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1 Introduction and preliminaries
As the development of singular integral operators (see [–]), their commutators have
been well studied. In [–], the authors prove that the commutators generated by the sin-
gular integral operators andBMO functions are bounded on Lp(Rn) for  < p <∞. Chanillo
(see []) proves a similar result when singular integral operators are replaced by the frac-
tional integral operators. In [–], the boundedness for the commutators generated by
the singular integral operators and Lipschitz functions on Triebel-Lizorkin and Lp(Rn)
( < p < ∞) spaces are obtained. In [, ], the boundedness for the commutators gen-
erated by the singular integral operators and the weighted BMO and Lipschitz functions
on Lp(Rn) ( < p < ∞) spaces are obtained. In [], some singular integral operators with
general kernel are introduced, and the boundedness for the operators and their commu-
tators generated by BMO and Lipschitz functions are obtained (see [, ]). In this paper,
we will study the commutators generated by the singular integral operators with general
kernel and the weighted Lipschitz functions.
First, let us introduce some notation. Throughout this paper, Q will denote a cube of

Rn with sides parallel to the axes. For any locally integrable function f , the sharp maximal
function of f is defined by

M#(f )(x) = sup
Q�x


|Q|

∫
Q

∣∣f (y) – fQ
∣∣dy,

where fQ = |Q|– ∫Q f (x)dx. It is well known that (see [, ])

M#(f )(x)≈ sup
Q�x

inf
c∈C


|Q|

∫
Q

∣∣f (y) – c
∣∣dy.
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Let

M(f )(x) = sup
Q�x


|Q|

∫
Q

∣∣f (y)∣∣dy.

For η > , letMη(f )(x) =M(|f |η)/η(x).
For  < η <  and  ≤ r < ∞, set

Mη,r(f )(x) = sup
Q�x

(


|Q|–rη/n
∫
Q

∣∣f (y)∣∣r dy
)/r

.

The Ap weight is defined by (see [])

Ap =
{
w ∈ Lloc

(
Rn) : sup

Q

(


|Q|
∫
Q
w(x)dx

)(


|Q|
∫
Q
w(x)–/(p–) dx

)p–

< ∞
}
,

 < p < ∞,

and

A =
{
w ∈ Lploc

(
Rn) :M(w)(x) ≤ Cw(x), a.e.

}
.

The A(p, r) weight is defined by (see []), for  < p, r <∞,

A(p, r) =
{
w >  : sup

Q

(


|Q|
∫
Q
w(x)r dx

)/r( 
|Q|

∫
Q
w(x)–p/(p–) dx

)(p–)/p

< ∞
}
.

Given a non-negative weight function w. For  ≤ p < ∞, the weighted Lebesgue space
Lp(w) is the space of functions f such that

‖f ‖Lp(w) =
(∫

Rn

∣∣f (x)∣∣pw(x)dx
)/p

< ∞.

For β > , p > , and the non-negative weight function w, let Ḟβ ,∞
p (w) be the weighted

homogeneous Triebel-Lizorkin space (see []).
For  < β <  and the non-negative weight function w, the weighted Lipschitz space

Lipβ (w) is the space of functions b such that

‖b‖Lipβ (w) = sup
Q


w(Q)+β/n

∫
Q

∣∣b(y) – bQ
∣∣dy < ∞.

Remark
() It is well known that, for b ∈ Lipβ (w), w ∈ A, and x ∈Q,

|bQ – bkQ| ≤ Ck‖b‖Lipβ (w)w(x)w
(
kQ

)β/n.

() Let b ∈ Lipβ (w) and w ∈ A. By [], we know that spaces Lipβ (w) coincide and the
norms ‖b‖Lipβ (w) are equivalent with respect to different values ≤ p ≤ ∞.

http://www.journalofinequalitiesandapplications.com/content/2014/1/108
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In this paper, we will study some singular integral operators as follows (see []).

