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1 Introduction

A characteristic of Double Field Theory (DFT) [1–4] is the section condition, a second

order differential constraint imposed on arbitrary fields and their products, such that the

O(D,D) invariant Laplacian should be trivial,

∂A∂
A ∼ 0 . (1.1)

While DFT employs doubled spacetime coordinates [5–7] manifesting the O(D,D) struc-

ture of T-duality, the section condition ensures that DFT lives not on the doubled (D+D)-

dimensional space but on a D-dimensional null hyperspace, i.e. section.

The geometric insight behind the section condition was proposed in [8] to claim that

the coordinate space in DFT is doubled yet gauged : a gauge orbit rather than a point in the

doubled coordinate space corresponds to a physical point. Within this picture, the expo-

nentiation of the generalized Lie derivative which is the infinitesimal DFT-diffeomorphism

generator was shown in [8] to agree with the then-known simple ansatz of the tensorial finite
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diffeomorphism à la Hohm and Zwiebach [9], cf. [10–14]. This ‘coordinate gauge symmetry’

was also soon successfully realized on a string worldsheet as a usual gauge symmetry [10]

(cf. [15–17]) , where the spacetime coordinates are dynamical fields. The constructed string

action couples to an arbitrarily curved generalized metric and is still completely covariant

with respect to the coordinate gauge symmetry, DFT-diffeomorphisms, world-sheet dif-

feomorphisms, world-sheet Weyl symmetry and O(D,D) T-duality. While it reduces to

the conventional string action upon the Riemannian parametrization of the generalized

metric, it can also go beyond the Riemannian regime. In this way, DFT is a stringy

gravitational theory which is defined self-consistently adopting the doubled-yet-gauged co-

ordinate system.

On the other hand, somewhat contrary to the geometric significance of the section

condition, it has been also observed that, in order to correctly reproduce a variety of the

known gauged supergravities in lower than ten-dimensions it is necessary to consider “re-

laxing” the section condition. In the supergravity literature, a powerful way of the gauging

has been the embedding tensor method [18] which allows for a systematic classification

of all possible supersymmetric deformations as for gaugings. However, while some of the

gaugings can be obtained by a Scherk-Schwarz dimensional reduction of the eleven- or ten-

dimensional supergravities [19, 20], a class of gaugings has been known to have no such a

higher dimensional origin. This mystery got a new spin when Geissbühler [21] (cf. [22]) re-

alized the necessity of introducing section-condition-breaking terms for DFT to reproduce

the complete classification of the deformations of N = 4, D = 4 supergravity [23]. The

section condition was broken by terms which depend on both the ordinary and the dual

coordinates of the internal manifold, cf. [24]. This was an indication that DFT may go

beyond the ordinary supergravity or Generalized Geometry [25, 26]. Possible modifications

of the section condition were soon investigated by Grana and Marques [27] who looked

for a set of consistency conditions for the closure of the generalized Lie derivative twisted

by the Scherk-Schwarz ansatz. Since then there have been a few proposals made toward

the underlying geometric principle, notably the flux formulation [28] and the torsionful

deformation of the semi-covariant formalism by Berman and Lee [29].

In the flux formulation of DFT [28, 30, 31], the basic building blocks constituting the

Lagrangian are ‘fluxes’ which are diffeomorphic scalars, as in e.g. [1, 32, 33]. Yet, they are

not local Lorentz covariant. The Spin(1, D−1)L ×Spin(D−1, 1)R local Lorentz symmetry

is only forced at the whole action level. On the other hand, in the semi-covariant formula-

tion of DFT [34, 35], once proper ‘projections’ are imposed, the semi-covariant derivatives

and the semi-covariant curvatures all become completely covariant with respect to both

diffeomorphisms and the local Lorentz symmetry, besides the O(D,D) T-duality. Within

this setup, the maximal as well as half-maximal D = 10 supersymmetric double field the-

ories (SDFT) have been constructed to the full order in fermions [36, 37] where each term

in the Lagrangians is completely covariant, see also the earlier formulation within Gener-

alized Geometry [25, 26]. Berman and Lee then modified the semi-covariant formalism to

be apt for the twisted generalized Lie derivative by introducing torsionful semi-covariant

derivative connections [29]. However, it is fair to say that while these proposals all opened

up novel aspects of the section condition and hence DFT itself, many ingredients were

introduced ad hoc by hand. Deeper systematic understanding has been desirable.

– 2 –



J
H
E
P
0
8
(
2
0
1
5
)
0
8
4

It is the purpose of the present paper to propose such a geometric scheme to twist

the maximal and the half-maximal supersymmetric double field theories of refs. [36, 37]

and systematically derive the gauged supersymmetric double field theories. Essentially,

as our main results, we show that the semi-covariant formalism itself can be twisted by

the Scherk-Schwarz ansatz, without any arbitrariness. This enables us to address readily

the supersymmetric completions. The twisted and hence gauged maximal as well as half-

maximal supersymmetric double field theories are then completely fixed by requiring the

supersymmetry to be unbroken. Each term in the constructed Lagrangian is completely

covariant with respect to the twisted diffeomorphisms, the Spin(1, 9) × Spin(9, 1) local

Lorentz symmetries, and a subgroup of O(10, 10) which preserves the structure constant.

This complete covariance also ensures the internal coordinate independence.

The organization of the paper is as follows.

• In section 2, we revisit with care the semi-covariant formulation of the ungauged

or untwisted double field theory [34, 35] and its supersymmetric extensions [36–38].

While reviewing them in a self-contained manner, we spell, for later use of twist, all

the relevant exact formulas which hold without assuming any section condition. Such

formulas have not been fully spelled elsewhere before.

• In section 3, we twist the double field theory with a simple Scherk-Schwarz ansatz.

Following closely Grana and Marques [27], we analyze a set of consistency conditions

for the closure of the twisted generalized Lie derivatives, which we call twistability

conditions. We show that all the nice properties of the semi-covariant formalism, in-

cluding its complete covariantizability, are still valid after the twist under the twista-

bility conditions. In particular, we verify that the consistent definition of the twisted

Ramond-Ramond cohomology requires one additional condition which is, after the

diagonal gauge fixing of the twofold local Lorentz symmetries, consistent with the

previous work by Geissbühler et al. [28].

• Section 4 contains our main results. Readers may want to have a glance of our final

results therein, before reading the preparatory sections, 2 and 3. We present the

maximal and the half-maximal supersymmetric gauged double field theories as the

twists of the N = 2 and the N = 1, D = 10 supersymmetric double field theories [36,

37]. In particular, we show the twisted maximal supersymmetric invariance calls for

the same extra condition which the twisted R-R gauge symmetry demands as well.

• In section 5 we conclude with comments.

Although our supersymmetry analyses are explicit only up to the leading order, we argue

in section 3 that the full order supersymmetric completions are guaranteed to work, as the

higher order fermionic terms are immune to the “relaxation” of the section condition.

Conventions. Equations which hold due to the original section condition (1.1) and the

alternative twistability conditions are denoted differently with the two distinct symbols,

‘∼ ’ and ‘≡ ’ respectively, besides the strict equality, ‘ = ’. For the sake of simplicity
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Name Schematic formula Debut equation

Semi-covariant derivative ∇A = ∂A + ΓA (2.18)

Master semi-covariant derivative DA = ∂A + ΓA +ΦA + Φ̄A (2.31)

R-R cohomology differential operators D± (2.81)

U-derivative ḊȦ = ∂̇Ȧ +ΩȦ (3.8)

U-twisted master semi-covariant derivative ḊȦ = ḊȦ + Γ̇Ȧ + Φ̇Ȧ + ˙̄ΦȦ (3.55)

Table 1. Various derivatives employed in the present paper.

Index Representation Raising & Lowering Indices

A,B, · · · Untwisted O(10, 10) vector JAB =

(

0 1

1 0

)

Ȧ, Ḃ, · · · Twisted O(10, 10) vector J̇ȦḂ =

(

0 1

1 0

)

p, q, · · · Spin(1, 9) vector ηpq = diag(−++ · · ·+)

p̄, q̄, · · · Spin(9, 1) vector η̄p̄q̄ = diag(+−− · · ·−)

α, β, · · · Spin(1, 9) spinor C+αβ , (γp)T = C+γ
pC−1

+

ᾱ, β̄, · · · Spin(9, 1) spinor C̄+ᾱβ̄ , (γ̄p̄)T = C̄+γ̄
p̄C̄−1

+

Table 2. Index for each symmetry representation and the corresponding “metric” which raises or

lowers its position. Only the capital O(10, 10) indices are to be twisted. The ‘+ ’ subscripts of the

charge conjugation matrices indicate that they are chosen to be symmetric. The doubling of the

local Lorentz symmetries, Spin(1, 9) → Spin(1, 9) × Spin(9, 1), is crucial to achieve the unification

of IIA and IIB supergravities within the unique N = 2, D = 10 untwisted SDFT [37].

we shall often adopt a matrix notation to suppress contracted indices, e.g. (P∂AP )B
C =

PB
E∂APE

C . Our index conventions follow [37] and are summarized in table 2. In table 1,

we also list various derivatives which are explained and used throughout the paper.

2 The semi-covariant formulation of ungauged DFT

In this preparatory section, we revisit the semi-covariant formulation of ungauged or un-

twisted double field theory [34, 35] and its supersymmetric extensions [36–38]. Our goal

is threefold: to review them in a self-contained manner, to locate the exact places where

the original section condition is assumed, and to collect, for later use of twist, precise for-

mulas which hold without assuming any section condition. Such formulas have not been

fully spelled in the literature before. Every formula which holds up to the original section

condition will be denoted by the symbol, ‘∼ ’, rather than by the strict equality, ‘ = ’.

In particular, we pay attention to two strictly-different yet section-condition-equivalent

semi-covariant four-index curvatures, namely GABCD and SABCD, and analyze their differ-

ences exactly without assuming the section condition.
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2.1 Coordinate gauge symmetry, section condition and diffeomorphism

• Doubled-yet-gauged spacetime. The spacetime is formally doubled, being (D+D)-

dimensional. However, the doubled spacetime coordinates are gauged : the coordinate

space is equipped with an equivalence relation,

xA ∼ xA + φ∂Aϕ , (2.1)

which is called ‘coordinate gauge symmetry’ [8, 10]. In (2.1), φ and ϕ are arbitrary

functions in DFT.

Each equivalence class, or gauge orbit defined by the equivalence relation (2.1),

represents a single physical point, and diffeomorphism symmetry means an invariance

under arbitrary reparametrizations of the gauge orbits.

