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Abstract

Background: Acute traumatic coagulopathy (ATC) is a syndrome of early, endogenous clotting dysfunction that
afflicts up to 30% of severely injured patients, signaling an increased likelihood of all-cause and hemorrhage-associated
mortality. To aid identification of patients within the likely therapeutic window for ATC and facilitate study of its
mechanisms and targeted treatment, we developed and validated a prehospital ATC prediction model.

Methods: Construction of a parsimonious multivariable logistic regression model predicting ATC — defined as an
admission international normalized ratio >1.5 — employed data from 1963 severely injured patients admitted to an
Oregon trauma system hospital between 2008 and 2012 who received prehospital care but did not have isolated head
injury. The prediction model was validated using data from 285 severely injured patients admitted to a level 1 trauma
center in Seattle, WA, USA between 2009 and 2013.

Results: The final Prediction of Acute Coagulopathy of Trauma (PACT) score incorporated age, injury mechanism,
prehospital shock index and Glasgow Coma Score values, and prehospital cardiopulmonary resuscitation and
endotracheal intubation. In the validation cohort, the PACT score demonstrated better discrimination (area under the
receiver operating characteristic curve 0.80 vs. 0.70, p = 0.032) and likely improved calibration compared to a previously
published prehospital ATC prediction score. Designating PACT scores ≥196 as positive resulted in sensitivity and
specificity for ATC of 73% and 74%, respectively.

Conclusions: Our prediction model uses routinely available and objective prehospital data to identify patients at increased
risk of ATC. The PACT score could facilitate subject selection for studies of targeted treatment of ATC.

Keywords: Acute traumatic coagulopathy, Trauma, Massive transfusion, Prediction model, Prediction score, Prehospital,
Post-traumatic coagulopathy, Risk stratification

Background
Over the last 15 years, randomized trials have often
failed to validate previously promising therapies for
critically ill patients [1–4]. The study of traumatic injury,
which was the cause over 130,000 deaths in the USA in
2013 and remains the leading killer of adults and
children ages 1–44 years [5], is no exception. Uncontrolled

hemorrhage and post-traumatic coagulopathy contribute to
half of injury-related deaths [6], but interventions including
recombinant factor VIIa [7–9] and balanced transfusion
[10] have demonstrated no benefit in broad populations of
injured patients. At least some such negative trials seem
to occur because researchers, who are lacking tools to
quickly identify the subset of patients with disease biology
amenable to targeted therapy, are forced to include
heterogeneous subject populations [11, 12].
The study of acute traumatic coagulopathy (ATC)

poses particular challenges. Present in up to 30% of
severely injured patients on emergency department (ED)
arrival, ATC is an endogenous biologic syndrome

* Correspondence: ipeltan@uw.edu
1Division of Pulmonary and Critical Care Medicine, Department of Medicine,
University of Washington School of Medicine, 1959 NE Pacific St, Box 356522,
Seattle, WA 98195, USA
2Division of Pulmonary and Critical Care Medicine, Department of Medicine,
Intermountain Medical Center, Salt Lake City, UT, USA
Full list of author information is available at the end of the article

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Peltan et al. Critical Care  (2016) 20:371 
DOI 10.1186/s13054-016-1541-9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81909443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13054-016-1541-9&domain=pdf
mailto:ipeltan@uw.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


contributing to, but distinct from, traumatic hemorrhage
in general [13–16]. When defined as an international
normalized ratio (INR) >1.5 on hospital admission, ATC
is associated with a significantly increased risk-adjusted
probability of not only all-cause and hemorrhage-
associated mortality but also multiple organ failure and
venous thromboembolism [13, 14, 17]. As most
bleeding-related deaths occur early after injury, treat-
ment to prevent or mitigate ATC also needs to begin
quickly, potentially even in the prehospital setting.
Diagnosis of ATC in this time frame, however, remains
difficult: the conventional coagulation tests consistently
linked to risk-adjusted outcomes are slow to return, but
issues of validity, reliability, availability, and interpret-
ation hinder broad implementation of otherwise promis-
ing point-of-care testing and viscoelastic measures
[15, 18–21]. A simple, validated, predictive index using
data available prior to ED admission to identify patients at
high risk of ATC — as opposed to major hemorrhage
more generally — could advance research and patient care
by facilitating trial enrollment, efficient specimen collec-
tion, and, ultimately, targeted ATC treatment.
The only prehospital ATC prediction tool reported so

far, the Coagulopathy of Severe Trauma (COAST) score,
is based on vehicle entrapment, chest decompression by
paramedics, and prehospital assessment of blood pres-
sure, temperature, and abdominal/pelvic content injury
[22]. As the score was not externally validated after
development in a single-center Australian cohort, its
generalizability is uncertain [23]. Marked differences in
ambulance crew practice patterns in the USA also pose
obstacles to the application of the COAST score in
trauma settings within the USA.
In the current study, we developed and internally

validated a prediction model for ATC using patient
demographic information, injury characteristics, and
clinical data available to providers before patients’ arrival
in the ED. We then externally validated our score in an
independent trauma cohort and compared its perform-
ance to that of the COAST score.

Methods
Derivation cohort
To derive a multivariable model predicting ATC, we
studied severely injured non-pregnant patients ages
18–89 years, who were entered in the Oregon Trauma
Registry from 2008 to 2012 [24]. Trained staff at the 44
certified trauma centers in Oregon enter details of
injured patients treated at their facility into the registry
if they meet any of the following criteria: intensive care
unit (ICU) admission ≤24 hours from ED arrival; trauma
team activation; prehospital trauma triage criteria met;
surgical intervention; or injury severity score (ISS) >8
[25]. The registry excludes patients who die before ED

arrival or who have isolated hip fracture after a ground-
level fall.
For model derivation, we used data from registry

patients who met one or more of the following criteria
for severe injury: death prior to discharge; admission
directly from the initial trauma center ED to the ICU or
operating room; or transfer from the initial ED to
another state-certified trauma center ED followed by ad-
mission directly to the receiving facility ICU or operat-
ing room. Exclusion criteria included missing admission
INR; initial care outside the trauma system; preadmis-
sion anticoagulant medication; blood transfusion during
prehospital care; and no prehospital care. We also
excluded patients with isolated burn or traumatic brain
injury (no abbreviated injury score (AIS) ≥3 except for
the head) because coagulopathy in these conditions differs
from polytrauma-associated ATC [26]. The Oregon Health
Authority and University of Washington Institutional
Review Boards approved the use of Oregon Trauma
Registry data.

