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ALGORITHM FOR CONSTRUCTION
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OF CLASSIFICATION PROBLEMS
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A universal heuristic algorithm is considered that constructs the vector of properties of an object that

are distributed among heterogeneous groups. This algorithm is based on a feed-forward neural

network. An automatic system for objects classification is described. The use of the automatic

classification system for a literary authorship attribution problem is considered.

Keywords: input vector of attributes, heterogeneous groups of attributes, feed-forward neural network,
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PROBLEM STATEMENT

An important problem of object classification is the construction of the attribute space of an object or, in terms of

pattern recognition theory, an output description of an object. A successful choice of such a description can reduce the

classification procedure to the solution of a trivial problem and, on the contrary, a poor-quality and inefficient choice of an

attribute collection can complicate information processing or make the problem completely undecidable. The body of

information obtained as a result of investigation of an object should be transformed, and some functions of its output

description are found during such transformations. The objective is the obtaining of an output description of an object or an

attribute collection in terms of which the classification problem can be aptly solved.

In forming a collection of parameters of an object, the posteriori chosen attributes can be distributed among

heterogeneous groups each of which characterizes the object according to the values of the attributes that are contained in it.

This essentially complicates the construction of automated systems oriented toward the recognition of specific properties of

objects. For example, in problems of recognition and classification of texts in natural languages, morphological, syntactic,

semantic, and other characteristics that correspond to definite levels of analysis of a natural language can be used as

attributes identifying the text being processed. In automated systems of medical diagnostics, the symptoms of a disease are

determined by data obtained with the help of technical devices such as electrocardiographs, X-ray apparatus, blood

analyzers, etc. In systems of technical diagnostics, attributes of objects are formed from data obtained from temperature,

pressure, strain, vibroacoustic, and other sensors. Thus, in such systems, the attribute collection of an object is constructed

from heterogeneous groups of characteristics obtained as a result of using different technical means or programs.

In problems of classification of objects whose attribute collections are distributed over heterogeneous groups, data of

such groups should be jointly processed to provide the influence of each attribute on the classification process. The attributes

chosen a posteriori to characterize a set of objects can be often inhomogeneously distributed not only over the entire corpus

of the objects being investigated but also within one class. Therefore, a relationship between the components of an attribute

vector should be found that makes it possible to take into account the importance of each attribute for the entire corpus of

objects. In many cases, by virtue of the heterogeneity and nonuniformity of parametric parameters, the search for such a
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relationship presents a sufficiently difficult problem whose solution depends on the classification means being used and on

the corresponding algorithm of processing input parameters.

In the present article, a universal heuristic algorithm is proposed for construction of a vector of attributes distributed

over heterogeneous groups with the help of a feed-forward neural network. The method lies in constructing a function of

transformation of an object description obtained as a result of choice of definite attributes. According to the proposed

algorithm, such a transformation function for a given vector is constructed during training such a neural network. After each

series of training and testing this neural network, the best result of classification at the current stage is determined and the

next distribution of the components of the attribute vector is found. On the condition that the algorithm comes to an end, we

obtain a function that transforms the input vector components and according to which the output description of the

corresponding object is constructed.

A system of automatic classification of objects specified by numerical collections of chosen attributes was developed

with the help of a feed-forward neural network and the proposed method of construction of input attribute vectors. The use of

the developed automatic classification system for the solution of problems of automatic attribution of literary works is

considered.

Along with traditional frequency and morphological characteristics, more sophisticated attributes describing the

construction of sentences are introduced into the system. A new method is developed for automatic determination of the

parameters that describe the complexity of sentences in texts, namely, the average number of adjectives, participles, and

verbal adverbs corresponding to a noun. As a demonstration of capabilities of the system, the solution of the well-known

problem of literary criticism, namely, the authorship of V. Nabokov concerning the writing “Novel with Cocaine” published

under the name of M. Ageyev is authenticated with a high degree of likelihood.

