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Abstract For many years, ATP and adenosine have been
implicated in movement regulation of the gastrointestinal
tract. They act through three major receptor subtypes:
adenosine or P1 receptors, P2X receptors and P2Y
receptors. Each of these major receptor types can be
subdivided into several different classes and is widely
distributed amongst various neurons, muscle types, glia and
interstitial cells that regulate intestinal functions. Several
key roles for the different receptors and their endogenous
ligands have been identified in physiological and pharma-
cological studies. For example, adenosine acting at A1

receptors appears to inhibit intestinal motility in various
pathological conditions. Similarly, ATP acting at P2Y
receptors is an important component of inhibitory neuro-
muscular transmission, acting as a cotransmitter with nitric
oxide. ATP acting at P2X and P2Y1 receptors is important
for synaptic transmission in simple descending excitatory
and inhibitory reflex pathways. Some P2Y receptor
subtypes prefer uridine nucleotides over purine nucleotides.
Thus, roles for UTP and UDP as enteric transmitters in
place of ATP cannot be excluded. ATP also appears to be
important for sensory transduction, especially in chemo-
sensitive pathways that initiate local inhibitory reflexes.
Despite this evidence, data are lacking about the roles of
either adenosine or ATP in more complex motility patterns
such as segmentation or the interdigestive migrating motor
complex. Clarification of roles for purinergic transmission
in these common, but understudied, motility patterns will
depend on the use of subtype-specific antagonists that in
some cases have not yet been developed.
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Introduction

Purine nucleosides and nucleotides have long been thought
to play important roles as signalling molecules in the
complex interactions between neurons and muscle that
regulate intestinal movements (motility). The evidence for
this is compelling, and various studies have implicated
purine compounds and their receptors as important at
virtually every point in the pathways regulating motility,
from sensory transduction to neuromuscular transmission.

Despite this evidence, however, identifying the specific
sites within the gastrointestinal tract where purine com-
pounds act to regulate motility has been more difficult than
might be expected. There are many reasons for this. Purine
receptors are found on many different types of cells within
the gut. They can be broadly divided into two classes: P1
receptors, for which adenosine is the endogenous ligand,
and P2 receptors, which are sensitive to ATP and other
nucleotides [1]. Many cells express both P1 and P2
receptors (e.g. compare [2] and [3]), which makes it
difficult to discern the parts played by each receptor type.
Furthermore, species and regional differences in roles are
common, making it difficult to generalise between prepa-
rations. This problem is rendered more complex by the
presence of ectonucleotidases that can rapidly break down
ATP to ADP, AMP or adenosine [1]. Thus, although there
is abundant evidence that ATP and adenosine are released
from intestinal (enteric) nerve terminals or smooth muscle
by a variety of stimuli (for examples [4–12]), the exact mix
of ATP, ADP, AMP and adenosine seen by specific
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receptors is almost impossible to determine. This makes the
use of subtype-specific antagonists indispensable in order to
discriminate the contributions of different receptors and
their endogenous ligands. Unfortunately, specific antago-
nists for many P2 receptors are either unavailable or have
only recently come into use.

Several P2Y receptor subtypes have a higher affinity for
either UTP or UDP than for either ATP or ADP [1]. Thus,
whereas release of uridine nucleotides within the gastroin-
testinal tract has not been the subject of detailed investiga-
tion, it is possible that either UTP or UDP is the endogenous
ligand for some P2Y receptors. Although ATP is used
throughout this review to designate the probable transmitter
as enteric synapses and junctions, the possibility that a
uridine nucleotide acts in its place should be kept in mind.

A key issue for considering regulation of intestinal
behaviour is the definition of motility itself. Commonly
used measures of motility, such as intestinal (or colonic)
transit, are the end product of several different motility
patterns, making such measures too imprecise to identify
the site of action of a drug. Most studies record smooth-
muscle contractions in strips or segments but ignore the role
of the neural circuitry. However, motility is the end product
of the interactions of a complex nervous system (both
extrinsic and intrinsic) with myogenic pacemakers [the
interstitial cells of Cajal (ICC)] and the two major muscle
coats. This review seeks to put the available data into a
physiological context to identify current knowledge about
the roles of purine nucleosides and purine nucleotides in
motility regulation.

Purine receptor subtypes

The basic properties of purine receptors, their signal
transduction mechanisms and their division into P1 (aden-
osine receptors), P2X and P2Y receptors, have been
extensively reviewed elsewhere [1, 13, 14]. P1 and P2Y
receptors are members of the G-protein-coupled receptor
family, and multiple subtypes of each have been cloned.
Four subtypes of P1 receptor have been cloned (A1, A2A,
A2B, A3), and specific antagonists are now available for all
subtypes [15]. To date, eight subtypes of mammalian P2Y
receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13,
P2Y14) have been cloned [13]. Specific antagonists are
available for only about half of these receptors [15], which
makes analysis of their functions difficult. The P2Y
receptors differ in rank order of potency of different
nucleotides so that P2Y1 receptors are more sensitive to
ADP than they are to ATP, whereas P2Y6 receptors are
most potently activated by UDP, and ATP is either
ineffective or an antagonist at other P2Y receptors (e.g.
P2Y4, P2Y6, P2Y14) [13]. However, knowing the efficacy

of exogenous agonists often does not help in understanding
the physiological roles of receptors intermingled in a
complex system. P2X receptors are ligand-gated cation
channels that respond to ATP, although they differ in
sensitivity to ATP analogues [1]. Seven different P2X
receptor molecules have been cloned (P2X1, P2X2, ...,
P2X7) [1, 14], but some of these can be present as
heteromers [14]. Specific antagonists are available for only
three of these receptors [15], so they are usually studied
using the relatively nonspecific antagonists suramin and
pyridoxal phosphate-6-azopheyl-2′,4′-disulphonic acid
(PPADS), which also act at some P2Y receptors and can
interact with ectonucleotidases [1]. The different receptor
subtypes are differentially expressed within the intestinal
wall, which is important for consideration of their functions.