Validation cohort
We validated our model in a prospective cohort (Age of
Transfused Blood and Lung Injury After Trauma Study)
collected at Harborview Medical Center, a level 1 trauma
center in Seattle, WA, USA [27]. Patients with blunt
trauma, age ≥18 years, admitted to the ICU from the ED
(directly or via the operating room) between March
2010 and December 2013 were eligible for enrollment if
transfused ≥1 units of red blood cells within 24 hours of
injury. Study exclusion criteria were acute respiratory
distress syndrome on admission, isolated traumatic brain
injury (radiologic brain injury without non-brain injury),
transfusion ≤6 months prior to admission, pregnancy,
being in police custody, and expected survival <24 hours.
The validation cohort excluded subjects on warfarin,
with no prehospital care, or missing initial INR values.
Trained research staff unaware of coagulopathy status
collected data on patient characteristics, prehospital and
ED care, and outcomes. The University of Washington
Institutional Review Board approved the original study
and granted exempt status to the current secondary
analysis.

Predictor and outcome definitions
ATC was defined as an INR >1.5 on initial measurement
in the first ED [17]. Potential ATC predictors identified
a priori included patient and injury characteristics, and
clinical and management data available before hospital
arrival. Consistent with prior reports [28], we observed
≤1 point difference between prehospital and ED GCS in
85% of subjects not intubated in the field. We therefore
substituted initial ED values for missing prehospital GCS
in subjects not intubated prehospital. GCS was analyzed
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as the difference between the measured GCS and a nor-
mal GCS (15) to provide a positive regression coefficient.
Shock index — the ratio of the first prehospital heart
rate to first prehospital systolic blood pressure (SBP) —
was considered elevated if ≥1 [29]. Prehospital treat-
ments included cardiopulmonary resuscitation, chest de-
compression (needle or tube thoracostomy), and
endotracheal intubation or invasive airway. In addition
to ISS and AIS [30], injury severity indicators included
rollover motor vehicle crash, ejection or need for extri-
cation from vehicle (“entrapment”), and death of another
person on scene [31].
COAST scores were calculated as previously described

(Table 1) [22]. As prehospital providers in the USA do
not systematically evaluate abdominal/pelvic content in-
jury [32], we applied a secondary definition — abdom-
inal/pelvic AIS ≥1 — used in the original description of
the COAST score. Similarly, we employed the first ED
temperature in place of the prehospital value [33].

Missing data
To minimize bias due to missing data, we performed
multiple imputation based on chained equations to
create 50 imputed datasets for both cohorts [34–36].
Missing values were imputed using predictive mean
matching from three nearest neighbors for continuous
variables [37] and logistic regression for binary variables.
Imputation model variables (Additional file 1: Table S1)
included missing and non-missing candidate predictors,
hospital and coagulopathy outcomes, and other corre-
lates of missing variables [38].

Model development
We constructed a multivariable ATC prediction model
from prehospital variables in three steps: candidate
predictor modeling, selection of a parsimonious final
predictor set, and coefficient estimation. To minimize
predictive bias and optimism, we ensured a >10:1 ratio
of outcome events to predictors entered in the model
selection algorithm [36, 39, 40]. To achieve this ratio, we
(1) discarded variables with p values >0.2 in bivariable

analyses or missingness >25%; (2) “forced” a variable based
on the SBP into the final prediction model given its strong
epidemiologic association with ATC and evidence for a
causal mechanism underlying this association; and (3) cre-
ated merged or collapsed candidate predictors (non-ve-
hicular injury mechanism, shock index) when feasible and
supported by bivariable analysis [23, 29, 36]. Continuous
candidate predictors were evaluated without transform-
ation as locally weighted scatterplot smoothing (LOW-
ESS) plots revealed no major non-linearity in predictor/
INR relationships.
We adapted the “majority rules” approach to model

selection described by Vergouwe et al. [41]. Within each
imputed dataset, we evaluated all possible combinations
of predictor variables using a best-subsets approach and
a leaps-and-bounds algorithm adapted for logistic
regression [42–44], choosing the model with the lowest
Akaike information criterion. This likelihood-based
measure of model fit penalizes larger models to reduce
overfitting [45]. The final prediction model included
predictors selected in 50% or more of the imputation-
derived models (Additional file 2: Figure S1). Coeffi-
cients for the final prediction model were obtained by
combining regression coefficients from the 50 imputed
datasets using Rubin’s rules [46]. We created the Predic-
tion of Acute Coagulopathy of Trauma (PACT) score by
rounding raw model coefficients to one decimal place
and multiplying by 100.

Evaluation of model performance
We estimated model optimism in the multiply-imputed
derivation cohort using bootstrap techniques [47]. After
sampling with replacement for 1000 iterations, we
performed the previously described model selection pro-
cedure on each bootstrap sample and compared model
discrimination in the bootstrapped vs. original derivation
cohort. The average difference for the 1000 bootstrapped
samples is an estimate of the deterioration in model
discrimination attributable to sampling bias. To formally
test generalizability, we evaluated the discrimination and
calibration of the PACT and COAST scores when
applied to the validation cohort.

Statistical analysis
For bivariable analyses we employed the unpaired t test
with unequal variance or the Mann-Whitney test for
continuous variables and the chi-square or Fisher’s exact
test for categorical variables. Regression coefficients are
reported with robust standard errors. Model discrimin-
ation measured using the area under the receiver operat-
ing characteristic curve (AUROC) is reported with 95%
confidence intervals and compared using the method of
Delong et al. [48]. Model calibration was evaluated (1)
graphically by plotting the observed versus predicted

Table 1 Coagulopathy of Severe Trauma (COAST) score

Variable Value Score

Entrapment Yes 1

Systolic blood pressure <100 mmHg 1

<90 mmHg 2

Temperature <35 °C 1

<32 °C 2

Chest decompression Yes 1

Abdominal or pelvic content injury Yes 1

Highest total possible 7

Reprinted from Mitra et al. with permission from Elsevier Ltd [22]
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ATC probability across equal quantiles of predicted ATC
risk and (2) using the Hosmer-Lemeshow goodness-of-
fit statistic [49]. A p value >0.1 for this statistic indicates
no significant divergence of observed from predicted
probabilities. As the 7-point COAST score cannot be di-
vided into >7 quantiles, the primary PACT score calibra-
tion analysis also used 7 quantiles of predicted risk. For
other tests, a p value ≤0.05 was considered significant.
We used Stata version 14.0 (StataCorp LP, College
Station, TX, USA) for all analyses and adhered to pub-
lished guidelines for reporting of prediction models [50].
We performed two sensitivity analyses. We tested

whether an alternate ATC definition adding partial

thromboplastin time (PTT) >60 seconds to INR >1.5
altered our results. We also reevaluated the calibration
of our model using deciles of ATC risk predicted by the
PACT score.

