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Abstract
In this paper, by using some different asymptotically linear conditions from those
previously used in Hamiltonian systems, we obtain the existence of nontrivial
homoclinic orbits for a class of second order Hamiltonian systems by the variational
method.
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1 Introduction andmain result
We consider the following second order Hamiltonian system:

u′′(t) –A(t)u(t) +∇H
(
t,u(t)

)
= , t ∈R, (.)

where H ∈ C(R×R
N ,R) is T-periodic in t, ∇H(t,x) denotes its gradient with respect to

the x variable, and A(t) is the T-periodic N ×N matrix that satisfies

A(t) ∈ C
(
R,RN)

, (.)

and it is symmetric and positive definite uniformly for t ∈ [,T]. We say that a solution
u(t) of (.) is homoclinic (with ) if u(t) ∈ C(R,RN ) such that u(t) →  and u′(t)→  as
|t| → ∞. If u(t) �≡ , then u(t) is called a nontrivial homoclinic solution.
Let G(t,u) := 

 (∇H(t,u),u) –H(t,u). We assume:

(H) H ∈ C(R×R
N ,R) is T-periodic in t, and H(t,u) ≥ , ∀(t,u) ∈R×R

N .
(H) There are some constants c,R >  andμ >  such that |∇H(t,u)| ≤ c|u|μ– if |u| ≤ R.
(H) There is a constant V >  such that

H(t,u) =


V |u| + F(t,u),

∣∣∇F(t,u)
∣∣ = o

(|u|) as |u| → ∞.

(H) G(t,u) ≥ , ∀(t,u) ∈ R × R
N , and there exist α ∈ (, ), c, c > , and R > R such

that

G(t,u) ≥ c|u|μ if |u| ≤ R, G(t,u) ≥ c|u|α if |u| ≥ R.
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Let

a :=max
t∈R

sup
u∈RN ,|u|=

(
A(t)u,u

)
.

Now, our main result reads as follows.

Theorem. If (.) and (H)-(H)with V > a hold, then (.) has a nontrivial homoclinic
orbit.

Example . Let

H(t,u) =

{
( V – h(t))|u|μ if |u| ≤ ,

V |u| – h(t)|u|α if |u| ≥ ,

where h ∈ C(R,R) is T-periodic in t,  < inft∈R h(t) ≤ supt∈R h(t) < 
V and μ >  > α > .

It is not hard to check that the above function satisfies (H)-(H).

We will use the following theorem to prove our main result.

Theorem A ([]) Let E be a Banach space equipped with the norm ‖ · ‖ and let J ⊂ R
+ be

an interval.We consider a family (Iλ)λ∈J of C-functionals on E of the form

Iλ(u) = A(u) – λB(u),

where B(u) ≥ , ∀u ∈ E and such that either A(u) → +∞ or B(u) → +∞ as ‖u‖ → +∞.
We assume there are two points (v, v) in E such that setting

� =
{
γ ∈ C

(
[, ],E

)
,γ () = v,γ () = v

}

we have, ∀λ ∈ J ,

cλ := inf
γ∈�

max
t∈[,]

Iλ
(
γ (t)

)
>max

{
Iλ(v), Iλ(v)

}
.

Then, for almost every λ ∈ J , there is a sequence {vn} ⊂ E such that

{vn} is bounded, Iλ(vn)→ cλ and I ′λ(vn)→  in the dual E– of E.

In recent decades, many authors are devoted to the existence and multiplicity of ho-
moclinic orbits for second order Hamiltonian systems with super or asymptotically linear
terms by critical point theory, see [–] and the references therein. Many authors [–,
, –, , –] have studied the existence of homoclinic orbits of (.) by considering
the following so-called global Ambrosetti-Rabinowitz condition on H due to Ambrosetti
and Rabinowitz (e.g., []): there exists a constant μ >  such that

 < μH(t,u) ≤ (∇H(t,u),u
)
, u ∈R

N\{}, (.)
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where (·, ·) denotes the inner product in R
N , and the corresponding norm is denoted by

| · |. Roughly speaking the role of (.) is to insure that all Palais-Smale sequences for the
corresponding function of (.) at the mountain-pass level are bounded. By removing or
weakening the condition (.), some authors studied the homoclinic orbits of (.). For
example, Zou andLi [] proved that the system (.) has infinitelymany homoclinic orbits
by using the variant fountain theorem; Chen [] obtained the existence of a ground state
homoclinic orbit for (.) by a variant generalized weak linking theorem due to Schechter
and Zou. Ou and Tang [] obtained the existence of a homoclinic solution of (.) by
the minimax methods in the critical point theory. For second order Hamiltonian systems
without periodicity, we refer the readers to [–] and so on.
The rest of our paper is organized as follows. In Section , we give some preliminary

lemmas, which are useful in the proof of our result. In Section , we give the detailed
proof of our result.