• Section condition: realization of the coordinate gauge symmetry. The equivalence

relation (2.1) is realized in DFT by enforcing that, arbitrary functions and their

arbitrary derivative descendants, denoted here collectively by Φ, are invariant under

the coordinate gauge symmetry shift [8, 10],

Φ(x+∆) ∼ Φ(x) , ∆A = φ∂Aϕ . (2.2)

This invariance is equivalent, i.e. sufficient [8] and necessary [10] to the section con-

dition,

∂A∂
A ∼ 0 . (2.3)

Acting on arbitrary functions, Φ, Φ′, and their products, the section condition leads

to the weak constraint, ∂A∂
AΦ ∼ 0 as well as the strong constraint, ∂AΦ∂

AΦ′ ∼ 0.

• Diffeomorphism. Diffeomorphism symmetry in DFT is generated by a generalized

Lie derivative [1, 39, 40],

L̂XTA1···An := XB∂BTA1···An + ω∂BX
BTA1···An +

n
∑

i=1

(∂Ai
XB − ∂BXAi

)TA1···Ai−1
B
Ai+1···An ,

(2.4)

where ω denotes the weight of the field, TA1···An . In particular, the generalized Lie

derivative of the O(D,D) invariant metric is trivial,

L̂XJAB = 0 . (2.5)

The commutator of the generalized Lie derivatives is closed by C-bracket [1, 41] up

to the section condition,

[

L̂X , L̂Y

]

∼ L̂[X,Y ]C ,

[X,Y ]AC := XB∂BY
A − Y B∂BX

A +
1

2
Y B∂AXB −

1

2
XB∂AYB ,

(2.6)
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since the following strict equality holds without resorting to the section condition [34],
(

[L̂X , L̂Y ]− L̂[X,Y ]C

)

TA1···An =
1

2
(XN∂MYN − Y N∂MXN )∂MTA1···An

+
1

2
ω(XN∂M∂

MYN − Y N∂M∂
MXN )TA1···An

+

n
∑

i=1

(∂MYAi
∂MXB − ∂MXAi

∂MYB)TA1···Ai−1
B
Ai+1···An ,

(2.7)

of which the right hand side clearly vanishes upon the section condition. We shall

come back to this expression when we perform the twist.

2.2 Dilaton, vielbeins and projectors

• Dilaton and a pair of vielbeins. The geometric objects in DFT come from the closed

string NS-NS sector and consist of a dilaton, d, and a pair of vielbeins, VAp, V̄Ap̄.

While the vielbeins are weightless, the dilaton gives rise to the O(D,D) invariant

integral measure with weight one [41], after exponentiation,

e−2d . (2.8)

The vielbeins satisfy the following four defining properties [35, 42] (see also [1, 40]):

VApV
A
q = ηpq , V̄Ap̄V̄

A
q̄ = η̄p̄q̄ , VApV̄

A
q̄ = 0 , VApVB

p + V̄Ap̄V̄B
p̄ = JAB .

(2.9)

That is to say, they are normalized, orthogonal and complete. The vielbeins are

O(D,D) vectors as their indices indicate. In fact, they are the only O(D,D) non-

singlet field variables even in the supersymmetric extensions of DFT [36, 37]. As a

solution to (2.9), they can be parametrized in terms of ordinary zehnbeins and B-

field, in various ways up to O(D,D) rotations and field redefinitions, e.g. [38, 43, 44].

Due to the defining properties of (2.9), arbitrary variations of the vielbeins meet

δVAp = P̄A
BδVBp + VA

qδVB[pV
B
q] , δV̄Ap̄ = PA

BδV̄Bp̄ + V̄A
q̄δV̄B[p̄V̄

B
q̄] .

(2.10)

• Projectors. The vielbeins generate a pair of symmetric, orthogonal and complete

two-index projectors,1

PAB = PBA = VA
pVBp , P̄AB = P̄BA = V̄A

p̄V̄Bp̄ , (2.11)

satisfying

PA
BPB

C = PA
C , P̄A

BP̄B
C = P̄A

C , PA
BP̄B

C = 0 ,

PA
B + P̄A

B = δA
B , tr(P ) = PA

A = D , tr(P̄ ) = P̄A
A = D .

(2.12)

1The difference of the two projectors, , PAB−P̄AB = HAB , corresponds to the “generalized metric” in [4],

which can be also independently defined as a symmetric O(D,D) element, i.e. HAB = HBA, HA
BHB

C =

δ C
A . However, in the ‘full order’ supersymmetric extensions of DFT [36, 37] where e.g. the 1.5 formalism

works, it appears that the projectors are more fundamental than the “generalized metric”.
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Further, the two-index projectors generate a pair of six-index projectors,

PABC
DEF := PA

DP[B
[EPC]

F ] +
2

D − 1
PA[BPC]

[EPF ]D ,

P̄ABC
DEF := P̄A

DP̄[B
[EP̄C]

F ] +
2

D − 1
P̄A[BP̄C]

[EP̄F ]D ,

(2.13)

which satisfy the ‘projection’ property,

PABC
DEFPDEF

GHI = PABC
GHI , P̄ABC

DEF P̄DEF
GHI = P̄ABC

GHI , (2.14)

symmetric and traceless properties,

PABCDEF = PDEFABC , PABCDEF = PA[BC]D[EF ] , PABPABCDEF = 0 ,

P̄ABCDEF = P̄DEFABC , P̄ABCDEF = P̄A[BC]D[EF ] , P̄ABP̄ABCDEF = 0 ,

(2.15)

as well as further properties like

P[AB]C
DEF = PCAB

[EF ]D , P̄[AB]C
DEF = P̄CAB

[EF ]D ,

2

3
P[AB]C

DEF +
1

3
PCAB

DEF = P[ABC]
DEF = P[ABC]

[DEF ] ,

2

3
P̄[AB]C

DEF +
1

3
P̄CAB

DEF = P̄[ABC]
DEF = P̄[ABC]

[DEF ] .

(2.16)

In addition to the six-index projection operators (2.13), we also set for later use,

P ′
CAB

FDE := P̄C
FP[A

[DPB]
E] +

2

D − 1
PC[APB]

[DP̄E]F ,

P̄ ′

CAB
FDE := PC

F P̄[A
[DP̄B]

E] +
2

D − 1
P̄C[AP̄B]

[DPE]F .

(2.17)

2.3 Semi-covariant derivatives, curvatures and their complete covariantiza-

tions

• Semi-covariant derivative and the torsionless connection. The semi-covariant deriva-

tive is defined by [34, 35]

∇CTA1A2···An := ∂CTA1A2···An − ωT Γ
B
BCTA1A2···An +

n
∑

i=1

ΓCAi

BTA1···Ai−1BAi+1···An .

(2.18)

It satisfies the Leibniz rule and is compatible with the O(D,D) invariant constant

metric,

∇AJBC = 0 . (2.19)

We choose the connection to be the torsionless one from ref. [35]:2

ΓCAB = 2
(

P∂CPP̄
)

[AB]
+ 2

(

P̄[A
DP̄B]

E − P[A
DPB]

E
)

∂DPEC

−
4

D − 1

(

P̄C[AP̄B]
D + PC[APB]

D
)(

∂Dd+ (P∂EPP̄ )[ED]

)

,
(2.20)

2The connection (2.20) of [35] was reviewed further from a slightly different angle in [45].
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which is a unique solution to the following five constraints [35]:

∇APBC = 0 , ∇AP̄BC = 0 , (2.21)

∇Ad = −
1

2
e2d∇A(e

−2d) = ∂Ad+
1

2
ΓB

BA = 0 , (2.22)

ΓABC + ΓACB = 0 , (2.23)

ΓABC + ΓBCA + ΓCAB = 0 , (2.24)

PABC
DEFΓDEF = 0 , P̄ABC

DEFΓDEF = 0 . (2.25)

The first two relations, (2.21), (2.22), are the compatibility conditions with the dilaton

and the projectors, i.e. the whole NS-NS sector. The third constraint (2.23) is the

compatibility condition with the O(D,D) invariant constant metric, (2.19). The

next cyclic property, (2.24), makes the semi-covariant derivative compatible with the

generalized Lie derivative as well as with the C-bracket,

L̂X(∂) = L̂X(∇) , [X,Y ]C(∂) = [X,Y ]C(∇) . (2.26)

The last formulae (2.25) are projection conditions which ensure the uniqueness.

While the torsionless connection satisfies all the five constraints, (2.21)–(2.25)

and thus uniquely determined, a generic torsionful connection meets only the first

three conditions, (2.21), (2.22), (2.23), and decomposes into the torsionless connection

and torsions [25, 36],

ΓCAB +∆CpqVA
pVB

q + ∆̄Cp̄q̄V̄A
p̄V̄B

q̄ . (2.27)

In order to maintain (2.22), the torsions must satisfy

∆Apq = ∆A[pq] , ∆ApqV
Ap = 0 , ∆̄Ap̄q̄ = ∆̄A[p̄q̄] , ∆̄Ap̄q̄V̄

Ap̄ = 0 . (2.28)

In the full order supersymmetric extensions of DFT [36, 37], they are given by

quadratic fermions.

It is worth while to note

PI
AP̄J

BΓCAB = (P∂CPP̄ )IJ , (2.29)

such that

ΓC
pq̄ ∂C = V A

pV̄
B
q̄Γ

C
AB∂C ∼ 0 . (2.30)

• Spin connections and semi-covariant master derivative. The master semi-covariant

derivative [42],

DA := ∇A +ΦA + Φ̄A = ∂A + ΓA +ΦA + Φ̄A , (2.31)

generalizes the semi-covariant derivative, ∇A (2.18), to include the spin connections,

ΦA and Φ̄A, for the two local Lorentz groups, Spin(1, D−1)L and Spin(D−1, 1)R
respectively. By definition, it is compatible with the vielbeins,

DAVBp = ∂AVBp + ΓAB
CVCp +ΦAp

qVBq = 0 ,

DAV̄Ap̄ = ∂AV̄Bp̄ + ΓAB
C V̄Cp̄ + Φ̄Ap̄

q̄V̄Bq̄ = 0 ,
(2.32)
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and, from (2.22), also with the dilaton,

DAd = ∇Ad = 0 . (2.33)

The connections are then related to each other by

ΦApq = ΦA[pq] = V B
p∇AVBq , Φ̄Ap̄q̄ = Φ̄A[p̄q̄] = V̄ B

p̄∇AV̄Bq̄ , (2.34)

and
ΓABC = VB

p(∂AVCp +ΦAp
qVCq) + V̄B

p̄(∂AV̄Cp̄ + Φ̄Ap̄
q̄V̄Cq̄)

= VB
p∂AVCp + V̄B

p̄∂AV̄Cp̄ +ΦABC + Φ̄ABC .
(2.35)

Consequently, their generic infinitesimal variations satisfy

δΦApq=DA(V
B
pδVBq)+V

B
pV

C
qδΓABC , δΦ̄Ap̄q̄=DA(V̄

B
p̄δV̄Bq̄)+V̄

B
p̄V̄

C
q̄δΓABC .

