
J
H
E
P
0
9
(
2
0
1
4
)
1
8
1

Published for SISSA by Springer

Received: August 20, 2014

Accepted: September 13, 2014

Published: September 30, 2014

Non-local formulation of ghost-free bigravity theory

Giulia Cusin,a Jacopo Fumagallia,b,c and Michele Maggiorea
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1 Introduction

The study of infrared modifications of General Relativity (GR) is motivated both by its

intrinsic conceptual interest and by the aim of explaining the observed accelerated expan-

sion of the Universe. A natural way of modifying the theory in the infrared is to add a

mass term. In this direction, significant progresses have been made in recent years with the

construction of a ghost-free theory of massive gravity, the dRGT theory [1, 2] (see also [3–

15], and [16, 17] for reviews). Such a theory involves, beside the dynamical metric gµν , a

non-dynamical reference metric fµν which is needed to construct a mass term. A natural

subsequent step is to promote fµν to a dynamical field. This leads to bimetric theories.

Ghost-free massive gravity has been generalized to a ghost-free bimetric theory by Hassan

and Rosen [18]. Conceptual aspects of bigravity have been investigated in [19–21], and its

cosmological consequences have been studied e.g. in [22–30]. The Hassan-Rosen bimetric

theory is defined by the action

S =

∫
d4xM2

g

√
−gR(g) +

∫
d4xM2

f

√
−fR(f)− 2M2

fm
2

∫
d4x
√
−g

4∑
n=0

βnen(X) (1.1)

where βi are general real coefficients, m is a parameter with the dimension of mass,

Xνµ = (
√

g−1f)νµ and the ei(X) polynomials are given by

e0 = I e1 = [X] e2 =
1

2
([X]2 − [X2]) e3 =

1

6
([X]3 − 3[X][X2] + 2[X3]

e4 =
1

24
([X]4 − 6[X]2[X2] + 8[X][X3] + 3[X2]2 − 6[X4]) , (1.2)
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where the bracket denotes the trace of the matrix and, for simplicity, we have restricted

ourselves to D = 4 space-time dimensions.

The purpose of this paper is to show how this theory can be recast into a non-local form

involving only one metric. Working up to terms quadratic in the curvature and choosing

the parameters βi such that the theory admits a background solution ḡµν = f̄µν = ηµν , we

will find that the action (1.1) is classically equivalent to the action

S′ = M2
pl

∫
d4x
√
−g R(g) −

M2
f

2

∫
d4x
√
−gWµνρσ

1

�−m2
Wµνρσ +O(R3

µνρσ) , (1.3)

where Wµνρσ is the Weyl tensor constructed with the metric gµν , and M2
pl = M2

g + M2
f .

In order to get this result, we will integrate out fµν by using its own equations of motion,

linearized over Minkowski, and we will then covariantize the result.1 Our analysis will

complement the study performed by Hassan, Schmidt-May and von Strauss [21], where

fµν is rather eliminated using the equation of motion of gµν ; we will comment below on

the relation between the two approaches.

This result reveals an interesting relation between bigravity and Stelle’s higher deriva-

tive gravity. The term Wµνρσ(�−m2)−1Wµνρσ can be seen as a UV completion of a term

−(1/m2)WµνρσW
µνρσ. In the infrared limit (� − m2)−1 ' −1/m2 and, neglecting also

cubic and higher order terms, eq. (1.3) reduces to

SStelle = M2
pl

∫
d4x
√
−g R(g) + cW

∫
d4x
√
−gWµνρσW

µνρσ , (1.4)

(where cW = M2
f /(2m

2)), which is the action of Stelle’s theory [31, 32]. Stelle’s theory has

7 propagating degrees of freedom, organized into a massless spin-2 graviton and a massive

ghost-like spin-2 state. The original bigravity theory also has a massless and a massive

graviton, but is ghost-free. Therefore, this construction provides an explicit example of how

to embed Stelle’s higher-derivative gravity into a ghost-free theory (as already discussed

from a different point of view in [21]). The non-local expression (1.3) is also useful to

investigate the relation, and the differences, between this non-local formulation of bigravity,

and non-local modifications of General Relativity such as those that have been discussed

in [33–41].

