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1 Introduction

The mystery of flavour has been with us from the discovery of the muon in 1936 to the

discovery of neutrino mass and mixing in 1998. The Standard Model (SM), extended to

include neutrino mass, is described by at least 26 parameters, of which no less than 20 are

flavour parameters: 10 from the quark sector and at least 10 from the lepton sector. At

least two of these parameters are related to CP violation in the quark and lepton sectors,

although the latter has not yet been definitively observed.

A lot of effort has been put into trying to understand the flavour structure of the SM

(for reviews see e.g. [1–5]). Its peculiar features include hierarchical charged fermion masses,

with the down-type quark and charged lepton masses showing a similar pattern which

differs from that of the up-type quarks, while neutrinos are significantly lighter than all

other particles. Flavour mixing in the lepton sector has turned out to be much larger than

in the quark sector, and the number of generations is not explained.

Following the award of the 2015 Nobel Prize for “the discovery of neutrino oscillations

which shows that neutrinos have mass”, we still have no more understanding of flavour

than back in 1936 when Rabi famously asked of the muon “who ordered that?”. Part of

the reason for this impasse is the failure of experiment to measure any flavour and CP

violation beyond that expected in the SM. The problem is that the SM is not a theory of

flavour and, as such, provides no understanding of the origin or nature of flavour.

In the absence of any observed beyond SM flavour and CP violation, a sort of “straw

man” ansatz for flavour has emerged known as Minimal Flavour Violation (MFV) [6–8] in

which all flavour and CP-violating transitions are postulated to originate in the SM Yukawa

matrices so that they are governed by the CKM matrix. The formulation of MFV in an

effective field theory involving a high-energy SU(3)5 flavour symmetry, broken only by the

Yukawa matrices, allows higher-dimensional operators which can contribute considerably

to flavour observables [9–11]. Going beyond an effective field theory description, it is pos-

sible to implement the idea of MFV in a renormalisable theory by introducing new heavy

fermions. In such a setup, the flavour symmetry is broken by scalar fields whose Vacuum

Expectation Values (VEVs) are related to the Yukawa matrices in an inverse way [12–16].

Although this differs from the standard MFV approach, where the fundamental flavour

breaking fields are linearly related to the Yukawa matrices, it does reproduce MFV phe-

nomenologically by predicting very SM-like flavour and CP violation, which is of course

exactly what is observed.

When considering extensions of the SM, such as Supersymmetry (SUSY) softly bro-

ken at the TeV scale, then in general large deviations from SM flavour and CP violation
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are expected. SUSY models include one-loop diagrams that lead to Flavour Changing

Neutral Current (FCNC) processes such as e.g. b → sγ and µ → eγ at rates which are

proportional to the size of the off-diagonal elements of the scalar mass matrices, when the

latter have been rotated to the super-CKM (SCKM) basis where the Yukawa matrices are

diagonal [17]. These SUSY contributions are tamed in the Constrained Minimal Super-

symmetric Standard Model (CMSSM) which postulates that, at the high energy scale, the

SUSY breaking squark and slepton mass squared matrices are proportional to the unit ma-

trix and the trilinear A-terms are additionally aligned with the Yukawa matrices, resulting

in an (approximate) MFV-like structure at low energy [17].

In the framework of Grand Unified Theories (GUTs), the embedding of the SM

fermions into GUT multiplets does not allow to implement the SU(3)5 flavour symme-

try of MFV. However, in GUTs based on SU(5) [18] or the Pati-Salam group SU(4) ×
SU(2) × SU(2)′ [19, 20], it is possible to introduce an SU(3)2 flavour symmetry instead,

and this has been shown to lead to sufficient suppression of flavour violation [21–23]. Con-

sidering SUSY GUTs, the CMSSM framework always provides a safe haven from unwanted

flavour violation, although CP violation in the form of Electric Dipole Moments (EDMs)

remains a challenge [17]. However, with SUSY and SUSY GUTs, the real challenge is to

justify the assumptions of MFV or the CMSSM, while at the same time providing a realis-

tic explanation of quark and lepton (including neutrino) masses, mixing and CP violation.

This non-trivial balancing act is what concerns us in this paper.

The discovery of neutrino mass and mixing has spurred a lot of work aiming to describe

flavour in terms of a family symmetry of some kind, in particular discrete non-Abelian

family symmetry [1–5]. It was realised early on that in such models, the idea of sponta-

neous flavour and CP violation could effectively tame the flavour and CP problems of the

SM [24, 25] without any ad hoc assumptions about MFV or the CMSSM. The main point

is that the same family symmetry introduced to understand the Yukawa sector will also

automatically control the flavour structures of the soft SUSY breaking sector. The only

requirement is that the SUSY breaking hidden sector must respect the family symmetry,

which means that the family (and CP) symmetry breaking scale must be below the mass

scale of the messengers which mediate SUSY breaking to the visible sector. SUSY breaking

in the framework of supergravity provides one attractive example for such a situation.

The idea of using family symmetry to solve the SUSY favour and CP problems has

been fully explored in the framework of an SU(3) family symmetry [25–27], where it was

shown that the flavons that spontaneously break family and CP symmetry will perturb the

SUSY breaking sector, leading to tell-tale signatures of flavour and CP violation beyond

MFV or the CMSSM. Unfortunately, these signatures which were expected to appear in

Run1 of the LHC [28] did not in fact materialise, and indeed the allowed parameter space

has been much reduced [29, 30].

In the setup discussed in [26, 27], the extra flavour violation can be understood as

follows. At leading order, the CMSSM is enforced by the SU(3) family symmetry acting

on the squark and slepton mass squared matrices. However the fact that SU(3) is broken

by flavons, as it must be to generate the quark and lepton masses, means that flavons

appearing in the Kähler potential will give important contributions to the kinetic terms,
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requiring extra canonical normalisation [31, 32]. Since SUSY breaking also originates from

the Kähler potential, the flavons will also modify the couplings of squarks and sleptons to

the fields with SUSY breaking F -terms. The resulting corrections to the soft mass squared

matrices from unity will be similar to the corrections of the corresponding Kähler metrics,

yet both are not aligned due to independent coefficients of the relevant operators. Likewise,

the trilinear soft SUSY breaking A-terms will replicate the flavour structure of the Yukawa

matrices prior to canonical normalisation, but exact alignment is not realised. All of this

occurs at the high scale. Additional flavour violation is generated by renormalisation group

(RG) running down to low energy, taking into account the seesaw mechanism [33–36] which

will involve thresholds at an intermediate scale, see e.g. [37, 38].

In this paper we show how approximate MFV can emerge from an SU(5) SUSY GUT,

supplemented by an S4×U(1) family symmetry [39, 40], which provides a good description

of all quark and lepton (including neutrino) masses, mixings and CP violation. Assuming

that SUSY breaking respects the family symmetry, we calculate in full detail the low

energy mass insertion parameters in the SCKM basis. We include the effects of canonical

normalisation as well as RG running. Remarkably, due to the peculiar flavour structure

of the model, we find that the small family symmetry S4 × U(1) is sufficient to reproduce

the effects of low energy MFV much more accurately than the previous SU(3) family

symmetry model.

2 Trimaximal S4 × SU(5) model

In this section, we present the basic ingredients of the supersymmetric model of flavour

proposed in [40]. It is capable of correctly describing a sizable reactor neutrino mixing

angle θl13 by generating a neutrino mass matrix of trimaximal form. The model represents

a modification of an earlier tri-bimaximal model [39] with only minor changes. Being

formulated in a supersymmetric SU(5) grand unified framework, the matter superfields fall

into the 10 and 5̄ representations,

T =
1√
2




0 −ucG ucB −uR −dR
ucG 0 −ucR −uB −dB
−ucB ucR 0 −uG −dG
uR uB uG 0 −ec

dR dB dG ec 0




and F = (dcR dcB dcG e − ν) , (2.1)

where the superscript c denotes charge conjugation of the right-handed superfields. Table 1

lists the matter, Higgs and flavon superfields together with their transformation properties

under the imposed SU(5)×S4×U(1) symmetry. Details of the non-Abelian finite group S4

are provided in appendix A. The 5̄-plets, labelled by F , are assigned to a triplet represen-

tation of S4, while the 10-plets are split into an S4 doublet T for the first two generations

and an S4 singlet T3 for the third generation. In addition, right-handed neutrinos N are

introduced transforming in the same S4 triplet representation as F . The SU(5) Higgs fields

H5, H5̄ and H4̄5 are all S4 singlets. Note that each of these GUT Higgs representations

contains an SU(2)L Higgs doublet. Therefore, the low energy doublet Hu originates from
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Field T3 T F N H5 H5 H45 Φu
2 Φ̃u

2 Φd
3 Φ̃d

3 Φd
2 Φν

3′ Φν
2 Φν

1 η

SU(5) 10 10 5 1 5 5 45 1 1 1 1 1 1 1 1 1

S4 1 2 3 3 1 1 1 2 2 3 3 2 3′ 2 1 1(′)

U(1) 0 5 4 −4 0 0 1 −10 0 −4 −11 1 8 8 8 7

Table 1. The matter, Higgs and flavon superfields of the model in [40] together with their trans-

formation properties under the imposed SU(5)× S4 ×U(1) symmetry.

H5, while Hd arises from a linear combination of H5̄ and H4̄5 [17, 41, 42].1 In addition, we

introduce a number of flavon fields Φf
ρ , which are labelled by the corresponding S4 repre-

sentation ρ as well as the fermion sector f to which they couple at leading order (LO). Two

flavons, Φu
2 and Φ̃u

2 , generate the LO up-type quark mass matrix. Three flavon multiplets,

Φd
3, Φ̃

d
3 and Φd

2, are responsible for the down-type quark and charged lepton mass matrices.

Finally, the right-handed neutrino mass matrix is generated from the flavon multiplets

Φν
3′ , Φ

ν
2 and Φν

1 as well as the flavon η which is responsible for breaking the tri-bimaximal

pattern of the neutrino mass matrix to a trimaximal one at subleading order [40]. The ad-

ditional U(1) symmetry has been introduced in order to control the coupling of the flavon

fields to the matter fields in a way which avoids significant perturbations of the LO flavour

structure by higher-dimensional operators. We refer the reader to [39] for more details.

The vacuum structure of the flavon fields arises from the F -term alignment mech-

anism [43, 44]. Introducing a set of so-called driving fields, the corresponding F -term

conditions give rise to particular flavon alignments as described in appendix B. To LO,

these are given as [39, 40],

〈Φu
2〉

M
=

(
0
1

)
φu
2 λ

4,
〈Φ̃u

2〉
M

=

(
0
1

)
φ̃u
2 λ

4, (2.2)

〈Φd
3〉

M
=




0
1
0


φd

3 λ
2,

〈Φ̃d
3〉

M
=




0
−1
1


 φ̃d

3 λ
3,

〈Φd
2〉

M
=

(
1
0

)
φd
2 λ , (2.3)

〈Φν
3′〉

M
=




1
1
1


φν

3′ λ
4,

〈Φν
2〉

M
=

(
1
1

)
φν
2 λ

4,
〈Φν

1〉
M

= φν
1 λ

4,
〈η〉
M

= φη λ4, (2.4)

where λ ≈ 0.225 is the Wolfenstein parameter [45] and the φs are dimensionless order one

parameters. Imposing CP symmetry of the underlying theory, all coupling constants can

be taken real [46–48], so that CP is broken spontaneously by generally complex values for

the φs. M denotes a generic messenger scale which is common to all the non-renormalisable

1As H5̄ and H4̄5 transform differently under U(1), it is clear that the mechanism which spawns the low

energy Higgs doublet Hd must necessarily break U(1). Although the discussion of any details of the SU(5)

GUT symmetry breaking (which, e.g., could even have an extra dimensional origin) are beyond the scope

of our paper, we remark that a mixing of H5̄ and H4̄5 could be induced by introducing the pair H±

24
with

U(1) charges ±1 in addition to the standard SU(5) breaking Higgs H0
24.
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effective operators and assumed to be around the scale of grand unification. Considering

also subleading terms in the flavon potential, these LO vacuum alignments receive cor-

rections which are parameterised by small shifts as discussed in appendix B, and shown

explicitly in eq. (B.4). Throughout our calculations, we have taken into account such shifts

as well as all other subleading effects. As our LO results for the mass insertion parameters

depend solely on the LO structure of the model, we only report the LO analysis in the

main part of this paper. When giving explicit expressions, we therefore limit ourselves to

showing the leading contributions, omitting additional higher order corrections. We will

indicate such approximations by ≈ throughout the paper. Finally, the VEVs of the two

neutral Higgses are:

υu =
υ√

1 + t2β

tβ , υd =
υ√

1 + t2β

, (2.5)

where tβ ≡ tan(β) = υu
υd

and υ =
√

υ2u + υ2d = 174GeV.

3 Kähler potential

A characteristic feature of any effective theory is the presence of non-renormalisable op-

erators which are only constrained by the imposed symmetries. In the context of super-

symmetry, this is the case for both the superpotential as well as the Kähler potential. The

effective coupling of flavon fields to the Kähler potential gives rise to kinetic terms with a

non-canonical Kähler metric K 6= 1,

Lkin = Kij

(
∂µf̃

∗
i ∂

µf̃j + i f∗
i ∂µσ̄

µfj

)
, (3.1)

where f̃ and f are, respectively, the scalar and fermionic components of a generic chiral

superfield f̂ . In order to extract physically meaningful properties of a model, the kinetic

terms have to be brought to a canonical form. The required basis transformation is usually

referred to as canonical normalisation [31, 32].