DEVELOPMENT OF AN AUTOMATIC CLASSIFICATION SYSTEM

Construction of a neural network. As a basic tool for the development of a system of classification of objects whose

output description can be specified in the form of numerical vectors, we propose to use a feed-forward neural network and to

train it by the method of error backpropagation training. The developed system uses a model of feed-forward neural networks

that realizes associative memory in the form of a single-layer perceptron whose hidden layer maps stored images into a code

space. To classify a corpus of objects after completion of the process of training or storing etalon examples by the neural

network, it suffices to apply the corresponding formed attribute vectors to the input of the network. Using the code-weight

table obtained during training, the network classifies the objects applied to it by assigning objects with similar attribute

vectors to one class.

The neural network constructed by the authors consists of the input, output, and hidden layers of neurons. For each

object that should be classified, its formed attribute vector is applied to the input of the network. The number of neurons of

the input layer of the network is equal to the dimension of this vector. To the output layer of neurons corresponds a zero

vector with one unit component indicating the number of the class to which belongs the object being classified. The number

of neurons in the output layer is equal to the number of existing classes for the objects from the training sample.

The hidden layer is divided into three blocks of neurons that function with different activation functions (Fig. 1). For

each block of neurons, the functions exp ( )� x
2

, 1

2

� �(exp ( ))x , and th( )x , respectively, are used as output functions. For

the output layer of neurons, the sigmoid function 1 1/ ( exp ( ))� � x is used.

The partition of the hidden layer into blocks with different output functions makes it possible to disclose some

distribution of the parameters of an input vector. Taking into account these empirically chosen functions, the network reacts

to definite regularities in the distribution of parameters of vectors of similar objects, which allows determining the class to

which a given object belongs.

To train the neural network, the classical method of error backpropagation learning was used that includes the

following three stages: the direct passage of the input signal of a training example (the feedforward stage), error back

propagation (the backpropagation stage), and weights tuning.

Coding network inputs. Despite the fact that an input vector contains only numerical attributes, it is important to

normalize data. Theoretically, training is also possible without normalization (then the values of attributes are directly

applied to the input) but the network is trained too slowly in this case. This is conditioned by the fact that the values of

attributes, as a rule, essentially exceed the values of weights and, hence, the values of neurons get into the saturation domain

of threshold functions and, as a result, identical values that do not depend on inputs are obtained at the output.
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Neural networks are characterized by the existence of an interval of input signals within which signals are

distinguishable. This is connected with the properties of the threshold functions being used. To a neuron of each type

corresponds its interval of admissible input data. As a rule, this range coincides with the range of output signals or is the

union of the range of output signals and the segment symmetric to it with respect to zero. We denote this range by [ , ]a b . To

maximally use the range of admissible input data, numerical signals should be scaled and shifted so that the whole range of

values is in the range of admissible input data.

To normalize the input data of the classification system, numerical signals are processed. A new signal obtained as a

result of such a processing is specified by the scaling formula

c
c c b a

c c
a� �

� �

�

�

( )( )

( )

min

max min

,

where [ , ]a b is the range of input signals and [ , ]

min max

c c is the range of values of an attribute c.

Initialization of network weights. The choice of the initial network weights determines whether the network

achieves the global (or only a local) minimum error during training and the convergence rate of training.

According to the error back-propagation algorithm, the correction to the weight of the connection between two

neurons depends on the values of the derivative of the activation output function of the neuron of the overlying layer and the

output signal of the neuron of the underlaying layer. Therefore, the choice of initial weights such that at least one of these

two values is equal to zero should be avoided. The initial values of weights and corrections must not be two large since, in

this case, the initial input signals applied to each hidden or output neuron can get into a domain in which the values of the

derivative of the output function are too small (the so-called saturation region). However, if the initial weights are too small,

the input signals applied to the neurons of the hidden or output layer can be close to zero, which also essentially slows down

training.

In the neural network constructed, weights are initialized using the Nguyen-Widrow weight initialization method

(scheme) [1, pp. 289–316].

To improve the ability to train hidden neurons, it is proposed to use this method for initialization of the weights of

connections between the neurons of the input and hidden layers. The weights of connections between the hidden and output

layers are initialized by random values in the range [ . ; . ]� 0 5 0 5 . The essence of the method lies in distributing the initial

values of weights so that, for each input example, the input signal of the network of one of the hidden neurons can get into

the domain in which this neuron is most trainable.

