.

Results: We applied Rulex components to the problem of predicting the outcome of neuroblastoma patients on
the bases of 62 probe sets NB-hypo gene expression signature. The resulting classifier consisted in 9 rules utilizing
mainly two conditions of the relative expression of 11 probe sets. These rules were very effective predictors, as
shown in an independent validation set, demonstrating the validity of the LLM algorithm applied to microarray
data and patients’ classification. The LLM performed as efficiently as Prediction Analysis of Microarray and Support
Vector Machine, and outperformed other learning algorithms such as C4.5. Rulex carried out a feature selection by
selecting a new signature (NB-hypo-II) of 11 probe sets that turned out to be the most relevant in predicting
outcome among the 62 of the NB-hypo signature. Rules are easily interpretable as they involve only few
conditions.
Furthermore, we demonstrate that the application of a weighted classification associated with the rules improves
the classification of poorly represented classes.

Conclusions: Our findings provided evidence that the application of Rulex to the expression values of NB-hypo
signature created a set of accurate, high quality, consistent and interpretable rules for the prediction of
neuroblastoma patients’ outcome. We identified the Rulex weighted classification as a flexible tool that can support
clinical decisions. For these reasons, we consider Rulex to be a useful tool for cancer classification from microarray
gene expression data.
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Background
Neuroblastoma (NB) is the most common solid pediatric
tumor, deriving from ganglionic lineage precursors of the
sympathetic nervous system [2]. It shows notable hetero-
geneity of clinical behavior, ranging from rapid progres-
sion, associated with metastatic spread and poor clinical
outcome, to spontaneous, or therapy-induced regression
into benign ganglioneuroma. Age at diagnosis, stage and
amplification of the N-myc proto-oncogene (MYCN) are
clinical and molecular risk factors that the International
Neuroblastoma Risk Group (INRG) utilized to classify
patients into high, intermediate and low risk subgroups
on which current therapeutic strategy is based. About
fifty percent of high-risk patients die despite treatment
making the exploration of new and more effective strate-
gies for improving stratification mandatory [3].
The availability of genomic profiles improved our prog-

nostic ability in many types of cancers [4]. Several groups
used gene expression-based approaches to stratify NB
patients. Prognostic gene signatures were described
[5-11] and classifier proposed to predict the risk class
and/or patients’ outcome [5-13]. We and other scientific
groups have identified tumor hypoxia as a critical compo-
nent of neuroblastoma progression [14-16]. Hypoxia is a
condition of low oxygen tension occurring in poorly vas-
cularized areas of the tumor which has profound effects
on cell growth, genotype selection, susceptibility to apop-
tosis, resistance to radio- and chemotherapy, tumor
angiogenesis, epithelial to mesenchymal transition and
propagation of cancer stem cells [17-20]. Hypoxia acti-
vates specific genes encoding angiogenic, metabolic and
metastatic factors [18,21] and contributes to the acquisi-
tion of the tumor aggressive phenotype [18,22,23]. We
have used gene expression profile to assess the hypoxic
status of NB cells and we have derived a robust 62-probe
sets NB hypoxia signature (NB-hypo) [14,24], which was
found to be an independent risk factor for neuroblastoma
patients [1].
The use of gene expression data for tumor classifica-

tion is hindered by the intrinsic variability of the microar-
ray data deriving from technical and biological variability.
These limitation can be overcome by analyzing the
results through algorithms capable to discretize the gene
expression data in broad ranges of values rather than
considering the absolute values of probe set expression.
We will focus on the discretization approach to deal with
gene expression data for patients’ stratification in the pre-
sent work.
Classification is central to the stratification of cancer

patients into risk groups and several statistical and
machine learning techniques have been proposed to deal
with this issue [25]. We are interested in classification
methods capable of constructing models described by a
set of explicit rules for their immediate translation in the

clinical setting and for their easily interpretability, consis-
tency and robustness verification [15,26]. A rule is a state-
ment in the form “if<premise> then<consequence>” where
the premise is a logic product (AND) of conditions on the
attributes of the problem and the consequence indicates
the predicted output. Most used rule generation techni-
ques belong to two broad paradigms: decision trees and
methods based on Boolean function synthesis.
The decision tree approach implements discriminant

policies where differences between output classes are the
driver for the construction of the model. These algorithms
divide iteratively the dataset into smaller subsets according
to a divide and conquer strategy, giving rise to a tree struc-
ture from which an explicit set of rules can be easily
retrieved. At each iteration a part of the training set is split
into two or more subsets to obtain non-overlapping por-
tions belonging to the same output class [27]. Decision
tree methods provide simple rules, and require a reduced
amount of computational resources. However, the accu-
racy of the models is often poor. The divide and conquer
approach prevents the applicability of these models to
relatively small datasets that would be progressively frac-
tionated in very small, poorly indicative, subsets.
Methods based on Boolean function synthesis adopt

an aggregative policy where some patterns belonging to
the same output class are clustered to produce an expli-
cit rule at any iteration. Suitable heuristic algorithms
[28-30] are employed to generate rules exhibiting the
highest covering and the lowest error; a tradeoff
between these two objectives has been obtained by
applying the Shadow Clustering (SC) technique [28]
which leads to final models, called Logic Learning
Machines (LLM), exhibiting good accuracy. The aggre-
gative policy can also consider patterns already included
in previously built rules; therefore, SC generally pro-
duces overlapping rules that characterize each output
class better than the divide-and-conquer strategy. Clus-
tering samples of the same kind permits to extract
knowledge regarding similarities of the members of a
given class rather than information on their differences.
This is very useful in most applications and leads to
models showing higher generalization ability, as shown
by trials performed with SC [31,32].
LLM algorithms prevent the excessive fragmentation

problem typical of divide-and-conquer approach but
come at the expense of the need to implement an intel-
ligent strategy for managing conflicts occurring when
one instance is satisfied by more than one rules classify-
ing opposite outcomes. LLM is a novel and efficient
implementation of the Switching Neural Network (SNN)
model [33] trained through an optimized version of the
SC algorithm. LLM, SNN and SC have been successfully
used in different applications: from reliability evaluation of
complex systems [34] to prediction of social phenomena
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[35], form bulk electric assessment [36] to analysis of bio-
medical data [15,31,32,37,38].
The ability of generating models described by explicit