In the context of SU(5), we encounter a Kähler metric for each of the three GUT repre-

sentations containing the matter fields. We denote these by KT , KF and KN , respectively.

Using the symmetries of table 1, the expansions of these 3× 3 matrices in terms of flavon

fields can be obtained from

(
T † T †

3

)
(KT − 1)

(
T

T3

)
=

∑

n

(
T † T †

3

)

 c

KT22
n (R2)n c

KTi3
n (R4)n[

c
KTi3
n (R4)n

]†
c
KT33
n (R3)n




(
T

T3

)
, (3.2)

F †(KF − 1)F =
∑

n

F † [cKF
n (R1)n

]
F , (3.3)

N †(KN − 1)N =
∑

n

N † [cKN
n (R1)n

]
N , (3.4)

where the cn are order one coefficients which we can assume to be real thanks to the

imposed CP symmetry. Products of flavon fields which are allowed to couple in the Kähler
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potential are collected in the tuples Ri, which in turn are unions of tuples Si. These tuples,

which contain all possible combinations of up to eight flavons with a minimum contribution

of order λ8, are defined as

R1 = S1 ∪ S2 ∪ S3 , R2 = S1 ∪ S2 , R3 = S1 , R4 = S4 , (3.5)

where

S1 =

{
Φd
2Φ

d†
2

M2
,
Φd
3Φ

d†
3

M2
,
Φ̃d
3Φ̃

d†
3

M2
,
Φu
2Φ

u†
2

M2
,
Φ̃u
2Φ̃

u†
2

M2
,
(Φ̃u

2)
2

M2
,
Φν
3′Φ

ν†
3′

M2
,
Φν
2Φ

ν†
2

M2
,
Φν
1Φ

ν†
1

M2
,
ηη†

M2
,

(Φd
3)

2Φν
1

M3
,
(Φd

3)
2Φν

2

M3
,
(Φd

3)
2Φν

3′

M3
,
Φd
2Φ

d†
2 Φ̃u

2

M3
,
Φd†
2 Φ̃d†

3 Φu
2

M3
,
(Φd

2Φ
d†
2 )2

M4
,
(Φd

3Φ
d†
3 )2

M4
,

Φd
2Φ

d†
2 Φd

3Φ
d†
3

M4
,
Φd
2Φ

d†
2 Φ̃d

3Φ̃
d†
3

M4
,
(Φd

2Φ
d†
2 )2Φ̃u

2

M5
,
(Φd

2Φ
d†
2 )3

M6
,
(Φd

2Φ
d†
2 )4

M8
+ all h.c.

}
, (3.6)

S2 =

{
Φ̃u
2

M
,
Φν
1Φ

ν†
2

M2
,
Φd†
2 Φ̃d†

3 Φu
2

M3
+ all h.c.

}
, (3.7)

S3 =

{
(Φd

2)
4Φd

3

M5
,
Φν
1Φ

ν†
3′

M2
,
Φν
2Φ

ν†
3′

M2
,
Φd
3Φ

d†
3 Φ̃u

2

M3
,
(Φd

2)
5Φd†

2 Φd
3

M7
+ all h.c.

}
, (3.8)

S4 =

{
(Φd

2)
5

M5
,
η(Φd†

2 )2

M3
,
Φd
2Φ

d
3Φ

ν
3′

M3
,
Φd
2Φ

d
3(Φ

d†
3 )2

M4
,
(Φd†

2 )2Φd
3Φ

d†
3

M4
,
(Φd†

2 )3Φν
2

M4
,

(Φd†
2 )3(Φd†

3 )2

M5
,
ηΦd

2(Φ
d†
2 )3

M5
,
(Φd

2)
6Φd†

2

M7

}
. (3.9)

S1 and S2 contain combinations of flavons with U(1) charges that sum up to zero. They can

form S4 invariants when contracted with two doublets or two triplets. Therefore, S1 and

S2 contribute to KF , KN and the upper-left 2× 2 block of KT in eq. (3.2). Moreover, the

combinations in S1 can be contracted to S4 invariants so that they additionally contribute

to the lower-right 1 × 1 block of KT . S3 gives further contributions to KF and KN but

not to KT . Finally, the combinations contained in S4 have U(1) charges which add up to

5 and allow for S4 contractions to a doublet. Hence, they contribute to the off-diagonal

upper-right block of KT . We remark that the effects of the operators involving the flavon

field η are independent of its S4 transformation properties as a 1 or 1′.

When calculating the Kähler metric from the expressions of eqs. (3.2)–(3.4), it is

important to take into account all invariant S4 contractions of two matter fields with a

given product of flavons.

3.1 Kähler metric with LO corrections

It is straightforward though tedious to determine the matrices KT , KF and KN from

eqs. (3.2)–(3.4). Keeping only the LO corrections to the unit matrix, we find for the 10

of SU(5)

KT − 1 ≈




(k5 + k1)λ
2 k2 λ

4 k4 e
−iθk4λ6

· (k5 − k1)λ
2 k3 e

−iθk3λ5

· · k6 λ
2


 , (3.10)
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where ki denote real order one coefficients, and θki are phases associated with the generally

complex flavon VEVs. Here and throughout our paper, the dots in the lower-left corner

of the matrix represent the complex conjugates of the corresponding entries in the upper-

right part of the matrix. The operator T †Φd
2Φ

d†
2 T/M2 gives rise to the parameters k1 and

k5 through different S4 contractions, while k6 is due to T †
3Φ

d
2Φ

d†
2 T3/M

2. Being associated

with T †Φ̃u
2T/M , the parameter k2 carries no phase factor because φ̃u

2 ∈ R, cf. appendix B.

Finally, the (13) and (23) elements originate from T †η(Φd†
2 )2T3/M

3 and T †(Φd
2)

5T3/M
5,

respectively. Making use of the phases of the LO flavon VEVs, given explicitly in eq. (B.2),

we can write the phases of eq. (3.10) as

θk4 = θd3 − θd2 and θk3 = −5θd2 , (3.11)

where θd2 and θd3 are the phases of the LO VEVs φd
2 and φd

3, respectively.

Analogously, we obtain the matrix KF ,
2

KF − 1 ≈




2K1 K3 K3

· K2 −K1 K3

· · −(K2 +K1)


λ4 , (3.12)

where Ki ∈ R. The parameters on the diagonal, K1 and K2, originate from different

contractions of the term F †Φd
3Φ

d†
3 F/M2. The off-diagonal elements, parametrised by K3,

are derived from the operator F †Φ̃u
2F/M and are real due to φ̃u

2 ∈ R. Hence the LO

correction of KF from unity is given by a real matrix.

The corresponding Kähler metric KN for the right-handed neutrinos is identical to KF

up to a difference in the order one coefficients of the individual corrections. We thus have

KN − 1 ≈




2KN
1 KN

3 KN
3

· KN
2 −KN

1 KN
3

· · −(KN
2 +KN

1 )


λ4 , (3.13)

where the coefficients KN
i are again real.

3.2 Canonical normalisation

The expansion of the Kähler potentials in terms of flavon insertions leads to non-canonical

kinetic terms. In order to bring the Kähler potential back to its canonical form, a non-

unitary transformation has to be applied on the matter superfields. This procedure is

known as canonical normalisation (CN) [31, 32], and introduces the 3 × 3 matrices PA

which transform the matter superfields A = T, F,N as A = P−1
A A′ so that

(P †
A)

−1KAP
−1
A = 1 =⇒ KA = P †

APA . (3.14)

2There are also flavour universal λ2 and λ4 contributions to the diagonal elements of KF which, however,

do not effect our LO results.
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A prescription for deriving the matrices PA can be found in appendix C.1. To LO, they

take the simple form

PT ≈




1 k2
2 λ4 k4

2 e
−iθk4λ6

· 1 k3
2 e

−iθk3λ5

· · 1


 , PF (N) ≈




1
K

(N)
3
2 λ4 K

(N)
3
2 λ4

· 1
K

(N)
3
2 λ4

· · 1


 . (3.15)

In the following sections we study the structure of the Yukawa as well as the soft super-

symmetry breaking sectors. The CN transformations of eq. (3.15) have to be applied to

these before aiming at a physical interpretation of the resulting patterns.

4 Yukawa sector after CN

In this section, we study the fermionic sector of the model, completing the analysis

of [39, 40] by including the effects of canonical normalisation. Our parametrisation dif-

fers slightly from the one used in [39, 40] as, in this work, we do not absorb any of the

higher order corrections to the mass matrices or the flavon VEVs into the associated leading

order terms. See appendix B for more details.

4.1 Charged fermions

4.1.1 Up-type quarks

The Yukawa matrix of the up-type quarks can be constructed by considering all the possible

combinations of a product of flavons with TTH5 for the upper-left 2×2 block, with TT3H5

for the (i3) elements, and with T3T3H5 for the (33) element. The operators which generate

a contribution to the Yukawa matrix of order up to and including λ8 are

ytT3T3H5 +
1

M
yu1TTΦ

u
2H5 +

1

M2
yu2TTΦ

u
2 Φ̃

u
2H5

+
1

M3
yu3,4T3T3(Φ

d
3)

2Φν
2,3′H5 +

1

M5
yu5TT (Φ

d
2)

2(Φd
3)

3H5 +
1

M5
yu6TT3(Φ

d
2)

3(Φd
3)

2H5 ,

(4.1)

where the parameters yt and yui are real order one coefficients. Inserting the flavon VEVs

and expanding the S4 contractions of eq. (4.1) using the Clebsch-Gordan coefficients given

for instance in [39], yields the up-type Yukawa matrix at the GUT scale

Yu
GUT ≈




yue
iθyuλ8 0 0

0 yce
iθycλ4 zu2 e

iθzu2 λ7

0 zu2 e
iθzu2 λ7 yt


 , (4.2)

where the relation to the flavon VEVs, cf. eqs. (2.2)–(2.4) as well as appendix B, is given by

yue
iθyu = yu2φ

u
2 φ̃

u
2 + yu1 δ

u
2,1, yc e

iθyc = yu1φ
u
2 , zu2 e

iθzu2 = yu6 (φ
d
2)

3(φd
3)

2 . (4.3)

Applying the phases of the LO flavon VEVs as given in eq. (B.2), we moreover have

θyu = θyc = 2θd2 + 3θd3 , θzu2 = 3θd2 + 2θd3 , (4.4)
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where we have also used the fact that the shift δu2,1 of the flavon VEV 〈Φu
2〉 in the first

component is of order λ8 and proportional to (φd
2)

2(φd
3)

3, cf. eq. (B.5). It is worth noting

that the (12), (13) and (21), (31) elements of eq. (4.2) remain zero up to order λ8.

Changing to the basis with canonical kinetic terms, we calculate (P−1
T )TYu

GUTP
−1
T .

For convenience we also apply an extra phase redefinition on the right-handed superfields,

Qu = diag(eiθ
y
u , eiθ

y
u , 1). (4.5)

As a result we obtain the up-type quark Yukawa matrix in the canonical basis,

Y u
GUT ≈




yu λ
8 −1

2k2 yc λ
8 −1

2k4 yte
iθk4 λ6

−1
2k2 ycλ

8 yc λ
4 −1

2k3 yte
iθk3λ5

−1
2k4 yte

i(θk4−θyu) λ6 − 1
2k3 yte

i(θk3−θyu)λ5 yt


 . (4.6)

Compared to eq. (4.2), the canonical normalisation has significantly modified the off-

diagonal entries: the texture zeros are filled in; moreover, the (23) and (32) elements

feature a reduced λ-suppression.

4.1.2 Down-type quarks and charged leptons

The Yukawa matrices of the down-type quarks and the charged leptons can be deduced

from the superpotential operators

yd1
1

M
FT3Φ

d
3H5̄ + yd2

1

M2
(F Φ̃d

3)1(TΦ
d
2)1H4̄5 + yd5

1

M3
(F (Φd

2)
2)3(T Φ̃

d
3)3H5̄

+ yd3
1

M2
FT3Φ

d
3Φ̃

u
2H5̄ + yd4

1

M2
FT3ηΦ̃

d
3H5̄ + yd6

1

M3
FTΦd

2Φ̃
d
3Φ̃

u
2H4̄5

+ yd7
1

M5
FT (Φd

2)
2(Φd

3)
3H4̄5 + yd8

1

M5
FT3(Φ

d
2)

3(Φd
3)

2H4̄5 + yd9
1

M6
FT3(Φ

d
2)

4(Φd
3)

2H5̄ ,

(4.7)

where the ydi are real order one coefficients. For the operators proportional to yd2 and

yd5 , specific contractions have been chosen as described in [39, 40], such that the Gatto-

Sartori-Tonin (GST) [49] and Georgi-Jarlskog (GJ) [50] relations are satisfied at LO. For

all other operators we do not restrict the contractions to special choices; however, we

have checked that in all cases, our LO result can simply be parameterised by an effective

coupling constant which is given as a combination of the individual contributions from each

contraction. It is worth noting that the operator proportional to yd4 is only allowed if η

transforms as a trivial singlet under S4. Separating the contributions of H5̄ and H4̄5, the

S4 contractions give rise to

Y5̄ ≈




0 x̃2e
iθx̃2λ5 −x̃2e

iθx̃2λ5

−x̃2e
iθx̃2λ5 0 x̃2e

iθx̃2λ5

zd3e
iθ

zd
3 λ6 zd2e

iθ
zd
2 λ6 ybe

iθy
b λ2


 , Y4̄5 ≈




zd1e
iθ

zd
1 λ8 0 0

0 yse
iθysλ4 −yse

iθysλ4

0 0 0


 .