Motility patterns

The end point of gastrointestinal motility is movement of
intestinal contents from stomach to anus, but transit is only
part of the story and occurs via the interaction of several
distinct motility patterns (for reviews see [16–18]). In the
small intestine after a meal, these include receptive
relaxation [19, 20], segmentation [21, 22], peristalsis (oral
to anal propulsion) and retropulsion [23]. The rate of
content transit along the intestine is set by the relative
contribution of each pattern [24]. Receptive relaxation
occurs when intestinal contents enter a previously empty
section of intestine and allows this segment to accommo-
date the distending material. It limits the distance over
which propulsive motor activity can move the intestinal
contents. Segmentation makes up more than 90% of the
small intestine contractile activity during digestion and
absorption of a meal, with the exact proportion depending
on the nutrient content of the meal [22]. It consists of
rhythmic localised constrictions that alternate with relaxa-
tions [21] and divide and redivide the intestinal contents,
mixing luminal content with intestinal secretions (water,
bicarbonate, enzymes, bile and mucin), facilitating diges-
tion and nutrient absorption. Although segmentation slowly
moves the contents of the lumen anally, about 10% of
contractile activity in the small intestine after a meal
involves rapid propulsive contractions that propagate anally
over significant distances (peristalsis). In the upper small
intestine, orally propagating constrictions that propel
content within the duodenum towards the stomach (retro-
grade peristalsis) are also prominent immediately after a
meal [23].

Once digestion is complete, animals enter a fasted state
in which a distinctively different motor activity is seen [16,
18]. This interdigestive migrating motor complex (MMC)
has three distinct phases that migrate slowly along the
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small intestine from the pylorus to the ileocolonic junction
(4 cm/min upper jejunum, 0.6 cm/min distal ileum of
humans). Phase I is a period of quiescence that takes up 40–
60% of the complex in humans. This gives way to phase II,
a period of irregular contractions that increase in magnitude
over 20–30% of the complex. Phase III is the most
prominent component of the MMC and gives it its name.
It is a period (5–10% of the complex) of very strong
rhythmic contractions that propagate slowly along the
intestine. Phase III contractions are initiated in either the
gastric antrum or the proximal duodenum at about the time
that the previous phase III contraction reaches the end of
the ileum, a cycle duration of 84–112 min in humans.

Motor activity in the colon is largely independent of that
in the small intestine and reflects its three primary
functions: storage, water recovery and excretion [18].
Receptive relaxation is important for the first; peristalsis
or mass-movement contractions or both are the mechanisms
for the last. Haustral contractions clearly are relevant in
some species (e.g. humans), and retrograde peristalsis is
also seen.

These motor patterns are not always readily observed in
vitro. However, detailed analyses require such studies. In
vitro preparations include isolated segments of otherwise
intact small or large intestine; opened segments dissected to
expose the mucosa, muscle or enteric neurons; and muscle

strips cut either longitudinally or circumferentially. Intact
segments are used to study propulsive motor activity,
receptive relaxation, propagating contractile complexes
such as models of the MMC and, very recently, segmen-
tation. Opened and dissected preparations are used to study
simple motility reflexes—ascending excitation, descending
inhibition [25] and descending excitation [26]. They are
also used to study individual enteric neurons and the
locations of functionally identified receptors. Muscle-strip
preparations are the most studied and provide information
about effects of agonists and antagonists, but this can be
hard to translate meaningfully to complex motor patterns.

Neural circuits mediating motility

The basic control of intestinal motility depends on the
activity of the enteric nervous system (ENS), a network of
neurons contained entirely within the gastrointestinal wall
[16]. Although the ENS is modulated by the central
nervous system (CNS), the sympathetic nervous system
and hormonal factors, each motor pattern identified above
is programmed within the enteric neural circuitry. There
have been extensive studies directed at identifying the
elements of the enteric circuits, largely focusing on the
guinea-pig ileum (for reviews see [17, 27, 28]) and recently

Table 1 Functional types of enteric neuron that can be deduced from physiological and anatomical studies

Basic Function Plexus Subtypes in guinea-pig ileum

Intrinsic sensory neuron SMP AH/Dogiel type II, ChAT/TK-IR, mucosal mechanoreceptor
MP AH/Dogiel type II, ChAT/calbindin/TK-IR, muscle mechanosensory, chemosensitive
MP AH/Dogiel type II, ChAT/calbindin/TK-IR, anal projection, distension sensitive

Ascending interneuron MP MP, ChAT/calretinin/TK/ENK
Descending interneuron MP NOS/VIP/GRP/±ChAT

MP ChAT/5-HT, targets myenteric and/or submucosal ganglia
MP ChAT/SOM, targets myenteric and/or submucosal ganglia

Excitatory longitudinal muscle motor neuron MP ChAT/calretinin/TK
Inhibitory longitudinal muscle motor neuron MP NOS/VIP/GABA, rare in guinea-pig ileum
Excitatory circular-muscle motor neuron MP ChAT/TK, short oral projection

MP ChAT/TK, long oral projection
Inhibitory circular-muscle motor neuron MP NOS/VIP/PACAP/ENK, short anal projection

MP NOS/VIP/PACAP/GRP, long anal projection
Cholinergic secretomotor neuron SMP ChAT/NPY

MP ChAT/NPY
Noncholinergic secretomotor neuron SMP VIP

MP VIP
Vasodilator neuron SMP ChAT/calretinin, cholinergic
Intestinofugal neuron MP ChAT/VIP/