rules has several advantages in extracting important
knowledge from available data. Identification of prog-
nostic factors in tumor diseases [15,37] as well as selec-
tion of relevant features in microarray experiments [31]
are only two of the valuable targets achieved through
the application of LLM and SNN. In this analysis, to
improve the accuracy of the model generated by LLM, a
recent innovative preprocessing method, called Attribute
Driven Incremental Discretization (ADID) [39] has been
employed. ADID is an efficient data discretization algo-
rithm capable of transforming continuous attributes into
discrete ones by inserting a collection of separation
points (cutoffs) for each variable. The core of ADID
consists in an incremental algorithm that adds the cutoff
iteratively obtaining the highest value of a quality mea-
sure based on the capability of separating patterns of
different classes. Smart updating procedures enable
ADID to efficiently get a (sub) optimal discretization.
Usually, ADID produces a minimal set of cutoffs for
separating all the patterns of different classes. ADID and
LLM algorithms are implemented in Rulex 2.0 [40], a
software suite developed and commercialized by Impara
srl that has been utilized for the present work.
Blending the generalization and the feature selection

strength of LLM and the efficiency of ADID in mapping
continuous variables into a discrete domain with the stra-
tification power of the NB-hypo signature we obtained an
accurate predictor of NB patients’ outcome and a robust
tool for supporting clinical decisions. In the present
work, we applied Rulex 2.0 components to the problem

of classifying and predicting the outcome of neuroblas-
toma patients on the bases of hypoxia- specific gene
expression data. We demonstrate that our approach gen-
erates an excellent discretization of gene expression data
resulting in a classifier predicting NB patients’ outcome.
Furthermore, we show the flexibility of this approach,
endowed with the ability to steer the outcome towards
clinically oriented specific questions.

Results
Rulex model
We analyzed gene expression of 182 neuroblastoma
tumors profiled by the Affymetrix platform. The charac-
teristics of the NB patients are shown in Table 1 and are
comparable to what previously described [6]. We selected
this dataset because the gene expression profile of the pri-
mary tumor, performed by microarray, was available for
each patient. “Good” or “poor” outcome are defined, from
here on, as the patient’s status “alive” or “dead” 5 years
after diagnosis respectively.
We previously described the NB-hypo 62 probe sets

signature that represents the hypoxic response of neuro-
blastoma cells [14,24] and used this signature for devel-
oping the hypoxia-based classifier to predict the patients’
status utilizing ADID to convert the continuous probe
sets values into discrete attributes and LLM algorithm to
generate classification rules. Both techniques are imple-
mented in Rulex 2.0. The first assessment of the classifier
was done on the training set of 109 randomly chosen
patients, while the remaining 73 patients were utilized to
validate the predictions (Figure 1). The outcome of the clas-
sifier is a collection of rules, in the form if<premise> then
<consequence>, where the premise includes conditions

Table 1 Characteristics of 182 neuroblastoma patients included in the study.

Risk factors and outcome Training set (n = 109)a% Independent test set (n = 73)a

Number % Number %

Age at diagnosis (Years) 1 54 49 33 46

> 1 55 51 40 54

INSS stage

1 29 26 14 19

2 15 14 9 13

3 16 15 7 9

4 33 30 35 48

4s 16 15 8 11

MYCN status

Normal 91 83 61 83

Amplified 18 17 12 17

Outcome

Good 81 74 50 68

Poor 28 26 23 32
a The number of patients is 109 in the training set and 73 in the test set. The data show the total number of patients and the relative percentage in each
subdivision.
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based on the probe sets values and the consequence is the
patient status. Rulex 2.0 will use these rules collectively for
outcome prediction on the validation set.
The generation of the classification rules requires a dis-

cretization step because this simplifies the selection of
the cut-off values of the probe sets expression (Figure 1).
The discretization yielded one cutoff value for each
probe set which was sufficient for modeling the outcome.
The use of a single cutoff dichotomizes the probe set

attributes in low or high expression, drastically reducing
the influence of the technical and biological variability
present in the models associated with the absolute values
of probe sets expression.
Furthermore, a test on the maximum error allowed for a

rule was defined. The final classification rules were trained
with the optimal value of 25% associated with the maximal
mean accuracy of 87%, determined by 10 fold cross valida-
tion analysis (Figure 1). The procedure generated 9 rules,

Figure 1 Rule generation workflow. The initial 182 patients dataset is randomly divided into training and test sets. The training set is used by
the supervised learning procedure to iteratively calculate the LLM parameter:” maximum error allowed for a rule” by performing a complete 10-
fold cross validation. The whole training set is randomly subdivided into 10 non-overlapping subsets, nine of which are used to train the
classifier by employing ADID and LLM. The classifier is subsequently used to predict the outcome of the patients in the excluded subset. This
procedure is repeated 10 times until every subset is classified once. Each parameter value is then evaluated according to the mean classification
accuracy obtained in the cross validation. The parameter value, which obtained the highest mean accuracy, is selected to generate the final
optimal classification rules. The rules are then tested on an independent cohort to assess their ability to predict patients’ outcome.
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numbered from 1 to 9 (Rule ID) in Table 2 and based on
conditions containing high or low probe sets expression
value (above or below the set threshold respectively). Rule
premises are limited to two conditions with the exception
of rule 7 that has only one condition. Six rules predict
good outcome and 3 poor outcome; they will be consid-
ered together in scoring the class attribution of new
patients of the validation set. This is the optimal scenario
proposed by Rulex 2.0 to utilize the 62 probe sets
NB-hypo signature for classifying patients’ outcome.
Three parameters, shown in Table 2, estimate the qual-