We introduce the following designations: n is the number of input neurons or the dimension of the input vector, p is

the number of hidden neurons, � is the following coefficient: � � �07 07

1

. ( ) .

/

p p
n n

, � ij is the weight of the connection

between the ith neuron of the input layer ( , . . . , )i n� 1 and the jth neuron of the hidden layer ( , . . . , )j p� 1 , and � j is the

weight vector for the jth hidden neuron consisting of connection weights � ij .

For each jth hidden neuron, the weight vector � j is initialized by numbers from a range [ , ]� � � (here, � � 0 5. ).
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Next, the norm of the jth vector � j is computed as follows:

| | | | . . .� � � �j j j nj� � � �

1

2

2

2 2

.

Then the initial weight values are computed by the formula

�
� �

�
ij

ij

j

( )

| | | |

new � .

METHOD OF FORMATION OF INPUT ATTRIBUTE VECTORS

A distinctive feature of the system developed is that the input attribute vector of an object is formed for the network

during training it. In training the neural network, the normalized input vector of attributes that are initially distributed among

heterogeneous groups is constructed. To this end, the system search for a relationship that exists between the components of

the vector and that allows the system to take into account the influence of each attribute on the classification process and, as

a result, to tune the system of recognition of object classes according to these attributes.

We assume that the collection of attributes that characterize object samples consists of two heterogeneous groups �

and �. It is proposed to tune the components of the input vector as follows.

We define three types of samples of examples.

Sample A. It consists of vectors that contain only attributes of the group �, and the other components of the vector are

zeros,

p i m

k

� ( , , . . . , , . . . , , , , . . . , , . . . , )� � � �
1 2

0 0 0 0

� ��� ���

,

where p is an example vector from a training sample and � i , i m� 1, . . . , , is an attribute of the group �.

Sample B. It contains vectors consisting of the attributes of the group �, and the components corresponding to the

attributes of the group � are zeros,

p

m

j k� ( , , . . . , , . . . , , , , . . . , , . . . , )0 0 0 0

1 2

� ��� ���

� � � � ,

where � j , j k� 1, . . . , , is an attribute of the group �.

Sample C. It includes vectors that consist of weighed values of attributes of the groups � and �,

p
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where a m� � � �� � �
1

2

2

2 2

. . . and b
k

� � � �� � �
1

2

2

2 2

. . . .

The neural network is independently trained using each sample A, B, and C, and then the criterion of estimation of

training is checked.

As a test example for the trained network, it makes sense to use the attribute vector of an object from the training

sample. By the principle of construction of vectors of the samples A, B, and C, three attribute vectors are formed for this test

example.

The criterion of estimation of training the network is understood to be the distance between the following vectors: the

answer obtained for the tuned network for the mentioned test example and the answer (class) that is known in advance for

this example.

The distance between vectors is determined as usual, namely, by the formula

D x y x y x yn n� � � � � � �( ) ( ) . . . ( )

1 1

2

2 2

2 2

,

where x x x xn� ( , , . . . , )

1 2

and y y y yn� ( , , . . . , )

1 2

are two vectors. Then the criterion of estimation of training can be

specified as follows: F D� Arg min ,

�

where � is the set of vectors of samples used for training the network. At the

beginning of the algorithm, the set � consists of the samples A, B, and C.
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During the functioning of the algorithm, new samples of vectors are continuously formed. By the termination

condition for the algorithm we understand the attainment of a sufficiently small chosen value � by the criterion F or the

situation when the newly formed sample is no better (as to the value of F) than the previous samples. A sample is considered

to be optimal if the termination condition of the algorithm is satisfied for it.

Let us define a function � that assigns some real number to each sample of the set �. This function is an injective

mapping, i.e., for each number from the domain of the function �, there exists only one sample corresponding to it.

Therefore, to search for an optimal sample, it is proposed to use the segment whose extreme points are numbers

corresponding to two samples whose values of F are best at the current stage of the algorithm. For the samples A, B, and C,

we have � � �( ) , ( ) , and ( ) .A B C� � �0 1 0 5, respectively. Thus, the segment in which the optimal sample is searched for

is of the form [ , ]0 1 .