The subtypes identified come from the guinea-pig ileum, as does the elementary chemical code [17, 27, 28].
SMP submucosal plexus, MP myenteric plexus, ChAT choline acetyltransferase, TK tachykinin, IR immunoreactive, ENK enkephalin, NOS nitric
oxide synthase, VIP vasoactive intestine peptide, 5-HT 5-hydroxytryptamine (serotonin), SOM somatostatin, GABA γ-aminobutyric acid, PACAP
pituitary adenylyl-cyclase-activating peptide, NPY neuropeptide Y
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branching out to guinea-pig and mouse colon. At least 11
functionally distinct types of enteric neurons can be
identified, and many can be further subdivided according
to their neurochemistry, projections or functional specificity
(Table 1). For a general review of transmission between
functionally identified enteric neurons, see [29]. Studies of
ascending excitation and descending inhibition have
allowed construction of a basic circuit that accounts for
these reflexes (Fig. 1, for review see [17]). Features include
feed-forward circuits of orally directed (ascending) inter-
neurons that activate excitatory motor neurons and anally
directed (descending) interneurons that activate inhibitory
motor neurons. Another key element is a circumferentially
organised recurrent network of intrinsic sensory neurons
that excite each other [30–32] and have outputs to the
ascending and descending feed-forward pathways and to
local excitatory and inhibitory motor neurons [33, 34]. The
intrinsic sensory neurons respond to changes in length and
tension within the intestinal wall, to mucosal deformation
and to mucosal chemical stimulation [33, 34]. A less
characterised component of the circuit is an anally directed
network that ultimately activates excitatory motor neurons
to produce descending excitation [26, 35]. Although there
are differences in the details of this circuit between species
and regions [36–40], it provides a broad template for
identifying the sites of purine nucleoside and purine
nucleotide action in motility regulation.

Four broadly defined targets for adenosine or ATP can
be identified within this circuit: sensory transduction, the
recurrent network of intrinsic sensory neurons, transmission
within the feed-forward pathways and neuromuscular

transmission. There is evidence for purinergic involvement
in each.

P1 (adenosine) receptors

Exogenous adenosine and related agonists generally inhibit
intestinal motility, depressing peristaltic reflexes and transit
in the small and large intestines of rats and guinea pigs
[5, 41–46]. This is largely due to actions on A1 receptors.
Thus, it might be suggested that endogenous adenosine
regulates motility in control intestine. Indeed, A1 receptor
blockade increases defecation in normal rats [47, 48].
However, neither small intestinal peristalsis nor colonic
transit is altered by A1 receptor antagonists [45–47], unless
the system has been perturbed by a pathological insult.
Similarly, peristaltic reflexes in the rat jejunum in vitro, are
unaffected by blockade of A1 receptors, although they are
markedly depressed by activation of these receptors [41–
43]. On the other hand, blockade of A1 receptors restores
normal transit in the rat colon in vivo when it has been
depressed by either transient ischaemia [45] or as a result of
postoperative ileus [46]. How these observations relate to
the increased defecation produced by A1 blockade is
unclear. Furthermore, the roles of adenosine in the major
motor activities of the small intestine, segmentation and
MMC have not been studied.

Studies of of A1 agonist action sites reveal several
mechanisms that can account for their propulsion inhibi-
tion. The most obvious is that A1 receptor activation
inhibits release of the excitatory transmitter acetylcholine

ISN network

ECMN

ECMN

LMN

LMN

DIN DIN

ICMN
ICMN

AIN AIN

ORAL ANAL
Fig. 1 A basic circuit that accounts for what is known about the
mechanisms that produce ascending excitatory and descending
inhibitory reflexes in the guinea-pig ileum. Intrinsic sensory neurons
(ISN) are shown in green, ascending interneurons (AIN) in orange,
excitatory circular-muscle motor neurons (ECMN) in pale blue,
longitudinal muscle motor neurons (LMN) in purple, descending

interneurons (DIN) in red and inhibitory circular-muscle motor
neurons (ICMN) in blue. Inhibitory longitudinal muscle motor
neurons are not illustrated, as these are very rare in the guinea-pig
ileum. The various populations of descending interneurons are shown
as a single population for simplicity
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(ACh) from motor neurons innervating the circular and
longitudinal muscles [49–52]. This is supported by a large
body of indirect evidence for A1-receptor-mediated inhibi-
tion of release from excitatory motor nerve terminals [43,
53–56]. This can clearly account for the abolition of
propulsive motor activity by adenosine and A1 agonists.
However, other mechanisms are also likely to be important.

Functional studies of A1 receptor locations in pathways
that regulate motility (for secretion studies see [57]) have
focused on the myenteric plexus intrinsic sensory neurons,
neurons with distinctive electrophysiological and morpho-
logical properties. Unlike other myenteric neurons, action
potentials in these neurons are followed by prolonged
afterhyperpolarisations (AHPs), and they usually lack fast
excitatory synaptic potentials (EPSPs) but have prominent
slow EPSPs (for reviews see [33, 34]). They all have a
similar shape; a large, smooth soma with several axons
known as Dogiel type II, so they are termed AH/Dogiel
type II neurons. Other characteristic features are that axons
usually project circumferentially [58] and make synapses

with other AH/Dogiel type II neurons [59, 60]. These
neurons express both P1 and P2 receptors (Fig. 2).
Transmission between them is via slow EPSPs, mediated
by tachykinins [61–63]. Importantly, they respond directly
to mechanical myenteric plexus deformation [64, 65], to
increased tension within the intestinal muscle [66, 67] and
to chemical stimulation of the mucosa [29, 68, 69],
indicating that they can act as mechanoreceptive and/or
chemoreceptive intrinsic sensory neurons. Because they
project circumferentially [58] and excite each other [60],
the intrinsic sensory neurons form a recurrent excitatory
network. This network can encode ongoing sensory stimuli,
with its output depending on neuron excitability, slow
EPSP amplitude and AHP magnitude [30, 31]. A1 receptor
agonists modify all these parameters. Most AH/Dogiel type
II neurons (about 85%) are hyperpolarised by adenosine,
largely through A1 receptors [70], so A1 activation will
markedly depress the network’s output. Furthermore, A1

receptor agonists abolish slow EPSPs evoked in these
neurons by electrical stimulation via presynaptic receptors
that inhibit transmitter release (Fig. 2) [54]. This would also
depress the network’s output. Finally, A1 receptor activation
enhances AHPs in these neurons [70], which would also
suppress firing in the sensory neuron network [30, 31].
These effects would be most prominent under conditions in
which the stimulus was slow in onset; for example, during
the distensions typically used to evoke propulsive motor
activity in isolated intestinal segments. Thus, in addition to
reductions in ACh release from excitatory motor neurons,
A1 agonists probably depress activity evoked by sensory
stimuli in the enteric neural circuitry.