2 Preliminary lemmas
Throughout this paper we denote by ‖ · ‖Lq the usual Lq(R,RN ) norm and C for generic
constants.
In what follows, we always assume (.) and (H)-(H) with V > a hold. Let E :=

H(R,RN ) under the usual norm

‖u‖E =
∫ +∞

–∞

(|u| + ∣∣u′∣∣)dt.
Thus E is a Hilbert space and it is not difficult to show that E ⊂ C(R,RN ), the space of
continuous functions u on R such that u(t) →  as |t| → ∞ (see, e.g., []). We will seek
solutions of (.) as critical points of the functional I associated with (.) and given by

I(u) :=



∫ +∞

–∞

(∣∣u′∣∣ + (
A(t)u,u

))
dt –

∫ +∞

–∞
H(t,u)dt.

We define a new norm

‖u‖ :=
∫ +∞

–∞

((
A(t)u,u

)
+

∣∣u′∣∣)dt,
and its corresponding inner product is denoted by 〈·, ·〉. By (.), ‖ · ‖ can and will be taken
as an equivalent norm on E. Hence I can be written as

I(u) :=


‖u‖ –

∫ +∞

–∞
H(t,u)dt. (.)

The assumptions onH imply that I ∈ C(E,R).Moreover, critical points of I are classical
solutions of (.) satisfying u′(t) →  as |t| → ∞. Thus u is a homoclinic solution of (.).
Let us show that I has a mountain-pass geometry. Since I() =  this is a consequence of
the two following results.

Lemma . I(u) = 
‖u‖ + o(‖u‖) as u→ .

http://www.advancesindifferenceequations.com/content/2014/1/114
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Proof By (H) and (H), we know for any ε >  there exists a Cε >  such that

∣∣∇H(t,u)
∣∣ ≤ ε|u| +Cε|u|p–, ∀(t,u) ∈R×R

N , (.)

where p > . It follows from 
 (∇H(t,u),u) ≥ H(t,u) (see (H)) that

∣∣H(t,u)
∣∣ ≤ ε


|u| + Cε


|u|p, ∀(t,u) ∈ R×R

N . (.)

By (.) and the Sobolev embedding theorem, we deduce that

∫ +∞

–∞

∣∣H(t,u)
∣∣dt ≤ ε


‖u‖ +C‖u‖p,

which implies the conclusion. �

Lemma . There is a function v ∈ E with v �=  satisfying I(v) ≤ .

Proof Let

d :=N
∫ +∞

–∞
e–αt


dt,  < α < V – a,

wα,i(t) :=

d
e–αt , i = , . . . ,N and wα(t) :=

(
wα,(t), . . . ,wα,N (t)

)
.

Obviously, w′
α,i(t) := – 

dαte
–αt , i = , . . . ,N . Straightforward calculations show that

‖wα‖L =  and
∥∥w′

α

∥∥
L = α. (.)

For every t ∈R, |swα| → +∞ as s → ∞. It follows from (H) that

lim
s→∞

H(t, swα)
s

= lim
s→∞

H(t, swα)
s|wα| |wα| = 


V |wα|, a.e. t ∈R,

which together with (.), the definition of a (above Theorem .) and the Fatou lemma
implies

lim
s→∞

I(swα)
s

=


∥∥w′

α

∥∥
L +




∫ +∞

–∞

(
A(t)wα ,wα

)
dt – lim

s→∞

∫ +∞

–∞
H(t, swα)

s
dt

≤ 

α +

a


‖wα‖L – lim
s→∞

∫ +∞

–∞
H(t, swα)

s
dt

=


α +

a


–


V < .

Therefore, we can choose v := swα with s big enough such that v ∈ E with v �=  satisfying
I(v)≤ . �

We define on E the family of functionals

Iλ(u) :=


‖u‖ – λ

∫ +∞

–∞
H(t,u)dt, λ ∈ [, ]. (.)

http://www.advancesindifferenceequations.com/content/2014/1/114
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Lemma . The family (Iλ) with λ ∈ [, ] satisfies the hypotheses of Theorem A. In par-
ticular for almost every λ ∈ [, ] there is a bounded sequence {vj} ⊂ E satisfying

Iλ(vj) → cλ and I ′λ(vj) → .