Let V and W be the samples that correspond to the extreme points of the segment, let G be the sample corresponding

to the bisecting point of the segment, and let � ij , wij , and g ij be, respectively, the components of vectors of the samples V,

W, and G, i k� 1, , j n� 1, , where k is the number of vectors in a sample (this number is the same for each sample) and n is

the dimension of attribute vectors (this dimension is the same for each vector from the set of samples �). We denote by � the

point (of the segment) that corresponds to the sought-for optimal sample. Then the algorithm of searching for the optimal

sample can be formalized as follows.

Algorithm À1. (Search for the optimal sample.)

INPUT: � � { }A B C, , is the set of samples of vectors composed of samples of the types A, B, and C.

RESULT: � is the number corresponding to the optimal sample.

1. Train the network using the samples A, B, and C.

2. Form three vectors for the test example according to the principle of construction of vectors of the samples

A, B, and C.

3. Compute the values of the criterion F for each sample A, B, and C.

4. If the minimal value of the criterion F is attained for the sample C, then

4.1. Check the satisfability of the criterion F over the set � � { }A B, .

4.2. If the sample A is better than the sample B as to the value of F, then

4.2.1. Form the sample V from the vectors of the sample A.

4.2.2. � ( )V � 0.

4.2.3. Form the sample W from the vectors of the sample C.

4.2.4. � ( ) .W � 0 5.

Otherwise

4.2.5. Form the sample V from the vectors of the sample C.

4.2.6. � ( ) .V � 0 5.

4.2.7. Form the sample W from the vectors of the sample B.

4.2.8. � ( )W � 1.

4.3. Until the termination condition of the algorithm is not satisfied

4.3.1. Form the sample G from the vectors with the components

g w i k j nij ij ij� � � �( ) / , , , ,� 2 1 1 .

4.3.2. Train the network using the sample G.

4.3.3. � � �( ) ( ( ) ( )) /G V W� � 2.

4.3.4. Compute the values of the criterion F for the set � � { }V W G, , .

4.3.5. If G is the best sample as to the value of F, then

If the sample V is better than the sample W as to the value of F, then

4.3.5.1. Replace the vectors of the sample W by the vectors

of the sample G.

4.3.5.2. � �( ) ( )W G� .

Otherwise

4.3.5.3. Replace the vectors of the sample V by the vectors

of the sample G.

4.3.5.4. � �( ) ( )V G� .

Otherwise

4.3.6. If the sample V is better than the sample W as to the value of F, then

4.3.6.1. Replace the vectors of the sample G by the vectors

of the sample V.

4.3.6.2. � �( ) ( )G V� .

Otherwise
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4.3.6.3. Replace the vectors of the sample G by the vectors of the sample W.

4.3.6.4. � �( ) ( )G W� .

4.3.7. � �� ( )G .

Otherwise

5. If the minimal value of the criterion F is attained for the sample A, then

� �� ( )A

otherwise � �� ( )B .

6. Result � �.

End À1.

Thus, during functioning the algorithm of searching for the optimal sample, a value of the function � is obtained

according with which the attribute vector of the object being classified is constructed. The algorithm of construction of this

vector on the basis of the found value � is described below.

By analogy with the construction of the mapping �, we define a function � that associates some real number from the

interval [ , ]0 1 with vector obtained during the functioning of the algorithm of construction of an input attribute vector.

Let R be the attribute vector that should be constructed for the object being classified, let V
1

and V
2

be vectors

corresponding to numbers from the vicinity of the value � in the interval [ , ]0 1 , and let rj , � j

1

, and � j

2

be components of the

vectors R, V
1

, and V
2

, j n� 1, , respectively.

Algorithm À2. (Construction of the input attribute vector of an object on the basis of the number �)

INPUT: Number �.

RESULT: R is the attribute vector for the object being classified.

1. Form the vector V
1

from the values of the attributes of

the object being classified by the principle of construction of vectors of the sample A.

2. � ( )V
1

0� .

3. Form the vector V
2

from the values of the attributes

of the object being classified according to the principle of construction of vectors of the sample B.

4. � ( )V
2

1� .

5. If � � 0 and � � 1, then

5.1. Form the vector R from the components of the vectors V
1

and V
2

according to the principle

of construction of vectors of the sample C.