The paper is organized as follows. In section 2 we express the fluctuations of the metric

fµν in terms of that of gµν . The non-local action is computed in section 3. We conclude

with a discussion of our results in section 4. In appendix A we compare our results with

that of ref. [21] and in appendix B we extend the computation to the interaction with

matter. We use the signature (−,+,+,+) and units ~ = c = 1.

1In the following, in fully covariant expressions it is understood that � is the d’Alembertian computed

with respect to the full metric gµν , while in linearized expression it is understood that � = ηµν∂µ∂ν is the

flat-space d’Alembertian, and similarly for its inverse �−1.

– 2 –
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2 Elimination of the second metric

2.1 Computation of lµν

The equations of motion derived from eq. (1.1) are

M2
g

M2
f

Gµν(g) +m2
3∑

n=0

(−1)nβngµλYλ(n)ν(X) = 0 , (2.1)

Gµν(f) +m2
3∑

n=0

(−1)nβ4−nfµλYλ(n)ν(X−1) = 0 , (2.2)

where Y(n)(X) =
∑n

r=0(−1)rXn−rer(X), and we neglect for the moment matter sources

(the extension to matter sources is performed in appendix B). In order to obtain an effec-

tive action involving only the metric gµν , we eliminate fµν by using its own equation of

motion. This involves the inversion of a differential operator, which in practice can only

be done by expanding around a simple background, such as Minkowski. The result can

then be covariantized and, as long as one truncates the theory to quadratic order, the

covariantization can be done uniquely. Thus, in order to simplify the problem, we choose

the coefficients βn in eq. (1.1) in such a way that there exists a solution of the equations

of motion with ḡµν = f̄µν = ηµν . This can be obtained for instance setting [20]

β0 = β4 + 2β3 − 2β1; β2 = −β1
3
− β4

3
− β3; (β1, β3, β4) ∈ R (2.3)

Imposing that only one of the three remaining free parameters i.e. β1 is different from zero,

eq. (2.3) implies β0 = −2β1 and β2 = −β1/3. In the following we adopt for definiteness

this choice and, for later convenience, we set β1 = 3 (in any case, different choices of the

βi, satisfying eq. (2.3), can be reabsorbed in the definition of m2). Then the potential term

in eq. (1.1) becomes

4∑
n=0

βnen(X) = −6e0(X) + 3e1(X)− e2(X) , (2.4)

and the equations for fµν and gµν become

M2
g

M2
f

Gµν(g)−m2
[
6gµλYλ0ν(X) + 3gµλYλ1ν(X) + gµλYλ2ν(X)

]
= 0 , (2.5)

Gµν(f)−m2
[
3fµλYλ3ν(X−1) + fµλYλ2ν(X−1)

]
= 0 . (2.6)

We now expand gµν = ηµν + hµν , fµν = ηµν + lµν . Then eqs. (2.5) and (2.6) give

M2
g

M2
f

Eµνρσhρσ +m2(hµν − ηµνh) = m2(lµν − ηµν l) , (2.7)

Eµνρσlρσ +m2(lµν − ηµν l) = m2(hµν − ηµνh) , (2.8)

where for the Lichnerowicz operator we use the convention

Eµνρσhρσ = −�hµν + ηµν�h− ∂µ∂νh− ηµν∂ρ∂σhρσ + ∂ρ∂νhρµ + ∂ρ∂µhρν . (2.9)

– 3 –
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It is also convenient to define the tensor

Sµνρσ =
1

2
(ηµρηνσ + ηµσηνρ)− ηµνηρσ . (2.10)

Equation (2.8) can then be rewritten as

(Eµνρσ +m2Sµνρσ)lρσ = m2Sµνρσh
ρσ . (2.11)