(2.36)

The master semi-covariant derivative is also compatible with all the constant

metrics and the gamma matrices in table 2,

DAJBC = 0 , DAηpq = 0 , DAη̄p̄q̄ = 0 , DA(γ
p)αβ = 0 , DA(γ̄

p̄)ᾱβ̄ = 0 .

(2.37)

The well known relation between the spinorial and the vectorial representations of

the spin connections follows

ΦA
α
β =

1

4
ΦApq(γ

pq)αβ , Φ̄A
ᾱ
β̄ =

1

4
Φ̄Ap̄q̄(γ̄

p̄q̄)ᾱβ̄ . (2.38)

• Semi-covariant four-index curvatures. The usual “field strengths” of the three con-

nections,

RCDAB = ∂AΓBCD − ∂BΓACD + ΓAC
EΓBED − ΓBC

EΓAED ,

FABpq = ∂AΦBpq − ∂BΦApq +ΦAprΦB
r
q − ΦBprΦA

r
q ,

F̄ABp̄q̄ = ∂AΦ̄Bp̄q̄ − ∂BΦ̄Ap̄q̄ + Φ̄Ap̄r̄Φ̄B
r̄
q̄ − Φ̄Bp̄r̄Φ̄A

r̄
q̄ ,

(2.39)

are, from [DA,DB]VCp = 0 and [DA,DB]V̄Cp̄ = 0, related to each other by

RABCD = FCDpqVA
pVB

q + F̄CDp̄q̄V̄A
p̄V̄B

q̄ = FCDAB + F̄CDAB . (2.40)

This implies

RABCD = R[AB][CD] , Rpq̄CD = V A
pV̄

B
q̄RABCD = 0 . (2.41)

Following [46], replacing the ordinary or the naked derivatives in (2.39) by the semi-

covariant derivatives we define

FABpq := ∇AΦBpq −∇BΦApq +ΦAp
rΦBrq − ΦBp

rΦArq ,

F̄ABp̄q̄ := ∇AΦ̄Bp̄q̄ −∇BΦ̄Ap̄q̄ + Φ̄Ap̄
r̄Φ̄Br̄q̄ − Φ̄Bp̄

r̄Φ̄Ar̄q̄ ,
(2.42)
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which are, with the torsion-free condition (2.24), related to (2.39) by

FABpq = FABpq − ΓC
ABΦCpq , F̄ABp̄q̄ = F̄ABp̄q̄ − ΓC

ABΦ̄Cp̄q̄ , (2.43)

and appear in the commutators of the master semi-covariant derivatives,

[DA,DB]Tp = FABpqT
q − ΓC

AB∂CTp , [DA,DB]Tp̄ = F̄ABp̄q̄T
q̄ − ΓC

AB∂CTp̄ .

(2.44)

Further, they can be rewritten in terms of the master semi-covariant derivatives, then

to carry some opposite signs in comparison to (2.42),

FABpq = DAΦBpq −DBΦApq − ΦAp
rΦBrq +ΦBp

rΦArq ,

F̄ABp̄q̄ = DAΦ̄Bp̄q̄ −DBΦ̄Ap̄q̄ − Φ̄Ap̄
r̄Φ̄Br̄q̄ + Φ̄Bp̄

r̄Φ̄Ar̄q̄ .
(2.45)

Hence, contracted with the vielbeins — which are compatible with DA but not with

∇A — we may write

FABCD = FABpqVC
pVD

q = ∇AΦBCD −∇BΦACD − ΦAC
EΦBED +ΦBC

EΦAED ,

F̄ABCD = F̄ABp̄q̄V̄C
p̄V̄D

q̄ = ∇AΦ̄BCD −∇BΦ̄ACD − Φ̄AC
EΦ̄BED + Φ̄BC

EΦ̄AED .

(2.46)

Now we are ready to define two kinds of semi-covariant four-index curvatures:

– Semi-covariant four-index curvature of the spin connections, cf. [28],

GABCD :=
1

2

[

(F + F̄)ABCD + (F + F̄)CDAB + (Φ + Φ̄)EAB(Φ + Φ̄)ECD

]

.

(2.47)

– Semi-covariant Riemann curvature of the diffeomorphic connection [34, 35],

SABCD :=
1

2

(

RABCD +RCDAB − ΓE
ABΓECD

)

. (2.48)

These two four-index curvatures are closely related to each other,

GABCD = SABCD +
1

2
(Γ− Φ− Φ̄)EAB(Γ− Φ− Φ̄)ECD

= SABCD +
1

2
(VA

p∂EVBp + V̄A
p̄∂EV̄Bp̄)(VC

q∂EVDq + V̄C
q̄∂EV̄Dq̄) ,

(2.49)

such that upon the section condition we have

GABCD ∼ SABCD . (2.50)

As a bonus, this implies that, up to the section condition GABCD is local Lorentz

invariant as SABCD is so. Note that while FABpq and F̄ABp̄q̄ are local Lorentz covari-

ant, FABpq and F̄ABp̄q̄ are not.

A notable difference between GABCD and SABCD is that while the latter can be

expressed in terms of the dilaton and the projectors, the former cannot be defined

thoroughly by them: it requires the vielbeins. In the following section, we shall see
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that it is GABCD rather than SABCD that survives to serve as the semi-covariant

curvature after the twist.

It is worth while to note that, in the expressions of ΦApq, Φ̄Ap̄q̄ (2.34), FABpq,

F̄ABp̄q̄ (2.42) and GABCD (2.47), the ordinary naked derivative and the Γ-connection

are completely ‘confined’ into the semi-covariant derivative. On the other hand, it is

not the case with RABCD, FABpq, F̄ABp̄q̄ and SABCD.

A crucial defining property of the semi-covariant Riemann curvature is that,

under arbitrary transformation of the connection, it transforms as

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB −
3

2
Γ[ABE]δΓ

E
CD −

3

2
Γ[CDE]δΓ

E
AB . (2.51)

Surely for the torsion-free connection (2.20), the last two terms are absent and only

the first two total derivative terms remain,

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB . (2.52)

Yet, in the full order supersymmetric extensions of DFT [36, 37], the connection

includes bi-fermionic torsions and the above general relation (2.51) enables the ‘1.5

formalism’ to work.

Without necessity of the section condition, SABCD satisfies [34],

SABCD = S[AB][CD] = SCDAB , (2.53)

and, especially for the torsionless connection, a Bianchi identity,3

SA[BCD] = 0 . (2.54)

Further, for the torsionless connection (2.20), one can show by a brute-force method,4

(PABPCD + P̄ABP̄CD)SACBD = 4∂A∂
Ad− 4∂Ad∂

Ad+
1

2
∂APCD∂

APCD ∼ 0 ,

PI
APJ

BP̄K
C P̄L

DSABCD =
1

2
(P∂APP̄ )IL(P∂

APP̄ )JK

−
1

2
(P∂APP̄ )IK(P∂APP̄ )JL ∼ 0 ,

PI
AP̄J

BPK
C P̄L

DSABCD = −
1

2
(P∂APP̄ )IJ(P∂

APP̄ )KL ∼ 0 ,

PI
AP̄J

B(P − P̄ )CDSACBD = −
1

2
PI

AP̄J
B∂C∂

CPAB + (P∂CPP̄ )IJ∂
Cd ∼ 0 ,

(2.55)

of which the right hand sides all vanish upon the section condition, ∂A∂
A ∼ 0.

It follows, from (2.50), that identical relations hold for GABCD, either by the

strict equality or up to the section condition, for example,

GABCD = G[AB][CD] = GCDAB , GA[BCD] ∼ 0 . (2.56)

3See eq. (2.46) of [34] for a simple proof of the Bianchi identity.
4To obtain (2.55), we have used the computer algebra, Cadabra [47, 48].
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• Complete covariantizations. The ordinary derivative of a covariant tensor is no longer

covariant under diffeomorphisms. The difference between its actual diffeomorphic

transformation and the generalized Lie derivative reads precisely,

(δX − L̂X)∂CTA1···An =
[

∂C , L̂X

]

TA1···An

= ∂BXC∂BTA1···An + ωT ∂C∂BX
BTA1···An

+
n
∑

i=1

2∂C∂[Ai
XB]TA1···Ai−1

B
Ai+1···An .

(2.57)

Especially for the connection we have

(δX−L̂X)ΓCAB = 2
[

(P + P̄)CAB
FDE − δ F

C δ D
A δ E

B

]

∂F∂[DXE]

+ 2(P ′ − P̄ ′)CAB
FDE∂GPFD ∂GXE + 2P[A

DP̄B]
E∂GPDE ∂GXC

+
2

D − 1
(PC[APB]

E + P̄C[AP̄B]
E)(∂G∂

GXE − 2∂Gd ∂GXE) .

(2.58)

It follows that

(δX−L̂X)ΓA
AB = −2∂Cd∂CXB + ∂B∂CX

C = −2(δX−L̂X)∂Bd . (2.59)

Further, using
[

∇C , L̂X

]

TA1···An = ∂BXC∂BTA1···An + ωT (∂C∂BX
B + L̂XΓB

BC)TA1···An

+
n
∑

i=1

(

2∂C∂[Ai
XB] − L̂XΓCAiB

)

TA1···Ai−1
B
Ai+1···An ,

(2.60)

we may obtain an exact expression of the diffeomorphic anomaly of the semi-covariant

derivative,

(δX − L̂X)(∇CTA1···An) = ∂BXC∂BTA1···An + ωT

[

∂C∂BX
B − (δX − L̂X)ΓB

BC

]

TA1···An

+
n
∑

i=1

[

2∂C∂[Ai
XB] + (δX − L̂X)ΓCAiB

]

TA1···Ai−1
B
Ai+1···An ,

(2.61)

into which (2.58) can be readily substituted.

Lastly for the semi-covariant Riemannian curvature of the torsionless connec-

tion, from

L̂XSABCD = ∇[AL̂XΓB]CD−2∇[A∂B]∂[CXD]−∂EX[A∂
EΓB]CD+

[

(A,B) ↔ (C,D)
]

,

(2.62)

we get an exact formula,

(δX − L̂X)SABCD = ∇[A(δX − L̂X)ΓB]CD + 2∇[A∂B]∂[CXD] + ∂EX[A∂
EΓB]CD

+
[

(A,B) ↔ (C,D)
]

.