Results
The model derivation cohort included 1963 patients en-
rolled in the Oregon Trauma Registry between 2008 and
2012 (Additional file 3: Figure S2). ATC was present in
115 patients (5.9%). Coagulopathic patients were more
severely injured, less likely to be injured while operating
or riding in a motor vehicle, motorcycle or bicycle, more

Table 2 Demographic, injury and clinical characteristics of subjects included in the derivation cohort by coagulopathy status

INR ≤1.5 (n = 1848) INR >1.5 (n = 115) P

Age 44.4 (18.3) 47.4 (20.9) 0.13

Male sex 1338 (72.5) 84 (73.0) 0.90

Race 0.21

Black 58 (3.2) 4 (3.5)

White 1491 (82.2) 86 (76.1)

Other 264 (14.6) 23 (20.4)

Hispanic 185 (10.2) 14 (12.4) 0.50

Minutes from injury to ED arrival 51 (39–70) 49 (34 − 67) 0.14

Mechanism of injury 0.005

Motor vehicle crash 611 (33.1) 31 (27.0)

Motorcycle crash 180 (9.7) 5 (4.3)

Bicycle crash 82 (4.4) 1 (0.9)

Pedestrian struck 106 (5.7) 14 (12.2)

Fall 404 (21.9) 31 (27.0)

Other 465 (25.2) 33 (28.7)

Injury severity indicators

Ejection from vehicle 65 (3.5) 4 (3.5) 1.0

Extrication 129 (7.0) 9 (7.8) 0.73

Rollover motor vehicle crash 150 (8.1) 9 (7.8) 0.91

First measured pre-hospital vital signs

Systolic blood pressure (mmHg) 131 (27) 119 (29) <0.001

Heart rate 94 (22) 94 (30) 0.87

Respiratory rate 20 (5.2) 21 (6.8) 0.33

First recorded non-intubated GCS 15 (13–15) 14 (9 − 15) <0.001

Pre-hospital interventions

Cardiopulmonary resuscitation 25 (1.4) 16 (13.9) <0.001

Chest decompression 24 (1.3) 5 (4.4) 0.024

Intubation 273 (14.8) 44 (38.3) <0.001

Initial ED temperature (°C) 36.4 (0.97) 35.5 (2.12) <0.001

Injury severity score 16.8 (11.7) 25.7 (1.3) <0.001

Death before discharge 122 (6.6) 53 (46.1) <0.001

Hospital length of stay (days) 6 (2–12) 6 (1 − 19) 0.38

Values reported as median (SD), number (%) or median (IQR). ED emergency department, GCS Glasgow Coma Score, INR international normalized ratio
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likely to undergo prehospital interventions and had
lower prehospital SBP and GCS (Table 2).
Compared to the derivation cohort, the 285 subjects

included in the validation cohort (Additional file 3:
Figure S3) had a slightly higher ATC incidence (9.1%),
were more severely injured, and displayed greater
physiologic derangements (Table 3). In-hospital mortality
was 46% in subjects with ATC compared to 7% in subjects
without ATC (p < 0.001) in the derivation cohort and 24%
vs. 7% (p = 0.001) in the validation cohort.
The final ATC prediction model included age, prehospi-

tal cardiopulmonary resuscitation (CPR) and intubation,
prehospital GCS and shock index, and non-vehicular in-
jury mechanism (Table 4). Within the derivation cohort,
the AUROC of the model was 0.74 (95% CI 0.69–0.79).
After conversion to a score (Table 4), the AUROC was

unchanged (0.74, 95% CI 0.69–0.79). Internal validation
using bootstrap methods estimated that predictive opti-
mism contributed 0.02 (95% CI -0.03–0.08) to the mea-
sured AUROC, resulting in an optimism-adjusted
AUROC of 0.72 (95% CI 0.66–0.78). The Hosmer-
Lemeshow goodness-of-fit test demonstrated no evidence
for inadequate model fit (χdf=5, 2.82, p = 0.73). An inter-
active PACT score calculator is available online at
www.pactscore.com [51].
Application of the PACT score to the independent val-

idation cohort yielded an AUROC of 0.80 (95% CI 0.72–
0.88). The PACT score AUROC was significantly greater
than the COAST score AUROC (0.70, 95% CI 0.60–0.80,
p = 0.032 for comparison; Fig. 1). Including PTT >60 sec-
onds in the definition of ATC yielded similar results
(AUROC 0.80 vs. 0.71, p = 0.038). There was no statis-
tical evidence of inadequate calibration for either the
PACT score (Hosmer-Lemeshow goodness-of-fit statistic
χdf=7 = 4.02, p = 0.77), or the COAST score (χdf=7 = 11.25,
p = 0.13). However, graphical evaluation suggested good
calibration of the PACT score but an inconsistent rela-
tionship between observed and predicted ATC risk at
higher COAST score values (Fig. 2). Dividing the PACT
score into deciles rather than seven quantiles of pre-
dicted risk did not alter these conclusions (χdf=10 = 8.30,
p = 0.59).
Setting the PACT score cutoff at ≥196 maximized sen-

sitivity and specificity at 73.1% and 73.8%, respectively
(Table 5). Applying this threshold to the validation
cohort, 191 of 198 patients (96.5%) with a PACT score
<196 were correctly identified as not having coagulopa-
thy. Among those with a positive PACT score, 19 of 87
(21.8%) had coagulopathy. At the COAST score recom-
mended threshold of ≥3, sensitivity was 26.9% and speci-
ficity was 86.1%. Of 43 COAST scores ≥3, 36 (84.7%)
were false positives (Table 5).