The operator acting on l is precisely the Fierz-Pauli operator. We know that for m 6= 0 it

is invertible and the inverse is

Qµνρσ = − 1

�−m2

[
1

2
(ΠµρΠνσ + ΠµσΠνρ)−

1

3
ΠµνΠρσ

]
, (2.12)

where Πµν = ηµν −m−2∂µ∂ν . Then

lµν = m2QµναβSαβρσh
ρσ

=
1

�−m2
(∂µ∂αh

να + ∂ν∂αh
µα − ∂µ∂νh)− m2

�−m2
hµν

+
1

3

1

�−m2

(
ηµν +

2∂µ∂ν

m2

)
(�h− ∂α∂βhαβ) . (2.13)

This expression can be rewritten in terms of the linearized Ricci tensor Rµν and of the

linearized Ricci scalar R (we use calligraphic letters to denote quantities linearized over

Minkowski), which are given by

Rµν =
1

2
(∂α∂µhνα + ∂α∂νhµα −�hµν − ∂µ∂νh) , (2.14)

R = ∂µ∂νhµν −�h . (2.15)

Then eq. (2.13) becomes

lµν = hµν +
1

�−m2

[
2Rµν −

1

3

(
ηµν + 2

∂µ∂ν
m2

)
R
]
. (2.16)

Taking the trace we get

l = h− 2R
3m2

, (2.17)

so the trace l is a local function of hµν . Plugging these two expressions in eq. (2.7) we get

a non local equation for hµν ,

M2
g

M2
f

Eµνρσhρσ −
2

3
ηµνR−

m2

�−m2

[
2Rµν −

1

3

(
ηµν + 2

∂µ∂ν
m2

)
R
]

= 0 . (2.18)

It is straightforward to check that the divergence of the left-hand side vanishes identically,

as it should. Therefore, when hµν is coupled to the matter energy-momentum tensor Tµν ,

energy-momentum conservation, ∂µTµν = 0, is automatically assured.

– 4 –
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2.2 Helicity decomposition of the metric perturbations

It is instructive to repeat the above computation by first decomposing the metric pertur-

bations hµν and lµν into their scalar, vector and tensor components,

hµν = hTTµν +
1

2
(∂µε

T
ν + ∂νε

T
µ ) + ∂µ∂να+

1

3
ηµνs , (2.19)

lµν = lTTµν +
1

2
(∂µl

T
ν + ∂ν l

T
µ ) + ∂µ∂νβ +

1

3
ηµνu , (2.20)

where hTTµν is the transverse-traceless part, ∂µh
TT
µν = 0, ηµνhTTµν = 0, εTµ is a transverse

vector, ∂µεTµ = 0, and α and s are scalar under rotation (and similarly for the decomposition

of lµν). We also define vµν = hµν − lµν and we decompose it as

vµν = vTTµν +
1

2
(∂µv

T
ν + ∂νv

T
µ ) + ∂µ∂νγ +

1

3
ηµνc (2.21)

so, of course, vTTµν = hTTµν − lTTµν , vTµ = εTµ − lTµ , γ = α − β and c = s − u. In term of these

variables the quadratic Einstein-Hilbert actions take the form (see e.g. [8] or appendix B

of [33])

S
(2)
EH1

+ S
(2)
EH2

=
1

4

∫
d4x M2

g

(
hTTµν �h

TT
µν −

2

3
s�s

)
+M2

f

(
lTTµν �l

TT
µν −

2

3
u�u

)
, (2.22)

while, after some integrations by part, the interaction term coming from the dRGT poten-

tial takes the form

Sint =
−M2

fm
2

4

∫
d4x

(
vTTµν v

TTµν − 1

2
vTµ�v

Tµ − 2c�γ − 4

3
c2
)
. (2.23)

The corresponding equations of motion are

�vTµ = 0 , (2.24)

�c = 0 , (2.25)

(�−m2)lTTµν = −m2hTTµν , (2.26)

2

3
�u+m2

(
�γ +

4

3
c

)
= 0 . (2.27)