(2.63)
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Now, we consider imposing the section condition, ∂A∂
A ∼ 0. Clearly, from (2.58),

(2.61), (2.63) and (2.49), we note

(δX−L̂X)ΓCAB ∼ 2
[

(P + P̄)CAB
FDE − δ F

C δ D
A δ E

B

]

∂F∂[DXE] , (2.64)

(δX−L̂X)∇CTA1···An ∼

n
∑

i=1

2(P+P̄)CAi

BDEF∂D∂EXF TA1···Ai−1BAi+1···An , (2.65)

and for the four-index curvatures,

(δX − L̂X)GABCD ∼ (δX − L̂X)SABCD

∼ 2∇[A

(

(P+P̄)B][CD]
EFG∂E∂FXG

)

+
[

(A,B) ↔ (C,D)
]

.

(2.66)

Thus, upon the section condition, it is the six-index projection operators that dictate

the anomalies in the diffeomorphic transformations of the semi-covariant derivative

and the semi-covariant curvatures. This also explains or motivates the naming, ‘semi-

covariant ’: we say a tensor is semi-covariant if its diffeomorphic anomaly, if any, is

governed by the six-index projectors.

The anomalous terms can be easily projected out through appropriate contrac-

tions with the two-index projectors. In this manner, the completely covariant deriva-

tives are given by

PC
DP̄A1

B1 · · · P̄An

Bn∇DTB1···Bn
, P̄C

DPA1

B1 · · ·PAn

Bn∇DTB1···Bn
,

PABP̄C1

D1 · · · P̄Cn

Dn∇ATBD1···Dn
, P̄ABPC1

D1 · · ·PCn

Dn∇ATBD1···Dn
(divergences) ,

PABP̄C1

D1 · · · P̄Cn

Dn∇A∇BTD1···Dn
, P̄ABPC1

D1 · · ·PCn

Dn∇A∇BTD1···Dn
(Laplacians) .

(2.67)

These can be also freely pull-backed by the vielbeins to take the form:

DpTq̄1···q̄n , Dp̄Tq1···qn , DpT
p
q̄1···q̄n , Dp̄T

p̄
q1···qn , DpD

pTq̄1···q̄n , Dp̄D
p̄Tq1···qn .

(2.68)

Similarly we obtain completely covariant two-index as well as zero-index curvatures

from the semi-covariant four-index curvatures.

– Completely covariant “Ricci” curvatures,5

Gprq̄
r =

1

2
Fq̄rp

r = Sprq̄
r +

1

2
PAB∂EVAp∂

EV̄Bq̄ ,

Gpr̄q̄
r̄ =

1

2
F̄pr̄q̄

r̄ = Spr̄q̄
r̄ +

1

2
P̄AB∂EVAp∂

EV̄Bq̄ ,

(2.69)

whose sum gives [38]

Gpq̄ = Spq̄ +
1

2
∂AVBp∂

AV̄ B
q̄ ∼ Spq̄ . (2.70)

– Completely covariant scalar curvatures,

Gpq
pq = Fpq

pq +
1

2
ΦEpqΦ

Epq = PACPBDSABCD+
1

2
PAB∂EVAp ∂

EVB
p ∼ Spq

pq ,

Gp̄q̄
p̄q̄ = F̄p̄q̄

p̄q̄+
1

2
Φ̄Ep̄q̄Φ̄

Ep̄q̄ = P̄AC P̄BDSABCD+
1

2
P̄AB∂EV̄Ap̄ ∂

EV̄B
p̄ ∼ Sp̄q̄

p̄q̄ .

(2.71)

5The expression (2.69) is for the torsionless connection. For torsionful extension, see [36, 37] and espe-

cially (A.71) of [38].
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In fact, the two “Ricci” curvatures agree to each other upon the section condition:

from the identity (2.55), their difference reads exactly,

Gprq̄
r − Gpr̄q̄

r̄ = V A
pV̄

B
q̄

(

∂EPAB∂
Ed−

1

2
∂E∂

EPAB

)

+
1

2
(P − P̄ )AB∂EVAp∂

EV̄Bq̄ ,

(2.72)

and hence,

Gprq̄
r ∼ Gpr̄q̄

r̄ ∼
1

2
Gpq̄ . (2.73)

Similarly the two scalar curvatures are related to each other: from (2.55), their sum

reads exactly,

Gpq
pq+Gp̄q̄

p̄q̄=(PACPBD+P̄AC P̄BD)SABCD+
1

2
(PCD∂AVCp∂

AVD
p+P̄CD∂AV̄Cp̄∂

AV̄D
p̄)

=4∂A∂
Ad−4∂Ad∂

Ad+
1

2
(∂AVBp∂

AV Bp+∂AV̄Bp̄∂
AV̄ Bp̄) ,

(2.74)

and hence, upon the section condition,

Gpq
pq + Gp̄q̄

p̄q̄ ∼ 0 . (2.75)

The other formulas in (2.55) also imply a pair of ‘trivial’ four-index covariant quan-

tities,

Gpqr̄s̄ = GABCDV
A
pV

B
qV̄

C
r̄V̄

D
s̄ ∼ 0 , Gpq̄rs̄ = GABCDV

A
pV̄

B
q̄V

C
rV̄

D
s̄ ∼ 0 .

(2.76)

2.4 Fermions, Ramond-Ramond cohomology and completely covariant Dirac

operators

• Fermions and Ramond-Ramond cohomology . In addition to the NS-NS sector com-

posed of the dilaton and the pair of vielbeins, the N = 2 D = 10 supersymmetric

extension of DFT [37] calls for a Ramond-Ramond potential, a pair of dilatinos and a

pair of gravitinos: the fundamental fields of the supersymmetric theory are precisely,

d , VAp , V̄Ap̄ , Cα
ᾱ , ρα , ρ′ᾱ , ψα

p̄ , ψ′

p
ᾱ . (2.77)

The whole R-R sector is represented by a single potential, Cα
ᾱ. As its indices indicate

(cf. table 2), it assumes the bi-fundamental spinorial representation of Spin(1, 9) ×

Spin(9, 1) [25, 26, 38].

All the fermions, i.e. dilatinos, gravitinos and supersymmetry parameters, are

not twenty, but ten-dimensional Majorana-Weyl spinors. The chirality of the theory

reads with two arbitrary sign factors, c, c′ (c2 = c′2 = 1),

γ(11)ψp̄ = cψp̄ , γ(11)ρ = −c ρ , γ̄(11)ψ′

p = c′ψ′

p , γ̄(11)ρ′ = −c′ρ′ ,

γ(11)ε = c ε , γ̄(11)ε′ = c′ε′ , γ(11)Cγ̄(11) = cc′ C .

(2.78)
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A priori, there are four different sign choices. But, they are all equivalent up to

the field redefinitions through Pin(1, 9)×Pin(9, 1) rotations. That is to say, N = 2

D = 10 SDFT is chiral with respect to both Spin(1, 9) and Spin(9, 1), and the theory

is unique. Without loss of generality, henceforth we set

c = +1 , c′ = +1 . (2.79)

Although the theory is unique, the Riemannian solutions are twofold and can be

identified as type IIA or IIB supergravity backgrounds [37]. The theory admits also

non-Riemannian backgrounds [10] (cf. math literature [49]). The R-R field strength,

Fα
ᾱ, and its charge conjugation are defined by [38]

F := D+C , F̄ := C̄−1
+ (F)TC+ . (2.80)

Here D+ corresponds to one of the two completely covariant differential operators,

D±, which are defined by the torsionless connection (2.20) to act on an arbitrary

Spin(1, 9)× Spin(9, 1) bi-fundamental field, T α
β̄ :

D±T := γpDpT ± γ(11)Dp̄T γ̄
p̄ , (2.81)

where we put Dp = V A
pDA, Dp̄ = V̄ A

p̄DA and with (2.38), DAT = ∂AT +ΦAT −T Φ̄.

The crucial property of the differential operators, D±, is that upon the section

condition they are nilpotent [38]. Straightforward computation can show

(D±)
2T =−

1

4
(Gpq

pq + Gp̄q̄
p̄q̄)T + ∂A∂

AT − 2∂Ad∂
AT

+
1

2
VBp∂AV

B
qγ

pq∂AT −
1

2
V̄Bp̄∂AV̄

B
q̄∂

AT γ̄p̄q̄

+
1

4
(VBp∂A∂

AV B
q − 2VBp∂AV

B
q∂

Ad)γpqT

−
1

4
(V̄Bp̄∂A∂

AV̄ B
q̄ − 2VBp̄∂AV̄

B
q̄∂

Ad)T γ̄p̄q̄

+
1

8
Gpqrsγ

pqrsT −
1

4
Gpqr̄s̄γ

pqT γ̄ r̄s̄ +
1

8
Gp̄q̄r̄s̄T γ̄

p̄q̄r̄s̄

±
1

4
γ(11)(Gpq̄r̄s̄γ

pT γ̄ q̄r̄s̄ − Gpqrs̄γ
pqrT γ̄ s̄)

±
1

4
γ(11)

[

2(G r̄
pr̄q̄ − Gr

prq̄)γ
pT γ̄ q̄ − 4VBp∂AV̄

B
q̄γ

p∂AT γ̄ q̄
]

.

(2.82)

Thus, up to the section condition, with (2.49), (2.56), (2.55), (2.74), each term on

the right hand side above vanishes and the nilpotency of the differential operators

follows

(D±)
2T ∼ 0 . (2.83)

This defines the R-R cohomology consistently coupled to the NS-NS sector in an

O(D,D) covariant manner [38]. In particular, the R-R gauge transformations are

given by the same nilpotent differential operator,

δC = D+Λ −→ δF = (D+)
2Λ ∼ 0 . (2.84)
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In a similar fashion to (2.65), upon the section condition, the spin connections

transform anomalously under diffeomorphisms,

(δX − L̂X)ΦApq ∼ 2PApq
DEF∂D∂[EXF ] , (δX − L̂X)Φ̄Ap̄q̄ ∼ 2P̄Ap̄q̄

DEF∂D∂[EXF ] .

(2.85)

Thus, like (2.67), these anomalous terms can be easily projected out, such that the

following modules of the spin connections are completely covariant under diffeomor-

phisms,

P̄A
BΦBpq , PA

BΦ̄Bp̄q̄ , ΦA[pqV
A
r] , Φ̄A[p̄q̄V̄

A
r̄] , ΦApqV

Ap , Φ̄Ap̄q̄V̄
Ap̄ .

(2.86)

The completely covariant Dirac operators are then, with respect to both diffeomor-

phisms and local Lorentz symmetries, as follows [36, 42].

γpDpρ = γADAρ , γpDpψp̄ , Dp̄ρ , Dp̄ψ
p̄ = DAψ

A , ψ̄Aγp

(

DAψq̄ −
1

2
Dq̄ψA

)

,

γ̄p̄Dp̄ρ
′ = γ̄ADAρ

′ , γ̄p̄Dp̄ψ
′

p , Dpρ
′ , Dpψ

′p = DAψ
′A , ψ̄′Aγ̄p̄(DAψ

′

q −
1

2
Dqψ

′

A) .