Definition  Let T : S → S′ be a linear operator such that T is bounded on L(Rn) and
there exists a locally integrable function K (x, y) on Rn × Rn \ {(x, y) ∈ Rn × Rn : x = y} such
that

T(f )(x) =
∫
Rn
K (x, y)f (y)dy

for every bounded and compactly supported function f , where K satisfies the following:
there is a sequence of positive constant numbers {Ck} such that for any k ≥ ,

∫
|y–z|<|x–y|

(∣∣K (x, y) –K (x, z)
∣∣ + ∣∣K (y,x) –K (z,x)

∣∣)dx ≤ C

and

(∫
k |z–y|≤|x–y|<k+|z–y|

(∣∣K (x, y) –K (x, z)
∣∣ + ∣∣K (y,x) –K (z,x)

∣∣)q dy
)/q

≤ Ck
(
k|z – y|)–n/q′

,

where  < q′ <  and /q + /q′ = .
Let b be a locally integrable function on Rn. The commutator related to T is defined by

Tb(f )(x) =
∫
Rn

(
b(x) – b(y)

)
K (x, y)f (y)dy.

Note that the classical Calderón-Zygmund singular integral operator satisfies Defini-
tion  with Cj = –jδ (see []).

Definition  Let ϕ be a positive, increasing function on R+ and there exists a constant
D >  such that

ϕ(t)≤Dϕ(t) for t ≥ .

Letw be a non-negative weight function on Rn and f be a locally integrable function on Rn.
Set, for  ≤ p < ∞,

‖f ‖Lp,ϕ (w) = sup
x∈Rn , d>

(


ϕ(d)

∫
Q(x,d)

∣∣f (y)∣∣pw(y)dy
)/p

,

where Q(x,d) = {y ∈ Rn : |x– y| < d}. The generalized weighted Morrey space is defined by

Lp,ϕ
(
Rn,w

)
=

{
f ∈ Lloc

(
Rn) : ‖f ‖Lp,ϕ (w) < ∞}

.

If ϕ(d) = dδ , δ > , then Lp,ϕ(Rn,w) = Lp,δ(Rn,w), which is the classicalMorrey spaces (see
[, ]). If ϕ(d) = , then Lp,ϕ(Rn,w) = Lp(Rn,w), which is the weighted Lebesgue spaces
(see []).

http://www.journalofinequalitiesandapplications.com/content/2014/1/108
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As the Morrey space may be considered as an extension of the Lebesgue space, it is
natural and important to study the boundedness of the operator on the Morrey spaces
(see [–]).
It is well known that commutators are of great interest in harmonic analysis and have

been widely studied bymany authors (see [, ]). In [], Pérez and Trujillo-Gonzalez prove
a sharp estimate for the multilinear commutator. The main purpose of this paper is to
prove the sharp maximal inequalities for the commutator. As the application, we obtain
the weighted Lp-norm inequality, and Morrey and Triebel-Lizorkin spaces’ boundedness
for the commutator.

2 Theorems
We shall prove the following theorems.

Theorem  Let T be the singular integral operator as Definition , the sequence {kCk} ∈ l,
w ∈ A,  < β < , q′ ≤ s < ∞, and b ∈ Lipβ (w).Then there exists a constant C >  such that,
for any f ∈ C∞

 (Rn) and x̃ ∈ Rn,

M#
(
Tb(f )

)
(x̃) ≤ C‖b‖Lipβ (w)w(x̃)

+β/n(Mβ ,s(f )(x̃) +Mβ ,s
(
T(f )

)
(x̃)

)
.

Theorem Let T be the singular integral operator asDefinition , the sequence {kβkCk} ∈
l, w ∈ A,  < β < , q′ ≤ s < ∞, and b ∈ Lipβ (w). Then there exists a constant C >  such
that, for any f ∈ C∞

 (Rn) and x̃ ∈ Rn,

sup
Q�x̃

inf
c∈Rn


|Q|+β/n

∫
Q

∣∣Tb(f )(x) – c
∣∣dx ≤ C‖b‖Lipβ (w)w(x̃)

+β/n(Ms(f )(x̃) +Ms
(
T(f )

)
(x̃)

)
.