(4.8)

The parameters in these expressions are related to the flavon VEVs as defined in

eqs. (2.2)–(2.4) and appendix B via

x̃2e
iθx̃2 = yd5(φ

d
2)

2φ̃d
3 , ybe

iθy
b = yd1φ

d
3 , zd2e

iθ
zd
2 = yd1δ

d
3,3+ yd3φ

d
3φ̃

u
2 , zd3e

iθ
zd
3 = yd1δ

d
3,1 ,

yse
iθys = yd2φ

d
2φ̃

d
3 , zd1e

iθ
zd
1 = yd7(φ

d
2)

2(φd
3)

3 − yd6φ
d
2φ̃

d
3φ̃

u
2 . (4.9)
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Using eqs. (B.2), (B.6), we deduce the following relations for the phases

θx̃2 = 3(θd2 + θd3) , θys = θzd1 = 2θd2 + 3θd3 , θyb = θzd2 = θzd3 = θd3 . (4.10)

The Yukawa matrices of the down-type quarks and the charged leptons are linear combi-

nations of the two structures in eq. (4.8). Following the construction proposed by Georgi

and Jarlskog, we have Yd
GUT = Y5̄ + Y4̄5 and Ye

GUT = (Y5̄ − 3Y4̄5)
T , respectively.

Performing the canonical normalisation on the Yukawa matrices (P−1
T )TYd

GUTP
−1
F and

(P−1
F )TYe

GUTP
−1
T as well as an additional rephasing of the right-handed superfields by

Qd = Qe = diag(eiθ
x̃
2 , eiθ

x̃
2 , eiθ

y
b ), (4.11)

we end up with

Y d

GUT ≈




ei(θ
zd
1

−θ
x̃
2
)zd1λ

8 x̃2λ
5 −ei(θ

x̃
2
−θ

y

b
)x̃2λ

5

−x̃2λ
5 ei(θ

y
s−θ

x̃
2
)ysλ

4 −ei(θ
y
s−θ

y

b
)ysλ

4

e−iθ
x̃
2

(
zd3e

iθ
zd
3 −K3

2 eiθ
y

b yb

)
λ6 e−iθ

x̃
2

(
zd2e

iθ
zd
2 −K3

2 eiθ
y

b yb

)
λ6 ybλ

2


, (4.12)

Y e

GUT ≈




−3ei(θ
zd
1

−θ
x̃
2
)ydλ

8 −x̃2λ
5 e−iθ

y

b

(
zd3e

iθ
zd
3 − K3

2 eiθ
y

b yb

)
λ6

x̃2λ
5 −3 ei(θ

y
s−θ

x̃
2
)ysλ

4 e−iθ
y

b

(
zd2e

iθ
zd
2 − K3

2 eiθ
y

b yb

)
λ6

−x̃2λ
5 3 ei(θ

y
s−θ

x̃
2
)ysλ

4 ybλ
2


. (4.13)

We observe that the canonical normalisation modifies the down-type quark and charged

lepton Yukawa matrices solely by additional contributions of the same order in the (31), (32)

and (13), (23) elements, respectively. Comparing Eq, (4.12) with eq. (4.6) suggests that the

CKM mixing is dominated by the diagonalisation of the down-type quark Yukawa matrix.

We will explicitly verify this when calculating the SCKM transformations in section 6.

4.2 Neutrinos

4.2.1 Dirac neutrino coupling

Having introduced right-handed neutrinos N in table 1, their Dirac coupling to the left-

handed SM neutrinos originates from the superpotential terms

yDFNH5 + yD1
1

M
FN Φ̃u

2H5 + yD2
1

M2
FN(Φ̃u

2)
2H5 + yD3,4,5

1

M3
FN(Φd

3)
2Φν

1,2,3′H5

+ yD6
1

M5
FN(Φd

2)
4Φd

3H5,

(4.14)

where yD and yDi are real order one parameters. The corresponding Yukawa matrix is

determined as

Yν ≈




yD zD2 eiθ
zD
2 λ6 zD1 λ4

zD2 eiθ
zD
2 λ6 zD1 λ4 yD

zD1 λ4 yD zD2 eiθ
zD
2 λ6


 , (4.15)

with

zD1 = yD1 φ̃u
2 , zD2 eiθ

zD
2 = yD1 δ̃u2,1 , θzD2 = 4θd2 + θd3 . (4.16)

Here, the phase can be deduced from eq. (B.5).
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Applying the CN transformation (P−1
F )TYνP−1

N , the corresponding Yukawa matrix in

the basis with canonical kinetic terms takes the form

Y ν ≈




yD −yD(K3+KN
3 )

2 λ4
(
zD1 − yD(K3+KN

3 )
2

)
λ4

−yD(K3+KN
3 )

2 λ4
(
zD1 − yD(K3+KN

3 )
2

)
λ4 yD(

zD1 − yD(K3+KN
3 )

2

)
λ4 yD −yD(K3+KN

3 )
2 λ4


 . (4.17)

Compared to eq. (4.15), an additional contribution of the same order arises in the (13),

(22) and (31) entries. Moreover, the λ-suppression of the (12), (21) and (33) elements is

reduced.

4.2.2 Majorana neutrino mass

The mass matrix of the right-handed neutrinos is obtained from the superpotential terms

w1,2,3NNΦν
1,2,3′ + w4

1

M
NNΦd

2η + w5,6,7
1

M
NN Φ̃u

2Φ
ν
1,2,3′ + w8

1

M7
NN(Φd

2)
8 , (4.18)

where wi denote real order one coefficients. This results in a right-handed Majorana neu-

trino mass matrix MR of the form

MR

M
≈




A+ 2C B − C B − C

B − C B + 2C A− C

B − C A− C B + 2C


 eiθAλ4 +




0 0 D

0 D 0

D 0 0


 eiθDλ5 , (4.19)

with

AeiθA = w1φ
ν
1 , BeiθA = w2φ

ν
2 , CeiθA = w3φ

ν
3′ , DeiθD = w2(δ

ν
2,1−δν2,2)+w4 η φ

d
2 . (4.20)

According to eqs. (B.2), (B.5), (B.6), the phases are given by

θA = −2θd3 , θD = 4θd2 − θd3 . (4.21)

The first matrix of eq. (4.19) arises from terms involving only Φν
1,2,3′ . As their VEVs

respect the tri-bimaximal (TB) Klein symmetry ZS
2 × ZU

2 ⊂ S4, this part is of TB form.

The second matrix of eq. (4.19), proportional to D, is due to the operator w4
1
MNNΦd

2η.

As the product of both flavon VEVs involved is not an eigenvector of U , half of the TB

Klein symmetry is broken at a relative order of λ. The resulting trimaximal TM2 [51–61]

structure can accommodate the sizable value of the reactor neutrino mixing angle θl13 as

explained in [40] in the context of the original model [39].

Performing the CN basis transformation (P−1
N )TMRP

−1
N does not alter the matrix in

eq. (4.19) at the given order, so that MR = MR +O(λ6)M .

4.2.3 Effective light neutrino mass matrix

Calculating the effective light neutrino mass matrix which arises via the type I seesaw

mechanism v2u Y
νM−1

R (Y ν)T , we can parameterise the LO result as

meff
ν ≈ y2Dυ

2
u

λ4M







bν + cν − aν aν aν

aν bν cν

aν cν bν


 e−iθA +




0 0 dν

0 dν 0

dν 0 0


λ ei(θD−2θA)


 , (4.22)

– 11 –



J
H
E
P
0
2
(
2
0
1
6
)
1
1
8

with aν , bν , cν and dν being functions of the real parameters A, B, C and D. The deviation

from tri-bimaximal neutrino mixing is controlled by dν ∝ D. Due to the three independent

LO input parameters (w1 ∝ A ,w2 ∝ B ,w3 ∝ C), any neutrino mass spectrum can be ac-

commodated in this model. At this order, the canonical normalisation does not modify the

effective light neutrino mass matrix as obtained without the CN transformations. Hence,

concerning the results on light neutrino masses and mixing, we can simply refer the reader

to the corresponding discussion in [40].

5 Soft SUSY breaking sector after CN

Having applied the CN basis transformation of the matter superfields to the Yukawa sector,

we now turn to the soft SUSY breaking terms. In the context of the general MSSM with

R-parity, these are parameterised as [17]

−Lsoft ⊃HuQ̃iA
u
ij ũ

c
j +HdQ̃iA

d
ij d̃

c
j +HdL̃iA

e
ij ẽ

c
j +HuL̃iA

ν
ijÑj + h.c.

+Q̃α
i m

2
Qij

Q̃α∗
j + L̃α

i m
2
Lij

L̃α∗
j + ũc∗i m2

uc
ij
ũcj + d̃c∗i m2

dcij
d̃cj + ẽc∗i m2

ecij
ẽcj + Ñ∗

i m
2
Nij

Ñj

+m2
Hu

|Hu|2 +m2
Hd

|Hd|2 , (5.1)

and contain trilinear scalar couplings (A-terms) as well as bilinear scalar masses. A tilde

indicates the scalar partner f̃ of a SM fermion f . Taking into account the SU(5) framework,

we construct the effective soft SUSY breaking operators in this section, assuming that the

mechanism of SUSY breaking is practically independent of the family symmetry breaking.

5.1 Trilinear soft couplings

The flavour structure of the trilinear A-terms is similar to the corresponding Yukawa ma-

trices, as both originate from the same set of superpotential terms. In the case of the soft

terms, these are coupled to a hidden sector superfield X with independent real order one

coupling constants and suppressed by a mass scale MX . When X develops its SUSY break-

ing F -term VEV, the scalar components of the Higgs and matter superfields are projected

out, thereby generating the trilinear soft terms. There exist in fact extra contributions to

the A-terms from superpotential operators involving flavons but no X field. These can be

traced back to non-vanishing VEVs for the auxiliary F -components of the flavon fields,

which are zero in the SUSY limit but develop a non-trivial value when SUSY breaking

terms are included. It turns out that such F -term VEVs are aligned with the LO flavon

VEVs in many situations [24, 62]. Hence, these extra contributions to the A-terms do not

give rise to new flavour structures.

Defining the mass parameters m0 ≡ 〈FX〉/MX and A0 ≡ α0m0, with α0 being a real

constant, we can obtain the expressions for the trilinear matrices Af
GUT/A0 by copying

the Yukawas matrices of eqs. (4.2), (4.8), (4.15) with different order-one coefficients and

phases: yf → af , x̃2 → x̃a2, z
f
i → zfai , yD → αD as well as θyf → θaf , θ

x̃
2 → θx̃a

2 , θ
zf
i → θ

zfa
i .

With these replacements, we find

Au
GUT

A0
≈




au e
iθauλ8 0 0

0 ac e
iθac λ4 zua

2 eiθ
zua
2 λ7

0 zua
2 eiθ

zua
2 λ7 at


 , (5.2)
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and similarly for Ad
GUT, Ae

GUT and Aν . Applying the CN transformation as well as

the rephasing of the right-handed superfields proceeds analogously to the Yukawa sec-

tor. The resulting trilinear matrices Af
GUT/A0 in the basis of canonical kinetic terms are

thus derived from eqs. (4.6), (4.12), (4.13), (4.17) by simply replacing yu → au e
i(θau−θyu),

yc → ac e
i(θac−θyu), yt → at, ys → as e

i(θas−θys ), yb → ab e
i(θab−θy

b
), x̃2 → x̃a2 e

i(θx̃a2 −θx̃2 ),

zfi → zfai ei(θ
zfa
i −θ

zf
i ) and yD → αD. For example, the up-type quark trilinear matrix

takes the form

Au
GUT

A0
≈




au e
i(θau−θyu) λ8 −1

2k2 ac e
i(θac−θyu) λ8 −1

2k4 ate
iθk4 λ6

−1
2k2 ac e

i(θac−θyu)λ8 ac e
i(θac−θyu) λ4 −1

2k3 ate
iθk3λ5

−1
2k4 ate

i(θk4−θyu) λ6 − 1
2k3 ate

i(θk3−θyu)λ5 at


 . (5.3)

5.2 Soft scalar masses

The scalar mass terms of the soft supersymmetry breaking Lagrangian originate from the

Kähler potential. Non-renormalisable couplings of the matter superfields to the square

X†X/M2
X of the SUSY breaking field X generate soft masses when the F -term of X

develops a VEV. The structure of the soft mass matrices is therefore similar to the Kähler

metric K of the corresponding GUT multiplet. As for the trilinear soft terms, all order one

coefficients are independent of those appearing in K. The scalar masses before canonical

normalisation are then obtained from KT , KF and KN of eqs. (3.10), (3.12), (3.13) by

replacing ki → bi, θ
k
i → θbi , Ki → Bi and KN

i → BN
i . Moreover, the ones on the diagonal

of K have to be rescaled by a new factor of order one. In the case of the 10 of SU(5), the 2+1

structure requires the introduction of two extra parameters, b01 and b02. Explicitly, we get

M2
TGUT

m2
0

≈




b01 + (b5 + b1)λ
2 b2λ

4 b4 e
−iθk4λ6

· b01 + (b5 − b1)λ
2 b3 e

−iθk3λ5

· · b02 + b6λ
2


 , (5.4)

M2
F (N)GUT

m2
0

≈




B
(N)
0 + 2B

(N)
1 λ4 B

(N)
3 λ4 B

(N)
3 λ4

· B
(N)
0 + (B

(N)
2 −B

(N)
1 )λ4 B

(N)
3 λ4

· · B
(N)
0 − (B

(N)
2 +B

(N)
1 )λ4


 . (5.5)

Performing the transformations to the basis of canonical kinetic terms results in soft scalar

mass matrices of the form

M2
TGUT

m2
0

≈




b01 (b2 − b01k2)λ
4 e−iθk4 (b4 − k4(b01+b02)

2 )λ6

· b01 e−iθk3 (b3 − k3(b01+b02)
2 )λ5

· · b02


 , (5.6)

M2
F (N)GUT

m2
0

≈




B
(N)
0 (B

(N)
3 −K

(N)
3 )λ4 (B

(N)
3 −K

(N)
3 )λ4

· B
(N)
0 (B

(N)
3 −K

(N)
3 )λ4

· · B
(N)
0


 . (5.7)

For convenience, we will absorb the order one parameter B0 into the soft SUSY breaking

mass m0, so that the leading contribution on the diagonal of M2
FGUT

/m2
0 is nothing but

unity. For the right-handed fields contained in the GUT multiplets, an additional rephasing
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has to be applied. We will come back to this when calculating the soft terms in the

SCKM basis in section 6.2. Notice that we have dropped all λ-suppressed corrections

of the diagonal elements. This simplification is justified as FCNC processes are induced

by loop diagrams involving the off-diagonal entries of the sfermion mass matrices. The

simplification of the diagonal elements in eqs. (5.6), (5.7) does not affect these off-diagonals

in our LO analysis, even when going to the SCKM basis.