(2.87)

One can also show that D±T (2.81) are completely covariant too.

• Completely covariant curvatures from completely covariant derivatives. From (2.30),

(2.44) and the relation,

Gpq̄AB = GABpq̄ =
1

2
(F + F̄)pq̄AB , (2.88)

the completely covariant “Ricci” curvatures (2.69), are related to the commutators

of the completely covariant differential operators (2.68),

Gprq̄
rT p =

1

2
Fq̄rp

rT p =
1

2
[Dp,Dq̄]T

p +
1

2
ΓC

pq̄∂CT
p ∼

1

2
[Dp,Dq̄]T

p ,

Gpr̄q̄
r̄T q̄ =

1

2
F̄pr̄q̄

r̄T q̄ = −
1

2
[Dp,Dr̄]T

r̄ −
1

2
ΓC

pq̄∂CT
q̄ ∼ −

1

2
[Dp,Dq̄]T

q̄ .

(2.89)

In a similar fashion to (2.44), we may obtain the expressions for the commutators

of the master semi-covariant differential operators which act on spinors, εα and ε′ᾱ,

in Spin(1, D−1)L and Spin(D−1, 1)R representations respectively,

[DA,DB]ε =
1

4
FABpqγ

pqε− ΓC
AB∂Cε ,

[DA,DB]ε
′ =

1

4
F̄ABp̄q̄γ̄

p̄q̄ε′ − ΓC
AB∂Cε

′ .

(2.90)

These immediately imply

[γpDp,Dq̄]ε = Gprq̄
rγpε−

1

2
Gq̄prsγ

prsε− ΓC
pq̄γ

p∂Cε ,

[Dp, γ̄
q̄Dq̄]ε

′ = −Gpr̄q̄
r̄γ q̄ε′ +

1

2
Gpq̄r̄s̄γ̄

q̄r̄s̄ε′ − ΓC
pq̄γ̄

q̄∂Cε
′ ,

(2.91)
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and further give

γpq[Dp,Dq]ε =

(

1

4
Fpqrsγ

pqrs −Fprq
rγpq −

1

2
Fpq

pq

)

ε− ΓA
pqγ

pq∂Aε ,

γ̄p̄q̄[Dp̄,Dp̄]ε
′ =

(

1

4
F̄p̄q̄r̄s̄γ̄

p̄q̄r̄s̄ − F̄p̄r̄q̄
r̄γp̄q̄ −

1

2
F̄p̄q̄

p̄q̄

)

ε′ − ΓA
p̄q̄γ̄

p̄q̄∂Aε
′ .

(2.92)

Then, combined with the following relations,

DAD
Aε = ∂A∂

Aε− 2∂Ad∂
Aε−

1

8
ΦApqΦ

Apqε+
1

4
(DAΦ

A
pq)γ

pqε

+
1

2
ΦApqγ

pq∂Aε+
1

16
ΦApqΦ

A
rsγ

pqrsε ,

DAD
Aε′ = ∂A∂

Aε′ − 2∂Ad∂
Aε′ −

1

8
Φ̄Ap̄q̄Φ̄

Ap̄q̄ε′ +
1

4
(DAΦ̄

A
p̄q̄)γ̄

p̄q̄ε′

+
1

2
Φ̄Ap̄q̄γ̄

p̄q̄∂Aε′ +
1

16
Φ̄Ap̄q̄Φ̄

A
r̄s̄γ̄

p̄q̄r̄s̄ε′ ,

DAΦ
A
pq = −2R[p

A
q]A + 2ΦA[p

rΓA
q]r + ∂A(V

B
p∂

AVBq)− 2∂AdV
B
p∂

AVBq

= 2F[p
r
q]r + ∂A(V

B
p∂

AVBq)− 2∂AdV
B
p∂

AVBq ,

DAΦ̄
A
p̄q̄ = −2R[p̄

A
q̄]A + 2Φ̄A[p̄

r̄ΓA
q̄]r̄ + ∂A(V̄

B
p̄∂

AV̄Bq̄)− 2∂AdV̄
B
p̄∂

AV̄Bq̄

= 2F̄[p̄
r̄
q̄]r̄ + ∂A(V̄

B
p̄∂

AV̄Bq̄)− 2∂AdV̄
B
p̄∂

AV̄Bq̄ ,

(2.93)

we can derive the following identities,

[

(γpDp)
2+Dp̄D

p̄
]

ε=−
1

4
Gpq

pqε+
1

8
Gpqrsγ

pqrsε+∂A∂
Aε−2∂Ad∂

Aε

+
1

4

[

∂A(V
B
p∂

AVBq)−2∂AdV
B
p∂

AVBq

]

γpqε+
1

2
V B

p∂AVBqγ
pq∂Aε ,

[

(γ̄p̄Dp̄)
2+DpD

p
]

ε′=−
1

4
Gp̄q̄

p̄q̄ε′+
1

8
Gp̄q̄r̄s̄γ̄

p̄q̄r̄s̄ε′+∂A∂
Aε′−2∂Ad∂

Aε′

+
1

4

[

∂A(V̄
B
p̄∂

AV̄Bq̄)−2∂AdV̄
B
p̄∂

AV̄Bq̄

]

γ̄p̄q̄ε′+
1

2
V̄ B

p̄∂AV̄Bq̄γ̄
p̄q̄∂Aε′ .

(2.94)

Therefore, upon the section condition the completely covariant “Ricci” and scalar cur-

vatures (2.69), (2.71) are related to the completely covariant Dirac operators (2.87),

cf. Generalized Geometry [25],

[γpDp,Dq̄]ε ∼ Gprq̄
rγpε , [Dp, γ̄

q̄Dq̄]ε
′ ∼ −Gpr̄q̄

r̄γ q̄ε′ , (2.95)

and

(γpDp)
2ε+Dp̄D

p̄ε ∼ −
1

4
Gpq

pqε , (γ̄p̄Dp̄)
2ε′ +DpD

pε′ ∼ −
1

4
Gp̄q̄

p̄q̄ε′ . (2.96)

While the completely covariant “Ricci” curvatures can be identified from both vecto-

rial and spinorial commutators, (2.89) and (2.95), it appears that the completely co-

variant scalar curvatures can be only identified in the spinorial representation (2.96).
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2.5 DFT action and supersymmetric extensions

• Pure DFT action. The bosonic action of the untwisted DFT for the NS-NS sector,

or the pure DFT, is given by the fully covariant scalar curvature,

∫

ΣD

e−2d (PACPBD − P̄AC P̄BD)SABCD , (2.97)

where the integral is taken over a section, ΣD. The dilaton and the projector equa-

tions of motion correspond to the vanishing of the scalar curvature i.e. the Lagrangian

itself and the “Ricci” curvature, Spq̄, respectively.

It is precisely this expression of (2.97) that ensures the ‘1.5 formalism’ in the full

order supersymmetric extensions of DFT with torsionful connections [36, 37]. In fact,

without imposing the section condition, the scalar curvature in the Lagrangian (2.97)

precisely agrees with the original DFT Lagrangian ([4]) written in terms of the gen-

eralized metric, H = P − P̄ ,

Spq
pq − Sp̄q̄

p̄q̄ =
1

8
HAB∂AHCD∂BH

CD +
1

2
HAB∂CHAD∂

DHBC − ∂A∂BH
AB

− 4HAB∂Ad∂Bd+ 4HAB∂A∂Bd+ 4∂AH
AB∂Bd .

(2.98)

However, due to the relations (2.50), (2.55) which hold for the torsionless connec-

tion (2.20), there exist alternative section-condition-equivalent expressions for the

action, e.g. (P − P̄ )ABSAEB
E [35], or replacing SABCD by the spinorial curvature,

∫

ΣD

e−2d (Gpq
pq − Gp̄q̄

p̄q̄) ∼ 2

∫

ΣD

e−2d Gpq
pq . (2.99)

These agree with (2.97) upon the section condition, yet strictly differ by section-

condition-vanishing purely bosonic terms:

Gpq
pq − Gp̄q̄

p̄q̄ = Spq
pq − Sp̄q̄

p̄q̄ +
1

2
PAB∂EVAp∂

EVB
p −

1

2
P̄AB∂EV̄Ap̄∂

EV̄B
p̄

= Spq
pq − Sp̄q̄

p̄q̄ +
1

2

(

∂EVAp∂
EV Ap − ∂EV̄Ap̄∂

EV̄ Ap̄
)

,

(2.100)

and

2Gpq
pq = Spq

pq − Sp̄q̄
p̄q̄ + 4∂A∂

Ad− 4∂Ad∂
Ad+ ∂EVAp∂

EV Ap . (2.101)

The second equality of (2.100) follows from (2.9), (2.11) and an identity,

P̄AB∂EVAp∂
EVB

p = PAB∂EV̄Ap̄∂
EV̄B

p̄ . (2.102)

• The full order supersymmetric extensions. Based on the semi-covariant formalism

revisited above, the N = 2 (maximal) D = 10 supersymmetric double field theory

has been constructed to the full order in fermions [37],

LN=2
D=10(JAB, ∂A, d, VAp, V̄Ap̄, C, ρ, ψp̄, ρ

′, ψ′

p) . (2.103)
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By truncating the R-R potential and the primed fermions, the N = 1 (half-maximal)

D = 10 supersymmetric double field theory [36] is also readily obtainable,

LN=1
D=10(JAB, ∂A, d, VAp, V̄Ap̄, ρ, ψp̄) . (2.104)

Generically, the supersymmetric double field theory Lagrangians decompose into

three parts,

LSDFT = L[2,0] + L[1,2] + L[0,4] , (2.105)

where the subscript indices denote the powers of the derivatives and the fermions sep-

arately, such that for L[a,b], a+ b/2 = 2, as the derivatives and the fermions have the

mass dimensions one and half respectively, while the Lagrangian has the mass dimen-

sion two. Further, the supersymmetry parameter, ε, has the mass dimension minus

half, such that under supersymmetry transformations, each part of the Lagrangian

transforms schematically as

δε(L[2,0]) = ∆ε[2,1] , δε(L[1,2]) = ∆′

ε[2,1] +∆ε[1,3] , δε(L[0,4]) = ∆′

ε[1,3] +∆ε[0,5] ,

(2.106)

where a+ b/2 = 5/2 for each ∆
(′)
ε[a,b].