ity of the rules: 1) covering, measuring the generality,
2) error, measuring the ambiguity and 3) Fisher’s p-value
measuring the significance of each rule. The statistical sig-
nificance of each rule by Fisher’s exact test was very high
(p< 0.001) providing strong evidence of the excellent qual-
ity of the rules. The covering ranged among rules from
48% (rule 6) to 80% (rule 7) for good outcome classes and
ranged from 57% (rule 9) to 92% (rule 7) for poor
outcome. Error ranged from 3.5% (rule 1) to 14% (rules 2
and 5) for good outcome class and ranged from 7.4% (rule
9) to 17% (rule 7) for poor outcome class. These rules
have interesting features that will be addressed in detail.
The first consideration is that the overall covering of the
rules classifying good and poor outcome adds up to 380%
and 209%, respectively, indicating overlap among rules.
This is a characteristic of the LLM method implementing
an aggregative, rather than fragmentation, policy as illu-
strated in the Materials and Methods section. However,
overlap among the rules can lead to a conflict if the probe
sets values of a patient satisfies two or more rules predict-
ing opposite outcomes. To investigate whether overlap-
ping among our rules can be source of conflicts we plotted
in Figure 2 each patient’s membership to the nine rules.
The plot clusters the rules classifying good and poor out-
come and the patients belonging to good or poor outcome

classes. The results show that each patient is covered by at
least one rule. Overlaps exist and occur mainly among
rules predicting the same outcome (Figure 2B and 2C),
which do not lead to classification conflicts. However, 30
patients (27% of the dataset) were covered by rules per-
taining to opposite outcomes and are represented by those
present in quadrant 2A (19 patients) or 2D (11 patients).
Rulex 2.0 overcomes this problem by employing for
assigning a class to a new sample a fast procedure that
evaluates all the rules satisfied by it and their covering,
thus generating a consensus outcome to be assigned to
the sample as detailed in the Materials and Methods
section.
A second characteristic of the classification rules is

that they include only 11 out of 62 probe sets of the ori-
ginal NB-hypo signature. The relationship among probe
sets and rules is shown in Table 3. Rulex 2.0 operated a
second feature selection on the original 62 probe sets
optimized for functioning in a binary profile of low and
high probe set expression and gave rise to a modified
hypoxia signature that we name NB-hypo-II.
It was of interest to assess the relative importance of

each probe set in the classification scheme leading to iden-
tification of poor and good outcome patients. Negative or
positive values indicate low or high expression associated
with the predicted outcome and the relative relevance is
measured by the absolute value. Ranking the probe sets
may be of relevance to pick the genes for further validation
on an alternative platform. It is interesting to note that
probe set 217356_s_at is the most relevant for the classifi-
cation of good and poor outcome patients.
A third interesting feature of the rules is the dichoto-

mization of the expression values of each probe set even
if Rulex 2.0 had no constraints on the discretization that
could lead to multiple cutoffs or overlapping expression
values in different rules. We were intrigued by these

Table 2 Classification rules.

Rule IDa Cond 1 Cond 2 Predicted
Outcome

Coveringb (%) Errorc (%) Fisher
pvalued

1 IF( 217356_s_at ≤ 721 226452_at < 326 )THEN Good 80 3.5 <0.001

2 IF ( 206686_at ≤ 26 226452_at ≤326 )THEN Good 70 14 <0.001

3 IF ( 200738_s_at ≤ 1846 230630_at> 23 )THEN Good 62 10 <0.001

4 IF( 209446_s_at ≤ 57 223172_s_at < 73 )THEN Good 60 10 <0.001

5 IF( 202022_at > 131 223193_x_at < 324 )THEN Good 60 14 <0.001

6 IF( 224314_s_at ≤ 29 236180_at <13 )THEN Good 48 7.1 <0.001

7 IF( 217356_s_at > 721 )THEN Poor 92 17 <0.001

8 IF( 223172_s_at >73 226452_at> 326 )THEN Poor 60 8.6 <0.001

9 IF( 206686_at > 26 223172_s_at>73 )THEN Poor 57 7.4 <0.001
a Cond 1 and Cond 2 indicate the conditions into the premises of the rules.
b The covering accounts for the fraction of patients that verify the rule and belong to the target outcome.
c The error accounts for the fraction of patients that satisfy the rule and do not belong to the target outcome.
d Fisher p-value quantifies the statistical significance of the rule on the basis of the number of patients correctly and incorrectly classified by a rule and the
number of patients of the dataset belonging to each specific outcome.
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results and decided to examine the relationship between
the cutoff expression values identified by Rulex and
those obtained by Kaplan-Meyer analysis. The Kaplan-
Meier algorithm calculates all possible cut- off points of
a given probe set in a cohort of patients and selects the
one maximizing the distinction between good and poor
outcome. The results, shown in Table 4, demonstrated a

general quite good concordance between the cutoff
values of the Kaplan-Meier and those generated by
Rulex. In particular, the two measures always differed by
less than ±50% in magnitude, but only in some cases
(probe sets 2, 3, 4, 5, and 8 for both overall and relapse
free survival, and probe sets 6 and 7 for overall survival
such a difference was lower than 25%. These (even if
rather small) discrepancies are probably related to the
capability of ADID to exploit the complex multivariate
correlation among probe sets. Furthermore, we found a
concordance also in the relationship between high/low
probe set and outcome in Rulex derived rules and
Kaplan-Meier plots (Table 4).

Outcome prediction
The ability of the rules in Table 2 to predict patients’ out-
come was tested on a 73 patients’ independent dataset.
Results are expressed as accuracy, recall and precision,
assessing the performance in classifying good outcome,
specificity and negative predictive values (NPV) assessing
the performance in classifying poor outcome patients. The
direct evaluation of the performance of the 9 rules on the
validation set is represented by ADID in Table 5, by ADID
+LLM in Table 6, the base configuration of Table 7 and by
no dataset modification in Additional File 1. The results
demonstrate a good accuracy comparable to what reported
by other algorithms [13]. Furthermore, the classification of
good outcome was superior to that of poor outcome

Figure 2 Patients representation in the rules of Table 2. Plot of the membership of the 109 patients (x axis) to the rules (y axis) of the
classifier in Table 2. The rule identifier and predicted outcome are listed in right side of the plot. Two oriented lines divide the plot. The
horizontal line separates the rules classifying good outcome from those classifying poor outcome. The vertical line separates good outcome
from poor outcome patients. Each point of the plot indicates the membership of a patient to one rule. The two lines separate the plot in four
sections labeled as A, B, C and D. Section A includes all the patients incorrectly classified by a poor outcome rule. Section B includes all the
patients correctly classified by a poor outcome rule. Section C includes all the patients correctly classified by a good outcome rule and Section
D includes all the patients incorrectly classified by a good outcome rule.