6 SCKM basis

Predictions relating a theoretical model with its phenomenological implications are typi-

cally given in the basis in which the Yukawa matrices are diagonal and positive, correspond-

ing to the physical quark and lepton mass eigenstates. The so-called SCKM basis is the

analogue in a supersymmetric framework. Changing to the SCKM basis, all canonically

normalised quantities undergo a unitary transformation of the superfields which diago-

nalises the effective Yukawa couplings in the superpotential. In this basis it is convenient

to define a set of dimensionless parameters, known as the “mass insertion parameters”,

which directly enter the expressions of phenomenological flavour observables.

In principle, the SCKM transformation should be performed after electroweak symme-

try breaking. The canonically normalised Yukawa, trilinear and soft mass matrices should

be evolved from the GUT scale MGUT to the weak scale MW using the corresponding

renormalisation group equations (RGEs). Only at that point, the diagonalisation of the

Yukawa matrices should take place, leading to the definition of a SCKM basis. Following

this procedure, there is obviously no notion of mass insertion parameters at the scale MGUT

as there is no proper definition of the SCKM basis.

An alternative approach which is commonly used consists in diagonalising the Yukawa

matrices at (or rather just below) the GUT scale. The so-obtained basis is approximately

identical to the SCKM basis provided the RGE contributions to the off-diagonal elements

of the Yukawa matrices remain negligible.3 This is the case as long as the RGE effects can

be absorbed into a redefinition of the (unknown) order one coefficients. It is then possible

to introduce mass insertion parameters already at MGUT. Their low energy values have to

be determined from the corresponding RG evolution. In this work, we will adopt the latter

approach as it allows for a semi-analytical study of the relations between the high and low

energy parameters by means of a perturbative λ-expansion.

6.1 SCKM transformations

The SCKM transformations are applied on the matter superfields f̂L,R → Uf
L,Rf̂L,R, where

Uf
L,R denote unitary 3× 3 matrices. These diagonalise the canonically normalised Yukawa

matrices Y f

(Uf
L)

†Y fUf
R = Ỹ f

diag , (6.1)

3For the charged fermion sector, this is a valid approximation thanks to the hierarchical masses of quarks

and charged leptons. In the neutrino sector, RGE contributions can be sizable in supersymmetric models

with large tβ and a quasi-degenerate neutrino mass spectrum [63, 64]. They are however negligible for small

tβ [which is realised in our scenario due to the suppression of the bottom Yukawa coupling by two powers

of λ, see eq. (4.12)] and a normal neutrino mass hierarchy [which we assume in the following].
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where we use the tilde to denote the SCKM basis. The derivation and the explicit form of

the unitary transformations can be found in appendix C.2. Applying this change of basis

to the Yukawa matrices yields

Ỹ u
GUT ≈




yuλ
8 0 0

0 ycλ
4 0

0 0 yt


 , Ỹ d

GUT ≈




x̃2
2

ys
λ6 0 0

0 ysλ
4 0

0 0 ybλ
2


 , (6.2)

Ỹ e
GUT ≈




x̃2
2

3ys
λ6 0 0

0 3ysλ
4 0

0 0 ybλ
2


 . (6.3)

These results, which are valid at the high scale, agree with the LO results derived in [39, 40].

This shows that the canonical normalisation does not affect the LO expressions of the quark

and charged lepton masses.

Up to phase convention, the CKM matrix is given by VCKMGUT
= (Uu

L)
TUd∗

L (see

appendix C.2 for explicit expressions). Extracting the mixing angles

sin(θq13)GUT ≈ x̃2
yb

λ3 , tan(θq23)GUT ≈ ys
yb
λ2 , tan(θq12)GUT ≈ x̃2

ys
λ , (6.4)

shows that the LO CKM mixing arises purely from the down-type quark sector, incorporat-

ing the GST relation [49] θq12 ≈
√
md/ms, and agrees with the results obtained in [39, 40].

Concerning the CP violation, we find the Jarlskog invariant [65] to be

Jq
CPGUT

≈ λ7 x̃32
y2bys

sin(θd2) . (6.5)

The PMNS matrix is dominated by the trimaximal TM2 neutrino mixing Vν which

diagonalises the effective light neutrino mass matrix of eq. (4.22). Including the charged

lepton corrections, we have UPMNSGUT
= (U e

L)
TV ∗

ν with mixing angles given as

tan(θl23)GUT ≈ 1 + λ
dν

2(aν − cν)
cos(4θd2 + θd3) , (6.6)

tan(θl12)GUT ≈ 1√
2
− λ

x̃2

2
√
2ys

cos(θd2) , (6.7)

sin(θl13)GUT ≈ λ

6
√
2ys

[(
3dνys cos(4θ

d
2 + θd3) + 2(aν − cν)x̃2 cos(θ

d
2)

aν − cν

)2

+

(
3dνys sin(4θ

d
2 + θd3) + 2(aν − bν)x̃2 sin(θ

d
2)

aν − bν

)2
] 1

2

, (6.8)

and a leptonic Jarlskog invariant of the form

J l
CPGUT

≈ − λ

36

(
2x̃2
ys

sin(θd2) +
3dν

aν − bν
sin(4θd2 + θd3)

)
.
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6.2 Soft terms in the SCKM basis

In order to obtain the flavour structure of the soft SUSY breaking terms in a basis which

is suitable for physical interpretations, we have to apply the SCKM transformations on the

canonical trilinear soft couplings and soft scalar masses, cf. section 5. The action of the

Uf
L,R matrices on the A-terms is identical to the transformation of the Yukawa matrices:

(Uf
L)

†Af
GUTU

f
R = Ãf

GUT. (6.9)

However, due to different order one coefficients, the A-terms remain non-diagonal in the

SCKM basis. The soft masses of eqs. (5.6), (5.7) are transformed differently for different

components of the SU(5) multiplets. Moreover, we have to associate the mass matrices of

the effective soft Lagrangian in eq. (5.1) with M2
TGUT

and M2
FGUT

and take into account the

additional rephasing transformations of the right-handed superfields, see eqs. (4.5), (4.11),

that were performed after CN. Then, the soft masses in the SCKM basis are

(m̃2
u)LLGUT

= (Uu
L)

†M2 ∗
TGUT

Uu
L, (m̃2

u)RRGUT
= (Uu

R)
†QuM

2
TGUT

Q†
u U

u
R, (6.10)

(m̃2
d)LLGUT

= (Ud
L)

†M2 ∗
TGUT

Ud
L, (m̃2

d)RRGUT
= (Ud

R)
†QdM

2
FGUT

Q†
d U

d
R, (6.11)

(m̃2
e)LLGUT

= (U e
L)

†M2 ∗
FGUT

U e
L, (m̃2

e)RRGUT
= (U e

R)
†QdM

2
TGUT

Q†
d U

e
R. (6.12)

We find the following leading order expressions, where the order one coefficients are

defined in eqs. (D.4), (D.5). Note that we have absorbed the order one coefficient B0

into m0, cf. eq. (5.7), so that (m̃2
d)RRGUT

/m2
0 and (m̃2

e)LLGUT
/m2

0 have 1s on the diagonal.

Up-type quark sector.

Ãu
GUT

A0
≈




ãu11λ
8 0 0

0 ãu22λ
4 eiθ

d
2 ãu23λ

7

0 ei(3θ
d
2+θd3)ãu23λ

7 ãu33


 , (6.13)

(m̃2
u)LLGUT

m2
0

≈




b01 e−iθd2 b̃12 λ
4 e−i(4θd2+θd3)b̃13 λ

6

· b01 e−i(7θd2+2θd3)b̃23 λ
5

· · b02


 , (6.14)

(m̃2
u)RRGUT

m2
0

≈




b01 e−iθd2 b̃12 λ
4 b̃13 λ

6

· b01 ei(5θ
d
2+θd3)b̃23 λ

5

· · b02


 . (6.15)

Down-type quark sector.

Ãd
GUT

A0
≈




ãd11 λ
6 ãd12 λ

5 ãd12 λ
5

−ãd12 λ
5 ãd22 λ

4 ãd23 λ
4

e−iθd2 ãd31 λ
6 ãd32 λ

6 ãd33 λ
2


 , (6.16)

(m̃2
d)LLGUT

m2
0

≈




b01 B̃12 λ
3 eiθ

d
2 B̃13 λ

4

· b01 B̃23 λ
2

· · b02


 , (6.17)

(m̃2
d)RRGUT

m2
0

≈




1 eiθ
d
2 R̃12 λ

4 − eiθ
d
2 R̃12 λ

4

· 1 − R̃12 λ
4

· · 1


 . (6.18)
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Charged lepton sector.

Ãe
GUT

A0
≈




1
3 ã

d
11 λ

6 eiθ
d
2 ãd12 λ

5 ãd31 λ
6

−e−iθd2 ãd12 λ
5 3ãd22 λ

4 ãe23 λ
6

−e−iθd2 ãd12 λ
5 3ãd23 λ

4 ãd33 λ
2


 , (6.19)

(m̃2
e)LLGUT

m2
0

≈




1 R̃12 λ
4 − R̃12 λ

4

· 1 − R̃12 λ
4

· · 1


 , (6.20)

(m̃2
e)RRGUT

m2
0

≈




b01 − eiθ
d
2 1
3B̃12 λ

3 1
3B̃13 λ

4

· b01 3B̃23 λ
2

· · b02


 . (6.21)

7 Mass insertion parameters

In supersymmetry, flavour changing processes are induced by the mismatch of fermion

and sfermion mass eigenstates. Having changed the basis of the superfields to the SCKM

basis, the Yukawa matrices are diagonal. Thus, the off-diagonal entries of the scalar mass

matrices determine the size of the resulting FCNCs. As both the left- and the right-handed

fermions have their own scalar partners, there are three types of scalar mass matrices

m2
f̃LL

= (m̃2
f )LL + Ỹf Ỹ

†
f υ

2
u,d , m2

f̃RR
= (m̃2

f )RR + Ỹ †
f Ỹfυ

2
u,d , m2

f̃LR
= Ãfυu,d − µỸfυd,u ,

(7.1)

where µ is the higgsino mass which we take to be real. In eq. (7.1), the first contribution on

the right-hand sides originates from the soft breaking Lagrangian, while the second term is

the supersymmetric F -term contribution to the scalar masses. We note that it is formally

possible to define m2
f̃RL

≡ (m2
f̃LR

)†.

From the model building perspective, a convenient measure of flavour violation is

provided by a set of dimensionless parameters, known as the mass insertion parameters.

These are defined as [66, 67]

(δfLL)ij =
(m2

f̃LL
)ij

〈mf̃ 〉2LL
, (δfRR)ij =

(m2
f̃RR

)ij

〈mf̃ 〉2RR

, (δfLR)ij =
(m2

f̃LR
)ij

〈mf̃ 〉2LR
, (7.2)

where the average masses in the denominators are

〈mf̃ 〉
2
AB =

√
(m2

f̃AA
)ii(m2

f̃BB
)jj . (7.3)

7.1 Mass insertion parameters δ at the GUT scale

Inserting the results of section 6, it is straightforward to calculate the mass insertion param-

eters at the GUT scale. The full LO expressions are given in appendix D. In the following
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we only report the flavour structure of the various δs in terms of their λ-suppression.