Presynaptic A1 receptors are widely distributed within
the ENS. A1 agonists depress fast EPSPs mediated by ACh
in many myenteric neurons other than AH/Dogiel type II
neurons but do not depress responses to ACh in these
neurons [54]. This indicates that adenosine has a fourth site
of action within enteric pathways that modulate motility.
Furthermore, A1 receptor activation depresses tachykinin
release from enteric synaptosomes [71] and more intact
myenteric networks [72, 73], indicating that presynaptic A1

receptors inhibit release of transmitters other than ACh.
However, presynaptic A1 receptors are not ubiquitous, as
A1 receptor blockade reveals inhibitory synaptic potentials
(IPSPs) in many AH/Dogiel type II neurons [54]. The
IPSPs are normally obscured by slow EPSPs [54]. The
IPSPs may be mediated by 5-HT1A receptors, because they
are blocked by a 5-HT1A antagonist [62]. Thus, whereas
many cholinergic nerve terminals in the myenteric plexus
have A1 receptors, the terminals of serotonin-containing
interneurons do not. Nevertheless, that ability of A1

agonists to reveal IPSPs in the intrinsic sensory neurons
indicates another site at which adenosine can act to depress
motility.

P2X

A1

A
3

A
2A

Hyperpolarize

Hyperpolarize

Depolarize

A1

Myenteric
  Plexus

Mucosa

Fig. 2 Functionally identified purinergic receptors in myenteric
intrinsic sensory neurons. A1, A2A and A3 receptors are all found on
the soma, A1 receptors are present on many presynaptic terminals and
P2X receptors appear to be expressed by the mucosal terminals of
these neurons. There is also evidence for P2Y receptors on the soma,
but the significance of these is unknown
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Thus, there are many sites within the enteric neural
circuitry where A1 receptors and endogenous adenosine may
act to modulate motility. However, there is also evidence that
A1 receptors may be located on some intestinal smooth
muscles [74–77], where they can act to directly inhibit or
relax the muscle.

The roles of A2 and A3 receptors are much less clearly
defined that those of A1 receptors. Virtually all studies of
A2 receptor function indicate that activation of these
receptors can relax or inhibit contractions of intestinal
smooth muscle, largely, if not exclusively, through A2B

receptors. Activation of these receptors relaxes smooth
muscle from guinea-pig distal colon [56]; rat duodenum
[78], ileum [43] and colon [77]; and mouse distal colon
[79]. Various sites of action have been described, including
receptors on the smooth muscle [56] and facilitation of the
release of NO from inhibitory motor neurons [79]. By
contrast, adenosine-mediated relaxation of possum duode-
num appears to be via A2A receptors on the smooth muscle
[80]. However, results for A2A receptors are inconsistent
with other data, indicating that they act to facilitate ACh
release in the guinea-pig ileum [53].

There have been no studies of the effects of A2 agonists
and antagonists on complex motor patterns. Depolarisations
mediated by A2A receptors have been identified electro-
physiologically in a subpopulation of myenteric AH/Dogiel
type II neurons from the guinea pig, suggesting that A2A

receptors may act to enhance the output of intrinsic sensory
neuron networks [2]. The functions of this subpopulation of
sensory neurons have not been identified as yet. A3 receptor
activation hyperpolarises some AH/Dogiel type II neurons
[2], but again, the exact function of these neurons is
unknown. Functional roles for the A2 subtypes and the A3

subtype will only be determined when the cellular locations
and effects on complex motor patterns have been fully
investigated. As yet, the only real evidence is that A3

receptors have been localised to neurons immunoreactive
for substance P in the human submucosal plexus [81], which
suggests that these receptors may be important in enteric
sensory pathways. However, no data are available about a
similar localisation in equivalent myenteric neurons.

P2 receptors

The literature on the roles of P1 receptors in the
gastrointestinal tract is relatively limited, but the literature
on P2 receptors is vast. This is largely because of the many
studies testing whether ATP or a related purine nucleotide
mediates inhibitory neuromuscular transmission in the gut
(for review see [82]). There is also substantial literature
directed at identifying the roles of P2 receptors in
transmission between enteric neurons (reviewed by [14,

83, 84] and elsewhere in this issue). However, whereas
recent immunohistochemical studies show that P2 receptors
are found at many sites within the gut, the roles of these
receptors in motility regulation are enigmatic. This section
will focus on the various functional roles for P2 receptors
and hence for purine nucleotides highlighting P2X and P2Y
receptors as necessary.

Inhibitory neuromuscular transmission

It is widely accepted that ATP is important for transmission
from enteric inhibitory motor neurons to the intestinal
smooth muscle [82, 85, 86]. Activation of these neurons
produces a rapid hyperpolarisation of the smooth-muscle
membrane, an inhibitory junction potential (IJP), often
followed by a smaller, but more prolonged, hyperpolarisa-
tion (for some representative papers see [87–93]). Inhibito-
ry motor neuron activation relaxes intestinal smooth muscle
[86, 92, 94], and this relaxation is markedly reduced IJP
blockade in some preparations (for examples see [95–98]).
The inhibitory motor neurons contain nitric oxide synthase
(NOS) [99], and blockade of this enzyme prevents the
prolonged hyperpolarisations and depresses smooth-muscle
relaxation, but not the IJPs, evoked by their activity [87, 90,
93, 98, 100]. The IJPs are blocked by the bee venom toxin
apamin, an antagonist of the SK form of calcium-dependent
potassium channels [95, 96, 101].