Theorem Let T be the singular integral operator as Definition , the sequence {kCk} ∈ l,
w ∈ A,  < β < min(,n/q′), q′ < p < n/β , /r = /p – β/n, and b ∈ Lipβ (w). Then Tb is
bounded from Lp(w) to Lr(wr/p–r(+β/n)).

Theorem Let T be the singular integral operator as Definition , the sequence {kCk} ∈ l,
 <D < n, w ∈ A,  < β <min(,n/q′), q′ < p < n/β , /r = /p–β/n, and b ∈ Lipβ (w). Then
Tb is bounded from Lp,ϕ(w) to Lr,ϕ(wr/p–r(+β/n)).

Theorem Let T be the singular integral operator asDefinition , the sequence {kβkCk} ∈
l, w ∈ A,  < β < min(,n/q′), q′ < p < n/β , /r = /p – β/n, and b ∈ Lipβ (w). Then Tb is
bounded from Lp(w) to Ḟβ ,∞

r (wr/p–r(+β/n)).

3 Proofs of theorems
To prove the theorems, we need the following lemmas.

Lemma  (see []) Let T be the singular integral operator as Definition , the sequence
{Ck} ∈ l. Then T is bounded on Lp(w) for w ∈ A∞ with  < p < ∞.

Lemma  (see [, ]) For any cube Q, b ∈ Lipβ (w),  < β < , and w ∈ A, we have

sup
x∈Q

∣∣b(x) – bQ
∣∣ ≤ C‖b‖Lipβ (w)w(Q)

+β/n|Q|–.

http://www.journalofinequalitiesandapplications.com/content/2014/1/108
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Lemma  (see []) For  < β < ,  < p < ∞, and w ∈ A∞, we have

‖f ‖Ḟβ ,∞
p (w) ≈

∥∥∥∥sup
Q�·


|Q|+β/n

∫
Q

∣∣f (x) – fQ
∣∣dx

∥∥∥∥
Lp(w)

≈
∥∥∥∥sup
Q�·

inf
c


|Q|+β/n

∫
Q

∣∣f (x) – c
∣∣dx

∥∥∥∥
Lp(w)

.

Lemma  (see []) Let  < p < ∞ and w ∈ ⋃
≤r<∞ Ar . Then, for any smooth function f for

which the left-hand side is finite,

∫
Rn
M(f )(x)pw(x)dx≤ C

∫
Rn
M#(f )(x)pw(x)dx.

Lemma  (see [, ]) Suppose that  ≤ η < n,  < s < p < n/η, /r = /p – η/n, and w ∈
A(p, r). Then

∥∥Mη,s(f )
∥∥
Lr(wr) ≤ C‖f ‖Lp(wp).

Lemma  (see [, ]) If w ∈ Ap, then wχQ ∈ Ap for ≤ p≤ ∞ and any cube Q.

Lemma  Let  < r < ∞,  < η < ∞,  < D < n, w ∈ A∞, and Lr,ϕ(Rn,w) be the weighted
Morrey space as Definition . Then, for any smooth function f for which the left-hand side
is finite,

∥∥M(f )
∥∥
Lr,ϕ (w) ≤ C

∥∥M#(f )
∥∥
Lr,ϕ (w).

Proof Notice that wχQ ∈ A∞ for any cube Q = Q(x,d) by [] and Lemma ; thus, for
f ∈ Lr,ϕ(Rn,w) and any cube Q, we have, by Lemma ,

∫
Q
M(f )(x)rw(x)dx =

∫
Rn
M(f )(x)rw(x)χQ(x)dx≤ C

∫
Rn
M#(f )(x)rw(x)χQ(x)dx

= C
∫
Q
M#(f )(x)rw(x)dx,

thus

(


ϕ(d)

∫
Q(x,d)

M(f )(x)rw(x)dx
)/r

≤ C
(


ϕ(d)

∫
Q(x,d)

M#(f )(x)rw(x)dx
)/r

and

∥∥M(f )
∥∥
Lr,ϕ (w) ≤ C

∥∥M#(f )
∥∥
Lr,ϕ (w).