δuLLGUT
∼




1 λ4 λ6

· 1 λ5

· · 1


 , δuRRGUT

∼




1 λ4 λ6

· 1 λ5

· · 1


 , δuLRGUT

∼




λ8 0 0

0 λ4 λ7

0 λ7 1


 , (7.4)

δdLLGUT
∼




1 λ3 λ4

· 1 λ2

· · 1


 , δdRRGUT

∼




1 λ4 λ4

· 1 λ4

· · 1


 , δdLRGUT

∼




λ6 λ5 λ5

λ5 λ4 λ4

λ6 λ6 λ2


 , (7.5)

δeLLGUT
∼




1 λ4 λ4

· 1 λ4

· · 1


 , δeRRGUT

∼




1 λ3 λ4

· 1 λ2

· · 1


 , δeLRGUT

∼




λ6 λ5 λ6

λ5 λ4 λ6

λ5 λ4 λ2


 . (7.6)

7.2 Effects of RG running

Having calculated the GUT scale mass insertion parameters, it is now necessary to consider

their evolution down to the electroweak scale. Only then are we able to compare the pre-

dictions of the model to experimental measurements of flavour observables. This evolution

is described by the RG equations which are given explicitly in appendix E in the SCKM

basis. Technically, we perform the RG running in two stages, first from MGUT to MR where

the right-handed neutrinos are integrated out, and then from MR to MSUSY ∼ MW . In

order to derive analytical results, we estimate the effects of the running using the leading

logarithmic approximation. As the Yukawa matrices themselves are also affected by the

running, it is necessary to apply further basis transformations on the superfields which

diagonalise the low energy Yukawas matrices.

Details of the various steps involved in calculating the low energy mass insertion pa-

rameters can be found in appendix F. For the down-type squarks and the charged sleptons,

the resulting effects can simply be absorbed into new order one coefficients. It is interesting

to see that this is not the case for the up-type squarks, where the order of the (13) and (23)

elements of δuLR gets modified. For completeness, we present the flavour structure of the

low energy δs in terms of their λ-suppression, which should be compared to eqs. (7.4)–(7.6).

δuLL ∼




1 λ4 λ6

· 1 λ5

· · 1


 , δuRR ∼




1 λ4 λ6

· 1 λ5

· · 1


 , δuLR ∼




λ8 0 λ7

0 λ4 λ6

0 λ7 1


 , (7.7)

δdLL ∼




1 λ3 λ4

· 1 λ2

· · 1


 , δdRR ∼




1 λ4 λ4

· 1 λ4

· · 1


 , δdLR ∼




λ6 λ5 λ5

λ5 λ4 λ4

λ6 λ6 λ2


 , (7.8)

δeLL ∼




1 λ4 λ4

· 1 λ4

· · 1


 , δeRR ∼




1 λ3 λ4

· 1 λ2

· · 1


 , δeLR ∼




λ6 λ5 λ6

λ5 λ4 λ6

λ5 λ4 λ2


 . (7.9)
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8 Conclusion

Despite its tremendous success, the Standard Model of particle physics is widely viewed as

the low energy limit of a more fundamental theory. In order to understand the nature of

flavour in such extensions of the SM it is necessary to answer the following three questions.

1. Why are there three families of quarks and leptons?

2. How does the structure of fermion masses and mixing arise?

3. Why is the amount of flavour violation induced by new physics so small?

From the phenomenological point of view, the third question is usually addressed by means

of ad hoc assumptions such as e.g. Minimal Flavour Violation, where all sources of flavour

violation are intimately linked to the flavour structure of the Yukawa matrices. However,

the concept of MFV is not a theory of flavour as such. Moreover, it does not seem to

provide a framework in which the first two questions of the flavour puzzle can be addressed

in a satisfactory way.

In this paper, we have investigated the issue of flavour violation within a supersym-

metric GUT model of flavour which is based on the simple family symmetry S4×U(1) [40].

The existence of three families of quarks and leptons is related to the non-Abelian factor of

the family symmetry whose triplets are the only faithful irreducible representations. The

structure of the Yukawa matrices arises from the breaking of the family symmetry. This

aspect was thoroughly studied in [39, 40] where it was shown to provide a good description

of all quark and lepton masses, mixings and CP violation.

Applying the family symmetry on the soft SUSY breaking sector, we have worked out

the mass insertion parameters which describe the sources of flavour violation beyond the

SM. Our calculation relies on the assumption that the SUSY breaking mechanism respects

the family symmetry. Working in an expansion in powers of the Wolfenstein parameter λ,

we take into account the effect of canonical normalisation as well as renormalisation group

running. Our results for the low energy mass insertion parameters are summarised in

eqs. (7.7)–(7.9), with the explicit expressions given in appendix F.3. We find that δfLL and

δfRR are approximately equal to the identity with only small off-diagonal entries. Consider-

ing the parameters δfLR we observe that the diagonal elements feature the same hierarchies

as the corresponding diagonal Yukawa matrices Ỹ f , while the off-diagonal elements are

strongly suppressed. This shows that our S4 × U(1) SUSY GUT approximately repro-

duces the effects of low energy MFV, where one would simply impose δfLL = δfRR = 1

and δfLR ∝ Ỹ f . The phenomenological implications of the deviations form MFV will be

discussed quantitatively in a dedicated paper [68], where we will present and discuss the

predictions of our model of flavour with respect to a number of different flavour observ-

ables in detail.
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A S4 and CP symmetry

The non-Abelian finite group S4 can be defined in terms of the presentation

S2 = 1 , T 3 = 1 , U2 = 1 ,

(ST )3 = 1 , (SU)2 = 1 , (TU)2 = 1 , (STU)4 = 1 ,

where S, T and U denote the generators of the group. Explicit matrix representations are

basis dependent. In this work we apply the basis where the T generator is diagonal and

complex for the doublet and triplet representations. Defining ω = e2πi/3, we have

1 : S = 1 , T = 1 , U = 1 ,

1′ : S = 1 , T = 1 , U = −1 ,

2 : S =

(
1 0

0 1

)
, T =

(
ω 0

0 ω2

)
, U =

(
0 1

1 0

)
,

3 : S = 1
3




−1 2 2

2 −1 2

2 2 −1


 , T =




1 0 0

0 ω2 0

0 0 ω


 , U = −




1 0 0

0 0 1

0 1 0


 ,

3′ : S = 1
3




−1 2 2

2 −1 2

2 2 −1


 , T =




1 0 0

0 ω2 0

0 0 ω


 , U = +




1 0 0

0 0 1

0 1 0


 .

The corresponding Clebsch-Gordan coefficients are all real and can be found e.g. in [39].

In addition to the flavour symmetry S4, we impose the canonical CP symmetry in our

theory. As has been discussed in the literature, see e.g. [69–71], the consistent combination

of a flavour and a CP symmetry requires certain conditions to be fulfilled; in particular

that the subsequent application of a CP, a flavour and a further CP transformation leads

to a transformation belonging to the flavour group. The possibility to combine the group

S4 with CP has been explored previously, see e.g. [46, 47, 69, 70]. Here we are interested in

combining S4 symmetry, defined in the above basis, with the canonical CP transformation,

i.e. the CP transformation that acts trivially in flavour space with Xr = 1 for all represen-

tations r of S4. Note that this particular CP transformation Xr fulfils the constraints of

being a unitary and symmetric matrix. Moreover, it represents a consistent choice for a CP

transformation (see e.g. [46, 47]), which corresponds to the involutionary automorphism

that maps the generators S, T and U in the following way

S → S , T → T 2 = T−1 and U → U , (A.1)

since S and U are represented by real matrices in our chosen basis, while the generator T

is given as a diagonal complex matrix in the two- and three-dimensional representations.
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Field Xd
1 X

d
1 Xνd

1′ Xu
1 Y du

2 Y d
2 Y ν

2 Zν
3′ V0 V1 Vη Xnew

1 X̃new
1′

SU(5) 1 1 1 1 1 1 1 1 1 1 1 1 1

S4 1 1 1′ 1 2 2 2 3′ 1 1 1(′) 1 1′

U(1) −2 14 3 10 9 6 −16 −16 0 −8 −7 18 15

Table 2. The transformation properties of the driving fields, as introduced in [40], which serve to

align the flavon VEVs.

As with all automorphisms of S4, this is an inner one. In particular, one can check that

the automorphism of eq. (A.1) is “class-inverting” [72], i.e. it maps the group element g

into the class which includes g−1. This is true, since all automorphisms are inner ones and

all classes of S4 are ambivalent, i.e. the elements g and g−1 are in the same class.

With only real Clebsch-Gordan coefficients, a canonical CP symmetry imposed on the

theory entails that all coefficients in the (super-)potential are real. Moreover, we observe

that the residual symmetry in the neutrino sector at LO comprises the CP symmetry if all

three neutrino flavons share the same phase factor. Following the comments of footnote 5

of appendix B, this is the case in our setup, cf. also eqs. (B.1), (B.2), so that the common

phase can be factored out of the neutrino mass matrix, leading to an effective LO result

which conserves CP. Furthermore, the canonical CP transformation Xr = 1 commutes

with the Klein group generated by S and U and thus at LO the residual symmetry is given

by the direct product Z2 × Z2 × CP.

B Vacuum alignment

The vacuum alignment of the flavon fields is achieved by coupling them to a set of so-called

driving fields and requiring the F -terms of the latter to vanish. These driving fields, whose

transformation properties under the family symmetry are shown in table 2, are SM gauge

singlets and carry a charge of +2 under a continuous R-symmetry. The flavons and the

GUT Higgs fields are uncharged under this U(1)R, whereas the supermultiplets containing

the SM fermions (or right-handed neutrinos) have charge +1. As the superpotential must

have a U(1)R charge of +2, the driving fields can only appear linearly and cannot have any

direct interactions with the SM fermions or the right-handed neutrinos.

The LO alignment of the flavon fields, see eq. (2.2), has been thoroughly discussed

in [39, 40]. The particular setup also provides correlations amongst the VEVs. As described

in appendix D of [39] and in section 4 of [40],4 the vanishing of the F -terms of the driving

4The introduction of the new flavon field η in [40] favours the exchange of the S4 doublet driving field

V2, which was introduced in [39], by the S4 singlet field V1. Furthermore, the field Vη, transforming in the

same representation of S4 as η, is introduced in order to relate the new flavon field to an explicit mass scale.
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fields Xnew
1 , X̃new

1′ , Y ν
2 , Z

ν
3′ , V0, V1 and Vη gives rise to the relations5

φu
2 ∼ φd

2 φ̃
d
3 , φν

1 ∼ φν
2 ∼ φν

3′ , (φd
3)

2φν
i ∈ Re ,

φ̃u
2 ∼ φν

1

φν
2

, φ̃d
3 ∼ φd

2 (φ
d
3)

3 , φν
3′ ∼

η

(φd
2)

3φd
3

. (B.1)

Denoting the phase of each flavon VEV φf
ρ by θfρ , eq. (B.1) correlates the LO phases as6

θ̃u2 = 0 , θu2 = 2θd2 + 3θd3 , θ̃d3 = θd2 + 3θd3 ,

θη = 3θd2 − θd3 , θν3′ = θν2 = θν1 = −2θd3 , (B.2)

leaving as free variables only the two phases θd2 , θd3 , which correspond to the LO VEVs of

the two flat superpotential directions: 〈Φd
2,1〉 and 〈Φd

3,2〉 respectively.
In order to find the higher order terms of the flavon VEVs, we start by writing each

one of them as a series expansion in λ, up to and including order λ12. For example, the

leading operators of the superpotential fix 〈Φu
2,1〉/M to be zero up to λ4, while 〈Φu

2,2〉/M
has to be φu

2 λ
4 [39]. When considering the subleading operators, the VEVs of Φu

2,1 and

Φu
2,2 receive corrections (shifts) which we parametrise as

〈Φu
2〉

M
=

(
0

φu
2 λ

4

)
+




12∑
n=5

δu2,1(n)
λn

12∑
n=5

δu2,2(n)
λn


 . (B.3)

All flavon VEVs are parametrised in a similar manner. The aim is to find the order of λ at

which each shift δ has to be non-zero. The computation consists of taking into account all

possible operators and solving the F -term conditions resulting from the set of driving field

order by order in λ, up to λ12. Each vanishing expression is solved for the lowest order

shift involved. At the end, all shifts can be expressed in terms of the LO flavon VEVs.

We find

〈Φu
2〉

M
=

(
δu2,1 λ

8

φu
2 λ

4 + δu2,2 λ
5

)
,

〈Φ̃u
2〉

M
=

(
δ̃u2,1 λ

6

φ̃u
2 λ

4 + δ̃u2,2 λ
5

)
,

〈η〉
M

= φηλ4 + δηλ5,

〈Φd
3〉

M
=




δd3,1 λ
6

φd
3 λ

2

δd3,3 λ
6


,

〈Φ̃d
3〉

M
=




δ̃d3,1 λ
7

−
(
φ̃d
3 λ

3 + δ̃d3,2(4) λ
4 + δ̃d3,2(5)λ

5
)

φ̃d
3 λ

3 + δ̃d3,2(4) λ
4 + δ̃d3,3(5)λ

5


,

〈Φd
2〉

M
=

(
φd
2 λ

δd2,2 λ
7

)
,

〈Φν
3′〉

M
=




1

1

1



(
φν
3′λ

4+ δν3′λ
5
)
,

〈Φν
2〉

M
=

(
φν
2 λ

4+ δν2,1 λ
5

φν
2 λ

4+ δν2,2 λ
5

)
,

〈Φν
1〉

M
= φν

1λ
4+ δν1λ

5. (B.4)

Note that the shifts presented in eq. (B.4) are the first non-trivial ones. However, in our

calculations of the mass matrices we take into account all shifts up to O(λ8). It should be

5The proportionality constant between φν
3′ and φν

2 is a square root of an order one real number, which

we assume to be positive, such that φν
3′ and φν

2 have the same phases.
6Here and in eq. (B.6), a possible phase shift by π has been ignored as real coefficients can generally be

positive or negative.
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pointed out that the alignment of Φν
3′ is not perturbed up to order λ8, so that it preserves

the S symmetry to that level. On the other hand, the alignment of Φν
2 is already perturbed

at order λ5 which, however, does not break the S generator as it is nothing but the identity

for the doublet representation. Taking into account also CN effects, one can show that meff
ν

has the form of eq. (4.22) up to O(λ7).