Evidence that ATP mediates IJPs in intestinal smooth
muscle is extensive and includes observations that ATP
hyperpolarises intestinal smooth muscle [102, 103], an
effect blocked by apamin [95, 96] and by the broad-
spectrum P2 receptor antagonist suramin [104, 105].
However, this evidence has been fraught with problems.
For example, in the guinea-pig taenia caeci, hyperpolarisa-
tion evoked by pituitary adenylyl-cyclase-activating pep-
tide, which is contained in many inhibitory motor neurons,
is blocked by apamin and depressed by suramin [106–108].
In the dog colon, both the IJP and the slow hyperpolar-
isation evoked by inhibitory nerve stimulation are abolished
by inhibition of NOS [109–111], leaving no place for an
ATP-mediated component of inhibitory transmission. Sim-
ilarly, studies of inhibitory neuromuscular transmission that
measure relaxation often lead to the conclusion that either
NO or vasoactive intestinal peptide (VIP) (see [82, 85]),
each of which is released by inhibitory motor neurons, are
the major mediators. NO can produce relaxation indepen-
dently of changes in membrane potential [112], so measures
of membrane potential and relaxation may not produce
equivalent results. The problem is compounded because the
commonly used broad spectrum antagonist PPADS is not
very effective at blocking electrically evoked IJPs in
circular muscle of either guinea-pig ileum or colon [39,
113]. Nevertheless, recent data obtained using specific
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antagonists for and structural localisation of P2Y1 receptors
place this hypothesis on a more secure footing (for review
see [114]). In human and mouse intestine, IJPs and the
associated relaxations are blocked by the P2Y1 receptor
antagonist MRS 2179 [92, 98]. Furthermore, immunoreac-
tivity for the P2Y1 receptor protein is located on the smooth
muscle in both species [92, 115]. Together with the
knowledge that enteric nerve stimulation releases ATP and
its metabolites (see above), these data are compelling
evidence that ATP acting at P2Y1 receptors mediates IJPs
evoked by activity in intrinsic inhibitory motor neurons.

Whereas IJPs are probably mediated by P2Y1 receptors,
the cellular location of these receptors is less clear.
Neuromuscular transmission in the intestine appears to be
an indirect process, with neurotransmitters acting on ICC,
which then couple to the smooth muscle via gap junctions.
The evidence for this is compelling for both ACh and NO
(reviewed by [116]). But it is less clear that purinergic
neuromuscular transmission requires ICC as intermediates
[117]. For example, P2Y1 receptor immunoreactivity has
been localised to human smooth-muscle cells [92], whereas
P2Y1 mRNA is seen in ICC of small intestine from mice
and humans [118]. Furthermore, whereas NO-mediated
responses of murine intestine disappear when ICC are
absent, IJPs can still be recorded in the same tissues [119].
Perhaps IJPs are mediated by both direct action of ATP on
smooth-muscle P2Y receptors and via ICC.

Functional roles of purinergic IJPs

IJPs are the most prominent electrophysiological response
to inhibitory nerve activity, so they would be expected to
play a major role in intestinal motility regulation. However,
studies of the purinergic component of inhibitory neuro-
muscular transmission and regulation of the major intestinal
motor patterns have been ambiguous. These studies have
used apamin to block IJPs, because most precede the
availability of specific P2Y1 antagonists and because broad-
spectrum blockers of P2 receptors can act within the enteric
circuits themselves (see below and [120]). Indeed, both
suramin and PPADS can block ectonucleotidases [121],
making interpretation of results more difficult.

Receptive relaxation of the ileum depends on activity in
inhibitory motor neurons but is unaffected by concentra-
tions of apamin that abolish IJPs [19, 122]. By contrast,
NOS blockade abolishes receptive relaxation [19, 122].
Thus, although IJPs must have been evoked by the
inhibitory neural activity underlying receptive relaxation,
they play little role in the behaviour itself.

Studies with apamin on roles for IJPs in propulsive
contraction generation and propagation triggered by saline
distension have yielded contrasting results, with reports that
the threshold for propulsion initiation is either reduced

[123] or unaffected by apamin [124]. By contrast, threshold
is clearly reduced when NOS activity is inhibited [123,
124]. However, apamin increases the pressure produced
during propulsive contractions and reveals localised circular-
muscle contractions that do not propagate along the intestine
[124]. When apamin is combined with NOS inhibition, the
anally propagating contractions are converted to apparently
uncoordinated contractions at many sites along the segment
[122–124]. Saline distension is a distributed stimulus
activating intrinsic sensory neurons all along the intestinal
segment. Thus, the muscle would receive converging
excitatory and inhibitory input from ascending and
descending pathways, and blocking IJPs would allow the
excitation to predominate, thereby leading to the uncoordi-
nated activity.

Localised distension or mucosal deformation also leads
to anally propagating contractions of the longitudinal and
circular muscle in guinea-pig ileum [26, 35, 125, 126] and
colon, descending excitation [127]. In the colon, the
descending excitation is preceded by a descending relaxa-
tion that is depressed by apamin, indicating that it depends,
in part, on IJPs, presumably resulting from ATP release
[127]. The apamin-resistant component is abolished by
NOS inhibition, so the relaxation depends on both
purinergic and nitrergic transmission [127]. In contrast, no
descending relaxation is seen in the ileum [26], but apamin
increases the amplitude and rate of rise of the descending
contractions [26]. Electrophysiological studies of guinea-
pig ileum in which contractile activity is blocked show that
distension and mucosal stimulation evoke prominent
apamin-sensitive IJPs, but not excitatory junction potentials
(EJPs), in the circular-muscle anal to the stimulus [128–
130]. It appears that purinergic IJPs slow and limit the size
of descending contractions but do not relax the muscle
itself. Similar results have recently been obtained by
combining extracellular recording from the circular smooth
muscle with video-imaging contractile activity during
anally propagating propulsive contractions [131]. EJP/
action potential complexes associated with propulsive
contractions were not preceded by IJPs, although small,
spontaneous IJPs were readily detected. Thus, the roles of
IJPs in the ileum and colon are distinctively different.
Purinergic neuromuscular transmission in the ileum limits
the excitation resulting from EJPs, whereas in the colon, it
also helps set the muscle tension, even in the absence of
excitatory input.