This finishes the proof. �

Lemma  Let  < p < ∞,  <D < n, w ∈ A, T be the singular integral operator as Defini-
tion  and Lp,ϕ(Rn,w) be the weighted Morrey space as Definition . Then

∥∥T(f )∥∥Lp,ϕ (w) ≤ C‖f ‖Lp,ϕ (w).

http://www.journalofinequalitiesandapplications.com/content/2014/1/108
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Lemma  Let  ≤ s < p < n/η, /r = /p – η/n, w ∈ A(p, r), and Lp,ϕ(Rn,w) be the weighted
Morrey space as Definition . Then

∥∥Mη,s(f )
∥∥
Lr,ϕ (wr) ≤ C‖f ‖Lp,ϕ (wp).

The proofs of the two lemmas are similar to that of Lemma  by Lemmas  and , we
omit the details.

Proof of Theorem  It suffices to prove, for f ∈ C∞
 (Rn) and some constant C, that the

following inequality holds:


|Q|

∫
Q

∣∣Tb(f )(x) –C
∣∣dx≤ C‖b‖Lipβ (w)w(x̃)

+β/n(Mβ ,s(f )(x̃) +Mβ ,s
(
T(f )

)
(x̃)

)
.

Fix a cube Q =Q(x,d) and x̃ ∈Q. Write, for f = f χQ and f = f χ(Q)c ,

Tb(f )(x) =
(
b(x) – bQ

)
T(f )(x) – T

(
(b – bQ)f

)
(x) – T

(
(b – bQ)f

)
(x).

Then


|Q|

∫
Q

∣∣Tb(f )(x) – T
(
(bQ – b)f

)
(x)

∣∣dx

≤ 
|Q|

∫
Q

∣∣(b(x) – bQ
)
T(f )(x)

∣∣dx + 
|Q|

∫
Q

∣∣T(
(b – bQ)f

)
(x)

∣∣dx

+


|Q|
∫
Q

∣∣T(
(b – bQ)f

)
(x) – T

(
(b – bQ)f

)
(x)

∣∣dx
= I + I + I.

For I, by Hölder’s inequality and Lemma , we obtain

I ≤ C
|Q| supx∈Q

∣∣b(x) – bQ
∣∣|Q|–/s

(∫
Q

∣∣T(f )(x)∣∣s dx
)/s

≤ C‖b‖Lipβ (w)
w(Q)+β/n

|Q| |Q|–/s|Q|/s–β/n
(


|Q|–sβ/n

∫
Q

∣∣T(f )(x)∣∣s dx
)/s

≤ C‖b‖Lipβ (w)

(
w(Q)
|Q|

)+β/n

Mβ ,s
(
T(f )

)
(x̃)

≤ C‖b‖Lipβ (w)w(x̃)
+β/nMβ ,s

(
T(f )

)
(x̃).

For I, by the boundedness of T , we get

I ≤
(


|Q|

∫
Rn

∣∣T(
(b – bQ)f

)
(x)

∣∣s dx
)/s

≤ C
(


|Q|

∫
Rn

∣∣(b(x) – bQ
)
f(x)

∣∣s dx
)/s

≤ C|Q|–/s sup
x∈Q

∣∣b(x) – bQ
∣∣|Q|/s–β/n

(


|Q|–sβ/n
∫
Q

∣∣f (x)∣∣s dx
)/s

http://www.journalofinequalitiesandapplications.com/content/2014/1/108
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≤ C‖b‖Lipβ (w)

(
w(Q)
|Q|

)+β/n

Mβ ,s(f )(x̃)

≤ C‖b‖Lipβ (w)w(x̃)
+β/nMβ ,s(f )(x̃).