Equation (2.24) implies �lTµ = �εTµ . We solve it with the boundary condition that, when

εTµ = 0, we must have lTµ = 0. Then, �vTµ = 0 implies vTµ = 0. Similarly, �c = 0 implies

c = 0. Therefore we get

lTµ = εTµ , u = s . (2.28)

The other two equations give

lTTµν = − m2

�−m2
hTTµν (2.29)

and

β = α+
2s

3m2
. (2.30)

– 5 –
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This decomposition allows us to appreciate that the non-locality in the relation between

hµν and lµν only appears in the tensor sector. The equivalence with the result found

in eq. (2.16) is easily proved inverting the decomposition (2.19), which gives (in D = 4

space-time dimensions) [33]

α = −1

3

1

�

(
ηµν − 4

�
∂µ∂ν

)
hµν , (2.31)

s =

(
ηµν − 1

�
∂µ∂ν

)
hµν , (2.32)

εTµ =
2

�

(
δρµ −

∂µ∂
ρ

�

)
∂σhρσ , (2.33)

hTT
µν = hµν −

1

3

(
ηµν −

∂µ∂ν
�

)
h− 1

�
(∂µ∂

ρhνρ + ∂ν∂
ρhµρ)

+
1

3
ηµν

1

�
∂ρ∂σhρσ +

2

3

1

�2
∂µ∂ν∂

ρ∂σhρσ . (2.34)

Under linearized diffeomorphisms hµν → hµν − (∂µξν + ∂νξµ), decomposing ξµ = ξTµ + ∂µξ,

we have εTµ → εTµ −2ξTµ and α→ α−2ξ, while hTT
µν and s are invariant. Thus we can choose

the gauge so that εTµ = α = 0, and this leaves no residual gauge symmetry. Since hTT
µν and

s are invariant, it is possible to express them in terms of the linearized Ricci scalar and

Ricci tensor (recall that, in linearized theory, the Riemann tensor is gauge-invariant rather

than covariant). Indeed, eqs. (2.32) and (2.34) can be rewritten as

s = − 1

�
R , (2.35)

hTTµν =
2

3

∂µ∂ν
�2
R+

1

3

ηµν
�
R− 2

�
Rµν . (2.36)

Substituting eqs. (2.28)–(2.30) into eq. (2.20), and expressing α, s, εTµ and hTT
µν in terms

of hµν using eqs. (2.31), (2.33), (2.35) and (2.36) it is straightforward to show that one

recovers eq. (2.16).

3 Non-local action

We can now describe the dynamics entirely in term of hµν . Note that, since lµν has

been expressed in terms of hµν by using its own equation of motion, it is legitimate to

substitute eq. (2.16) (or, equivalently, eqs. (2.28)–(2.30)) directly into the action. We find

convenient to work with the variables that appear in the helicity decomposition. The

quadratic Einstein-Hilbert term of the second metric becomes

SEH2 =
M2
f

4

∫
d4x

[
m4hTTµν

1

(�−m2)
hTTµν +m6hTTµν

1

(�−m2)2
hTTµν −

2

3
s�s

]
. (3.1)

The term Sint, given in eq. (2.23), greatly simplifies thanks to eq. (2.28), and becomes

Sint = −
M2
fm

2

4

∫
d4x

[
hTTµν h

TTµν +m4hTTµν
1

(�−m2)2
hTTµν + 2m2hTTµν

1

�−m2
hTTµν

]
.