Eq. (B.4) is in agreement with the discussion presented in section 4 of [40], barring

the absorptions of δu2,2 λ, δ̃
u
2,2 λ, δ̃d3,2(4) λ, δν3′λ, δν1λ and δη λ into the corresponding LO

VEVs. Being interested in the CP transformation properties of the fields, such absorptions

must not be made in the current work, as the phases of shifts and LO VEVs are generally

different. In particular, we find the following relations between the shifts and the LO VEVs,

δu2,1 ∼ (φd
2)

2(φd
3)

3 , δu2,2 ∼ (φd
2)

6(φd
3)

4 , δ̃u2,1 ∼ δ̃u2,2 ∼ (φd
2)

4φd
3 , δη ∼ (φd

2)
7,

δd3,1 ∼ δd3,3 ∼ φd
3 , δ̃d3,1 ∼ φd

2 (φ
d
3)

3 , δ̃d3,2(4) ∼ (φd
2)

5(φd
3)

4 , δ̃d3,3(5)− δ̃d3,2(5) ∼ (φd
2)

5,

δd2,2 ∼ (φd
2)

5φd
3 , δν3′ ∼ δν2,1 ∼ δν2,2 ∼ δν1 ∼ (φd

2)
4

φd
3

. (B.5)

Similar relations also hold for higher order shifts. Although such shifts have to be taken

into account when performing a systematical λ-expansion, their explicit expressions are

irrelevant for our phenomenological study.

The phases of the LO shifts can be deduced straightforwardly from eq. (B.5). Denoting

the phase of δfρ,i by θfρ,i we obtain

θu2,1 = 2θd2 + 3θd3 , θu2,2 = 2(3θd2 + 2θd3) , θ̃u2,1 = θ̃u2,2 = 4θd2 + θd3 , arg[δη] = 7θd2 ,

θd3,1 = θd3,3 = θd3 , θ̃d3,1 = θd2 + 3θd3 , θ̃d3,2(4) = 5θd2 + 4θd3 , arg[δ̃d3,3(5)− δ̃d3,2(5) ] = 5θd2 ,

θd2,2 = 5θd2 + θd3 , arg[δν3′ ] = θν2,1 = θν2,2 = arg[δν1 ] = 4θd2 − θd3 . (B.6)

C Basis transformations

C.1 Canonical normalisation

In order to find the transformations which map the Kähler potential into its canonical

form, we express the hermitian matrix KA as in eq. (3.14), i.e. P †
APA = KA. Note that the

matrix PA is not unique since PA → QAPA with unitary QA will satisfy eq. (3.14) just as

well. Moreover, KA can always be decomposed as

KA =
(
Q†

A

√
DAQA

)(
Q†

A

√
DAQA

)
, (C.1)

where DA is the diagonalised form of KA. Therefore it is sufficient to find a hermitian

matrix PA which satisfies eq. (3.14), i.e. P †
APA = PAPA = KA. Expanding KA and PA in

powers of λ,

KA =
∞∑

n=0

knλ
n , PA =

∞∑

m=0

pmλm , (C.2)
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with kn, pn being matrices, allows one to calculate PA iteratively. With k0 = 1, the

result reads

p0 = 1 , p1 =
1

2
k1 , pn =

1

2


kn −

n−1∑

j=1

pjpn−j


 . (C.3)

C.2 SCKM transformations

The SCKM rotation matrices that diagonalise the Yukawas are found through the singular

value decomposition. In particular, if Y f = Uf
LỸ

f
diag(U

f
R)

†, then Uf
L and Uf

R consist of the

eigenvectors of Y f (Y f )† and (Y f )†Y f , respectively. These eigenvectors are only defined

up to phase transformations

Uf
L → Uf

LΩ
f
L , Ωf

L = diag

(
e
iωf

L1 , e
iωf

L2 , e
iωf

L3

)
, (C.4)

Uf
R → Uf

RΩ
f
LΩ

f
R , Ωf

R = diag

(
e
iωf

R1 , e
iωf

R2 , e
iωf

R3

)
. (C.5)

We fix the phases of the matrices Ωf
L by requiring that the CKM and PMNS mixing matrices

are given in the standard phase convention, while the phases of Ωf
R are fixed by demanding

real and positive charged fermion masses. To LO, we find the following structure of the

SCKM transformation matrices in terms of their λ-suppression.

Uu
L ≈




1 λ4 λ6

λ4 1 λ5

λ6 λ5 1


 , Uu

R ≈




1 λ4 λ6

λ4 1 λ5

λ6 λ5 1


 , (C.6)

Ud
L ≈




1 λ λ3

λ 1 λ2

λ4 λ2 1


 , Ud

R ≈




1 λ λ4

λ 1 λ4

λ4 λ4 1


 , (C.7)

U e
L ≈




1 λ λ4

λ 1 λ4

λ4 λ4 1


 , U e

R ≈




1 λ λ3

λ 1 λ2

λ4 λ2 1


 . (C.8)

With these SCKM transformations, it is straightforward to calculate the CKM mixing

to leading order,

VCKMGUT
= (Uu

L)
TUd∗

L ≈




1 x̃2
ys
λ x̃2

yb
λ3

− x̃2
ys
λ 1 ys

yb
λ2

−e−iθd2
x̃2
2

ys yb
λ4 − ys

yb
λ2 1


 . (C.9)

The associated measure of CP violation is given by the Jarlskog invariant Jq
CPGUT

and can

be calculated from the imaginary part of VCKMGUT21
VCKMGUT32

V ∗
CKMGUT22

V ∗
CKMGUT31

. The

explicit result can be found in eq. (6.5).
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D Mass insertion parameters at the GUT scale

In the following we present the explicit expression for the various LO mass insertion param-

eters at the GUT scale whose λ-suppressions have been stated in eqs. (7.4)–(7.6). Using

the definitions of eqs. (7.2), (7.3), we obtain

δuLLGUT
≈




1 e−iθd2 b̃12
b01

λ4 e−i(4θd2+θd3)b̃13
√

b01(b02+υ2
u y2t /m

2
0)

λ6

· 1 e−i(7θd2+2θd3)b̃23
√

b01(b02+υ2
u y2t /m

2
0)

λ5

· · 1




,

δuRRGUT
≈




1 e−iθd2 b̃12
b01

λ4 b̃13
√

b01(b02+υ2
u y2t /m

2
0)

λ6

· 1 ei(5θ
d
2+θd3)b̃23

√

b01(b02+υ2
u y2t /m

2
0)

λ5

· · 1




, (D.1)

δuLRGUT
≈ υu α0

m0




ãu11−yu
µ

tβA0

b01
λ8 0 0

0
ãu22−yc

µ
tβA0

b01
λ4 eiθ

d
2 ãu23

√

b01(b02+υ2
u y2t /m

2
0)

λ7

0
ei(3θ

d
2+θd3)ãu23

√

b01(b02+υ2
u y2t /m

2
0)

λ7
ãu33−yt

µ
tβA0

b02+υ2
u y2t /m

2
0




,

δdLLGUT
≈




1 B̃12
b01

λ3 eiθ
d
2 B̃13√

b01 b02
λ4

· 1 B̃23√
b01 b02

λ2

· · 1


, δdRRGUT

≈




1 eiθ
d
2 R̃12 λ

4 − eiθ
d
2 R̃12 λ

4

· 1 − R̃12 λ4

· · 1


, (D.2)

δdLRGUT
≈ υd α0

m0




1√
b01

(
ãd11 −

µ tβ
A0

x̃2
2

ys

)
λ6 ãd12√

b01
λ5 ãd12√

b01
λ5

− ãd12√
b01

λ5 1√
b01

(
ãd22 −

µ tβ
A0

ys

)
λ4 ãd23√

b01
λ4

e−iθd2
ãd31√
b02

λ6 ãd32√
b02

λ6 1√
b02

(
ãd33 −

µ tβ
A0

yb

)
λ2


,

δeLLGUT
≈




1 R̃12 λ
4 − R̃12 λ

4

· 1 − R̃12 λ
4

· · 1


, δeRRGUT

≈




1 − eiθ
d
2 B̃12
3 b01

λ3 B̃13

3
√
b01b02

λ4

· 1 3B̃23√
b01b02

λ2

· · 1


, (D.3)

δeLRGUT
≈ υd α0

m0




1
3
√
b01

(
ãd11 −

µ tβ
A0

x̃2
2

ys

)
λ6 eiθ

d
2 ãd12√
b01

λ5 ãd31√
b02

λ6

− e−iθd2 ãd12√
b01

λ5 3√
b01

(
ãd22 −

µ tβ
A0

ys

)
λ4 ãe23√

b02
λ6

− e−iθd2 ãd12√
b01

λ5 3ãd23√
b01

λ4 1√
b02

(
ãd33 −

µ tβ
A0

yb

)
λ2



.

These δ parameters are expressed in terms of the coefficients of the soft mass matrices in

eqs. (6.13)–(6.21), where we have defined

b̃12 = (b2 − b01k2), b̃13 = −(b4 − b01k4), b̃23 = −(b3 − b01k3), (D.4)

B̃12 = 2
x̃2
ys

(b1 − b01k1), B̃13 =
x̃22
yb ys

(b01 − b02), B̃23 =
ys
yb
(b01 − b02), R̃12 = B3 −K3,
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and

ãu11 = aue
i(θau−θyu), ãu22 = ace

i(θac−θyu), ãu33 = at, ãu23 = zu2

(
at
yt

− ei(θ
zua
2 −θzu2 ) z

ua
2

zu2

)
,

ãd11 =
x̃22
ys

(
2
x̃a2
x̃2

ei(θ
x̃a
2 −θx̃2 ) − as

ys
ei(θ

a
s−θys )

)
, ãd22 = ase

i(θas−θys ), ãd33 = abe
i(θab−θy

b
),

ãd12 = x̃2

(
x̃a2
x̃2

ei(θ
x̃a
2 −θx̃2 ) − as

ys
ei(θ

a
s−θys )

)
, ãd23 = ys

(
as
ys

ei(θ
a
s−θys ) − ab

yb
ei(θ

a
b−θy

b
)

)
,

ãd31 = zd3

(
ab
yb
ei(θ

a
b−θy

b
) − zda3

zd3
ei(θ

zda
3 −θ

zd
3 )

)
,

ãd32 =
y2s
yb

(
as
ys

ei(θ
a
s−θys ) − ab

yb
ei(θ

a
b−θy

b
)

)
+ zd2

(
ab
yb
ei(θ

a
b−θy

b
) − zda2

zd2
ei(θ

zda
2 −θ

zd
2 )

)
,

ãe23 = 9
y2s
yb

(
as
ys

ei(θ
a
s−θys ) − ab

yb
ei(θ

a
b−θy

b
)

)
+ zd2

(
ab
yb
ei(θ

a
b−θy

b
) − zda2

zd2
ei(θ

zda
2 −θ

zd
2 )

)
. (D.5)

The phases θyu,c,s,b, θ
zu,d
i , θx̃2 can be expressed in terms of the flavon phases θd2 , θ

d
3 according to

eqs. (4.4), (4.10). This has been done in eq. (D.4), but we refrain from doing so in eq. (D.5)

in order to highlight the fact that all ãfij become real in the limit where the contributions of

the auxiliary components of the flavon superfields to the A-terms are neglected such that

the relation θaf = θyf holds.