There have been very few studies of the effects of
inhibiting IJPs on the two most prominent motor behav-
iours of the intestine: MMCs and segmentation. Each has
been difficult to characterise in vitro. However, recent
developments allow some conclusions to be drawn. Isolated
mouse intestine and colon exhibit periodic strong contrac-
tion complexes that propagate along the segment in a
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manner analogous to phase III contractions of interdigestive
MMCs [132–135]. This similarity is so strong that the
colonic propagating contraction complexes are usually
termed colonic MMCs, although they may actually be
analogues of mass-movement contractions involved in
defecation. Whereas IJPs are seen in the mouse colon,
apamin does not affect colonic MMC cycling frequency or
propagation speeds and has inconsistent effects on contrac-
tion amplitude [132, 136, 137].

Development of methods for constructing contractile
activity maps as functions of time and length along the
intestine from video recordings of isolated intestinal seg-
ments [138] has allowed analysis of nutrient-induced
segmentation in guinea-pig small intestine [131]. This
manifests as episodes of contractile activity evoked by
either fatty acids or amino acids in the intestinal lumen.
Several motility patterns are seen, but the most prominent
consists of rhythmic stationary contractions confined to
narrow regions: segmentation. Large numbers of small
apamin-sensitive IJPs are recorded between contraction
episodes [131], indicating ongoing activity of inhibitory
motor neurons along the length of the segment. Interest-
ingly, large apamin-sensitive IJPs are time-locked to the
stationary contractions on both the oral and anal sides
outside the contracting region during episodes [131]. This
suggests that IJPs limit the spread of contractions, perhaps
by preventing propagation of smooth-muscle action poten-
tials from the excited region.

Nutrient-induced motor activity also includes circular-
muscle constrictions that propagate slowly for short
distances orally or anally [139]. Like the stationary contrac-
tions, these short-length propagating contractions may be
limited by large apamin-sensitive IJPs that are seen just
beyond the point at which the contraction disappears [131].
It seems IJPs also limit the propagation speed of these
contractions, as blocking IJPs converts much of the
contractile activity induced by luminal nutrients to constric-
tions that propagate rapidly along the entire segment [131].

Overall, IJPs mediated by ATP in the ileum appear to
limit the spread and efficacy of excitatory input to the
muscle rather than to relax it, as in the colon. Relaxation is
the province of NO released from the same neurons.

P2X receptors within the muscle

Both P2X2 and P2X5 receptors have been identified
immunohistochemically on ICC from mouse and guinea
pig [140], which raises a question as to their roles.
Intestinal smooth muscle is often excited by P2X receptor
activation [115], so receptors on ICC may be important.
Furthermore, some ICCs are pacemakers for the smooth
muscle, driving slow waves that set the underlying rhythm
for motor activity (for review see [141]). P2X receptor

activation modifies pacemaker activity in some ICCs [142],
so these receptors may regulate intestinal pacemakers.
However, P2X receptors are also found in both canine
and murine colonic smooth-muscle cells [115, 143], which
are contracted by P2X stimulation. There has been no
analysis of muscle or ICC P2X receptor involvement in
intestinal motor patterns.

P2 receptors within enteric neural circuits

There is excellent evidence that P2 receptors play important
roles within the ENS. Fast EPSPs mediated by P2X
receptors are seen in both myenteric and submucosal
neurons (see [120]), and there is strong evidence for
synaptic potentials mediated by P2Y1 receptors in submu-
cosal neurons [144, 145]. This section deals with myenteric
receptor location and how they fit into the neural circuits
mediating different motor reflexes.

In guinea-pig ileum, P2X receptors have been identified
immunohistochemically in three classes of myenteric
neurons, each with its own distinct set of functions. The
AH/Dogiel type II neurons express immunoreactivity for
P2X2 [3] and P2X7 receptors [146]. Ascending interneurons
express immunoreactivity for P2X3 receptors [147, 148].
Most NOS neurons express immunoreactivity for P2X2

receptors [3], and a subset also express P2X3 receptors
[147, 148]. NOS neurons are either inhibitory motor
neurons or descending interneurons [99]. Analysis of P2X
receptor distribution amongst functionally identified classes
of neurons in other species is more limited, because
knowledge of the functions of immunohistochemically
identified neuronal subtypes is less complete. Nevertheless,
some information is available. A key point is that P2X1

receptors have not been identified in enteric neurons in any
species studied. On the other hand, P2X2 receptors are
expressed in some mouse myenteric neurons [115, 149],
although their neurochemistry has not been identified. P2X2

receptors are also found in a minority of rat calretinin
immunoreactive myenteric neurons and in a subset of
calbindin immunoreactive neurons in the same preparation
[150]. In the rat, many calretinin neurons have Dogiel type
II morphology, and neurons with this morphology have the
electrophysiological properties of AH neurons [151], as
they do in both guinea pig and mouse [64, 152]. Thus,
some AH/Dogiel type II neurons in the rat myenteric plexus
probably express P2X2 receptors. Many more apparently
express P2X3 receptors, as about 80% of calretinin neurons
in the rat ileal myenteric plexus are P2X3 receptor
immunoreactive [150]. The functions of P2X receptors in
AH/Dogiel type II neurons are discussed below. P2X5

receptors are widespread in submucosal neurons of mouse
but are largely localised to axons in the myenteric plexus
[153].
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P2Y receptors have also been found immunohistochemi-
cally on neurochemically identified enteric neurons. In
guinea pig, virtually all calbindin, and thus AH/Dogiel type
II, myenteric neurons express P2Y12 but not P2Y6 or P2Y2

receptors [154]. On the other hand, some calretinin neurons
express P2Y2 receptors and/or P2Y6 receptors, and a
subpopulation of NOS neurons express P2Y6 receptors
[154]. The functions of these receptors are unclear, as the
only evidence about roles for P2Y receptors in motility
regulation suggests that P2Y1 receptors are the major
contributors (see below). Whereas reverse transcriptase
polymerase chain reaction (RT-PCR) shows that P2Y1

receptors are expressed in the guinea-pig submucosa
[155], the available antisera against this receptor subtype
have yet to reveal neurons in either the myenteric or
submucosal plexuses of guinea pigs.