5.2. If �  0 5. , then

5.2.1. t � 2 .

5.2.2. If � � 0 5. , then

5.2.2.1. Replace the components of the vector V
1

by the components of the vector R.

5.2.2.2. � ( ) .V
1

0 5� .

Otherwise

5.2.2.3. Replace the components of the vector V
2

by the components of the vector R.

5.2.2.4. � ( ) .V
2

0 5� .

5.2.3. Until t  �

5.2.3.1. t V V� �( ( ) ( )) /� �
1 2

2 .

5.2.3.2. Replace the components of the vector R by the averages of components of the vectors

V
1

and V
2

: rj j j� �( ) /� �1 2

2 � �j n1, .

5.2.3.3. If t � �, then

5.2.3.3.1. Replace the components of the vector V
1

by the components of the vector R.

5.2.3.3.2. � ( )V t
1

� .

5.2.3.4. If t � �, then

5.2.3.4.1. Replace the components of the vector V
2

by the components of the vector R.

5.2.3.4.2. � ( )V t
2

� .

6. If � � 0, then

Form the vector R from the components of the vector V
1

.

7. If � � 1, then

Form the vector R from the components of the vector V
2

.

8. Result � vector R.

End À2.
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USING THE DEVELOPED AUTOMATIC CLASSIFICATION SYSTEM AND THE

METHOD OF FORMATION OF INPUT VECTORS OF PARAMETERS IN PROBLEMS

OF TEXT ATTRIBUTION

The developed automatic classification system can be used for the solution of problems of classification of objects

specified by any collection of numerical attributes. Selecting quantitative attributes that characterize the chosen corpus of

objects and using this system, one can investigate a wide class of classification problems.

A topical classification problem is the classification of texts in a natural language. There exist a series of

classifications according to which texts can be sorted into different groups of attributes such as thematic, genre, stylistic, and

other ones.

In this article, we illustrate the use of the developed automatic classification system for the solution of the problem of

classification of texts by stylistic attributes or attribution of texts (determination of authorship of texts).

Formation of a collection of parameters. At the present time, in the problematics of texts attribution, methods are

widespread that are based on the analysis of syntactic structures of a language. The selection of constructions, their

arrangement, and integration into sophisticated structures form the individuality of the syntax of a literary work.

The consideration of a style as a structural-syntactic category requires the selection of specialized elements of each

style at the lexical, phraseological, morphological, and syntactic levels of a language. The static picture of the organization of

all linguistic means (words, wordforms, word-combinations, sentences, etc.) forms the base of each style.

Based on the aforesaid, the characteristics corresponding to the above-mentioned levels of a language and forming the

system of expressive means of each author were chosen to form the input vector of parameters of a text.

1. Frequency dictionary. The frequency dictionary (frequency word list) S constructed from a text consists of the list

of all words si , i n� 1, , that are ordered in alphabetic order (n is the dimension of the dictionary in terms of words) and are

transformed into word stems. This transformation is realized by special heuristic algorithms that were developed for the

lexical-morphological block of text analysis [3]. They assign to each word s Si � , i n� 1, , the frequency ch i of its usage in

the text and the part of speech P to which it belongs. The frequency vector � is formed from the frequencies ch i , i n� 1, , of

the words that belong to the frequency dictionary S of the text being analyzed.

We call the dictionary formed from the entire corpus of training examples the frequency dictionary body. We call the

frequency dictionary constructed for a given text without taking into account the frequency dictionary body the working

frequency dictionary for this text. Next, we call the dictionary formed as a result of intersection of the frequency dictionary

body and the working frequency dictionary of a text the resulting frequency dictionary for the text from which the resulting

frequency vector for this example text is constructed. The resulting frequency dictionary contains all the words of the

frequency dictionary body but with frequencies from the working dictionary. The frequencies of words that are absent in the

working dictionary are equated to zero. The dimension of the resulting frequency dictionary is the same as that of the

frequency dictionary body. The dimension of a dictionary is understood to be the number of all words in the dictionary.