Discussion
We developed and externally validated a model predict-
ing ATC prior to ED arrival in patients with severe
trauma. The PACT score, incorporating a small number
of objective and readily measured data elements rou-
tinely available to prehospital providers, exhibited good
discrimination and calibration when tested in an inde-
pendent trauma cohort and performed better in both
domains than the only previously published prehospital
ATC prediction tool.
Benefits of prehospital identification, expedited triage,

and receiving hospital notification are well-recognized
for conditions where time to treatment affects outcomes
[31, 52, 53]. Given the time course of exsanguination-
related mortality and the early separation of survival
curves for patients with and without ATC, the best time
to intervene in ATC appears to be within minutes of

Table 3 Demographic, injury, and resuscitation characteristics of
derivation and validation cohorts

Derivation cohort
(n = 1963)

Validation cohort
(n = 285)

Age 44.6 (18.5) 48.2 (19.0)

Male sex 1422 (72.6) 204 (71.6)

Non-white race 349 (18.1) 40 (14.0)

Hispanic 199 (10.3) 18 (6.4)

Minutes from injury to ED arrival 51 (38–70) 56 (40–86)

Blunt injury 1727 (88.0) 285 (100)

Mechanism of injury

Motor vehicle crash 642 (32.7) 104 (36.5)

Motorcycle crash 185 (9.4) 50 (17.6)

Bicycle crash 83 (4.2) 10 (3.5)

Pedestrian struck 120 (6.1) 51 (17.9)

Fall 435 (22.2) 44 (15.4)

Other 498 (25.4) 26 (9.1)

First recorded prehospital vital signs

Systolic blood pressure (mmHg) 131 (28) 116 (37)

Heart rate 94 (23) 99 (26)

Respiratory rate 20 (5.3) 19 (7.6)

First recorded non-intubated GCS 15 (13–15) 14 (8–15)

Pre-hospital interventions

Cardiopulmonary resuscitation 41 (2.1) 9 (3.2)

Chest decompression 29 (1.5) 8 (2.8)

Intubation 317 (16.2) 145 (50.9)

Initial ED temperature 36.3 (1.07) 35.9 (1.23)

Injury severity score 17.3 (12.0) 32.3 (15.1)

Admission INR 1.19 (0.74) 1.25 (0.26)

Acute traumatic coagulopathy 115 (5.9) 26 (9.1)

Death before discharge 175 (8.9) 37 (13.0)

Values reported as median (SD), number (%) or median (IQR). ED emergency
department, GCS Glasgow Coma Score, INR international normalized ratio
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injury [14, 54]. We created the PACT score in response
to calls for improved ATC recognition within this win-
dow of opportunity [55, 56]. The implementation of the
score in clinical care must await clinical trials of
PACT score-guided therapy. In the meantime, stratifica-
tion of trauma patients according to ATC risk using the
PACT score could aid study of this condition’s mecha-
nisms and facilitate interventional trials of its treatment.
Enrolling patients at high risk of ATC would foster effi-
cient resource use, reduce heterogeneity, and enrich co-
horts with the subjects most likely to benefit from a
particular treatment, thereby increasing study power.
The PACT score demonstrated good ability to discrim-

inate patients with ATC. Discrimination improved in the

validation cohort compared to the derivation cohort,
suggesting the score has better accuracy in patients who
are sicker and/or suffered blunt injury. The PACT score
cannot, however, diagnose ATC with perfect accuracy
and would benefit from testing against physician judg-
ment. Clinical application therefore largely awaits studies
investigating targeted prehospital or “ED doorway” ther-
apies. The appropriate PACT score cutoff will, moreover,
depend on the specific application. In a low-prevalence
environment, a PACT score ≥160 (92% sensitivity, 59%
specificity) could guide treatment selection for low-risk
interventions. Alternatively, for a theoretical study
recruiting high-risk patients from the validation cohort,
a PACT score ≥250 would enroll 38 patients of whom
29% would have ATC. This compares favorably with the
COAST score at its recommended threshold (27 sub-
jects, 19% ATC) or unselected enrollment (285 subjects,
9% ATC).
Viscoelastic assays deliver partial results within 10–15

minutes of test initiation, allowing attractively rapid
post-admission coagulopathy evaluation at the minority
of level 1 trauma centers where these assays are available
[57, 58]. However, startup costs, assay system inter-
changeability and reliability issues, and particularly the
absence of a consensus outcome-linked viscoelastic ATC
definition pose barriers to the application of viscoelastic
assays in clinical care and research outside high-volume,
high-resource trauma centers [20, 57, 59, 60]. Because
the PACT score accelerates ATC risk stratification
relative to viscoelastic assays and is applicable in the
settings without access to these tests where most
trauma patients receive their initial care, we believe
the PACT score has a role in ATC research and,
eventually, in clinical care.

Table 4 Majority rules model selection results and final Prediction of Acute Coagulopathy of Trauma (PACT) score

Variable Models containing
candidate predictor

In final
prediction
model?

Regression
coefficient

SE Standardized
regression
coefficienta

Value Points
per unit

First prehospital shock index ≥1 Forced into model Yes 0.933 0.249 0.324 Yes/no 90

Age 100 % Yes 0.0119 0.006 0.275 Age, rounded to
nearest decade

1

Mechanism of injury not motor
vehicle, motorcycle, or bicycle crash

100 % Yes 0.514 0.215 0.256 Yes/no 50

Number of GCS points below 15 98 % Yes 0.0705 0.032 0.171 15 – GCS 7

Prehospital CPR 100 % Yes 1.198 0.461 0.188 Yes/no 120

Prehospital intubation or advanced
airway

74 % Yes 0.510 0.315 0.219 Yes/no 50

Prehospital chest decompression 0 % No — — — — —

Time from injury to emergency
department

6 % No — — — — —

Constant N/A Yes -4.256 0.334 — — —
aStandardized regression coefficients represent the change in the log-odds of acute traumatic coagulopathy for a 1 standard deviation increase in the value of the
predictor. CPR cardiopulmonary resuscitation, GCS Glasgow Coma Score, N/A not applicable