Proof For the v ∈ E obtained in Lemma ., we have Iλ(v) ≤ . It follows from (H) that
Iλ(v) ≤ I(v)≤ , ∀λ ∈ [, ]. By the proof in Lemma ., we have

∫ +∞

–∞
H(t,u)dt = o

(‖u‖) as u → . (.)

Let

� :=
{
γ ∈ C

(
[, ],E

)
: γ () =  and γ () = v

}
,

then it follows from (.) and (.) that

cλ := inf
γ∈�

max
s∈[,]

Iλ
(
γ (s)

)
> , ∀λ ∈ [, ].

An application of Theorem A now completes the proof. �

Lemma . If {uj} ⊂ E vanishes and is bounded, then

lim
j→∞

∫ +∞

–∞
G(t,uj)dt = .

Proof It is known that if {uj} vanishes, then uj →  in Lq(R,RN ) for all q ∈ (,∞), which
together with (.), (.), and the Hölder inequality implies

∫ +∞

–∞

(∇H(t,uj),uj
) ≤ ε‖uj‖L +Cε‖uj‖pLp → 

and
∫ +∞

–∞
H(t,uj)dt ≤ ε


‖uj‖L +

Cε


‖uj‖pLp → .

Therefore, the proof follows from the definition of G. �

Lemma . If {uj} is bounded in E and satisfies

 < lim
j→∞ Iλ(uj)≤ cλ and I ′λ(uj) → ,

then up to a subsequence, uj ⇀ uλ �=  with Iλ(uλ) ≤ cλ and I ′λ(uλ) = .

Proof Note that {uj} is bounded and

∫ +∞

–∞
G(t,uj)dt = Iλ(uj) –



I ′λ(uj)uj → lim

j→∞ Iλ(uj) > ,

http://www.advancesindifferenceequations.com/content/2014/1/114
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it follows from Lemma . that {uj} does not vanish, i.e., there are r, δ >  and a sequence
{sj} ⊂R such that

lim
j→∞

∫
Br (sj)

uj dt ≥ δ, (.)

where Br(sj) := [sj – r, sj + r]. The fact that {uj} is bounded implies that uj ⇀ uλ in E and
uj → uλ in Lloc(R,R

N ) (see []) after passing to a subsequence, thus we get uλ �=  by (.).
By I ′λ(uj) →  and the fact I ′λ is weakly sequentially continuous [], we have

I ′λ(uλ)v = lim
j→∞ I ′λ(uj)v = , ∀v ∈ E.

It implies that I ′λ(uλ) = .
Observe that (H) implies G(t,u) ≥  for all (t,u) ∈ R × R

N , which together with the
Fatou lemma and I ′λ(uλ) =  implies

cλ ≥ lim
j→∞

(
Iλ(uj) –



I ′λ(uj)uj

)

= lim
j→∞λ

∫ +∞

–∞
G(t,uj)dt

≥ λ

∫ +∞

–∞
G(t,uλ)dt

= Iλ(uλ) –


I ′λ(uλ)uλ = Iλ(uλ).

Therefore, the proof is finished. �

By Lemmas . and ., we deduce the existence of a sequence {(λj,uj)} ⊂ [, ]×E such
that:

• λj →  and {λj} is decreasing,
• uj �= , Iλj (uj) ≤ cλj and I ′λj (uj) = .

(.)

Since



‖uj‖ – λj

∫ +∞

–∞
H(t,uj)dt ≤ cλj and ‖uj‖ = λj

∫ +∞

–∞

(∇H(t,uj),uj
)
dt,

we have∫ +∞

–∞
G(t,uj)dt ≤ cλj

λj
.

Clearly
cλj
λj

is increasing and bounded by c = c, and it follows that

∫ +∞

–∞
G(t,uj)dt ≤ c, ∀j ∈N. (.)