For I, recalling that s > q′, we have

I ≤ 
|Q|

∫
Q

∫
(Q)c

∣∣b(y) – bQ
∣∣∣∣f (y)∣∣∣∣K (x, y) –K (x, y)

∣∣dydx

≤ 
|Q|

∫
Q

∞∑
k=

∫
kd≤|y–x|<k+d

∣∣K (x, y) –K (x, y)
∣∣∣∣b(y) – bk+Q

∣∣∣∣f (y)∣∣dydx

+


|Q|
∫
Q

∞∑
k=

∫
kd≤|y–x|<k+d

∣∣K (x, y) –K (x, y)
∣∣|bk+Q – bQ|∣∣f (y)∣∣dydx

≤ C
|Q|

∫
Q

∞∑
k=

(∫
kd≤|y–x|<k+d

∣∣K (x, y) –K (x, y)
∣∣q dy

)/q

× sup
y∈k+Q

∣∣b(y) – bk+Q
∣∣(∫

k+Q

∣∣f (y)∣∣q′
dy

)/q′

dx

+
C
|Q|

∫
Q

∞∑
k=

|bk+Q – bQ|
(∫

kd≤|y–x|<k+d

∣∣K (x, y) –K (x, y)
∣∣q dy

)/q

×
(∫

k+Q

∣∣f (y)∣∣q′
dy

)/q′

dx

≤ C
∞∑
k=

Ck
(
kd

)–n/q′ w(k+Q)+β/n

|k+Q| ‖b‖Lipβ (w)
∣∣k+Q∣∣/q′–/s∣∣k+Q∣∣/s–β/n

×
(


|k+Q|–sβ/n

∫
k+Q

∣∣f (y)∣∣s dy
)/s

+C
∞∑
k=

k‖b‖Lipβ (w)w(x̃)w
(
kQ

)β/nCk
(
kd

)–n/q′ ∣∣k+Q∣∣/q′–/s∣∣k+Q∣∣/s–β/n

×
(


|k+Q|–sβ/n

∫
k+Q

∣∣f (y)∣∣s dy
)/s

≤ C‖b‖Lipβ (w)

∞∑
k=

Ck

(
w(k+Q)
|k+Q|

)+β/n

Mβ ,s(f )(x̃)

+C‖b‖Lipβ (w)w(x̃)
∞∑
k=

kCk

(
w(k+Q)
|k+Q|

)β/n

Mβ ,s(f )(x̃)

≤ C‖b‖Lipβ (w)w(x̃)
+β/nMβ ,s(f )(x̃)

∞∑
k=

(k + )Ck

≤ C‖b‖Lipβ (w)w(x̃)
+β/nMβ ,s(f )(x̃).

These complete the proof of Theorem . �

http://www.journalofinequalitiesandapplications.com/content/2014/1/108


Zeng Journal of Inequalities and Applications 2014, 2014:108 Page 8 of 11
http://www.journalofinequalitiesandapplications.com/content/2014/1/108

Proof of Theorem  It suffices to prove for f ∈ C∞
 (Rn) and some constantC, the following

inequality holds:


|Q|+β/n

∫
Q

∣∣Tb(f )(x) –C
∣∣dx

≤ C‖b‖Lipβ (w)w(x̃)
+β/n(Ms(f )(x̃) +Ms

(
T(f )

)
(x̃)

)
.

Fix a cube Q =Q(x,d) and x̃ ∈Q. Write, for f = f χQ and f = f χ(Q)c ,

Tb(f )(x) =
(
b(x) – bQ

)
T(f )(x) – T

(
(b – bQ)f

)
(x) – T

(
(b – bQ)f

)
(x).

Then


|Q|+β/n

∫
Q

∣∣Tb(f )(x) – T
(
(bQ – b)f

)
(x)

∣∣dx

≤ 
|Q|+β/n

∫
Q

∣∣(b(x) – bQ
)
T(f )(x)

∣∣dx

+


|Q|
∫
Q

∣∣T(
(b – bQ)f

)
(x)

∣∣dx

+


|Q|+β/n

∫
Q

∣∣T(
(b – bQ)f

)
(x) – T

(
(b – bQ)f

)
(x)

∣∣dx
= I + I + I.