2. The portion of occurrences of concrete reserved words (55 reserved words proposed by Fomenko).

This characteristic that is also relevant to the morphological level of a language is used in [6, pp. 768–820]. As

investigations showed, this attribute varies from 16 to 30% on the whole and within 1–2% for a concrete author.

In [5], the results of statistical investigations of the influence of characteristics of a text on its perception are

presented. According to these investigations, the perception of a text by a reader is greatly influenced by the number of

different words, separator symbols, words in a sentence, participles and verbal adverbs connected with a noun (this number

characterizes the complexity of a sentence), and letters in words.

Among the selected passages of texts, the greatest influence on readers is exerted (in decreasing order) by texts of

Bunin, Chekhov, Tolstoi, Rowling, and Dostoevsky.

The mentioned parameters that characterize the perception of a text by a reader make it possible to determine the style

of the text.

3. The portion of occurrences of internal punctuation marks (colons, commas, dashes, semicolons, brackets, inverted

commas).

4. The portion of occurrences of external punctuation marks (points, exclamation marks, interrogation marks, dots,

and combinations of exclamation and interrogation marks).

5. The average sentence length (the average number of words in a sentence).

6. The portion of words of a definite length (words consisting of one letter, two letters, etc. up to ten).

7. The portion of sentences of a definite length (that consist of one word, two words, etc. up to 30);

8. The average number of adjectives, participles, and verbal adverbs connected with a noun (separately).
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DETERMINATION OF THE RELATION BETWEEN A NOUN AND AN ADJECTIVE

Since an adjective, a participle, and a verbal adverb possess common morphological characteristics (such as gender,

number, and case) in the Russian language, we consider this method for adjectives. A variant of determination of a relation

between a noun and a participle or a verbal adverb is similarly considered.

To determine the latter mentioned parameter required for recognition, it is necessary to find relations between each

noun and adjectives available in a sentence. It is obvious that an adjective must be in the same gender, number, and case as

the noun to which it is related. Hence, it is the first condition that must be satisfied by a found relation. This stage is realized

with the help of a block developed for lexical-morphological analysis that makes it possible to determine necessary

characteristics (gender, number, and case) in two nodes of the sought-for relation (between the corresponding noun and

adjective). Parts of speech are also determined during the construction of a frequency dictionary that, together with the

number of occurrences of a word in a text, also contains its part of speech [3].

However, a situation can arise in which, according to the condition formulated above, an adjective can be

simultaneously related to several nouns. Let us consider the following sentence.

“The moon charmed by the fascination of the evening was still almost full but already noticeably lost its previous

golden tint and, emerging over the crowns of tall lindens, increasingly illuminated white thin clouds that sometimes cover it.”

According to the first condition described above, the adjective full can be simultaneously related (in the original

Russian text) to two nouns, namely, “moon” and “tint.”

To resolve such situations, it is proposed to use the criterion of a distance between words. It is as follows: the less the

distance between a noun and an adjective, the higher the probability of this relation. Such a distance is considered to be the

number of the words that are between the noun and the adjective. In particular, the adjective full in the example (in Russian)

is more close to the noun moon than to the noun tint. According to this criterion and the condition of the correspondence in

gender, number, and case, the program can draw the conclusion concerning the presence of a definite relation. To establish

the genaral parameter of relationship between nouns and adjectives for the entire text, relations are found for all sentences

and they are averaged by division by the number of all such relations existing in the text.

ILLUSTRATION OF TESTING THE AUTOMATIC CLASSIFICATION SYSTEM

BY AN EXAMPLE OF SOLUTION OF A PROBLEM OF TEXT ATTRIBUTION

As was revealed during testing the neural network trained by examples of texts of ten chosen writers, the network

makes an unambiguous decision based on the texts known to it (that are used during training) and also provides a sufficiently

exact recognition of unknown texts if they belong to one of these ten authors.
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TABLE 1

Author Title

A. Pushkin

“The Captain’s Daughter,” “Queen of Spades,” “Tales of the Late

Ivan Petrovich Belkin,” “Dubrovskii”

V. Nabokov

“The Encounter,” “A Russian Beauty,” “Scenes from the Life of a

Double Monster,” “The Vane Sisters,” “The Word”

M. Gorkii

“Evening at Sukhomyatkin’s,” “Makar Chudra,” “Old Woman

Izergil’,” “Fat-Faced Passions”