E Renormalisation group equations in SCKM basis

The renormalisation group equations for the parameters of the superpotential as well as

the soft breaking terms are usually given in the gauge flavour basis, see e.g. [17], with the

transformation to the SCKM basis being defined only at the electroweak scale. As already

discussed in section 6, we find it useful to diagonalise the Yukawa matrices already at the

high scale. In such a high scale SCKM basis, the RGEs will explicitly depend on the CKM

mixing matrix. Here we define for convenience

V = (Ud
L)

†Uu
L = V T

CKMGUT
. (E.1)

Introducing the parameter t = ln(µ/Mx), with µ being the renormalisation scale and Mx

the high energy scale, we have for the Yukawas and the trilinear A-parameters,

16π2 dỸ
u

dt
=

(
3Ỹ uỸ u† + V †Ỹ dỸ d†V − 16

3
g23 − 3g22 −

13

15
g21 + 3Tr[Ỹ u†Ỹ u] + Tr[Ỹ ν†Ỹ ν ]

)
Ỹ u,

16π2 dỸ
d

dt
=

(
3Ỹ dỸ d† + V Ỹ uỸ u†V † − 16

3
g23 − 3g22 −

7

15
g21 + 3Tr[Ỹ d†Ỹ d] + Tr[Ỹ e†Ỹ e]

)
Ỹ d,

16π2 dỸ
e

dt
=

(
3Ỹ eỸ e† + Ue†

L
Y νY ν†Ue

L − 3g22 −
9

5
g21 + 3Tr[Ỹ d†Ỹ d] + Tr[Ỹ e†Ỹ e]

)
Ỹ e, (E.2)
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16π2 dÃ
u

dt
=

(
5Ỹ uỸ u† + V †Ỹ dỸ d†V − 16

3
g23 − 3g22 −

13

15
g21 + 3Tr[Ỹ u†Ỹ u] + Tr[Y ν†Y ν ]

)
Ãu +

+

(
4ÃuỸ u† + 2V †ÃdỸ d†V +

32

3
g23M3 + 6g22M2 +

26

15
g21M1 + 6Tr[Ỹ u†Ãu] + 2Tr[Y ν†Aν ]

)
Ỹ u,

16π2 dÃ
d

dt
=

(
5Ỹ dỸ d† + V Ỹ uỸ u†V † − 16

3
g23 − 3g22 −

7

15
g21 + 3Tr[Ỹ d†Ỹ d] + Tr[Ỹ e†Ỹ e]

)
Ãd +

+

(
4ÃdỸ d† + 2V ÃuỸ u†V † +

32

3
g23M3 + 6g22M2 +

14

15
g21M1 + 6Tr[Ỹ d†Ãd] + 2Tr[Ỹ e†Ãe]

)
Ỹ d,

16π2 dÃ
e

dt
=

(
5Ỹ eỸ e† + Ue†

L
Y νY ν†Ue

L − 3g22 −
9

5
g21 + 3Tr[Ỹ d†Ỹ d] + Tr[Ỹ e†Ỹ e]

)
Ãe +

+

(
4ÃeỸ e† + 2Ue†

L
AνY ν†Ue

L + 6g22M2 +
18

5
g21M1 + 6Tr[Ỹ d†Ãd] + 2Tr[Ỹ e†Ãe]

)
Ỹ e. (E.3)

The running of the soft scalar masses in the SCKM basis is given by

16π2 d

dt
(m̃2

u)LL = GQ 1+ F u
Q + V †F d

QV,

16π2 d

dt
(m̃2

d)LL = GQ 1+ V F u
QV

† + F d
Q,

16π2 d

dt
(m̃2

e)LL = GL 1+ F e
L + F ν

L ,

16π2 d

dt
(m̃2

f )RR = Gf 1+ Ff , f = u, d, e, (E.4)

with

F u
Q = Ỹ uỸ u†(m̃2

u)LL + (m̃2
u)LLỸ

uỸ u† + 2Ỹ u(m̃2
u)RRỸ

u† + 2(m2
Hu

)Ỹ uỸ u† + 2ÃuÃu†,

F d
Q = Ỹ dỸ d†(m̃2

d)LL + (m̃2
d)LLỸ

dỸ d† + 2Ỹ d(m̃2
d)RRỸ

d† + 2(m2
Hd

)Ỹ dỸ d† + 2ÃdÃd†,

F e
L = Ỹ eỸ e†(m̃2

e)LL + (m̃2
e)LLỸ

eỸ e† + 2Ỹ e(m̃2
e)RRỸ

e† + 2(m2
Hd

)Ỹ eỸ e† + 2ÃeÃe†,

F ν
L = U e†

L Y νY ν†U e
L(m̃

2
e)LL + (m̃2

e)LLU
e†
L Y νY ν†U e

L + 2U e†
L Y νm2

NY ν†U e
L +

+2(m2
Hu

)U e†
L Y νY ν†U e

L + 2U e†
L AνAν†U e

L ,

Fu = 2
(
Ỹ u†Ỹ u(m̃2

u)RR + (m̃2
u)RRỸ

u†Ỹ u + 2Ỹ u†(m̃2
u)LLỸ

u + 2(m2
Hu

)Ỹ u†Ỹ u + 2Ãu†Ãu
)
,

Fd = 2
(
Ỹ d†Ỹ d(m̃2

d)RR + (m̃2
d)RRỸ

d†Ỹ d + 2Ỹ d†(m̃2
d)LLỸ

d + 2(m2
Hd

)Ỹ d†Ỹ d + 2Ãd†Ãd
)
,

Fe = 2
(
Ỹ e†Ỹ e(m̃2

e)RR + (m̃2
e)RRỸ

e†Ỹ e + 2Ỹ e†(m̃2
e)LLỸ

e + 2(m2
Hd

)Ỹ e†Ỹ e + 2Ãe†Ãe
)
,

GQ = −4

(
8

3
g23|M3|2 +

3

2
g22|M2|2 +

1

30
g21|M1|2 −

1

10
g21(m

2
Hu

−m2
Hd

)

)
,

GL = −4

(
3

2
g22|M2|2 +

3

10
g21|M1|2 +

3

10
g21(m

2
Hu

−m2
Hd

)

)
,

Gu = −4

(
8

3
g23|M3|2 +

8

15
g21|M1|2 +

2

5
g21(m

2
Hu

−m2
Hd

)

)
,

Gd = −4

(
8

3
g23|M3|2 +

2

15
g21|M1|2 −

1

5
g21(m

2
Hu

−m2
Hd

)

)
,

Ge = −4

(
6

5
g21|M1|2 −

3

5
g21(m

2
Hu

−m2
Hd

)

)
.
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For completeness, we also show the evolution of the µ parameter, i.e. the coupling of

the bilinear superpotential term HuHd,

16π2dµ

dt
=

(
3Tr[Ỹ u†Ỹ u] + 3Tr[Ỹ d†Ỹ d] + Tr[Ỹ e†Ỹ e] + Tr[Y ν†Y ν ]− 3g22 −

3

5
g21

)
µ , (E.5)

where gi,Mi, i = 1, 2, 3 are the gaugino couplings and masses respectively.

F Renormalisation group running

In this appendix, we provide analytical expression for the RG evolved Yukawa couplings,

soft terms and mass insertion parameters. We estimate the effects of RG running using the

leading logarithmic approximation. In order to formulate the two-stage running (i) from

MGUT to MR, where the right-handed neutrinos are integrated out, and (ii) from MR to

MSUSY ∼ MW ≡ Mlow, we introduce the parameters

η =
1

16π2
ln

(
MGUT

Mlow

)
, ηN =

1

16π2
ln

(
MGUT

MR

)
. (F.1)

For MGUT ≈ 2× 1016GeV, MR ≈ 1014GeV and Mlow ≈ 103GeV, η ≈ 0.19 is of the order

of our expansion parameter λ ≈ 0.22 and ηN ≈ 0.03.

F.1 Low energy Yukawas

The SCKM transformations, discussed in section 6, diagonalise the Yukawa matrices at

high scales. RG running to low energies re-introduces off-diagonal elements in the low

energy Yukawa matrices. These off-diagonal entries in Ỹ u
low and Ỹ d

low are proportional to

the quark masses and the VCKM elements. As the CKMmatrix features only a mild running,

the RG corrections can be treated as a perturbation. In Ỹ e
low, the off-diagonal terms are

proportional to the charged lepton masses and the elements of Y ν . The corresponding RG

equations are provided explicitly in eq. (E.2) for convenience. To LO in λ, we find,

Ỹ u
low ≈




1 +Ry
u 0 0

0 1 +Ry
u 0

0 0 1 +Ry
t


 Ỹ u

GUT − η yb yt




0 0 x̃2 λ
7

0 0 ys λ
6

0 0 0


 , (F.2)

Ỹ d
low ≈




1 +Ry
d 0 0

0 1 +Ry
d 0

0 0 1 +Ry
b


 Ỹ d

GUT + η y2t




0 0 eiθ
d
2
x̃2
2

ys
λ6

0 0 ys λ
4

0 y2s
yb
λ6 0


 , (F.3)

Ỹ e
low ≈




1 +Ry
e 0 0

0 1 +Ry
e 0

0 0 1 +Ry
e


 Ỹ e

GUT + ηN yD Rν




0 −3 ys λ
8 yb λ

6

0 0 yb λ
6

0 0 0


 , (F.4)

– 28 –



J
H
E
P
0
2
(
2
0
1
6
)
1
1
8

with

Ry
u = η

(
46

5
g2U − 3y2t

)
− 3ηN y2D, Ry

t = Ry
u − 3 η y2t , (F.5)

Ry
d = η

44

5
g2U , Ry

b = Ry
d − η y2t , (F.6)

Ry
e = η

24

5
g2U − ηN y2D, Rν = zD1 − yD(K3 +KN

3 ). (F.7)

where gU ≈
√
0.52 is the universal gauge coupling constant at the GUT scale.

F.2 Low energy soft terms

Similar to the Yukawa matrices, the parameters of the soft terms have to be run down to

low energies. Moreover, it is mandatory to perform further transformations to the “new”

SCKM basis which render Ỹ f
low diagonal again. The running of the trilinear terms is similar

to the one of the corresponding Yukawas. To LO in λ, η and ηN , we derive the following

expressions in the “new” SCKM basis.

Ãu
low

A0
≈




1 +Ry
u 0 0

0 1 +Ry
u 0

0 0 1 +Ry
t




Ãu
GUT

A0
− 2




Ra
u 0 0

0 Ra
u 0

0 0 Ra
t


 Ỹ u

GUT (F.8)

− 2η yt




0 0 yb x̃
a
2 e

i(θx̃
a

2 −θx̃2 ) λ7

0 0 yb as e
i(θas−θys ) λ6

0 yte
i(3θd2+θd3)ãu23λ

7 0


 ,

Ãd
low

A0
≈




1 +Ry
d 0 0

0 1 +Ry
d 0

0 0 1 +Ry
b




Ãd
GUT

A0
− 2




Ra
d 0 0

0 Ra
d 0

0 0 Ra
b


 Ỹ d

GUT (F.9)

+ 2η ys yt




0 0 0

0 0 at λ
4

0 1
yb

(
ys at − yt ã

d
23

)
λ6 0


 ,

Ãe
low

A0
≈




1 +Ry
e 0 0

0 1 +Ry
e 0

0 0 1 +Ry
e




Ãe
GUT

A0
− 2Ra

e Ỹ
e
GUT (F.10)

+ 2ηN yD Rν yb




0 0 αD

yD
λ6

0 0 Ra
ν

Rν
λ6

0 0 0


 ,

with

Ra
u = η

(
46

5
g2U

M1/2

A0
+ 3at yt

)
+ 3ηN yD αD, Ra

t = Ra
u + 3 η at yt, (F.11)

Ra
d = η

44

5
g2U

M1/2

A0
, Ra

b = Ra
d + η at yt, (F.12)

Ra
e = η

24

5
g2U

M1/2

A0
+ ηN yDαD, (F.13)

Ra
ν = zDa

1 eiθ
zDa
1 − αD(K3 +KN

3 ). (F.14)
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The first terms in eqs. (F.8)–(F.10) are analogous to the first terms in eqs. (F.2)–(F.4);

they are usually ignored. The second terms contain the universal gaugino mass M1/2

contributions, which generate non-zero diagonal trilinear couplings through the running,

even for A0 → 0. The sources of the off-diagonal entries in the Yukawa couplings are also

present for the trilinear soft terms. We see that the (13) element in Ãu
low, which was zero

in Ãu
GUT, is now filled in, and there is an O(λ6) contribution (but additionally suppressed

by a factor of η) to the (23) element, which was of order λ7 in Ãu
GUT. The (32) element

in Ãu
low, with ãu23 given in eq. (D.5), is of the same order in λ as the one that is already

present in Ãu
GUT. All the off-diagonal elements generated by the running in Ãd

low and in

Ãe
low are of the same order in λ as the ones that were already present at the high scale.