In particular, the supersymmetry of the N = 1, D = 10 SDFT [36] amounts to the

following algebraic identities,

∆ε[2,1] +∆′

ε[2,1] = ∂AK
A
[1,1] +

[

•∂A∂
A •+∂A • ∂A•

]

,

∆ε[1,3] +∆′

ε[1,3] = ∂AK
A
[0,3] ,

∆ε[0,5] = 0 ,

(2.107)

such that the Lagrangian is invariant up to total derivatives and the section condition,

δεL
N=1
D=10 = ∂A

(

KA
[1,1] +KA

[0,3]

)

+
[

•∂A∂
A •+∂A • ∂A•

]

[2,1]
. (2.108)

On the other hand, the supersymmetry of the N = 2 D = 10 SDFT [37] means the

invariance of the Lagrangian up to total derivatives, the section condition and the

self-duality of the R-R field strength,

δεL
N=2
D=10 = −

1

8
e−2dV̄ A

q̄δεVApTr
(

γpF̃−γ̄
q̄F̃−

)

+ ∂AK
A +

[

•∂A∂
A •+∂A • ∂A•

]

[2,1]
,

(2.109)

where F̃− is the self-dual part of the R-R field strength (2.80) defined, to the full

order in fermions, by

F̃− :=
(

1− γ(11)
)

(

F − i
1

2
ρρ̄′ + i

1

2
γpψq̄ψ̄

′

pγ̄
q̄

)

, (2.110)

and F̃− denotes, like (2.80), its charge conjugation,

F̃− = C̄−1
+ (F̃−)

TC+ . (2.111)
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A crucial fact about the section-condition-vanishing terms,
[

•∂A∂
A •+∂A • ∂A•

]

[2,1]
,

which is common in (2.108) and (2.109), is that they are strictly linear in the fermions

(dilatinos and gravitinos), and hence they are fully obtainable just from the leading

order supersymmetry transformation rules.

It is also crucial to note that the above form of the algebraic identities, (2.108)

and (2.109), still holds, i.e. the supersymmetry is unbroken upon the section con-

dition, even if we deform the Lagrangian by adding arbitrary section-condition-

vanishing terms, which, counting the mass dimensions, should be purely bosonic. Ex-

amples include the replacement of SABCD by GABCD and adding Gpq
pq +Gp̄q̄

p̄q̄ (2.74)

to the N = 1 (but not N = 2) D = 10 SDFT Lagrangian, which we shall take below,

for the supersymmetry preserving twist.

3 U-twisted double field theory

Here we twist the double field theory formulated within the semi-covariant formalism. Our

twist is a DFT generalization of the Scherk-Schwarz twist, based on [21, 22, 27, 28], and

will be from time to time referred to as U-twist. In section 3.1, we introduce our ansatz

of the twist. It involves a scalar and a local O(D,D) group element which may not obey

the section condition. In section 3.3, following closely Grana and Marques [27], from the

closure of the U-twisted generalized Lie derivative we derive a set of consistency conditions

which we call twistability conditions. They generalize the original section condition and

slightly differ from [27]. In section 3.4, we perform the U-twist on the semi-covariant

formalism and verify that, with the replacement of SABCD by GABCD, essentially all the

nice properties of the semi-covariant formalism, including the complete covariantizability,

survive after the twist, subject to the twistability conditions. We also verify that both the

N = 2 supersymmetric invariance and the nilpotency of the differential operators which

define the twisted Ramond-Ramond cohomology commonly require an extra condition.

Consequently, the maximal supersymmetric twist of the N = 2 D = 10 SDFT requires

one more twistability condition compared to the half-maximal supersymmetric twist of the

N = 1 D = 10 SDFT.

3.1 Ansatz for U-twist

U-twist calls for two local variables, or the twisting data: a scalar function, λ(x), and an

O(D,D) element, U(x). Both of them do not necessarily satisfy the section condition (2.3),

but shall be required to meet consistency conditions, or the twistability conditions.

The local O(D,D) element, UM
Ṅ , carries one undotted (untwisted) row index and

the other dotted (twisted) column index, such that, with the introduction of an additional

O(D,D) invariant metric,

J̇ṀṄ =

(

0 1

1 0

)

, (3.1)

it satisfies

U J̇U t = J . (3.2)
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While the dotted (twisted) metric, J̇ṀṄ , may coincide numerically with the undotted

(untwisted) metric, JMN (cf. table 2), hereafter we deliberately distinguish them. In

particular, the two different kinds of indices will never be contracted.

U-twist prescribes substituting the following expression for each untwisted (undotted)

field, TA1···An , into the D = 10 ungauged DFT Lagrangians, cf. [27],

TA1···An = e−2ωλUA1
Ȧ1 · · ·UAn

Ȧn ṪȦ1···Ȧn
. (3.3)

Equivalently, twisted fields are defined to carry dotted O(D,D) indices with a relevant

weight factor,

ṪȦ1···Ȧn
:= e2ωλ(U−1)Ȧ1

B1 · · · (U−1)Ȧn

BnTB1···Bn . (3.4)

The derivatives of the untwisted fields then assume a generic form,

∂CTA1···An = e−2ωλUC
ĊUA1

Ȧ1 · · ·UAn

ȦnḊĊ ṪȦ1···Ȧn
, (3.5)

which naturally leads to the definition of what we call U-derivative: with the pull-back of

the naked derivative,

∂̇Ċ = U−1
Ċ
C∂C , (3.6)

and a pure gauge “connection”,

ΩĊȦ
Ḃ :=

(

U−1∂̇ĊU
)

Ȧ

Ḃ , (3.7)

the U-derivative, ḊĊ , is defined to act on a twisted field by

ḊĊ ṪȦ1···Ȧn
:= ∂̇Ċ ṪȦ1···Ȧn

− 2ω∂̇Ċλ ṪȦ1···Ȧn
+

n
∑

i=1

ΩĊȦi

ḂṪȦ1···Ḃ···Ȧn
. (3.8)

In particular, the twist of the N = 1 or the N = 2, D = 10 SDFT amounts to inserting

the following expressions for the dilaton and the vielbeins into the untwisted Lagrangian,

e−2d = e−2λe−2ḋ , VAp = UA
ȦV̇Ȧp , V̄Ap̄ = UA

Ȧ ˙̄VȦp̄ . (3.9)

They are the only field variables to be twisted, since other fields (fermions and the R-R

potential) are weightless and O(D,D) singlet. We shall not put a dot on those effectively

untwisted fields for simplicity. The replacement naturally leads to the twisted, half-maximal

or maximal SDFT Lagrangians, cf. (4.1), (4.7),

L
N=1

D=10(JAB , ∂A, d, VAp, V̄Ap̄, ρ, ψp̄)=e
−2λ

L̇
Half-maximal

Twisted SDFT(J̇ȦḂ , ḊȦ, ḋ, V̇Ȧp,
˙̄VȦp̄, ρ, ψp̄) ,

L
N=2

D=10(JAB , ∂A, d, VAp, V̄Ap̄, C, ρ, ψp̄, ρ
′
, ψ

′
p)=e

−2λ
L̇

Maximal

Twisted SDFT(J̇ȦḂ , ḊȦ, ḋ, V̇Ȧp,
˙̄VȦp̄, C, ρ, ψp̄, ρ

′
, ψ

′
p) .

(3.10)

As seen from the right hand sides of the equalities, — since every DFT Lagrangian is

O(D,D) singlet and possesses the diffeomorphic weight of unity — after the replacement, i)

the twisting matrix, UA
Ȧ, effectively drops out in the Lagrangian, ii) the O(D,D) invariant

constant metric gets ‘dotted’, and iii) the naked derivatives become the U-derivatives.
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The twist translates the original section condition as

ḊȦḊ
Ȧ ∼ 0 . (3.11)

However, we do not intend to impose this condition on the twisted theory. Imposing

this would lead to a mere equivalent reformulation of the untwisted double field theory

where (3.3) corresponded to field redefinition. In section 3.3, we shall look for alterna-

tive inequivalent conditions, or the twistability conditions. Before doing so, in the next

subsection we pause to collect some useful properties of the U-derivative, ḊĊ .

3.2 Properties of the U-derivative and its connection

Since UA
Ḃ is an O(D,D) element, we have

ΩĊȦḂ +ΩĊḂȦ = ∂̇Ċ

(

J̇U tJ −1U J̇
)

ȦḂ
= ∂̇ĊJ̇ȦḂ = 0 . (3.12)

Hence, the U-derivative “connection” is skew-symmetric for the last two indices,

ΩĊȦḂ = −ΩĊḂȦ = ΩĊ[ȦḂ] . (3.13)

It is worth while to note

ΩḂ
ḂȦ = ∂BUB

Ȧ , ΩḂ
ḂȦ = ∂B(U

−1)Ȧ
B , (3.14)

and6

∂̇ȦΩḂ
ḂȦ = −

1

2
ΩȦ

ȦḂΩĊ
ĊḂ −

1

2
ΩĊḂȦΩ

ḂĊȦ . (3.15)

Pulling back the dotted derivative index to a undotted index, it is useful to consider

DC ṪȦ1···Ȧn
= UC

ĊḊĊ ṪȦ1···Ȧn
= ∂C ṪȦ1···Ȧn

− 2ω∂Cλ ṪȦ1···Ȧn
+

n
∑

i=1

ΩCȦi

ḂṪȦ1···Ḃ···Ȧn
,

(3.16)

where naturally we put

ΩCȦ
Ḃ = UC

ĊΩĊȦ
Ḃ =

(

U−1∂CU
)

Ȧ
Ḃ . (3.17)

This corresponds to “pure gauge” and thus its “field strength” vanishes identically,

0 = ∂AΩBĊ
Ḋ − ∂BΩAĊ

Ḋ +ΩAĊ
ĖΩBĖ

Ḋ − ΩBĊ
ĖΩAĖ

Ḋ

= DAΩBĊ
Ḋ −DBΩAĊ

Ḋ − ΩAĊ
ĖΩBĖ

Ḋ +ΩBĊ
ĖΩAĖ

Ḋ .
(3.18)

By construction, the U-derivative (3.8) can be rewritten as

ḊĊ ṪȦ1···Ȧn
= e2ωλ(U−1)Ċ

C(U−1)Ȧ1

A1 · · · (U−1)Ȧn

An∂C

(

e−2ωλUA1
Ḃ1 · · ·UAn

Ḃn ṪḂ1···Ḃn

)

,

(3.19)

6Eq. (3.15) can be derived from the following manipulation,

∂̇ȦΩḂ
ḂȦ = U

B
Ȧ∂B∂CU

CȦ = ∂C(U
C

ḂΩȦḂ
Ȧ)− ΩĊḂȦΩ

ḂĊȦ = −∂̇ḂΩȦ
ȦḂ

− ΩȦ
ȦḂΩĊ

ĊḂ − ΩĊḂȦΩ
ḂĊȦ

.
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and is compatible with the U matrix itself,

DAUB
Ċ = ∂AUB

Ċ − UB
ḊΩAḊ

Ċ = 0 , ḊȦUB
Ċ = 0 ,

DA(U
−1)Ċ

B = ∂A(U
−1)Ċ

B +ΩAĊ
Ḋ(U−1)Ḋ

B = 0 , ḊȦ(U
−1)Ċ

B = 0 ,
(3.20)

as well as with both the dotted and the undotted O(D,D) invariant metrics,

DCJ̇ȦḂ = 2ΩC(ȦḂ) = 0 , ḊĊJ̇ȦḂ = 0 , ḊĊJAB = ∂̇ĊJAB = 0 . (3.21)

Pushing back the undotted indices of (3.18) to the dotted ones, utilizing the above U matrix

compatibility (3.20), we also get another useful relation,

Ḋ[ȦΩḂ]
Ċ
Ḋ = Ω[Ȧ

ĊĖΩḂ]ĖḊ . (3.22)

We emphasize that, the U matrix compatibility is only possible because we distinguish the

dotted and the undotted O(D,D) indices deliberately.