(3.2)

– 6 –
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Since we have solved the equation for lµν without the need of fixing the gauge, the resulting

non-local action for hµν is invariant under linearized diffeomorphisms, and in fact it depends

only on the invariant quantities hTTµν and s. We can now use eqs. (2.35) and (2.36) and,

upon use of the linearized Bianchi identity ∂µRµν = (1/2)∂νR, we get

S
(2)
EH2

+ Sint = −M2
f

∫
d4x

[
1

6
R 1

�
R+Rµν

m2

�(�−m2)
Rµν − 1

3
R m2

�(�−m2)
R
]
. (3.3)

Observe that, since the term in square bracket is already O(h2), at the quadratic order

at which we are working we could simply replace d4x by d4x
√
−g. Using m2

�(�−m2)
=

− 1
� + 1

�−m2 we can rewrite S
(2)
EH2

+ Sint = SB + SW where:

SB = M2
f

∫
d4x

[
Rµν

1

�
Rµν − 1

2
R 1

�
R
]
, (3.4)

SW = −M2
f

∫
d4x

[
Rµν

1

�−m2
Rµν − 1

3
R 1

�−m2
R
]
. (3.5)

The first term can also be rewritten as

SB = M2
f

∫
d4x

(
Rµν −

1

2
ηµνR

)
1

�
Rµν

= M2
f

∫
d4xGµν 1

�
Rµν , (3.6)

where Gµν is the linearized Einstein tensor. As first observed in [42], despite its non-local

appearance, SB is local with respect to hµν , and is just a way of rewriting the quadratic

part of the Einstein-Hilbert action. Indeed, using eqs. (2.14) and (2.15) and performing

some integration by parts,∫
d4xGµν 1

�
Rµν =

1

4

∫
d4xhµνEµνρσhρσ . (3.7)

Thus in the end, putting together SB + SW with the quadratic Einstein-Hilbert term of

the first metric SEH1 , we get

S2 ≡ S
(2)
EH1

+ S
(2)
EH2

+ Sint (3.8)

=
M2
g +M2

f

4

∫
d4xhµνEµνρσhρσ −M2

f

∫
d4x

[
Rµν

1

�−m2
Rµν − 1

3
R 1

�−m2
R
]
.

The non-local term can be rewritten in terms of the linearized Weyl tensorWµνρσ observing

that

2

(
Rµν

1

�−m2
Rµν − 1

3
R 1

�−m2
R
)

=Wµνρσ
1

�−m2
Wµνρσ

−
(
Rµνρσ

1

�−m2
Rµνρσ − 4Rµν

1

�−m2
Rµν +R 1

�−m2
R
)
, (3.9)

Consider now the quantity

χ̃E ≡
∫
d4x
√
−g

(
Rµνρσ

1

�−m2
Rµνρσ − 4Rµν

1

�−m2
Rµν +R

1

�−m2
R

)
. (3.10)

– 7 –
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If the factor (�−m2)−1 were not present this would be just the Gauss-Bonnet term, which

is a topological invariant and does not contribute to the variation of the action. Because of

the (� −m2)−1 factors this is no longer true. However, expanding over Minkowski space

we find that∫
d4x
√
−g

[
Rµνρσ

1

�−m2
Rµνρσ − 4Rµν

1

�−m2
Rµν +R

1

�−m2
R

]
= O(h3) . (3.11)

Therefore in the end, to the order at which we are working, this term can indeed be

neglected, and we end up with

S2 =
M2
g +M2

f

4

∫
d4xhµνEµνρσhρσ −

M2
f

2

∫
d4xWµνρσ

1

�−m2
Wµνρσ . (3.12)

To the quadratic order at which we are working, this action has the obvious covariantization

S2 = M2
pl

∫
d4x
√
−g R −

M2
f

2

∫
d4x
√
−gWµνρσ

1

�−m2
Wµνρσ , (3.13)

where the linearized Weyl tensorWµνρσ has been promoted to the full Weyl tensor Wµνρσ,

and M2
pl = M2

g +M2
f .