Fig. 1 Discrimination of prehospital acute traumatic coagulopathy
prediction scores. Prediction of Acute Coagulopathy of Trauma (PACT)
score area under the receiver operating characteristic curve 0.80 (95 %
CI 0.72–0.88) in the validation cohort vs. 0.68 (95 % CI 0.60–0.80) for the
Coagulopathy of Severe Trauma (COAST) score (p = 0.038)
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Consistent with previous studies, patients with ATC
had substantially increased mortality. Higher ATC mor-
tality in the less severely injured derivation cohort may
reflect differences in timing of cohort entry or outcome
variation between a multilevel trauma system and a sin-
gle high-volume level 1 trauma center [61]. Overall, vari-
ables in our model indicate greater injury relative to
physiologic reserve, in line with prior research correlat-
ing ATC prevalence with injury severity and hypoperfu-
sion [13, 62]. Besides suggesting particularly severe
injury, the predictive utility of prehospital CPR may also
signal a contribution from the type of coagulopathy
previously observed in survivors of non-traumatic
cardiac arrest [63]. However, this study was not designed
to identify ATC risk factors and our results should not
be interpreted as evidence of causal associations between
the studied predictors and ATC.
Our study strengths include an independent cohort for

external model validation, sufficient events per variable
tested, and a model selection algorithm balancing the
predictive utility of the variables against the risk of over-
fitting. Whereas complete case analysis would have lim-
ited our effective sample size and introduced bias into
model development and evaluation [36, 64], our ap-
proach using multiple imputation to manage missing
data avoided excluding patients with missing predictor
values and has been widely recommended in recent litera-
ture on predictive models [36, 50, 64]. We nevertheless
cannot exclude residual bias due to missing predictor or
outcome data.
The COAST score calculation required several approx-

imations due to differences between its derivation dataset
and our datasets. We estimated prehospital temperature
using a validated extrapolation and applied the original

Fig. 2 Calibration of prehospital acute traumatic coagulopathy prediction scores in the validation cohort. Observed acute traumatic coagulopathy
(ATC) probability vs. risk predicted by the Prediction of Acute Coagulopathy of Trauma (PACT) score (a) and Coagulopathy of Severe Trauma (COAST)
score (b). Circles, proportional to subjects represented, indicate actual score (COAST) or 1/7th quantiles of predicted risk (PACT). Error bars represent
95 % confidence intervals for observed ATC probabilities

Table 5 Operating characteristics of the Prediction of Acute
Coagulopathy of Trauma (PACT) score in the validation cohort

PACT score ≥100 ≥150 ≥200 ≥250 ≥300

Patients

True positive 25 25 18 11 3

False positive 186 125 67 27 9

True negative 73 134 192 232 250

False negative 1 1 8 15 23

Operating characteristics

Sensitivity (%) 96.2 96.2 69.2 42.3 11.5

Specificity (%) 28.2 51.7 74.1 89.6 96.5

Positive likelihood ratio 1.34 1.99 2.68 4.06 3.32

Negative likelihood ratio 0.14 0.07 0.42 0.64 0.92

COAST score ≥1 ≥2 ≥3 ≥4 ≥5

Patients

True positive 23 15 7 1 0

False positive 177 89 36 2 0

True negative 82 170 223 257 259

False negative 3 11 19 25 26

Operating characteristics

Sensitivity (%) 88.5 57.7 26.9 3.9 0

Specificity (%) 31.7 65.6 86.1 99.3 100

Positive likelihood ratio 1.29 1.68 1.94 4.98 —

Negative likelihood ratio 0.36 0.64 0.85 0.97 1

PACT score Prediction of Acute Coagulopathy of Trauma score, COAST score
Coagulopathy of Severe Trauma score
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manuscript surrogate for prehospital providers’ subjective
abdominal/pelvic injury evaluation [22, 33]. These
modifications may have penalized the COAST score in
comparisons with the PACT score.
In parallel to past studies [22], we focused on severely

injured patients in order to create a tool for stratifying
among patients at risk of ATC rather than for screening
unselected trauma patients for ATC. Selection of severely
injured patients for both cohorts, however, relied on retro-
spective application of severity markers and other data
available only after hospital admission. Though parallel in
this respect to the procedures applied for development
and validation of the COAST score [22] and a well-known
prediction model for massive transfusion [65, 66], cohort
selection for prehospital prediction model building and
testing would ideally use prehospital data. The PACT
score may perform differently if applied to patients identi-
fied as severely injured solely from information available
prehospital or upon ED arrival.
Our study has several additional limitations. We

defined ATC as an INR >1.5 on hospital admission, a
validated definition [17] which may nevertheless not
capture all mechanisms — including hyperfibrinolysis —
relevant to the impact of the syndrome on trauma out-
comes. Substituting the ATC definition employed by
Mitra et al. (INR >1.5 or PTT >60 seconds) did not alter
our results. As we were unable to exclude subjects with
liver disease, the derangement of INR in some subjects
may have resulted from preexisting conditions.
The model derivation cohort was less severely injured

and, as a result, had less physiologic derangement and
lower mortality than the validation cohort. Compared to
model evaluation in an identically defined cohort, the
two cohorts’ entry criteria and mortality actually pro-
vided a more rigorous generalizability test. Global varia-
tions in injury patterns and prehospital care could
decrease the accuracy of our prediction model outside of
North America. Finally, the lower-than-expected ATC
incidence in the validation cohort yielded a suboptimal
sample size for model validation [67]. Though it repre-
sents one of the few validated prediction tools, repeating
the PACT score validation in a larger, more diverse
trauma cohort identified from prehospital criteria would
be useful to further confirm its generalizability.

Conclusions
In conclusion, we report derivation and external
validation of a prediction model that employs object-
ive, routinely collected prehospital data to identify
patients at increased risk of ATC. The PACT score
exhibited improved discrimination and calibration
relative to a previously reported ATC prediction
model. Application of the PACT score during study
recruitment could aid therapeutic trials by enriching

enrolled cohorts with the patients most likely to
benefit from treatments targeting coagulopathy.

Additional files

Additional file 1: Table S1. Data missingness for candidate ATC
predictors and variables (both missing and non-missing covariates) in-
cluded in multiple imputation model. (PDF 42 kb)

Additional file 2: Figure S1. Schematic diagram of “majority rules”
algorithm for selection of a parsimonious prediction model in multiply
imputed data. (PDF 347 kb)

Additional file 3: Figures S2 and S3. Subject enrollment flow diagrams
for cohorts employed in model deviation and validation. (PDF 781 kb)

Abbreviations
AIS: abbreviated injury score; ATC: acute traumatic coagulopathy;
AUROC: area under the receiver operator characteristic curve; COAST
score: Coagulopathy of Severe Trauma score; ED: emergency department;
GCS: Glasgow Coma Score; ICU: intensive care unit; INR: international
normalized ratio; ISS: injury severity score; PACT score: Prediction of Acute
Coagulopathy of Trauma score; PTT: partial thromboplastin time; SBP: systolic
blood pressure

Acknowledgements
The authors wish to thank the staff of the Oregon Trauma Registry for
providing access to data and the members of the Pulmonary/Critical Care
Clinical Research Works-in-Progress seminar at the University of Washington
for thoughtful feedback on the design and analysis of this study.