Lemma . The sequence {uj} obtained in (.) is bounded.

http://www.advancesindifferenceequations.com/content/2014/1/114


Chen Advances in Difference Equations 2014, 2014:114 Page 7 of 9
http://www.advancesindifferenceequations.com/content/2014/1/114

Proof Since H ∈ C(R×R
N ,R) is T-periodic in t, by (H) and (H), respectively,∫

{t∈R:|uj|≥R}
G(t,uj)dt =

∫
{t∈R:R≤|uj|≤R}∪{t∈R:|uj|≥R}

G(t,uj)dt

≥ c′
∫

{t∈R:|uj|≥R}
|uj|α dt (.)

and ∫
{t∈R:|uj|≥R}

∣∣∇H(t,uj)
∣∣ · |uj|dt ≤ c′

∫
{t∈R:|uj|≥R}

|uj| dt (.)

for some positive constants c′ and c′. Note that (.) implies

Iλj (uj) –

 I

′
λj
(uj)uj

λj
≤ C,

thus it follows from (H) and (.) that

C ≥
Iλj (uj) –


 I

′
λj
(uj)uj

λj

=
∫
R

G(t,uj)dt

=
∫

{t∈R:|uj|≤R}
G(t,uj)dt +

∫
{t∈R:|uj|≥R}

G(t,uj)dt

≥ c
∫

{t∈R:|uj|≤R}
|uj|μ dt + c′

∫
{t∈R:|uj|≥R}

|uj|α dt. (.)

Take s ∈ (, α
 ), then by (.), the Hölder inequality, and the Sobolev imbedding theorem,∫

{t∈R:|uj|≥R}
|uj| dt

=
∫

{t∈R:|uj|≥R}
|uj|s|uj|(–s) dt

≤
(∫

{t∈R:|uj|≥R}
|uj|α

) s
α
(∫

{t∈R:|uj|≥R}
|uj| α(–s)α–s

) α–s
α

≤ C‖uj‖(–s) (.)

for some positive constant C, where α(–s)
α–s ≥ . Note that I ′λj (uj)uj = , it follows from

(H), (.)-(.), the Hölder inequality and the Sobolev imbedding theorem that

‖uj‖ = λj

∫
R

(∇H(t,uj),uj
)
dt

≤ C

∫
{t∈R:|uj|≤R}

∣∣∇H(t,uj)
∣∣ · |uj|dt +C

∫
{t∈R:|uj|≥R}

∣∣∇H(t,uj)
∣∣ · |uj|dt

≤ C

∫
{t∈R:|uj|≤R}

|uj|μ– · |uj|dt +C

∫
{t∈R:|uj|≥R}

|uj| dt

≤ C +CC‖uj‖(–s) (.)

http://www.advancesindifferenceequations.com/content/2014/1/114
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for some positive constants C, C, and C, where  < (– s) < . Therefore, (.) implies
that {uj} is bounded and the proof is finished. �

3 Proof of main result
We are now in a position to prove our main result.

Proof of Theorem . {uj} is bounded by Lemma ., so we can assume uj ⇀ u and uj → u
a.e. t ∈R, up to a subsequence. By (.), we have

lim
j→∞ I ′(uj)ϕ = lim

j→∞

(
I ′λj (uj)ϕ + (λj – )

∫ +∞

–∞

(∇H(t,uj),ϕ
)
dt

)
= , ∀ϕ ∈ E.

Note that

lim
j→∞ I(uj) = lim

j→∞

(
Iλj (uj) + (λj – )

∫ +∞

–∞
H(t,uj)dt

)
.

We distinguish two cases: either limsupj→∞ Iλj (uj) >  or lim supj→∞ Iλj (uj) ≤ . If the
first case holds, we get lim supj→∞ I(uj) >  and the result follows from Lemma .. If
lim supj→∞ Iλj (uj) ≤ , we define the sequence {zj} ∈ E by zj = tjuj with tj ∈ [, ] satisfying

Iλj (zj) = max
t∈[,]

Iλj (tuj). (.)

(If for a j ∈N, tj defined by (.) is not unique we choose the smaller possible value.) Since
{uj} is bounded, {zj} is bounded. Note that I ′λj (zj)zj = , ∀j ∈N, thus

λj

∫ +∞

–∞
G(t, zj)dt = Iλj (zj) –



I ′λj (zj)zj = Iλj (zj). (.)

On the other hand it is easily seen, following the proof of Lemma ., that I ′λj (u)u = ‖u‖ +
o(‖u‖) as u → , uniformly in j ∈ N. Therefore, since I ′λj (uj) = , there is θ >  such that
‖uj‖ ≥ θ , ∀j ∈ N. Recording that lim supj→∞ Iλj (uj) ≤ , then we obtain from Lemma .
and (.) lim infj→∞ Iλj (zj) > , and from (.) it follows that

lim inf
j→∞

∫ +∞

–∞
G(t, zj)dt = lim inf

j→∞ Iλj (zj) > .

It follows from the fact {zj} is bounded and Lemma . that {zj} does not vanish, so {uj}
does not vanish. The proof of u �=  and I ′(u) =  is similar to the proof of Lemma .. �
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