4 Discussion

We conclude with a few comments on our main result, eq. (3.13). First of all, we observe

that, in the limit m→ 0, the result does not reduce to GR. This is a reflection of the vDVZ

discontinuity of the original bigravity theory. In fact the original bigravity theory, when

linearized over Minkowski, described a massless graviton, plus a massive graviton with a

Fierz-Pauli mass term. The bigravity action goes smoothly into the action of GR in the

limit m→ 0, but the discontinuity manifests itself when one computes the propagator. It is

quite interesting to observe that, in our non-local formulation, after having eliminated the

second metric with its own equations of motion, the discontinuity manifests itself directly

at the level of the action, as we see from eq. (3.12). We can check that this discontinuity

is just the vDVZ discontinuity by computing the propagator associated to the quadratic

action (3.12). Using the explicit expression of the linearized Weyl tensor, eq. (3.12) reads

S2 =
M2

pl

4

∫
d4xhµν

[
Eµνρσ − 2α̃2Fµνρσ 1

�−m2

]
hρσ , (4.1)

where α̃ = Mf/Mpl and

Fµνρσ =
1

3
∂µ∂ν∂ρ∂σ − 1

4
�(∂µ∂ρηνσ + ∂µ∂σηνρ + ∂ν∂ρηµσ + ∂ν∂σηµρ)

+
1

6
�(∂µ∂νηρσ + ∂ρ∂σηµν) +

1

4
�2(ηµρησν + ηµσηρν)− 1

6
�2ηµνηρσ . (4.2)

Since the above action is invariant under linearized diffeomorphisms, to invert the quadratic

form in eq. (4.1) we must add a gauge fixing. Using the usual gauge-fixing term of lin-

earized massless gravity, Lgf ∝ −(∂ν h̄µν)(∂ρh̄
ρµ), where h̄µν = hµν − (1/2)hηµν , we find,
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as expected, that the propagator is just the sum of the usual massless propagator of GR

plus the propagator of a massive graviton with a Fierz-Pauli mass term. As in the usual

Vainshtein mechanism, the vDVZ discontinuity will then be cured by the non-linearities

due to the higher-order terms in the curvature.

Finally, it is interesting to compare eq. (3.13) with the non-local modification of gravity

proposed in [35], which is based on the action

SNL =
1

16πG

∫
d4x
√
−g

[
R− 1

6
m2R

1

�2
R

]
. (4.3)

As discussed in [35, 40], this model has quite interesting cosmological properties. Non-

local models of this type must be understood as derived from some fundamental non-local

theory [34, 36],2 and it is therefore natural to ask whether they could emerge from bigravity

upon elimination of one of the two metrics. We see that the answer is negative. First of all,

bigravity produces a different tensor structure, given by the Weyl squared term. Second,

as we have seen the non-local term generated from bigravity does not vanish as m → 0,

contrary to the non-local term in eq. (4.3). In retrospect, the fact that the non-local term

in eq. (4.3) could not have been generated by bigravity is a general consequence of the

fact that the theory (4.3) has no vDVZ discontinuity [35, 38], while the non-local theory

derived from bigravity inherits its vDVZ discontinuity.
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A Relation to the approach of Hassan, Schmidt-May and von Strauss

In this appendix we discuss the relation of our result to that obtained in [21]. In general,

when we solve the equations of motion, we can eliminate fµν using its own equation of

motion, (δS/δfµν)g = 0, and then plugging the resulting expression into (δS/δgµν)f = 0

or, alternatively, we can first obtain fµν by solving (δS/δgµν)f = 0, and then plug it

into (δS/δfµν)g = 0. Obviously, these are equivalent and legitimate ways of solving the

equations of motion. The issue is more subtle if we want to derive an equivalent effective

action involving only gµν . This point has been explained clearly in [21]: let S′ = S[g, f(g)]

be the action obtained substituting fµν with its expression as a function of gµν , obtained

either from (δS/δgµν)f = 0 or from (δS/δfµν)g = 0. In both cases the variation of S′ with

respect to gµν is given by

δS′

δgµν(x)
=

(
δS

δgµν(x)

)
f

+

∫
d4y

δfρσ(y)

δgµν(x)

(
δS

δfρσ(y)

)
g

= 0 . (A.1)

2The same holds for the non-local model proposed in [43, 44], see [45] for a recent review. This model

is however different, since it is rather constructed with a term Rf(�−1R) in the action, and it does not

feature a mass scale m. Non-local actions have also been studied with motivation mostly coming from the