By contrast, P2Y1 receptors have been identified in
myenteric neurons in both human and mouse [92, 115] and
submucous neurons in mouse and rat [115, 156]. In mice,
P2Y1 receptors are seen in many but not all myenteric
neurons immunoreactive for NOS, although these neurons do
not account for all P2Y1 immunoreactive myenteric neurons.

Neural P2X receptors and motility

P2X receptors mediate fast EPSPs in some myenteric
neurons (see [84, 120, 157]). To identify their physiological
roles, it has been necessary to control for effects of broader-
spectrum antagonists on inhibitory neuromuscular trans-
mission. Two strategies have evolved to identify at least
some roles of neural P2X receptors. First, PPADS has been
used as the antagonist in several studies of motility reflexes

and motor patterns. PPADS depresses IJPs in guinea-pig
circular muscle [39, 113] but only at concentrations higher
than needed to block purinergic fast EPSPs in myenteric
neurons [158]. This may be because PPADS is relatively
ineffective in blocking P2Y1 receptors negatively coupled
to adenylyl cyclase [1]. Second, these studies have used
divided organ baths that allow separate superfusion of
different parts of reflex pathways running along the intestine
[113, 159]. The results show that in guinea-pig ileum, P2X
receptors mediate transmission from descending interneur-
ons to inhibitory motor neurons (Fig. 3) but not transmis-
sion between interneurons or from intrinsic sensory neurons
to interneurons [113]. Inhibitory motor neurons are all
immunoreactive for NOS [99], and 90% of all NOS
neurons in this preparation express P2X2 receptors [3],
indicating that this receptor subtype mediates this form of
transmission. However, some NOS neurons express P2X3

receptors [147, 148], so a P2X2.3 heteromer may be
involved.

P2X receptors may also play a role in transmission
between descending interneurons in the descending excit-
atory reflex pathway (Fig. 4). PPADS depresses descending
excitation of both longitudinal and circular muscle, but
blocking 5-HT3 receptors depresses descending excitation
in circular muscle only [35]. Blockade of nicotinic
receptors has no effect on these reflexes in either muscle
layer. Combined blockade of P2X and 5-HT3 receptors has
no greater effect on descending excitation of the circular
muscle than blockade of either receptor alone, suggesting
that the two are acting in series. Anatomical studies indicate
that excitatory circular-muscle motor neurons but not
longitudinal muscle motor neurons receive synaptic input

P2X

P2Y1

A2B

Releases NO, ATP

Fig. 3 Purinergic receptors and their relationships to inhibitory motor
neurons supplying the circular muscle. These neurons are excited by
descending interneurons via P2X receptors, release ATP to act on
P2Y1 receptors within the circular muscle and also release nitric oxide
(NO). NO release is facilitated by A2B receptors

P2X

P2Y1Descending
Interneuron

Descending
 Excitation

Descending
 Inhibition

Fig. 4 Different P2 receptors have independent roles in transmission
between interneurons in two descending reflex pathways. P2X
receptors are important for transmission to interneurons of the
descending excitatory pathway (yellow), whereas P2Y1 receptors are
important for transmission between interneurons of the descending
inhibitory pathway (red)
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from 5-HT-containing descending interneurons [160], sug-
gesting that this is where the 5-HT3 receptors act. Thus, the
simplest explanation for the data is that PPADS blocks
transmission from descending interneurons to two types of
interneurons, including 5-HT-containing interneurons
(Fig. 4). This is supported by a divided organ bath study,
which found that PPADS depressed descending excitatory
reflexes when in a chamber where it would act on synapses
between interneurons but not on the muscle [125].

A surprising conclusion from these studies is that P2X
receptors have no major role in ascending reflex pathways
[159, 161] or in transmission to longitudinal muscle motor
neurons [35]. This is despite the fact that P2X3 receptors
are found in calretinin-immunoreactive neurons of guinea-
pig ileum [147, 148], which are either ascending interneur-
ons or longitudinal muscle motor neurons [99].

Whereas these studies of simple reflexes indicate that
P2X receptors are important, studies of more complex
motor patterns using PPADS to identify P2X involvement
have been disappointing. PPADS does not alter the
threshold of propulsive reflex activation by saline disten-
sion [35], nor does it change the motor activity induced by
luminal nutrients in the guinea-pig small intestine [139]. A
reduction in threshold for initiation of propulsion by
PPADS that was antagonised by suramin has also been
reported [162]. This may have been due to the interactions
with ectonucleotidases of these antagonists [121] rather
than effects on P2 receptors. Thus, it is not yet clear how
the involvement of P2X receptors in simple reflexes is
translated into more complex behaviours.