Table 3 Probe sets characteristics of the new NB-hypo-II
signature.

Probe setsa Rule IDb Probe set relevancec

Good outcome Poor outcome

200738_s_at 3 -0.49 0

202022_at 5 0.5 0

206686_at 2, 9 -0.48 0.26

209446_s_at 4 -0.25 0

217356_s_at 1, 7 -0.74 0.92

223172_s_at 4, 8, 9 -0.35 0.48

223193_x_at 5 -0.1 0

224314_s_at 6 -0.22 0

226452_at l, 2, 8 -0.26 0.34

230630_at 3 0.13 0

236180_at 6 -0.25 0
a Affymetrix probe sets belonging to NB-hypo-II signature.
b Rule ID indicates the ID of the rules in which the probe set occurs (as
illustrated in Table 2).
c Relevance measures the importance of the features included into the rules.

The relevance calculated for each outcome is shown.
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patients as shown for example by a recall of 90% relative to
57% of specificity.
PVCA analysis [41] was utilized to estimate the potential

variability of experimental effects including batch. The
analysis revealed that batch effect explained a moderate
21% of the overall variation in our dataset and a Frozen
Surrogate Variable Analysis (FSVA) was employed for
removing batch effect. The application of FSVA reduced
batch effect to less than 0.05% of the total variation (data
not shown).
We compared the performances achieved by ADID

and LLM on the batch-adjusted dataset and those on

the original dataset (no dataset modification) to measure
the impact of batch effect on classifier performances.
Performance obtained with the adjusted dataset turns
out to be very similar to that obtained with original data
as shown in Additional file 1 demonstrating that batch
effect had negligible impact on the performances. There-
fore, the dataset with no modifications was utilized for
subsequent analysis.
We then compared the performance of the ADID dis-

cretization approach and those of commonly used discreti-
zation algorithms, namely: entropy based (EntMDL [42]),
Modified Chi Square [43], ROC based (Highest Youden
index([44]), and Equal frequency (i.e. median expression
for each feature). Results detailed in Table 5 showed that

Table 4 Expression cut-offs from the Kaplan-Meier and from the rules.

Probe set IDa NB-hypo-IIb Overallc Relapse freed

Expression cut-offe Worsef Expression cut-offe Worsef

Kaplan-Meier Rulex Kaplan-Meier Rulex Kaplan-Meier Rulex Kaplan-Meier Rulex

1 223172_s_at 107 73 high high 107 73 high high

2 200738_s_at 1553 1846 high high 1553 1846 high high

3 209446_s_at 69 57 high high 69 57 high high

4 226452_at 280 326 high high 280 326 high high

5 217356_s_at 706 721 high high 706 721 high high

6 236180_at 18 13 hgih hgih 13 13 high hgih

7 202022_at 101 131 low low 138 131 low low

8 224314_s_at 25 29 high high 25 29 high high

9 206686_at 36 26 high high 36 26 high high

10 223193_x_at 495 324 high high 572 324 high high

11 230630_at 19 23 low low 35 23 low low
a Probe sets ID indicates the numerical identified of the probeset.
b NB-hyp-II indicates the list of probe sets of the NB-hypo signature belonging to the rules.
c Overall indicates the survival time between the time of an event or last follow up and the time of diagnosis.
d Relapse free indicates the survival time between the first relapse and the time of diagnosis.
e Expression cut-off indicates the optimal cut-off point of each probe set resulting from the Kaplan-Meier scan and from the rules.
f Worse indicates whether high or low expression of a given probe set is associated to the worse survival. Worse survival are calculated from the Kaplan-Meier
curve or from the conditions included into the rules.

Table 5 Comparison among discretization algorithms’
performance.

Algorithmf Accuracya Recallb Precisionc Specificityd NPVe

ADID 80% 90% 82% 57% 72%

EntMDL 68% 60% 91% 87% 50%

Modified Chi2 71% 64% 91% 87% 53%

ROC-based 77% 84% 82% 61% 64%

Equal
Frequency

68% 60% 91% 87% 50%

a Accuracy is the fraction of correctly classified patients and overall classified
patients.
b Recall is the fraction of correctly classified good outcome patients and the
overall predicted good outcome patients.
c Precision is the fraction of correctly classified good outcome patients and
the predicted good outcome patients.
d Specificity is the fraction of correctly classified poor outcome patients and
the overall poor outcome patients.
e NPV(negative predictive value) is the fraction of correctly classified poor
outcome patients and the overall predicted poor outcome patients.
f Discretization algorithms utilized for comparison/

Table 6 Performance of classification algorithms.

Algorithmf Accuracya Recallb Precisionc Specificityd NPVe

ADID + LLM 80% 90% 82% 57% 72%

Decision tree 63% 76% 72% 35% 40%

PAM 81% 90% 83% 61% 74%

SVM 84% 94% 84% 61% 82%
a Accuracy is the fraction of correctly classified patients and overall classified
patients.
b Recall is the fraction of correctly classified good outcome patients and the
overall predicted good outcome patients.
c Precision is the fraction of correctly classified good outcome patients and
the predicted good outcome patients.
d Specificity is the fraction of correctly classified poor outcome patients and
the overall poor outcome patients.
e NPV(negative predictive value) is the fraction of correctly classified poor
outcome patients and the overall predicted poor outcome patients.
f Machine learning algorithms utilized for comparison.
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the discretization performed by ADID produced better
accuracy with respect to the others (80% vs. 68%-77%).
We also compared the performance of LLM and those

of Decision Tree [45], Support Vector Machines (SVM)
[46], and Prediction Analysis of Microarrays (PAM) [47],
to evaluate the ability of LLM to predict patients’ out-
come with respect to other standard supervised learning
methods. Results in Table 6 revealed that ADID and
LLM were able to predict patients’ outcome with better
performances with respect to the decision tree classifier.
The performances of LLM, PAM and SVM classifiers
were comparable.
Overall, the performance was good but unbalanced data-