UV, see e.g. [46–50].
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If fµν is a solution of (δS/δf)g = 0, then the equations δS′/δg = 0 and (δS/δgµν)f = 0

are equivalent. Thus S′ is classically equivalent to S, as long as we are interested in

the dynamics of gµν only. In contrast, if fµν is a solution of (δS/δg)f = 0, the two

actions are not equivalent. Solutions of (δS/δf)g = 0 do satisfy δS′/δg = 0, but the

converse is not necessarily true. The action S′ also has spurious solutions characterized by

(δS/δfµν)g = χµν(x), with χ(x) a function such that∫
d4y

δfρσ(y)

δgµν(x)
χρσ(y) = 0 . (A.2)

Therefore, in this case extra conditions must be imposed to eliminate the spurious solutions,

and the relation between the action S′ and the original action is less direct. On the other

hand, the equation (δS/δgµν)f = 0 is algebraic in fµν , and can always be solved. In

contrast, solving with respect to fµν the equation (δS/δfµν)g = 0 involves the inversion of

a differential operator, which in practice can only be done by expanding around a simple

background. The approach taken by Hassan, Schmidt-May and von Strauss [21] has been

to eliminate fµν using the equation of motion of gµν . Plugging the resulting expression

into the action S it was found in ref. [21] that the resulting theory is given by the higher-

derivative action

SHD
(2) = M2

g

∫
d4x
√
−g

[
Λ + cRR(g)− cRR

m2

(
RµνRµν −

1

3
R2

)]
+O(m−4) , (A.3)

where Λ, cR and cRR are some coefficients. By subtracting a Gauss-Bonnet term, similarly

to what we have done in section 3, this action can be rewritten in terms of the Weyl tensor

as [21]

SHD
(2) = M2

g

∫
d4x
√
−g

[
Λ + cRR(g)− cRR

2m2
WµνρσW

µνρσ
]

+O(m−4) . (A.4)

The values of Λ, cR and cRR are given in [21] as functions of the βi. With our choice

β0 = −6, β1 = 3, β2 = −1, β3 = β4 = 0 we have3

Λ = 0 , cR =
M2
g +M2

f

M2
g

, cRR =
M2
g + 2M2

f

M2
f

. (A.5)

Comparison with eq. (3.13) shows that the cosmological constant vanishes for both actions,

and the coefficient of the Einstein-Hilbert term is the same. However, in the limit �� m2,

the coefficient of the WµνρσW
µνρσ term in eq. (3.13) is +M2

f /(2m
2) while, in eq. (A.4),

it is −1/2M2
g (M2

g + 2M2
f )/(m2M2

f ), so the two disagree, even in the sign. Actually, this

is simply due to the fact that the action (A.4), by itself, is not equivalent to the original

3We also take into account a difference in the definition of m2. Comparing the actions we see that our

m2 is related to the parameter denoted m2 in [21] by m2
ourM

2
f = m2

theirM
2
g . Observe also that, to determine

Λ, cR and cRR, we need to compute the parameter denoted by a in [21], which is determined by their

eq. (2.19). For our values of βi we get a2 − 3a+ 2 = 0, which has the solutions a = 1 and a = 2. We only

retain a = 1, since only in this case we get Λ = 0. With a = 2 not only the coefficient of the Weyl term

would differ, but also the cosmological term and the coefficient of the Einstein-Hilbert term.
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bigravity action, since it has been obtained eliminating fµν with the equation of motion of

gµν , rather than with its own. As discussed in [21], and has we have recalled above, with

this procedure the correspondence between the two theories is more indirect, and is only at

the level of the equation of motion, once spurious solutions are eliminated. In contrast, the

action (3.13) is indeed equivalent to the original bigravity action, up to quadratic orders in

the curvature. This point can also be illustrated using a nice example given in appendix A1

of [21]. Consider in fact the theory with two scalar fields φ and ψ, given by

S[φ, ψ] =

∫
d4x

[
−1

2
∂µφ∂

µφ− 1

2
∂µψ∂

µψ − µ2

2
(φ+ ψ)2

]
. (A.6)