Funding
This study was supported by training grant T32 HL728735 (IDP), career
development grant K23 GM086729 (TRW, EC), and clinical and translational
sciences award UL1TR000423 (University of Washington) from the National
Institutes of Health, which had no role in study design, data collection,
analysis or interpretation, or manuscript preparation.

Availability of data and materials
The derivation cohort dataset supporting the conclusions of this article is
available by application to the Oregon Health Authority after approval by the
appropriate ethics committees. The validation cohort dataset supporting the
conclusions of this article is available, after ethics committee approval, from
Dr. Lisa Vande Vusse, the custodian of the dataset from the Age of
Transfused Blood and Lung Injury After Trauma Study.

Authors’ contributions
IDP and TRW conceived the study. IDP, TRW, RVM, TDR, ARR, and LKVV
participated in study design. EC, IDP, TRW, and LKVV participated in data
collection. EC and IDP processed data. IDP, TRW, TDR, ARR, and LKVV
designed the statistical analyses. IDP performed statistical analyses. IDP
drafted the manuscript. All authors read, revised, and approved the final
manuscript.

Competing interests
Dr. Watkins is currently employed by Gilead Sciences, which is not involved
in commercial research relevant to this work. The remaining authors declare
that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The Oregon Health Authority and University of Washington Institutional
Review Boards approved use of Oregon Trauma Registry data and granted a
waiver of informed consent for retrospective data analysis. Subjects provided
informed consent to participate in the observational Age of Transfused
Blood and Lung Injury After Trauma Study under a protocol approved by the
University of Washington Institutional Review Board, which subsequently
granted exempt status to the current secondary analysis.

Peltan et al. Critical Care  (2016) 20:371 Page 8 of 10

dx.doi.org/10.1186/s13054-016-1541-9
dx.doi.org/10.1186/s13054-016-1541-9
dx.doi.org/10.1186/s13054-016-1541-9


Author details
1Division of Pulmonary and Critical Care Medicine, Department of Medicine,
University of Washington School of Medicine, 1959 NE Pacific St, Box 356522,
Seattle, WA 98195, USA. 2Division of Pulmonary and Critical Care Medicine,
Department of Medicine, Intermountain Medical Center, Salt Lake City, UT,
USA. 3Division of Pulmonary and Critical Care Medicine, Department of
Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
4Department of Epidemiology, University of Washington School of Public
Health, Seattle, WA, USA. 5Department of Medicine, University of Washington
School of Medicine, Seattle, WA, USA. 6Department of Surgery, University of
Washington School of Medicine, Seattle, WA, USA.

Received: 30 August 2016 Accepted: 20 October 2016

References
1. Van den Berghe G, Wilmer A, Hermans G, Meersseman W, Wouters PJ,

Milants I, et al. Intensive insulin therapy in the medical ICU. New Engl J
Med. 2006;354:449–61.

2. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Åneman A,
et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis.
New Engl J Med. 2012;367:124–34.

3. Ranieri VM, Thompson BT, Barie PS, Dhainaut J-F, Douglas IS, Finfer S, et al.
Drotrecogin alfa (activated) in adults with septic shock. New Engl J Med.
2012;366:2055–64.

4. Angus DC, Barnato AE, Bell D, Bellomo R, Chong CR, Coats TJ, et al. A
systematic review and meta-analysis of early goal-directed therapy for
septic shock: the ARISE, ProCESS and ProMISe Investigators. Int Care Med.
2015;41:1549–60.

5. National Center for Injury Prevention and Control. 10 Leading Causes of
Death by Age Group, United States – 2013. Centers for Disease Control
2014. Available at http://www.cdc.gov/injury/wisqars/pdf/leading_causes_
of_death_by_age_group_2013-a.pdf. Accessed 9 Feb 2016.

6. Evans JA, van Wessem KJP, McDougall D, Lee KA, Lyons T, Balogh ZJ.
Epidemiology of traumatic deaths: comprehensive population-based
assessment. World J Surg. 2010;34:158–63.

7. Boffard KD, Riou B, Warren B, Choong PIT, Rizoli S, Rossaint R, et al. Recombinant
factor VIIa as adjunctive therapy for bleeding control in severely injured trauma
patients: two parallel randomized, placebo-controlled, double-blind clinical trials. J
Trauma. 2005;59:8–15. Discussion 15–8.

8. Hauser CJ, Boffard K, Dutton R, Bernard GR, Croce MA, Holcomb JB, et al.
Results of the CONTROL trial: efficacy and safety of recombinant activated
Factor VII in the management of refractory traumatic hemorrhage. J Trauma.
2010;69:489–500.

9. Yank V, Tuohy CV, Logan AC, Bravata DM, Staudenmayer K, Eisenhut R, et al.
Systematic review: benefits and harms of in-hospital use of recombinant
factor VIIa for off-label indications. Ann Intern Med. 2011;154:529–40.

10. Holcomb JB, Tilley BC, Baraniuk S, Fox EE, Wade CE, Podbielski JM, et al.
Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio
and mortality in patients with severe trauma: The PROPPR randomized
clinical trial. JAMA. 2015;313:471–82.

11. Vincent J-L. We should abandon randomized controlled trials in the
intensive care unit. Crit Care Med. 2010;38:S534–8.

12. Prescott HC, Calfee CS, Thompson BT, Angus DC, Liu VX. Toward smarter
lumping and smarter splitting: rethinking strategies for sepsis and acute
respiratory distress syndrome clinical trial design. Am J Respir Crit Care Med.
2016;194:147–55.

13. Brohi K, Singh J, Heron M, Coats T. Acute traumatic coagulopathy. J Trauma.
2003;54:1127–30.

14. MacLeod JBA, Lynn M, McKenney MG, Cohn SM, Murtha M. Early coagulopathy
predicts mortality in trauma. J Trauma. 2003;55:39–44.

15. Davenport R, Manson J, De’Ath H, Platton S, Coates A, Allard S, et al.
Functional definition and characterization of acute traumatic coagulopathy.
Crit Care Med. 2011;39:2652–8.

16. Cohen MJ, Call M, Nelson M, Calfee CS, Esmon CT, Brohi K, et al. Critical role
of activated protein C in early coagulopathy and later organ failure,
infection and death in trauma patients. Ann Surg. 2012;255:379–85.