Analogously to the trilinear A-terms, we find for the soft scalar mass,

(m̃2
u)LLlow

m2
0

≈ (m̃2
u)LLGUT

m2
0

+ (6.5x+ T u
L)1− η




0 0 y2t
(m̃2

u)LLGUT13

m2
0

· 0 y2t
(m̃2

u)LLGUT23

m2
0

· · 2Rq


, (F.15)

(m̃2
u)RRlow

m2
0

≈ (m̃2
u)RRGUT

m2
0

+ (6.15x+ T u
R)1− 2η




0 0 y2t
(m̃2

u)RRGUT13

m2
0

· 0 y2t
(m̃2

u)RRGUT23

m2
0

· · 2Rq


, (F.16)

(m̃2
d)LLlow

m2
0

≈ (m̃2
u)LLGUT

m2
0

+ (6.5x+ T d
L)1+ η




0 0
(

2Rq

b01−b02
+ y2t

) (m̃2
d)LLGUT13

m2
0

· 0
(

2Rq

b01−b02
+ y2t

) (m̃2
d
)LLGUT23

m2
0

· · − 2Rq


, (F.17)

(m̃2
d)RRlow

m2
0

≈ (m̃2
d)RRGUT

m2
0

+ (6.1x+ T d
R)1 , (F.18)

(m̃2
e)LLlow

m2
0

≈ (m̃2
e)LLGUT

m2
0

+ (0.5x+ T e
L − 2ηN Rl)1− 2ηN




0 Ẽ12 − Ẽ∗
12

· 0 − Ẽ12

· · 0


λ4, (F.19)

(m̃2
e)RRlow

m2
0

≈ (m̃2
e)RRGUT

m2
0

+ (0.15x+ T e
R)1, (F.20)

where we have introduced the ratio x = M2
1/2/m

2
0 and

Rq = (2b02 + cHu) y
2
t + α2

0 a
2
t , (F.21)

Ẽ12 = y2D

(
R̃12 +BN

3 −KN
3 BN

0

)
+R′

l − (K3 +KN
3 )Rl , (F.22)

Rl = (1 +BN
0 + cHu)y

2
D + α2

0α
2
D , (F.23)

R′
l = (1 +BN

0 + cHu)yD zD1 + α2
0αD zDa

1 eiθ
zDa
1 , (F.24)
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with cHu = m2
HuGUT

/m2
0. Furthermore, the small quantities T f

L,R are defined as

T u
L =

1

m2
0

(
1

20
T +∆u

L

)
, T u

R =
1

m2
0

(
−1

5
T +∆u

R

)
, (F.25)

T d
L =

1

m2
0

(
1

20
T +∆d

L

)
, T d

R =
1

m2
0

(
1

5
T +∆d

R

)
, (F.26)

T e
L =

1

m2
0

(
− 3

20
T +∆e

L

)
, T e

R =
1

m2
0

(
3

10
T +∆e

R

)
, (F.27)

with T = 1
4π2

ln(Mlow)∫

ln(MGUT)

g2U (m2
Hu

−m2
Hd

), as well as

∆u
L =

(
1

2
− 2

3
sin2(θW )

)
cos(2β)M2

Z , ∆u
R =

2

3
sin2(θW ) cos(2β)M2

Z , (F.28)

∆d
L =

(
−1

2
+

1

3
sin2(θW )

)
cos(2β)M2

Z , ∆d
R = −1

3
sin2(θW ) cos(2β)M2

Z , (F.29)

∆e
L =

(
−1

2
+

1

2
sin2(θW )

)
cos(2β)M2

Z , ∆e
R = − sin2(θW ) cos(2β)M2

Z . (F.30)

The contributions T f
L,R to the running soft masses are usually ignored, and it is common

practice to set them to zero in a numerical scan. In our study, we will therefore not consider

them any further.

The off-diagonal entries in the soft scalar masses which are induced by the running are

of the same order in λ as the high scale ones, with an additional suppression by η. Only

for the LL masses of the down-squarks and charged sleptons, the contributions due to Rq

and R
(′)
l can be relatively large as those factors take values up to ∼ 35 in a numerical

scan. Generally, however, the main effect of the RG evolution on the scalar masses is the

change of the diagonal elements. The masses of the first two generations of (m̃2
u)LLlow

,

(m̃2
u)RRlow

, (m̃2
d)LLlow

and all three generations of (m̃2
d)RRlow

, (m̃2
e)RRlow

are increased at

low energy scales due to the second terms in eqs. (F.15)–(F.20). The (33) elements of

(m̃2
u)LLlow

, (m̃2
u)RRLow

and (m̃2
d)LLlow

can still remain relatively light, as they also feel the

effect of Rq, defined in eq. (F.21), entering with a negative sign. Similarly, the enhancement

of all three diagonal entries of (m̃2
e)LLlow

is reduced due to the term −2ηNRl which encodes

seesaw effects.

F.3 Low energy mass insertion parameters

With these preparations, we can now formulate the mass insertion parameters at the low

energy scale.
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Up-type quark sector.

(δuLL)12 =
1

(pu
L1G)2

e−iθd2 b̃12 λ
4, (F.31)

(δuLL)13 =
1

pu
L1Gp

u
L3G

e−i(4θd2+θd3)(1− η y2t ) b̃13 λ
6, (F.32)

(δuLL)23 =
1

pu
L1Gp

u
L3G

e−i(7θd2+2θd3)(1− η y2t ) b̃23 λ
5, (F.33)

(δuRR)12 =
1

(pu
R1G)2

e−iθd2 b̃12 λ
4, (F.34)

(δuRR)13 =
1

pu
R1Gp

u
R3G

(1− 2η y2t ) b̃13 λ
6, (F.35)

(δuRR)23 =
1

pu
R1Gp

u
R3G

ei(5θ
d
2+θd3)(1− 2η y2t ) b̃23 λ

5, (F.36)

(δuLR)11 =
α0 υu

m0 puL1G pu
R1G

yu(1 +Ry
u)

(
ãu11
yu

− µ(1 +Rµ)

A0 tβ
− 2

Ra
u

1 +Ry
u

)
λ8, (F.37)

(δuLR)22 =
α0 υu

m0 puL1G pu
R1G

yc(1 +Ry
u)

(
ãu22
yc

− µ(1 +Rµ)

A0 tβ
− 2

Ra
u

1 +Ry
u

)
λ4, (F.38)

(δuLR)33 =
α0 υu

m0 puL3G pu
R3G

yt(1 +Ry
t )

(
ãu33
yt

− µ(1 +Rµ)

A0 tβ
− 2

Ra
t

1 +Ry
t

)
, (F.39)

(δuLR)12 = (δuLR)21 = (δuLR)31 = 0, (F.40)

(δuLR)13 = − α0 υu
m0 puL1G pu

R3G

x̃2 yb yt

(
x̃a2
x̃2

ei(θ
x̃a
2 −θx̃2 ) +

Ra
t

1 +Ry
t

)
2ηλ7, (F.41)

(δuLR)23 =
α0 υu

m0 puL1G pu
R3G

{
− ys yb yt

(
as
ys

ei(θ
a
s−θys ) +

Ra
t

1 +Ry
t

)
2ηλ6 + (F.42)

+λ7

[
eiθ

d
2 ãu23(1 +Ry

t − η y2t ) + 2η yb yt

(
eiθ

d
2 ãd12 +

(
as
ys

ei(θ
a
s−θys ) +

Ra
t

1 +Ry
t

)
×

×(x̃2 cos(θ
d
2)− zd4 cos(4θ

d
2 + θd3)) + zd4e

i(4θd2+θd3)

(
ei(θ

a
s−θys ) − zda4

zd4
ei(θ

zda
4 −θ

zd
4 )

))]}
,

(δuLR)32 =
α0 υu

m0 puL3G pu
R1G

(1 +Ry
t − 2η y2t )e

i(3θd2+θd3)ãu23 λ
7, (F.43)

where, in eq. (F.42), zd4 and zda4 parameterise theO(λ5) NLO corrections of the (22) and (23)

elements of the down-type Yukawa and soft trilinear structures, respectively. Originating

from the second term of eq. (4.7), zd4e
iθ

zd
4 = yd2 δ̃

d
3,2(4)

φd
2, so that θzd4 = 6θd2 + 4θd3 . We see

that the term proportional to η λ6, which was generated in Ãu
low23

via th RG evolution, is

the source of the associated term in (δuLR)23, which was of order λ7 at the GUT scale. In
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eqs. (F.31)–(F.43) we have defined the factors

puL1G =
√
b01 + 6.5x, puL3G =

√
b02 + 6.5x− 2ηRq +

υ2u
m2

0

y2t (1 +Ry
t )

2 ,

puR1G =
√
b01 + 6.15x, puR3G =

√
b02 + 6.15x− 4ηRq +

υ2u
m2

0

y2t (1 +Ry
t )

2 , (F.44)

which are related to the full sfermion mass matrices by

mũLL
≈ mc̃LL

≈ m0 p
u
L1G , mt̃LL

≈ m0 p
u
L3G ,

mũRR
≈ mc̃RR

≈ m0 p
u
R1G , mt̃RR

≈ m0 p
u
R3G , (F.45)

whose GUT scale definitions are given in eq. (7.1). The µ parameter at the low energy

scale can be estimated by

µlow ≈ µ (1 +Rµ) , Rµ = 4η

(
0.9 g2U − 3

4
y2t

)
− 3ηN y2D . (F.46)

Down-type quark sector.

(δdLL)12 =
1

(pd
L1G)2

B̃12 λ
3, (F.47)

(δdLL)13 =
1

pd
L1Gp

d
L13

eiθ
d
2

x̃22
yb ys

(b01 − b02 + 2η Rq)

(
1 +

η y2t
1 +Ry

b

)
λ4, (F.48)

(δdLL)23 =
1

pd
L1Gp

d
L13

ys
yb

(b01 − b02 + 2η Rq)

(
1 +

η y2t
1 +Ry

b

)
λ2, (F.49)

(δdRR)12 = −(δdRR)13 =
1

(pdR)
2
eiθ

d
2 R̃12 λ

4, (F.50)

(δdRR)23 = − 1

(pdR)
2
R̃12 λ

4, (F.51)

(δdLR)11 =
α0 υd

m0 pdL1G pdR

x̃22
ys

(1 +Ry
d)

(
ãd11

x̃22/ys
− µ tβ(1 +Rµ)

A0
− 2

Ra
d

1 +Ry
d

)
λ6, (F.52)

(δdLR)22 =
α0 υd

m0 pdL1G pdR
ys(1 +Ry

d)

(
ãd22
ys

− µ tβ(1 +Rµ)

A0
− 2

Ra
d

1 +Ry
d

)
λ4, (F.53)

(δdLR)33 =
α0 υd

m0 pdL3G pdR
yb(1 +Ry

b )

(
ãd33
yb

− µ tβ(1 +Rµ)

A0
− 2

Ra
b

1 +Ry
b

)
λ2, (F.54)

(δdLR)12 = −(δdLR)21 = (δdLR)13 =
α0 υd

m0 pdL1G pdR
(1 +Ry

d)ã
d
12 λ

5, (F.55)

(δdLR)23 =
α0 υd

m0 pdL1G pdR
ys(1 +Ry

d)

(
ãd23
ys

+ 2
η y2t

1 +Ry
b

(
at
yt

+
Ra

d

1 +Ry
d

))
λ4, (F.56)

(δdLR)31 =
α0 υd

m0 pdL3G pdR
e−iθd2 (1 +Ry

b )ã
d
31 λ

6, (F.57)
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(δdLR)32 =
α0 υd

m0 pdL3G pdR
(1 +Ry

b )yb

(
ãd32
yb

+ 2ηy2t
y2s
y2b

[
2(1 +Ry

b ) + ηy2t
2(1 +Ry

b )
2

ãd23
ys

+

(
at
yt

+
Ra

d

1 +Ry
d

)
(1 +Ry

d)
2

(1 +Ry
b )

3

])
λ6, (F.58)

where

pdL1G =
√
b01 + 6.5x, pdL3G =

√
b02 + 6.5x− 4ηRq, pdR =

√
1 + 6.1x, (F.59)

such that

md̃LL
≈ ms̃LL

≈ m0 p
d
L1G , mb̃LL

≈ m0 p
d
L3G ,

md̃RR
≈ ms̃RR

≈ mb̃RR
≈ m0 p

d
R . (F.60)

Charged lepton sector.

(δeLL)12 = −(δeLL)23 =
1

(peL)
2

(
R̃12 − 2ηN Ẽ12

)
λ4, (F.61)

(δeLL)13 = − 1

(peL)
2

(
R̃12 − 2ηN Ẽ∗

12

)
λ4, (F.62)

(δeRR)12 = − 1

(pe
R1G)2

eiθ
d
2
B̃12

3
λ3, (F.63)

(δeRR)13 =
1

pe
R1G pe

R3G

B̃13

3
λ4, (F.64)

(δeRR)23 =
1

pe
R1G pe

R3G

3B̃23 λ
2, (F.65)

(δeLR)11 =
1

peL pe
R1G

υd α0

m0

x̃22
3 ys

(1 +Ry
e)

(
ys
x̃22

ãd11 −
µ tβ
A0

(1 +Rµ)− 2
Ra

e

1 +Ry
e

)
λ6, (F.66)

(δeLR)22 =
1

peL pe
R1G

υd α0

m0
3 ys(1 +Ry

e)

(
ãd22
ys

− µ tβ
A0

(1 +Rµ)− 2
Ra

e

1 +Ry
e

)
λ4, (F.67)

(δeLR)33 =
1

peL pe
R3G

υd α0

m0
yb(1 +Ry

e)

(
ãd33
yb

− µ tβ
A0

(1 +Rµ)− 2
Ra

e

1 +Ry
e

)
λ2, (F.68)

(δeLR)12 =
1

peL pe
R1G

υd α0

m0
(1 +Ry

e)e
iθd2 ãd12 λ

5, (F.69)

(δeLR)13 =
1

peL pe
R3G

υd α0

m0

(
(1 +Ry

e)ã
d
31 + 2ηN yD Rν yb

(
αD

yD
+

Ra
e

1 +Ry
e

))
λ6, (F.70)

(δeLR)21 = (δeLR)31 = − 1

peL pe
R1G

υd α0

m0
(1 +Ry

e)e
−iθd2 ãd12 λ

5, (F.71)

(δeLR)23 =
1

peL pe
R3G

υd α0

m0

(
(1 +Ry

e)ã
e
23 + 2ηN yD Rν yb

(
Ra

ν

Rν
+

Ra
e

1 +Ry
e

))
λ6, (F.72)

(δeLR)32 =
1

peL pe
R1G

υd α0

m0
(1 +Ry

e)3 ã
d
23 λ

4, (F.73)

– 34 –
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where

peL =
√
1 + 0.5x− 2ηN Rl, peR1G =

√
b01 + 0.15x, peR3G =

√
b02 + 0.15x, (F.74)

such that

mẽLL
≈ mµ̃LL

≈ mτ̃LL
≈ m0 p

e
L ,

mẽRR
≈ mµ̃RR

≈ m0 p
e
R1G , mτ̃RR

≈ m0 p
e
R3G . (F.75)
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