By using the same argument as in the proof of Theorem , we get

I ≤ C
|Q|+β/n sup

x∈Q

∣∣b(x) – bQ
∣∣|Q|–/s

(∫
Q

∣∣T(f )(x)∣∣s dx
)/s

≤ C‖b‖Lipβ (w)
w(Q)+β/n

|Q| |Q|–/s|Q|/s–β/n
(


|Q|

∫
Q

∣∣T(f )(x)∣∣s dx
)/s

≤ C‖b‖Lipβ (w)

(
w(Q)
|Q|

)+β/n

Ms
(
T(f )

)
(x̃)

≤ C‖b‖Lipβ (w)w(x̃)
+β/nMs

(
T(f )

)
(x̃),

I ≤ 
|Q|+β/n |Q|–/s

(∫
Rn

∣∣T(
(b – bQ)f

)
(x)

∣∣s dx
)/s

≤ C


|Q|+β/n |Q|–/s
(∫

Rn

∣∣(b(x) – bQ
)
f(x)

∣∣s dx
)/s

≤ C


|Q|+β/n |Q|–/s sup
x∈Q

∣∣b(x) – bQ
∣∣|Q|/s

(


|Q|
∫
Q

∣∣f (x)∣∣s dx
)/s

≤ C‖b‖Lipβ (w)

(
w(Q)
|Q|

)+β/n

Ms(f )(x̃)

≤ C‖b‖Lipβ (w)w(x̃)
+β/nMs(f )(x̃),

http://www.journalofinequalitiesandapplications.com/content/2014/1/108
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I ≤ 
|Q|+β/n

∫
Q

∫
(Q)c

∣∣b(y) – bQ
∣∣∣∣f (y)∣∣∣∣K (x, y) –K (x, y)

∣∣dydx

≤ 
|Q|+β/n

∫
Q

∞∑
k=

∫
kd≤|y–x|<k+d

∣∣K (x, y) –K (x, y)
∣∣∣∣b(y) – bk+Q

∣∣∣∣f (y)∣∣dydx

+


|Q|+β/n

∫
Q

∞∑
k=

∫
kd≤|y–x|<k+d

∣∣K (x, y) –K (x, y)
∣∣|bk+Q – bQ|∣∣f (y)∣∣dydx

≤ C
|Q|+β/n

∫
Q

∞∑
k=

(∫
kd≤|y–x|<k+d

∣∣K (x, y) –K (x, y)
∣∣q dy

)/q

× sup
y∈k+Q

∣∣b(y) – bk+Q
∣∣(∫

k+Q

∣∣f (y)∣∣q′
dy

)/q′

dx

+
C

|Q|+β/n

∫
Q

∞∑
k=

|bk+Q – bQ|
(∫

kd≤|y–x|<k+d

∣∣K (x, y) –K (x, y)
∣∣q dy

)/q

×
(∫

k+Q

∣∣f (y)∣∣q′
dy

)/q′

dx

≤ C|Q|–β/n
∞∑
k=

Ck
(
kd

)–n/q′ w(k+Q)+β/n

|k+Q| ‖b‖Lipβ (w)
∣∣k+Q∣∣/q′

×
(


|k+Q|

∫
k+Q

∣∣f (y)∣∣s dy
)/s

+C|Q|–β/n
∞∑
k=

k‖b‖Lipβ (w)w(x̃)w
(
kQ

)β/nCk
(
kd

)–n/q′ ∣∣k+Q∣∣/q′

×
(


|k+Q|

∫
k+Q

∣∣f (y)∣∣s dy
)/s

≤ C‖b‖Lipβ (w)

∞∑
k=

βkCk

(
w(k+Q)
|k+Q|

)+β/n

Ms(f )(x̃)

+C‖b‖Lipβ (w)w(x̃)
∞∑
k=

kβkCk

(
w(k+Q)
|k+Q|

)β/n

Ms(f )(x̃)

≤ C‖b‖Lipβ (w)w(x̃)
+β/nMs(f )(x̃)

∞∑
k=

(k + )βkCk

≤ C‖b‖Lipβ (w)w(x̃)
+β/nMs(f )(x̃).