17. Peltan ID, Vande Vusse LK, Maier RV, Watkins TR. An international
normalized ratio-based definition of acute traumatic coagulopathy is
associated with mortality, venous thromboembolism, and multiple organ
failure after injury. Crit Care Med. 2015;43:1429–38.

18. David JS, Levrat A, Inaba K, Macabeo C, Rugeri L, Fontaine O, et al. Utility of
a point-of-care device for rapid determination of prothrombin time in
trauma patients. J Trauma Acute Care Surg. 2012;72:703–7.

19. da Luz LT, Nascimento B, Rizoli S. Thrombelastography (TEG®): practical
considerations on its clinical use in trauma resuscitation. Scand J Trauma
Resusc Emerg Med. 2013;21:1–8.

20. Hagemo JS, Næss PA, Johansson P, Windeløv NA, Cohen MJ, Røislien J, et al.
Evaluation of TEG® and RoTEM® inter-changeability in trauma patients.
Injury. 2013;44:600–5.

21. Hunt H, Stanworth S, Curry N, Woolley T, Cooper C, Ukoumunne O, et al.
Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) for
trauma-induced coagulopathy in adult trauma patients with bleeding.
Cochrane Database Syst Rev. 2015;2:CD010438.

22. Mitra B, Cameron PA, Mori A, Maini A, Fitzgerald M, Paul E, et al. Early
prediction of acute traumatic coagulopathy. Resuscitation. 2011;82:1208–13.

23. Steyerberg EW, Vickers AJ, Cook NR, Gerds T, Gonen M, Obuchowski N, et al.
Assessing the performance of prediction models: A framework for
traditional and novel measures. Epidemiology. 2010;21:128–38.

24. Emergency Medical Services and Trauma Systems Data Unit. Oregon Trauma
Registry 2003-2012 Report. Oregon Health Authority 2014. Available at https://
public.health.oregon.gov/ProviderPartnerResources/EMSTraumaSystems/
TraumaSystems/Documents/reports/otr-report.pdf. Accessed 21 Aug 2015

25. Emergency Medical Services and Trauma Systems Data Unit. Oregon
Trauma Registry Data Dictionary. Oregon Health Authority 2013. Available at
https://public.health.oregon.gov/ProviderPartnerResources/
EMSTraumaSystems/TraumaSystems/Documents/2013/Abstract_Manual_
Version_19.pdf. Accessed 15 July 2015.

26. Maegele M, Schöchl H, Cohen MJ. An update on the coagulopathy of
trauma. Shock. 2014;41 Suppl 1:21–5.

27. Vande Vusse LK, Caldwell E, Tran E, Hogl L, Dinwiddie S, López JA, et al. The
epidemiology of transfusion-related acute lung injury varies according to
the applied definition of lung injury onset time. Ann Am Thorac Soc.
2015;12:1238–335.

28. Arbabi S, Jurkovich GJ, Wahl WL, Franklin GA, Hemmila MR, Taheri PA, et al.
A comparison of prehospital and hospital data in trauma patients. J Trauma.
2004;56:1029–32.

29. King RW, Plewa MC, Buderer NM, Knotts FB. Shock index as a marker for
significant injury in trauma patients. Acad Emerg Med. 1996;3:1041–5.

30. Baker SP, O’Neill B, Haddon W, Long WB. The injury severity score: a method
for describing patients with multiple injuries and evaluating emergency
care. J Trauma. 1974;14:187–96.

31. Sasser SM, Hunt RC, Faul M, Sugerman D, Pearson WS, Dulski T, et al.
Guidelines for field triage of injured patients: recommendations of the National
Expert Panel on Field Triage, 2011. MMWR Recomm Rep. 2012;61:1–20.

32. National Trauma Data Bank. National Trauma Data Standard Data Dictionary:
2015 Admissions. American College of Surgeons 2015. Available at http://
www.ntdsdictionary.org/dataElements/documents/NTDSDataDictionary-
2015Admissions_040215.pdf. Accessed 24 Sept 2015

33. Carleton E, Fry B, Mulligan A, Bell A, Brossart C. Temporal artery
thermometer use in the prehospital setting. CJEM. 2012;14:7–13.

34. White IR, Royston P, Wood AM. Multiple imputation using chained
equations: Issues and guidance for practice. Stat Med. 2010;30:377–99.

35. Van der Heijden GJMG, Donders ART, Stijnen T, Moons KGM. Imputation of
missing values is superior to complete case analysis and the missing-
indicator method in multivariable diagnostic research: A clinical example.
J Clin Epidemiol. 2006;59:1102–9.

36. Steyerberg EW. Clinical Prediction Models: A Practical Approach to
Development, Validation, and Updating. New York: Springer; 2009.

37. Little RJA. Missing data adjustments in large surveys. J Bus Econ Stat. 1988;6:287–96.
38. Moons KGM, Donders RART, Stijnen T, Harrell Jr FE. Using the outcome for

imputation of missing predictor values was preferred. J Clin Epidemiol.
2006;59:1092–101.

39. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study
of the number of events per variable in logistic regression analysis. J Clin
Epidemiol. 1996;49:1373–9.

40. Harrell FE, Lee KL, Matchar DB, Reichert TA. Regression models for
prognostic prediction: advantages, problems, and suggested solutions.
Cancer Treat Rep. 1985;69:1071–7.

41. Vergouwe Y, Royston P, Moons KGM, Altman DG. Development and
validation of a prediction model with missing predictor data: a practical
approach. J Clin Epidemiol. 2010;63:205–14.