Furthermore, from

DADBṪĊ1···Ċn
= e2ωλ(U−1)Ċ1

C1 · · · (U−1)Ċn

Cn∂A∂B

(

e−2ωλUC1
Ė1 · · ·UCn

Ėn ṪĖ1···Ėn

)

,

(3.23)

the U-derivatives are all commutative,

[DA, DB] = 0 ,
[

DA, ḊḂ

]

= 0 ,
[

ḊȦ, ḊḂ

]

= 0 . (3.24)

This is a crucial result. It means that there is no ordering ambiguity of the U-derivatives,

as one might worry while performing the twist, (3.10). Namely, the ‘field strength’ and

the ‘torsion’ of the U-derivative are all trivial. It is also worth while to compare with the

Weitzenböck connection, e.g. [30]. Although it appears formally similar to our Ω, there is a

crucial difference: we intentionally distinguish the dotted indices from the undotted indices,

while the Weitzenböck connection and hence the corresponding Weitzenböck derivative do

not. Consequently, the Weitzenböck derivatives do not commute, unlike (3.24), and the

Weizenböck connection is torsionful.

The dilaton, d, corresponds to the logarithm of a weightful scalar density. Its U-

derivative is then determined from

∂Ae
−2d = e−2λDAe

−2ḋ = −2(DAḋ)e
−2λ−2ḋ , (3.25)

by

DAḋ = ∂Aḋ+ ∂Aλ = ∂Ad , ḊȦḋ = ∂̇Ȧḋ+ ∂̇Ȧλ = ∂̇Ȧd . (3.26)

Further, its second order derivatives are7

∂A∂Bd = ∂A(UB
ḂḊḂ ḋ) = DA(UB

ḂḊḂ ḋ) = UA
ȦUB

ḂḊȦḊḂ ḋ = DADB ḋ , (3.27)

7This is also consistent with the following manipulation,

(−2∂A∂Bd+ 4∂Ad∂Bd) e
−2d = ∂A∂Be

−2d = ∂A

(

e
−2λ

DBe
−2ḋ

)

= e
−2λ (∂A − 2∂Aλ)DBe

−2ḋ

= e
−2λ

DADBe
−2ḋ = e

−2λ
(

−2DADB ḋ+ 4DAḋDB ḋ
)

e
−2ḋ

.
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and thus, in general,

∂A1∂A2 · · · ∂And = UA1
Ȧ1UA2

Ȧ2 · · ·UAn

ȦnḊȦ1
ḊȦ2

· · · ḊȦn
ḋ = DA1DA2 · · ·DAn ḋ . (3.28)

Now, following [27], we define two key quantities out of the twisting data,

fȦ := ΩḂ
ḂȦ − 2∂̇Ȧλ = ∂CU

C
Ȧ − 2∂̇Ȧλ , (3.29)

and the ‘structure constant’,

fȦḂĊ := ΩȦḂĊ +ΩḂĊȦ +ΩĊȦḂ = f[ȦḂĊ] . (3.30)

Through straightforward computations, one can verify

∂̇ĊΩĊȦḂ = ∂̇ĊfĊȦḂ + ∂̇ȦfḂ − ∂̇ḂfȦ + f ĊΩȦḂĊ − f ĊΩḂȦĊ , (3.31)

and

fȦḂĖfĊḊ
Ė=ΦȦḂĊḊ−ΦḂȦĊḊ+ΦȦĊḂḊ−ΦḂĊȦḊ+ΦḂȦḊĊ−ΦȦḂḊĊ+ΦĊȦḊḂ−ΦĊḂḊȦ

+ΩEȦḂΩ
E
ĊḊ − ∂̇ĊΩḊȦḂ + ∂̇ḊΩĊȦḂ − ∂̇ȦΩḂĊḊ + ∂̇ḂΩȦĊḊ ,

(3.32)

where we set

ΦȦḂĊḊ = ∂̇ȦU
E
Ḃ ∂̇ĊUEḊ = ΦĊḊȦḂ . (3.33)

In particular, this implies

ΩE[ȦḂΩ
E
Ċ]Ḋ = f[ȦḂ

ĖfĊ]ḊĖ + ∂̇[ȦfḂĊ]Ḋ −
1

3
∂̇ḊfȦḂĊ . (3.34)

We shall make use of these identities shortly below.

Finally, from (3.5), the divergence of a vector density with weight one becomes after

the twist,

∂AK
A = e−2λḊȦK̇

Ȧ = e−2λ(∂̇ȦK̇
Ȧ + fȦK̇

Ȧ) . (3.35)

Thus, after the twist, the potentially anomalous terms in the supersymmetric variations of

the N = 1 or the N = 2 D = 10 SDFT Lagrangian (2.108), (2.109) assume the following

generic form,

〈

δεL̇
Twisted
SDFT

〉

anomalous
= fȦK̇

Ȧ +
[

•̇ḊȦḊ
Ȧ•̇ + ḊA•̇Ḋ

Ȧ•̇
]

[2,1]
. (3.36)

In order to ensure the supersymmetry to be unbroken after the twist, we need to show that

these terms vanish up to the twistability conditions. Fortunately, as discussed in section 2.5

and demonstrated in section 4 later, these anomalous terms can be all sufficiently obtained

just from the leading order supersymmetry.
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3.3 Twistability conditions: closure of the diffeomorphisms

Acting on the dotted twisted fields, twisted diffeomorphism is generated by the U-twisted

generalized Lie derivative,

L̇Ẋ ṪȦ1···Ȧn
:= ẊḂḊḂṪȦ1···Ȧn

+ωḊḂẊ
ḂṪȦ1···Ȧn

+

n
∑

i=1

(ḊȦi
ẊḂ−ḊḂẊȦi

)ṪȦ1···Ȧi−1

Ḃ
Ȧi+1···Ȧn

.

(3.37)

In an identical manner to the twisting ansatz (3.4), this expression is related to the un-

twisted generalized Lie derivative (2.4) by

L̇Ẋ ṪȦ1···Ȧn
= e2ωλ(U−1)Ȧ1

A1 · · · (U−1)Ȧn

AnL̂XTA1···An . (3.38)

The commutator of the U-twisted generalized Lie derivatives, without employing any sec-

tion condition, reads readily from (2.7), cf. Grana and Marques [27],

(

[L̇Ẋ , L̇Ẏ ]−L̇[Ẋ,Ẏ ]Ċ

)

ṪȦ1···Ȧn
=
1

2
(ẊṄ ḊṀ ẎṄ − Ẏ ṄḊṀẊṄ )ḊṀ ṪȦ1···Ȧn

+
1

2
ω(ẊṄ ḊṀḊ

Ṁ ẎṄ − Ẏ ṄḊṀḊ
ṀẊṄ )ṪȦ1···Ȧn

+

n
∑

i=1

(ḊṀ ẎȦi
ḊṀẊḂ−ḊṀẊȦi

ḊṀ ẎḂ)ṪȦ1···Ȧi−1

Ḃ
Ȧi+1···Ȧn

,

(3.39)

where [Ẋ, Ẏ ]Ċ denotes the U-twisted C-bracket,

[Ẋ, Ẏ ]Ȧ
Ċ
:= ẊḂḊḂẎ

Ȧ − Ẏ ḂḊḂẊ
Ȧ +

1

2
Ẏ ḂḊȦẊḂ −

1

2
ẊḂḊȦẎḂ . (3.40)

Clearly, if the condition of (3.11) were imposed, the right hand side of (3.39) would van-

ish. Yet, we are after other way of ensuring the closure. To this end, we dismantle the

U-derivative and display its connection explicitly: the U-twisted generalized Lie deriva-

tive (3.37) and the U-twisted C-bracket (3.39) can be rewritten, in terms of fȦ (3.29) and

fȦḂĊ (3.30), as

L̇Ẋ ṪȦ1···Ȧn
= ẊḂ ∂̇ḂṪȦ1···Ȧn

+ ω
(

∂̇ḂẊ
Ḃ + fḂẊ

Ḃ
)

ṪȦ1···Ȧn

+
n
∑

i=1

(

∂̇Ȧi
ẊḂ − ∂̇ḂẊȦi

+ fȦiḂĊẊ
Ċ
)

ṪȦ1···Ȧi−1

Ḃ
Ȧi+1···Ȧn

,
(3.41)

and

[Ẋ, Ẏ ]ȦC = ẊḂ ∂̇ḂẎ
Ȧ − Ẏ Ḃ ∂̇ḂẊ

Ȧ +
1

2
Ẏ Ḃ ∂̇ȦẊḂ −

1

2
ẊḂ ∂̇ȦẎḂ − f ȦḂĊẊ

ḂẎ Ċ . (3.42)
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Similarly, the right hand side of the equality in (3.39) reads

(

[L̇Ẋ , L̇Ẏ ]− L̇[Ẋ,Ẏ ]C

)

ṪȦ1···Ȧn

=

(

1

2
ẊṄ ∂̇Ṁ ẎṄ −

1

2
Ẏ Ṅ ∂̇ṀẊṄ +ΩṀ

ṄĠẊ
Ṅ Ẏ Ġ

)

∂̇Ṁ ṪȦ1···Ȧn

+
1

2
ω
[

ẊṄ ∂̇Ṁ ∂̇
Ṁ ẎṄ − Ẏ Ṅ ∂̇Ṁ ∂̇

ṀẊṄ + 2ẊṄΩṀ
ṄĠ∂̇Ṁ Ẏ

Ġ − 2Ẏ ṄΩṀ
ṄĠ∂̇ṀẊ

Ġ

+ 2ẊṄ Ẏ Ġ∂̇ṀΩṀ
ṄĠ + fṀ

(

ẊṄ ḊṀ ẎṄ − Ẏ Ṅ ḊṀẊṄ

) ]

ṪȦ1···Ȧn

+
n
∑

i=1

[

∂̇Ṁ ẎȦi
∂̇Ṁ ẊḂ − ∂̇ṀẊȦi

∂̇Ṁ ẎḂ + 3ΩṀ [ȦiḂ
ẊṄ ∂̇Ṁ ẎṄ ] − 3ΩṀ [ȦiḂ

Ẏ Ṅ ∂̇ṀẊṄ ]