sets tend to bias the performance towards the most repre-
sented class [48]. In our dataset the good outcome patients
were more frequent (26 % poor and 74% good outcome).
Therefore, we explored the possibility of utilizing a
weighted classification system (WCS) [48-53] to improve
the classification of poorly represented classes or to force
the algorithm to maximize the performance on selected
outcomes. The performance of the base configuration was
taken as reference.
We performed a weighted classification accounting for

the unbalanced class representation in the dataset
(Table 7 configuration W26_74). The weight was calcu-
lated as the inverse proportion of the number of
patients belonging to each class, about 3 times more
weight on the poor outcome class. The major improve-
ment over the base configuration was the specificity
whereas all other parameters were similar or worst.
Configuration W1_1000, was similar to W26_74, but set
the weight of poor outcome 1000 times higher than that
of the good one. Interestingly, its performance was very
close to that of configuration W26_74 despite the dis-
parity in the weight applied, suggesting that small
changes in the relative weight of poor outcome are suffi-
cient to optimize the results. In conclusion, increased
weight on poor outcome augmented the percentage of
correctly classified poor outcome patients even though a
smaller number of patients were included in this class.
This correction may be relevant when maximization of

the specificity isof primary importance as in the case of
using a prudent therapy.
In contrast, configuration W1000_1 sets the weight of

good outcome 1000 times higher than that of poor out-
come. The performance parameters were similar or
higher than the base configuration with the exception of
specificity that was quite low, a situation that appears
symmetrical to those observed previously. The recall is
almost absolute indicating the exceptional ability to clas-
sify good outcome. The drawback of this configuration
is a very low percentage of correct poor outcome classi-
fication that is 35% of all poor outcome patients. This
configuration may be useful in the case of using an
aggressive therapy.
In conclusion, WCS can improve performance para-

meters of classification of poor or good outcome
patients and may be particularly relevant in a situation
where the dataset contains a major unbalance between
classes and/or when clinical decisions may require mini-
mizing false positives or false negatives.

Discussion
Our study is based on gene expression data derived
through the analysis of primary neuroblastoma tumors
by microarray on the Affymetrix platform. We focused
on the expression of 62 probe sets comprising the NB-
hypo signature that we have previously shown to repre-
sent the hypoxia status of neuroblastoma cells [24]. The
association of hypoxia with poor prognosis in neuroblas-
toma patients was previously demonstrated [16,54]. We
studied a cohort of 182 NB patients characterized by
clinical and molecular data addressing the question of
the potential prognostic value of this signature. Rulex
2.0 suite was used to train a model on a set of patients
and validate it on an independent one. We demonstrate
that Attribute Driven Incremental Discretization and
Logic Learning Machine algorithms, implemented in
Rulex 2.0, generated a robust set of rules predicting out-
come of neuroblastoma patients using expression values
of 11 probe sets, specific for hypoxia extracted from the
gene NB-hypo expression profile.

Table 7 Performance comparison among the configurations in the weighted classification on the test set.

Configuration f Accuracya Recallb Precisionc Specificityd Negative Predictive Valuee

Base (not weighted) 80% 90% 82% 57% 72%

W26_74 (balanced outcome) 65% 63% 82% 70% 47%

Wl_1000 (bias poor) 66% 60% 86% 78% 47%

W1000_1 (bias good) 78% 98% 77% 35% 89%
a Accuracy is the fraction of correctly classified patients and overall classified patients.
b Recall is the fraction of correctly classified good outcome patients and the overall predicted good outcome patients.
c Precision is the fraction of correctly classified good outcome patients and the predicted good outcome patients.
d Specificity is the fraction of correctly classified poor outcome patients and the overall poor outcome patients.
e Negative predictive value is the fraction of correctly classified poor outcome patients and the overall predicted poor outcome patients.
f Configuration indicates the specific weights assigned to the outcomes in the weighted classification.
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Outcome prediction of NB patients was reported by sev-
eral groups using a combination of different risk factors
and utilizing various algorithms [5,6,12,55,56]. Several
groups have used gene expression-based approaches to
stratify neuroblastoma patients and prognostic gene signa-
tures have been described often based on the absolute
values of the probe sets after appropriate normalization
[5-11,13]. Affymetrix GeneChip microarrays are the most
widely used high-throughput technology to measure gene
expression, and a wide variety of preprocessing methods
have been developed to transform probe intensities
reported by a microarray scanner into gene expression esti-
mates [57]. However, variations from one experiment to
another [58] may increase data variability and complicate
the interpretation of expression analysis based on absolute
gene expression values. We addressed the problem by
applying the Attribute Driven Incremental Discretization
algorithm [39] that maps continuous gene expression
values into discrete attributes. Interestingly, the algorithm
applied to our dataset showed that the introduction of a
single cutoff was sufficient to create two expression pat-
terns, operationally defined as low and high, capable of
describing the probe set status accurately enough for effec-
tive patients classification. This approach minimizes the
variability and errors associated with the use of absolute
values to interpret microarray gene expression data.
The validity of the discretization implemented by Rulex

2.0 was further documented by an empirical validation
where we calculated the optimal cutoff value for each of
the 11 probe sets tested in a Kaplan-Meier analysis of the
patients’ survival. It is noteworthy that such analysis uti-
lized the survival time of the patient as opposed to 5 years
survival considered by Rulex 2.0. Nevertheless, we demon-
strated that the cutoff values calculated by either
approaches were rather similar, thus supporting the
robustness of the ADID algorithm to identify relevant dis-
crete groups of expression values. From a technical point
of view ADID is a multivariate method searching for the
minimum number of cutoffs that separate patients belong-
ing to different classes. On the other hand, the Kaplan-
Meier scan is a univariate technique having the aim of
identifying the value of the probe set that maximizes the
distance among the survival times of resulting groups. It
should be noted that these two approaches are indepen-
dent from each other since they are based on different
algorithms and different classifications.
Only 11 out of 62 probe sets of the original signature

were considered by LLM for building the classifier. This
selection has a biological meaning. In fact, the original 62
probe sets NB-hypo signature was obtained following a
biology driven approach [1] in which the prior knowledge
on tumor hypoxia was the bases for the analysis and the
signature was derived from hypoxic neuroblastoma cell
lines [14]. Hence, NB-hypo is optimized for detecting