Two studies have addressed the role of the P2X receptors
in complex behaviours using mice in which either P2X2 or
P2X3 receptors were knocked out. Knockout of the P2X2

receptor depressed propulsive reflexes evoked by saline
distension and eliminated P2-mediated fast EPSPs in
myenteric neurons, although responses to ATP and α,β-
methylene ATP (an agonist at P2X3 receptors) were
preserved in AH/Dogiel type II neurons [149]. On the other
hand, intestinal transit of a radioactive marker was normal
in the knockout mice. Knockout of the P2X3 receptor also
depressed propulsive reflexes evoked by saline distension,
with no effect on intestinal transit, and this was associated
with depressed sensitivity of AH/Dogiel type II neurons to
α,β-methylene ATP [163]. These results highlight two
significant issues for interpreting the available data. First,
although AH/Dogiel type II neurons in guinea pig and
mouse appear functionally identical [164], they may
express different P2X receptor subtypes with P2X2 in the
former and P2X3 in the latter. Thus, species differences
may be critical. Second, different measures of motility can
give very different results, even when they appear to be
measuring the same thing—in this case, the mechanisms
that propel content along the gut. As yet, there have been

no studies of either segmentation or the MMC using P2X
receptor knockouts.

Whereas there is strong evidence for a role for P2X
receptors in descending reflexes in guinea-pig ileum,
identical experiments in guinea-pig and rat colon provide
no evidence for such a role [39, 40]. This is despite
electrophysiological evidence for P2X-receptor-mediated
EPSPs in the guinea-pig colon at least [158, 165].

Neural P2Y receptors and motility

There have been almost no studies of the roles of neural
P2Y receptors in motility reflexes, although more is known
about the involvement of such receptors in reflex control of
secretion. However, distension evokes slow EPSPs that
trigger action potentials in NOS descending interneurons
but not in other myenteric neurons [166]. The distension-
evoked slow EPSPs arise from descending interneurons and
are blocked by PPADS at higher concentrations than
needed to abolish P2X-mediated fast EPSPs [167]. This
higher concentration of PPADS depresses transmission
along the descending inhibitory pathway when added to
the interneuron chamber of a divided organ bath, but lower
concentrations of PPADS that block fast EPSPs have no
effect [167]. Descending inhibition depression is mimicked
by a P2Y1 receptor antagonist (McMillan & Gwynne,
unpublished). Thus, P2Y1 receptors may mediate transmis-
sion between interneurons in the descending inhibitory
pathway via slow EPSPs. As yet, roles for other P2Y
receptors located on enteric neurons have not been
identified, and there are no published studies of neural
P2Y receptors on complex motility patterns.

Sensory transduction

The presence of P2X receptors within intrinsic sensory
neurons suggests they are involved in sensory transduction
[168], and recent data support this idea. ATP applied to
mucosal villi of the guinea-pig ileum evokes bursts of
action potentials in nearby myenteric AH/Dogiel type II
neurons [169]. The ATP-evoked bursts of action potentials
mimic the effect of mucosally applied 5-HT and low pH.
Some amino acids have a similar effect, and this is depressed
by PPADS [29]. Both mucosal application of amino acids
and mucosal application of ATP evoke local inhibitory
reflexes in the circular muscle, and each is depressed by
PPADS [170]. The wider physiological significance of these
observations for motility regulation has not been tested, but
chemical stimuli, such as nutrients, may act in part by the
release of ATP from intestinal epithelial cells.

There is also evidence suggesting a role for P2Y1

receptors in sensory transduction within the intestinal wall.
A subepithelial layer of fibroblasts in the rat intestinal
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mucosa expresses P2Y1 receptors and releases ATP to act
back on these receptors in response to mechanical defor-
mation [171]. There is evidence indicating that mechanical
deformation of the mucosa releases 5-HT [172–174] and
that this is the primary mechanism of sensory transduction
for this stimulus. However, the possibility of a significant
role for P2Y1 receptors remains to be tested.

Roles of enteric glial cells

Whereas the roles of P1 and P2 receptors on neurons and in
the muscle layers are the focus of this review, P2X and P2Y
receptors have been identified on enteric glial cells [175–
177]. Roles of glia in neural signalling elsewhere in the
nervous system have become topics of major interest and
are the subject of many studies in the CNS (for recent
reviews see [178–180]). Thus, it is reasonable to assume
that enteric glia play a role in purinergic signalling within
the ENS. Indeed, there is evidence that networks of enteric
glia can generate propagating waves of intracellular Ca2+

that pass via gap junctions throughout the networks and that
this depends on ATP release [181]. Furthermore, enteric
glia express an extracellular surface-bound ectonucleotidase
[182], so that they will be important in the regulation of
ATP levels following release from nerve terminals or other
glia. Also, reductions in enteric glia have been correlated
with some motility disturbances [183, 184]. However, how
glial P2 receptors, Ca2+ waves or glial ectonucleotidases fit
into the regulation of intestinal motility is unclear, and there
is no evidence as to the part they play in the circuitry
responsible for any given motor pattern. This can be expected
to be an important issue for investigation as mechanisms of
glial signalling to neurons are clarified.

Where to from here?

There is no doubt that ATP and its metabolites play
signalling roles within the gastrointestinal tract and hence
in motility regulation. The difficulty has been in defining
the physiological and pathophysiological conditions under
which they act. This problem has been similar for many
other compounds found to act as either neurotransmitters or
modulators within the intestine. For example, although
tachykinin-mediated slow EPSPs are prominent in many
enteric neurons [61, 62] and simple motility reflexes are
altered by specific tachykinin antagonists [185, 186], it has
been very difficult to show a role for neural tachykinin
receptors in normal motility patterns. It seems likely that
many of the effects of these relatively enigmatic trans-
mitters and modulators will be seen only in pathological
circumstances, as with the A1 receptor involvement in the
postoperative ileus. If so, then identifying appropriate

model systems will be crucial for understanding the roles
of these compounds. An important issue here is to examine
the actions of specific antagonists for the different P1 and
P2 receptor subclasses on motility patterns other than
propulsive reflexes. The major motor activities of the small
intestine are segmentation in the fed state and the MMC in
the fasted state, but neither has been studied in sufficient
detail to identify roles for either P1 or P2 receptors. In vitro
model systems for both behaviours are now becoming
available, and analysing the roles of ATP and adenosine, in
particular, in these models should finally begin to identify
their significance for intestinal behaviour.
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