This completes the proof of Theorem . �

Proof of Theorem  Choose q′ < s < p in Theorem , notice that wr/p–r(+β/n) ∈ A∞ and
w/p ∈ A(p, r); we have, by Lemmas , , and ,

∥∥Tb(f )
∥∥
Lq(wr/p–r(+β/n))

≤ ∥∥M(
Tb(f )

)∥∥
Lr (wr/p–r(+β/n))

≤ C
∥∥M#

(
Tb(f )

)∥∥
Lr(wr/p–r(+β/n))

http://www.journalofinequalitiesandapplications.com/content/2014/1/108
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≤ C‖b‖Lipβ (w)
(∥∥Mβ ,s

(
T(f )

)
w+β/n∥∥

Lr(wr/p–r(+β/n)) +
∥∥Mβ ,s(f )w+β/n∥∥

Lr (wr/p–r(+β/n))

)

= C‖b‖Lipβ (w)
(∥∥Mβ ,s

(
T(f )

)∥∥
Lr (wr/p) +

∥∥Mβ ,s(f )
∥∥
Lr (wr/p)

)

≤ C‖b‖Lipβ (w)
(∥∥T(f )∥∥Lp(w) + ‖f ‖Lp(w)

)

≤ C‖b‖Lipβ (w)‖f ‖Lp(w).

This completes the proof of Theorem . �

Proof of Theorem  Choose q′ < s < p in Theorem , notice that wr/p–r(+β/n) ∈ A∞ and
w/p ∈ A(p, r); we have, by Lemmas -,

∥∥Tb(f )
∥∥
Lr,ϕ (wr/p–r(+β/n))

≤ ∥∥M(
Tb(f )

)∥∥
Lr,ϕ (wr/p–r(+β/n))

≤ C
∥∥M#

(
Tb(f )

)∥∥
Lr,ϕ (wr/p–r(+β/n))

≤ C‖b‖Lipβ (w)
(∥∥Mβ ,s

(
T(f )

)
w+β/n∥∥

Ls,ϕ (wr/p–r(+β/n)) +
∥∥Mβ ,s(f )w+β/n∥∥

Lr,ϕ (wr/p–r(+β/n))

)

= C‖b‖Lipβ (w)
(∥∥Mβ ,s

(
T(f )

)∥∥
Lr,ϕ (wr/p) +

∥∥Mβ ,s(f )
∥∥
Lr,ϕ (wr/p)

)

≤ C‖b‖Lipβ (w)
(∥∥T(f )∥∥Lp,ϕ (w) + ‖f ‖Lp,ϕ (w)

)

≤ C‖b‖Lipβ (w)‖f ‖Lp,ϕ (w).

This completes the proof of Theorem . �

Proof Theorem  Choose q′ < s < p in Theorem , notice that wr/p–r(+β/n) ∈ A∞ and w/p ∈
A(p, r). By using Lemma , we obtain

∥∥Tb(f )
∥∥
Ḟβ ,∞
r (wr/p–r(+β/n))

≤ C

∥∥∥∥∥supQ�·


|Q|+β/n

∫
Q

∣∣Tb(f )(x) – T
(
(bQ – b)f

)
(x)

∣∣dx
∥∥∥∥∥
Lr (wr/p–r(+β/n))

≤ C‖b‖Lipβ (w)
(∥∥Ms

(
T(f )

)
w+β/n∥∥

Lr (wr/p–r(+β/n)) +
∥∥Ms(f )w+β/n∥∥

Lr (wr/p–r(+β/n))

)

= C‖b‖Lipβ (w)
(∥∥Ms

(
T(f )

)∥∥
Lr (wr/p) +

∥∥Ms(f )
∥∥
Lr(wr/p)

)

≤ C‖b‖Lipβ (w)
(∥∥T(f )∥∥Lp(w) + ‖f ‖Lp(w)

)

≤ C‖b‖Lipβ (w)‖f ‖Lp(w).

This completes the proof of the theorem. �
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