tumor hypoxia. The importance of hypoxia in condition-
ing tumor aggressiveness is documented by an extensive
literature [17,19,20,22,59]. However, NB-hypo was not
optimized to predict outcome that is dependent on fac-
tors other than hypoxia. Rulex 2.0 performed a feature
selection by identifying the 11 probe sets that were the
most relevant in predicting outcome among those of the
NB-hypo signature.
One key feature of LLM is to implement an aggregative

policy leading to the situation in which one patient can
be covered by more than one rule. This leads to the
advantage of avoiding dataset fragmentation typical of
the divide-and-conquer paradigm. Furthermore, the
robustness of the resulting model is increased; in fact, if a
patient satisfies more than one rule for the same output
class, the probability of a correct classification is higher.
The same outcome is generally predicted by every rule

verified by a given patient. However, there are situations
in which a patient satisfies rules associated with opposite
outcomes, thus generating a potential conflict. Rulex 2.0
overcomes this problem by adopting a procedure for
assigning a specific class on the basis of the characteris-
tics of the verified rules. A conflict should not necessarily
be considered as a limit of the proposed approach, but it
could reflect a source of ambiguity present in the dataset.
If this were the case, any method building models from
data would always reflect this ambiguity.
The generation of a predictive classifier based on gene

expression obtained from different institutions raised the
question of a possible batch effect in the data. We uti-
lized Frozen Surrogate Variable Analysis method, a batch
effect removal method capable of estimating the training
batch, and used it as a reference for adjusting batch effect
of other batches. In particular, those for which no infor-
mation about the outcome is known. This was not possi-
ble with other known batch removal methods such as the
Combating Batch Effects (Combat) [60], which adjusts
the expression values of both training and test batch [61].
We compared the performances achieved by ADID and
LLM on the batch-adjusted dataset and those on the ori-
ginal dataset (no dataset modification) to measure the
impact of batch effect on classifier performances. Perfor-
mance obtained with the adjusted dataset showed that
batch effect had negligible impact on performances. Pre-
vious studies observed that the application of batch effect
removal methods for prediction does not necessarily
result in a positive or negative impact [61]. Furthermore,
batch effect removal methods may remove the true biolo-
gically based signal [61]. For this reasons, the analysis of
the present manuscript was performed on the original
dataset excluding any modification for batch removal.
The 9 rules generated by ADID and LLM achieved a

good accuracy on an independent validation set. We com-
pared the accuracy of our new classifier with that of the
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top performing classifiers for NB patients’ outcome pre-
diction listed in [13] to study the concordance of the per-
formance achieved by the 9 rules with that of other
previously published classifiers. The classifiers were gener-
ated on different signatures and algorithms and the accu-
racy reported ranged from 80% to 87%. Note that those
classifiers were validated on a different test set; they uti-
lized different algorithms and signatures. We concluded
that the accuracy of our rules and that of other techniques
reported in literature were concordant.
ADID represents an innovative discretization method

that was used in combination with LLM for classifica-
tion purposes. In the present study, ADID demonstrated
to outperform other discretization algorithms, based on
univariate analysis, indicating the capability of ADID to
exploit the complex correlation structure commonly
encountered in biomedical studies, including gene
expression data sets. Moreover, ADID-LLM showed bet-
ter performances with respect to the decision tree classi-
fier. This was somewhat predictable because the lower
performance of the decision tree with respect to other
approaches has been pointed out in literature [15]. The
LLM rules, SVM and PAM classifier achieved similar
performances. The good performance achieved by ADID
and LLM and the explicit representation of the knowl-
edge extracted from the data provided by the rules
demonstrated the utility of ADID and LLM in patients’
outcome prediction.
Our dataset suffers of class-imbalance as many other

datasets [48-53]. In fact, the good outcome class is over-
expressed with respect to the poor outcome class. Rulex
2.0 implements a novel algorithmic strategy that allows
setting up different weights to outcomes biasing the
assignment to a class towards that of interest. It should
be noted that weighting is effective only on class assign-
ment for patients verified by conflicting rules. We have
utilized the weight approach to represent the situation in
which either poor or good outcome was favored or to
address the imbalance between good and poor outcome
patients in our dataset. We found that, in the absence of
predefined weights, the algorithm generates a good per-
formance somewhat unbalanced towards better classifica-
tion of good outcome patients. By changing the weights
we were in the position of steering the prediction towards
a high precision in classifying poor outcome patients or
in privileging the specificity. This tool may be or practical
importance in the decision making process of clinicians
that are confronted with difficult therapeutic choices.

Conclusions
We provided the first demonstration of the applicability
of data discretization and rule generation methods
implemented in Rulex 2.0 to the analysis of microarray
data and generation of a prognostic classifier. Rulex

automatically derived a new signature, NB-hypo II,
which is instrumental in predicting the outcome of NB
patients. The performances achieved by Rulex are com-
parable and in some case better than those of other
known data discretization and classification methods.
Furthermore, the easy interpretability of the rules and
the possibility to employ weighted classification make
Rulex 2.0 a flexible and useful tool to support clinical
decisions and therapy assignment.

Methods
Patients
Affymetrix GeneChip HG-U133plus2.0 enrolled 182 neu-
roblastoma patients on the bases of the availability of gene
expression profile. Eighty-eight patients were collected by
the Academic Medical Center (AMC; Amsterdam,
Netherlands) [1,62]; 21 patients were collected by the
University Children’s Hospital, Essen, Germany and were
treated according to the German Neuroblastoma trials,
either NB97 or NB2004; 51 patients were collected at
Hiroshima University Hospital or affiliated hospitals and
were treated according to the Japanese neuroblastoma
protocols [63]; 22 patients were collected at Gaslini Insti-
tute (Genoa, Italy) and were treated according to Italian
AIEOP protocols. The data are stored in the R2 microar-
ray analysis and visualization platform (AMC and Essen
patients) or at the BIT-neuroblastoma Biobank of the
Gaslini Institute. The investigators who deposited data in
the R2 repository agree to use them for this work. In addi-
tion, we utilized data present on the public database at the
Gene Expression Omnibus number GSE16237 for
Hiroshima patients [63]. Informed consent was obtained in
accordance with institutional policies in use in each coun-
try. In every dataset, median follow-up was longer than
5 years, tumor stage was defined as stages 1, 2, 3, 4, or 4s
according to the International Neuroblastoma Staging
System (INSS), normal and amplified MYCN status were
considered and two age groups were considered, those with
age at diagnosis smaller than 12 months and greater or
equal to 12 months. Good and poor outcome were defined
as the patient’s status alive or dead 5 years after diagnosis.
The characteristics of the patients are shown in Table 1.