(We do not need source terms for our purpose). Of course, one could diagonalize the action

introducing Φ0 = φ − ψ and Φm = φ + ψ. However, it is instructive to rather integrate

out ψ using either its equation of motion, or the one with respect to φ. The equation of

motions are (
δS

δφ

)
ψ

: (�− µ2)φ = µ2ψ , (A.7)(
δS

δφ

)
φ

: (�− µ2)ψ = µ2φ . (A.8)

If we use (δS/δφ)ψ, ψ can be eliminated algebraically. Inserting it back in the action one

finds the higher-derivative action [21]

SHD =
1

2µ4

∫
d4xφ�(�− µ2)(�− 2µ2)φ , (A.9)

which to first non-trivial order in �/µ2 becomes

SHD '
∫
d4xφ�

(
1− 3

2

�
µ2

)
φ . (A.10)

If instead we eliminate ψ using its own equation of motion, we have the non-local expression

ψ = µ2(�− µ2)−1φ. Inserting it in the action we get

Snon−loc =
1

2

∫
d4xφ�

(
1 +

µ2

µ2 −�

)
φ , (A.11)

which, expanding to first non-trivial order in �/µ2, becomes

Snon−loc '
∫
d4xφ�

(
1 +

�
2µ2

)
φ . (A.12)

We see that indeed the first correction is different (even in the sign) from that in eq. (A.10).

B Coupling with matter

In this appendix we extend the computation of the non-local action to the case of coupling

with matter. In this case eqs. (2.7) and (2.8) become

M2
g

M2
f

Eµνρσhρσ +m2(hµν − ηµνh) = m2(lµν − ηµν l)−
κ1
2
Tµν , (B.1)

Eµνρσlρσ +m2(lµν − ηµν l) = m2(hµν − ηµνh)− κ2
2
Tµν , (B.2)
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where we have introduced two generic couplings κ1,2 ≡ k1,2/M2
f . Then eq. (2.16) becomes

lµν = hµν +
1

�−m2

[
2Rµν −

1

3

(
ηµν + 2

∂µ∂ν
m2

)
R
]
− κ2

2
QµναβT

αβ , (B.3)

where Qµναβ is defined in eq. (2.12) and

QµναβT
αβ = − 1

�−m2

(
Tµν −

1

3
ηµνT

)
. (B.4)

Taking the trace of eq. (B.3) we get

l = h− 2R
3m2

− κ2
6

1

�−m2
T . (B.5)

We can now substitute back in the action eqs. (B.3) and (B.5). The result has the form

Stot = S2 + Sint where S2 is given by eq. (3.13) and Sint =
∫
d4x
√
−gLint with

Lint =

(
k2

32Mf

)2 [
Tµν

1

�−m2
Tµν − 1

3
T

1

�−m2
T

]
−
(
k2m

8Mf

)2 [
Tµν

1

(�−m2)2
Tµν − 1

3
T

1

(�−m2)2
T

]
−k2m2

[
Tµν

1

(�−m2)2
Rµν − 1

6
T

1

(�−m2)2
R

]
+
k2
2

[
Tµν

1

�−m2
Rµν − 1

6
T

1

�−m2
R

]
− 1

2
(k1 + k2)T

µν 1

�
Rµν . (B.6)

The last term can be transformed observing that, at the linearized level,∫
d4xTµν

1

�
Rµν =

∫
d4xTµν

1

�
(∂ρ∂µhνρ −�hµν) . (B.7)

The term Tµν�−1∂ρ∂µhνρ vanishes integrating by parts and using ∂µT
µν = 0, and therefore

in eq. (B.6) we can replace −(1/2)(k1 + k2)T
µν�−1Rµν by +(1/2)(k1 + k2)T

µνhµν , which

is the standard local coupling, with an effective Newton constant determined by k1 + k2.

The remaining terms in eq. (B.6) provide genuinely non-local couplings.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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