M. Bulgakov

“The Crimson Island,” “The Extraordinary Adventures of a Doctor,”

“The Heart of a Dog”

I. Turgenev “Hamlet of the Shchigrovskii District,” “Asya”

L. Tolstoi “Two Hussars,” “The Raid,” “The Woodfelling”

A. Kuprin

“Gambrinus,” “The Blue Star,” “The White Poodle,” “The Garnet

Bracelet”

A. Chekhov “The Duel,” “The Student,” “A Chameleon,” “Summer Residents”

A. Tolstoi

“Amena,” “Reunion After Three Hundred Years,” “The Vampire,”

“The Vampire Family”

F. Dostoevsky

“White Nights,” “Mister Prokharchin,” “Uncle’s Dream,” “The

Hostess”



Table 1 presents the titles of the texts that were used in training the automatic classification system. In Table 2, the

results of testing the system with the help of the chosen texts are given. The writings whose titles are bold-faced are used as

training examples from the training sample.

As a test example that was used by the trained network at each stage of the algorithm of formation of the input

attribute vector, a passage of the writing “Music” of V. Nabokov was chosen; the attribute vector formed for this text was

used by the network as a training example from the training sample. As is seen from the diagram presented in Fig. 2, the best

result according to the estimation criterion is attained at the point 0.671875 of the interval [ , ]0 1 (in our case, the prescribed

value of � � 0 0001. ).

ATTRIBUTION OF THE WRITING “NOVEL WITH COCAINE”

As an example of application of the developed technique of attribution of anonymous texts, the problem of

determination of the authorship of the writing “Novel with Cocaine” that, as well as that of the novel “The Silent Don,” was

intensively discussed in the literary world of the XXth century.

The novel was printed in the magazine “Chisla” in 1934 under the name of M. Ageyev. At the same year, the story

“Nasty People” signed by M. Ageyev was printed in the magazine “Vstrechi.” Then there was no sign of the name Ageyev.

After a comparative stylistic analysis of the writing “Novel with cocaine,” researchers draw the conclusion that the

construction and style of the novel of M. Ageyev are very close to the class of writings of V. Nabokov.

Applying methods of the subjective-attributive approach, the researchers of the problem of attribution of this literary

work selected several informal distinctive features peculiar to the Nabokov narration and his language, in particular, “fruit

tints” (such as the “apricot moon”) that are characteristic of Nabokov, reproduction of sounds and noises, twofold repetition

for strengthening the emotional effect, a series of key epithets and verbs, coincidence in some sentences and stages and many
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TABLE 2

Author: Product

Distance between the vector of

parameters of a text and the

vector corresponding to an

author

V. Nabokov “Music” ~0.00030

V. Nabokov “Korolek” ~0.00033

V. Nabokov “A Bad Day” ~0.00463

M. Bulgakov “The Khan Fire” ~0.00056

L. Tolstoi “The Snowstorm” ~0.06734

A. Kuprin “Gambrinus” ~0.00447

V. Nabokov “The Encounter” ~0.00002

V. Nabokov “A Russian Beauty” ~0.00001

V. Nabokov “Scenes from the Life of a Double Monster” ~0.00001

Fig. 2. Formation of an input vector.
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other stylistic characteristics of literary works peculiar to Nabokov [7]. The comparisons made allowed us to put forward the

hypothesis that the author of this writing is Nabokov who wrote under the pseudonym Ageyev.

We used the developed automatic classification system for solution of this attribution problem. The frequency

parameters proposed by the authors for recognition of the authorship of texts make it possible to select a series of special

words, including different tints, epithets, and verbs typical of the author that, following the above list of comparisons, are

distinctive attributes of writings of Nabokov. The latter attribute used for the formation of the input vector makes it possible

to estimate the complexity of sentences, which also is a distinctive characteristic of the writings of V. Nabokov.

The distance between the attribute vector for the writing “Novel with Cocaine” and the output vector corresponding to

the authorship of Nabokov in testing the neural network equals � 0000301. . Thus, this allows us to state with high reliability

that the author of the writing “Novel with cocaine” is V. Nabokov.
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