Batch effect measure and removal
The PVCA approach [41] was used to estimate the varia-
bility of experimental effects including batch. The pvca
package implemented in R was utilized to perform the
analysis setting up a pre- defined threshold of 60%. The
analysis included Age at diagnosis, MYCN amplification,
INSS stage, and Outcome and Institute variables. The
estimation of experimental effects was performed before
and after the batch effect removal.
The frozen surrogate variable analysis (FSVA) imple-

mented in the sva package [64] was utilized for removing
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the batch effect from the training and the test sets. The
parametric prior method and the Institute batch variable
were set up for the analysis.

Gene expression analysis
Gene expression profiles for the 182 tumors were
obtained by microarray experiment using Affymetrix
GeneChip HG-U133plus2.0 and the data were processed
by MAS5.0 software according to Affymetrix guideline.

Preprocessing step
To describe the procedure adopted to discretize values
assumed by the probe sets a basic notation must be
introduced. In a classification problem d-dimensional
examples x ∈ X ⊂ �d , are to be assigned to one of q
possible classes, labeled by the values of a categorical
output y. Starting from a training set S including n pairs
(xi, yi), i = 1, ..., n, deriving from previous observations,
techniques for solving classification problems have the
aim of generating a model g(x), called classifier, that
provides the correct answer y = g(x) for most input pat-
terns x. Concerning the components xj two different
situations can be devised:

1. ordered variables: xj varies within an interval [a,b]
of the real axis and an ordering relationship exists
among its values.
2. nominal (categorical) variables: xj can assume
only the values contained in a finite set and there is
no ordering relationship among them.

A discretization algorithm has the aim of deriving for
each ordered variable xj a (possibly empty) set of cutoffs gjk,
with k = 1, ..., tj, such that for every pair xu, xv of input vec-
tors in the training set belonging to different classes (yu ≠
yv) their discretized counterparts zu, zv have at least one
different component.
Denote with rj the vector which contains all the aj dis-

tinct values for the input variable xj in the training set,
arranged in ascending order, i.e. rjl<rj,l+1 for each l = 1, ...,
aj-1. Then, we can consider a set of binary values τjl, with
j = 1, ..., d and l = 1, ..., aj-1, asserting if a separation must
be set for the j-th variable between its l-th and (l+1)-th
values:

τjl =
{
1, if γj contains ρjl

0, otherwise

Of course, the total number of possible cutoffs is
given by

d∑
j=1

αj−1∑
l=1

τjl

which must be minimized under the constraint that
examples xu and xv belonging to different classes have
to be separated at least by one cutoff. To this aim, let
Xjuv the set of indexes l such that rjl lies between xuj
and xvj:

Xjuv =
{
l|xuj < ρjl < xvj|

}
Then, the discretization problem can be stated as:

minτ

d∑
j=1

αj−1∑
l=1

τjl

subj to
d∑

j=1

∑
l∈Xjuv

τjl ≥ 1 for each u, v, s.t.yu �= yv (1)

To improve the separation ability of the resulting set
of cutoffs the constraint in (1) can be reinforced by
imposing that

d∑
j=1

∑
l∈Xjuv

τjl ≥ s

for some s ≥ 1. Intensive trials on real world datasets
have shown that a good value for s is given by s= 0.2d;
this choice has been adopted in all the analysis per-
formed in the present paper.
Since the solution of the programming problem in (1)

can require an excessive computational cost, a near-
optimal greedy approach is adopted by the Attribute
Driven Incremental Discretization (ADID) procedure
[39]. It follows an iterative algorithm that adds itera-
tively the cutoff obtaining the highest value of a quality
measure based on the capability of separating patterns
belonging to different classes. Smart updating proce-
dures enable ADID to efficiently attain a (sub) optimal
discretization.
After the set of candidate cutoffs is produced, a subse-

quent phase is performed, to refine their position. This
updating task significantly increases the robustness of
final discretization.

Classification by ADID and LLM implemented in Rulex 2.0
A classification model was built on the expression values
of the 62 probe sets constituting NB-hypo signature [1].
Model generation and performance was established by
splitting the dataset into a training set, comprising 60% of
the whole patients cohort, and a test set comprising the
remaining 40%. To build a classifier, a Rulex 2.0 process
was designed. A discretizer component that adopts the
Attribute Driven Incremental Discretization (ADID) pro-
cedure [39] and a classification component that adopts a
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rule generation method called Logic Learning Machine
(LLM) were utilized into the process. Entropy based
(EntMDL [42]), Modified Chi Square [43], ROC based
(Highest Youden index ([44]), and Equal frequency (i.e.
median expression for each feature) components have
been executed as alternative discretization methods. To
design the most accurate classifier one important para-
meter of the LLM component was evaluated. The para-
meter was the maximum error allowed on the training set.
It defines the maximum percentage of examples covered
by a rule with a class differing from the class of the rule.
The parameter values evaluated ranged in the set 0%, 5%,
10%, 15%, 20%, 25%, and 30%. For each parameter value, a
10 times repeated 10-fold cross validation analysis was
performed and the classification performances were col-
lected. The parameters’ choice that obtained the best
mean classification accuracy was selected to train the final
gene expression based classifier on the whole training set
utilizing the aforementioned Rulex components. The
Rulex software suite is commercialized by Impara srl[40].
Decision Tree [45], Support Vector Machines (SVM)

[46], and Prediction Analysis of Microarrays (PAM) [47]
were run on the same training and test sets for reference.

Performance evaluation in predicting patients’ outcome
To evaluate the prediction performance of the classifiers
we used the following metrics: accuracy, recall, specificity
and negative predictive values (NPV), considering good
outcome patients as positive instances and poor outcome
patients as negative instances. Accuracy is the proportion
of correctly predicted examples in the overall number of
instances. Recall is the proportion of correctly predicted
positive examples against all the positive instances of the
dataset. Precision is the proportion of correctly classified
positive examples against all the predicted positive
instances. Specificity is the proportion of correctly pre-
dicted negative examples against all the negative
instances of the dataset. NPV is the proportion of the
correctly classified negative examples against all the pre-
dicted negative instances.