Peltan et al. Critical Care  (2016) 20:371 Page 9 of 10

http://www.cdc.gov/injury/wisqars/pdf/leading_causes_of_death_by_age_group_2013-a.pdf
http://www.cdc.gov/injury/wisqars/pdf/leading_causes_of_death_by_age_group_2013-a.pdf
https://public.health.oregon.gov/ProviderPartnerResources/EMSTraumaSystems/TraumaSystems/Documents/reports/otr-report.pdf
https://public.health.oregon.gov/ProviderPartnerResources/EMSTraumaSystems/TraumaSystems/Documents/reports/otr-report.pdf
https://public.health.oregon.gov/ProviderPartnerResources/EMSTraumaSystems/TraumaSystems/Documents/reports/otr-report.pdf
https://public.health.oregon.gov/ProviderPartnerResources/EMSTraumaSystems/TraumaSystems/Documents/2013/Abstract_Manual_Version_19.pdf
https://public.health.oregon.gov/ProviderPartnerResources/EMSTraumaSystems/TraumaSystems/Documents/2013/Abstract_Manual_Version_19.pdf
https://public.health.oregon.gov/ProviderPartnerResources/EMSTraumaSystems/TraumaSystems/Documents/2013/Abstract_Manual_Version_19.pdf
http://www.ntdsdictionary.org/dataElements/documents/NTDSDataDictionary-2015Admissions_040215.pdf
http://www.ntdsdictionary.org/dataElements/documents/NTDSDataDictionary-2015Admissions_040215.pdf
http://www.ntdsdictionary.org/dataElements/documents/NTDSDataDictionary-2015Admissions_040215.pdf


42. Furnival GM, Wilson RW. Regressions by leaps and bounds. Technometrics.
1974;16:499–511.

43. Lawless JF, Singhal K. Efficient screening of nonnormal regression models.
Biometrics. 1978;34:318–27.

44. Lindsey C, Sheather S. Variable selection in linear regression. Stata J.
2010;10:650–69.

45. Akaike H. Information Theory and an Extension of the Maximum Likelihood
Principle. In: Parzen E, Tanabe K, Kitagawa G, eds. Selected Papers of
Hirotugu Akaike. New York: Springer; 1998. pp. 199–213.

46. Rubin DB. Inference and missing data. Biometrika. 1976;63:581–92.
47. Steyerberg EW, Harrell FE, Borsboom GJ, Eijkemans MJ, Vergouwe Y,

Habbema JD. Internal validation of predictive models: efficiency of some
procedures for logistic regression analysis. J Clin Epidemiol. 2001;54:774–81.

48. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under
two or more correlated receiver operating characteristic curves: a
nonparametric approach. Biometrics. 1988;44:837–45.

49. Hosmer DW, Lemeshow S. Applied Logistic Regression. New York: Wiley;
1989.

50. Moons KGM, Altman DG, Reitsma JB, Ioannidis JPA, Macaskill P, Steyerberg
EW, et al. Transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD): explanation and elaboration.
Ann Intern Med. 2015;162:W1–W73.

51. Peltan ID. Prediction of Acute Traumatic Coagulopathy Score. PACT Score
2015. Available at http://www.pactscore.com. Accessed 9 May 2016

52. European Myocardial Infarction Project Group. Prehospital thrombolytic
therapy in patients with suspected acute myocardial infarction. New Engl J
Med. 1993;329:383–9.

53. Kim SK, Lee SY, Bae HJ, Lee YS, Kim SY, Kang MJ, et al. Pre-hospital
notification reduced the door-to-needle time for IV tPA in acute ischaemic
stroke. Eur J Neurol. 2009;16:1331–5.

54. Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernández-Mondéjar
E, et al. Management of bleeding and coagulopathy following major
trauma: an updated European guideline. Crit Care. 2013;17:R76.

55. Brohi K. Prediction of acute traumatic coagulopathy and massive transfusion
- is this the best we can do? Resuscitation. 2011;82:1128–9.

56. Maegele M, Brockamp T, Nienaber U, Probst C, Schoechl H, Görlinger K, et
al. Predictive models and algorithms for the need of transfusion including
massive transfusion in severely injured patients. Transfus Med Hemother.
2012;39:85–97.

57. Inaba K, Rizoli S, Veigas PV, Callum J, Davenport R, Hess J, et al. 2014
Consensus conference on viscoelastic test-based transfusion guidelines for
early trauma resuscitation: Report of the panel. J Trauma Acute Care Surg.
2015;78:1220–9.

58. Camazine MN, Hemmila MR, Leonard JC, Jacobs RA, Horst JA, Kozar RA, et
al. Massive transfusion policies at trauma centers participating in the
American College of Surgeons Trauma Quality Improvement Program.
J Trauma Acute Care Surg. 2015;78:S48–53.

59. Kitchen DP, Kitchen S, Jennings I, Woods T, Walker I. Quality assurance and
quality control of thrombelastography and rotational thromboelastometry:
the UK NEQAS for blood coagulation experience. Semin Thromb Hemost.
2010;36:757–63.

60. Peltan ID, Watkins TR. Fibrinogen measurement and viscoelastic technique
are necessary to define acute traumatic coagulopathy − the authors reply.
Crit Care Med. 2016;44:e106–7.

61. Demetriades D, Martin M, Salim A, Rhee P, Brown C, Doucet J, et al.
Relationship between American College of Surgeons trauma center
designation and mortality in patients with severe trauma (injury severity
score > 15). J Am Coll Surg. 2006;202:212–5.

62. Frith D, Goslings JC, Gaarder C, Maegele M, Cohen MJ, Allard S, et al.
Definition and drivers of acute traumatic coagulopathy: clinical and
experimental investigations. J Thromb Haemost. 2010;8:1919–25.

63. Adrie C, Monchi M, Laurent I, Um S, Yan SB, Thuong M, et al. Coagulopathy
after successful cardiopulmonary resuscitation following cardiac arrest:
implication of the protein C anticoagulant pathway. J Am Coll Cardiol.
2005;46:21–8.

64. Janssen KJM, Vergouwe Y, Donders ART, Harrell FE, Chen Q, Grobbee DE, et
al. Dealing with missing predictor values when applying clinical prediction
models. Clin Chem. 2009;55:994–1001.

65. Nunez TC, Voskresensky IV, Dossett LA, Shinall R, Dutton WD, Cotton BA.
Early prediction of massive transfusion in trauma: simple as ABC
(assessment of blood consumption)? J Trauma. 2009;66:346–52.

66. Cotton BA, Dossett LA, Haut ER, Shafi S, Nunez TC, Au BK, et al. Multicenter
validation of a simplified score to predict massive transfusion in trauma.
J Trauma. 2010;69:S33–9.

67. Vergouwe Y, Steyerberg EW, Eijkemans MJC, Habbema JDF. Substantial
effective sample sizes were required for external validation studies of
predictive logistic regression models. J Clin Epidemiol. 2005;58:475–83.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Peltan et al. Critical Care  (2016) 20:371 Page 10 of 10


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Derivation cohort
	Validation cohort
	Predictor and outcome definitions
	Missing data
	Model development
	Evaluation of model performance
	Statistical analysis

	Results
	Discussion
	Conclusions
	Additional files
	show [Abbrev]
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