Rule quality measures
Rule generation methods constitute a subset of classifica-
tion techniques that generate explicit models g(x)
described by a set of m rules rk, k = 1, ..., m, in the if-then
form:

if < premise > then < consequence >

where <premise> is the logical product (and) of mk con-
ditions ckl, with l = 1, ..., mk, on the components xj,
whereas <consequence> gives a class assignment y = ỹ for
the output. In general, a condition ckl in the premise invol-
ving an ordered variable xj has one of the following forms

xj >l, xj ≤ μ, l<xj ≤ μ, being l and μ two real values,
whereas a nominal variable xk leads to membership condi-
tions xk ∈ {α, δ, σ }, being a, δ, s admissible values for
the k-th component of x.
For instance, if x1 is an ordered variable in the domain

{1, ..., 100} and x2 is a nominal component assuming
values in the set {red, green, blue}, a possible rule r1 is

if x1 > 40 and x2 ∈ {red, blue} then y = 0

where 0 denotes one of the q possible assignments
(classes).
According to the output value included in their conse-

quence part, the m rules rk describing a given model g(x)
can be subdivided into q groups G1, G2, ..., Gq. Considering
the training set S, any rule r∈Gl is characterized by four
quantities: the numbers TP(r) and FP(r) of examples (xi, yi)
with yi = yl and yi ≠ yl, respectively, that satisfy all the con-
ditions in the premise of r, and the numbers FN(r) and TN
(r) of examples (xi, yi) with yi = yl and yi ≠ yl, respectively,
that do not satisfy at least one of the conditions in the pre-
mise of r.
The quality of a rule was measured utilizing the fol-

lowing quantities. Give a rule r, we define the covering
C(r), the error E(r), and the precision P(r) according to
the following formulas:

C(r) =
TP(r)

TP(r) + FN(f )
, E(r) =

FP(r)
FP(r) + TN(r)

, P(r) =
TP(r)

TP(r) + FP(r)

The covering of a rule is the fraction of examples in the
training set that satisfy the rule and belong to the target
class. The error of a rule is the fraction of examples in the
training set that satisfy the rule and do not belong to the
target class. The precision of a rule is the fraction of exam-
ples in the training set that do not belong to the target
class but satisfy the premises of the rule. The greater was
the covering and the precision, the higher was the general-
ity and the correctness of the corresponding rule.
To test the statistical significance of the rules we used

a Fisher’s exact test (FET) implemented by the software
package R. The test of significance considered significant
any rule having P < 0.05.

Relevance measure and ranking of the probe sets
To obtain a measure of importance of the features
included into the rules and rank these features according
to this value, we utilized a measure called Relevance R(c)
of a condition c. Consider the rule r’ obtained by remov-
ing that condition from r. Since the premise part of r’ is
less stringent, we obtain that E(r’) ≥ E(r) so that the
quantityR(c) = (E(r’)−E(r))C(r) can be used as a measure
of relevance for the condition c of interest.
Since each condition c refers to a specific component

of x, we define the relevance Rv(xj) for every input
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variable xj as follows:

Rv(xj) = 1 − ∏
k
(1 − R(ckl))

where the product is computed on the rules rk that
includes a condition ckl on the variable xj.
Denote with Vkl the attribute involved in the condition

ckl of the rule rk and with Skl the subset of values of Vkl

for which the condition ckl is verified. If Vkl is an
ordered attribute and the condition ckl is Vkl ≤ a for
some value a∈Skl, then the contribution to Rv(xj) is
negative. Hence, by adding the superscript − (resp. +) to
denote the attribute Vkl with negative (resp. positive)
contribution, we can write Rv(xj) for an ordered input
variable xj in the following way:

Rv(xj) =
∏
Vkl

(1 − R(ckl)) −
∏
Vkl

(1 − R(ckl))

where the first (resp. second) product is computed on
the rules rk that includes a condition ckl
leading to a negative (resp. positive) contribution for

the variable xj.

Output assignment for a new instance
When the model g(x) described by the set of m rules rk,
k = 1, ..., m, is employed to classify a new instance x,
the <premise> part of each rule is examined to verify if
the components of x satisfy the conditions included in
it. Denote with Q the subset of rules whose <premise>
part is satisfied by x; then, the following three different
situations can occur:

1. The set Q includes only rules having the same
output value ỹ in their <consequence> part; in this
case the class ỹ is assigned to the instance x.
2. The set Q contains rules having different output
values in their <consequence> part; it follows that Q
can be partitioned into q disjoint subsets Qi, (some of
which can be empty) including the rules r pertaining to
the ith class. In this case, to every attribute xj can be
assigned a measure of consistency tij given by the maxi-
mum of the relevance r(c) for the conditions c invol-
ving the attribute xj and included in the <premise> part
of the rules in Qi. Then, to the instance x is assigned
the class ỹ associated with the following maximum:

ỹ = argmax
i=1,···q

d∑
i=1

tij

3. The set Q is empty, i.e. no rule is satisfied by the
instance x; in this case the set Q−1 containing the subset
of rules whose <premise> part is satisfied by x except
for one condition is considered and points 1 and 2 are

again tested with Q = Q−1. If again Q is empty the set
Q−2 containing the subset of rules whose <premise>
part is satisfied by x except for two conditions is consid-
ered and so on.

The conflicting case 2 can be controlled in Rulex 2.0
by assigning a set of weights wi to the output classes; in
this way equation (1) can be written as

ỹ = argmax
i=1,···q

d∑
i=1

tijwi

and we can speak of weighted classification.

Additional material

Additional file 1: Title of data: Batch effect and LLM prediction
performance. Description of data: the file contains a table showing
the influence of batch effect on LLM prediction performance.
Additional file 1. Table 1. Influence of batch effect on LLM prediction
performance. The table shows the influence of batch effect
calculated on accuracy, recall, precision, and specificity and NPV
measures. Performances are comparable removing batch effect
from the dataset.
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