−
1

2
ΩṀȦiḂ

(

ẊṄ ∂̇Ṁ ẎṄ−Ẏ Ṅ ∂̇ṀẊṄ

)

−3ΩṀ [ḂṄΩṀ
Ġ]Ȧi

ẊṄ Ẏ Ġ
]

ṪȦ1···Ȧi−1

Ḃ
Ȧi+1···Ȧn

,

(3.43)

which further becomes, using (3.31) and (3.34),

(

[L̇Ẋ , L̇Ẏ ]− L̇[Ẋ,Ẏ ]C

)

ṪȦ1···Ȧn

=

(

1

2
ẊṄ ∂̇Ṁ ẎṄ −

1

2
Ẏ Ṅ ∂̇Ṁ ẊṄ +ΩṀ

ṄĠẊ
Ṅ Ẏ Ġ

)

∂̇Ṁ ṪȦ1···Ȧn

+
1

2
ω

[

ẊṄ ∂̇Ṁ ∂̇
Ṁ ẎṄ − Ẏ Ṅ ∂̇Ṁ ∂̇

ṀẊṄ + 2ẊṄΩṀ
ṄĠ∂̇Ṁ Ẏ

Ġ − 2Ẏ ṄΩṀ
ṄĠ∂̇ṀẊ

Ġ

+ 2ẊṄ Ẏ Ġ
(

∂̇ṀfṀṄĠ+f
ṀfṀṄĠ+2∂̇[ṄfĠ]

)

+fṀ

(

ẊṄ ∂̇Ṁ ẎṄ−Ẏ Ṅ ∂̇ṀẊṄ

)

]

ṪȦ1···Ȧn

+
n
∑

i=1

[

∂̇Ṁ ẎȦi
∂̇ṀẊḂ − ∂̇ṀẊȦi

∂̇Ṁ ẎḂ −
1

2
ΩṀȦiḂ

(

ẊṄ ∂̇Ṁ ẎṄ − Ẏ Ṅ ∂̇ṀẊṄ

)

+ 3ΩṀ [ȦiḂ
ẊṄ ∂̇Ṁ ẎṄ ] − 3ΩṀ [ȦiḂ

Ẏ Ṅ ∂̇ṀẊṄ ]

+ ẊṄ Ẏ Ġ
(

∂̇Ȧi
fḂṄĠ − 3fṀ [ḂṄf

Ṁ
Ġ]Ȧi

− 3∂̇[ḂfṄĠ]Ȧi

)

]

ṪȦ1···Ȧi−1

Ḃ
Ȧi+1···Ȧn

.

(3.44)

Now we can easily read off a set of conditions, or the twistability conditions, which let each

term in the right hand of the above equality vanish. The twistability conditions which

ensure the closure of the U-twisted generalized Lie derivative

[L̇Ẋ , L̇Ẏ ] ≡ L̇[Ẋ,Ẏ ]C
, (3.45)

are as follows, cf. [27, 29].8

1. The section condition for all the dotted twisted fields,

∂̇Ṁ ∂̇
Ṁ ≡ 0 . (3.46)

8Strictly speaking, our twistability conditions, especially (3.47), do not completely agree with the pre-

vious works. Yet, with the ansatz (3.51) assumed, they agree.
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2. The orthogonality between the connection and the derivatives of the dotted twisted

fields,

ΩṀ
Ḟ Ġ∂̇Ṁ ≡ 0 . (3.47)

3. The Jacobi identity for fȦḂĊ = f[ȦḂĊ],

f[ȦḂ
ĖfĊ]ḊĖ ≡ 0 . (3.48)

4. The constancy of the structure constant, fȦḂĊ ,

∂̇ĖfȦḂĊ ≡ 0 . (3.49)

5. The triviality of fȦ ,

fȦ = ΩĊ
ĊȦ − 2∂̇Ȧλ = ∂CU

C
Ȧ − 2∂̇Ȧλ ≡ 0 . (3.50)

We stress that these five constraints, (3.46)–(3.50), are the natural requirement for the

closure (3.45) directly read off from (3.44).9 In principle, we should solve these constraints.

While we are currently lacking the most general form of the solutions, a class of solutions

are well known which involve dimensional reductions. If we assume the U matrix to be in

a block diagonal form,

U =

(

1 0

0 u

)

, (3.51)

the dotted O(D,D) indices naturally split into effectively untwisted external indices and

truly twisted internal indices. Letting all the twisted (or dotted) fields depend on the exter-

nal coordinates while allowing the twisting data, u, λ, to have only the internal dependency,

the first condition (3.46) is nothing but the ordinary section condition for the twisted fields

living in the dimensionally reduced, external doubled-yet-gauged spacetime, and the sec-

ond condition (3.47) is clearly satisfied. The remaining conditions (3.48), (3.49), (3.50)

are then the genuine consistency conditions for the internal twisting data, u and λ. This

‘solution’ then inevitably implies the dimensional reduction of the section, from D = 10 to

a lower value. Namely, the twistability conditions consist of the ordinary section condition

for the external spacetime and a set of consistency conditions for the twisting data, U and

λ, of the orthogonal internal “manifold”. It is interesting to explore other type of solution,

if any, generalizing the ansatz (3.51). Anyhow, all the forthcoming analyses require strictly

the five constraints, (3.46)–(3.50) only, and do not necessarily demand the ansatz (3.51).

It is worth while to note from (3.31), (3.34), that the twistability conditions imply

∂̇ĊΩĊȦḂ ≡ 0 ,

ΩĖ[ȦḂΩ
Ė
Ċ]Ḋ ≡ 0 ,

∂̇Ȧ∂̇
Ȧλ ≡

1

2
∂̇ȦΩḂ

ḂȦ = −
1

4
ΩȦ

ȦĊΩḂ
ḂĊ −

1

4
ΩĊḂȦΩ

ḂĊȦ .

(3.52)

9Clearly the five constraints, (3.46)–(3.50), are sufficient for the closure. It remains as an open question

whether they are also necessary.
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Further, from the integrability of the last condition (3.50), we get

∂A

(

UB
Ė∂CU

C
Ė

)

≡ ∂B

(

UA
Ė∂CU

C
Ė

)

. (3.53)

The U-twisted generalized Lie derivative (3.41) reduces, upon the twistability conditions, to

L̂Ẋ ṪȦ1···Ȧn
≡ẊḂ ∂̇ḂṪȦ1···Ȧn

+ω∂̇ḂẊ
ḂṪȦ1···Ȧn

+
n
∑

i=1

(

2∂̇[Ȧi
ẊḂ]+fȦiḂĊẊ

Ċ
)

ṪȦ1···Ȧi−1

Ḃ
Ȧi+1···Ȧn

,

(3.54)

which clearly has no ‘internal’ coordinate dependency10 and decomposes into the external

diffeomorphism and internal gauge symmetry [27, 29] (see also [50]).

3.4 Twisted semi-covariant formalism

The twisting of the semi-covariant formalism is straightforward. The U-twisted master

semi-covariant derivative is

ḊȦ = ∇̇Ȧ + Φ̇Ȧ + ˙̄ΦȦ , (3.55)

of which the twisted semi-covariant derivative and the twisted spin connections are given by

∇̇Ȧ = ḊȦ + Γ̇Ȧ , Φ̇Ȧpq = V̇ Ḃ
p∇̇ȦV̇Ḃq ,

˙̄ΦȦp̄q̄ =
˙̄V Ḃ

p̄∇̇Ȧ
˙̄VḂq̄ , (3.56)

and the twisted torsionless connection reads

Γ̇ĊȦḂ = 2(Ṗ ḊĊ Ṗ
˙̄P )[ȦḂ] + 2( ˙̄P [Ȧ

Ḋ ˙̄P Ḃ]
Ė − Ṗ[Ȧ

ḊṖḂ]
Ė)ḊḊṖĖĊ

−
4

D − 1
( ˙̄PĊ[Ȧ

˙̄PḂ]
Ḋ + ṖĊ[ȦṖḂ]

Ḋ)
(

ḊḊḋ+ (Ṗ ḊĖṖ ˙̄P )[ĖḊ]

)

,
(3.57)

satisfying, in a completely parallel manner to the untwisted cases, (2.21)–(2.25),

∇̇ȦṖḂĊ = 0 , ∇̇Ȧ
˙̄PḂĊ = 0 , Γ̇Ḃ

ḂȦ = −2ḊȦḋ ,

Γ̇Ȧ(ḂĊ) = 0 , Γ̇[ȦḂĊ] = 0 , (Ṗ + ˙̄P)ȦḂĊ
ḊĖḞ Γ̇ḊĖḞ = 0 ,

(3.58)

and, as for the torsionless condition (2.26),

L̂X(Ḋ) = L̂X(∇̇) , [X,Y ]C(Ḋ) = [X,Y ]C(∇̇) . (3.59)

Further, from (2.42), (2.47), in terms of

ḞȦḂpq = ∇̇ȦΦ̇Ḃpq − ∇̇ḂΦ̇Ȧpq + Φ̇Ȧp
rΦ̇Ḃrq − Φ̇Ḃp

rΦ̇Ȧrq

= ḊȦΦ̇Ḃpq − ḊḂΦ̇Ȧpq − Φ̇Ȧp
rΦ̇Ḃrq + Φ̇Ḃp

rΦ̇Ȧrq ,

˙̄F ȦḂp̄q̄ = ∇̇Ȧ
˙̄ΦḂp̄q̄ − ∇̇Ḃ

˙̄ΦȦp̄q̄ +
˙̄ΦȦp̄

r̄ ˙̄ΦḂr̄q̄ −
˙̄ΦḂp̄

r̄ ˙̄ΦȦr̄q̄

= ḊȦ
˙̄ΦḂp̄q̄ − ḊḂ

˙̄ΦȦp̄q̄ −
˙̄ΦȦp̄

r̄ ˙̄ΦḂr̄q̄ +
˙̄ΦḂp̄

r̄ ˙̄ΦȦr̄q̄ ,

(3.60)

10With the internal/external splitting (3.51), the ∂̇Ȧ derivatives of the dotted fields are independent of

the internal coordinates.
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we have the twisted spinorial semi-covariant four-index curvature,

ĠȦḂĊḊ :=
1

2

[

(Ḟ + ˙̄F)ȦḂĊḊ + (Ḟ + ˙̄F)ĊḊȦḂ + (Φ̇ + ˙̄Φ)Ė ȦḂ(Φ̇ + ˙̄Φ)ĖĊḊ

]

. (3.61)

Now, from (2.49), it is useful to note

ĠȦḂĊḊ = ṠȦḂĊḊ +
1

2
(V̇Ȧ

pḊĖV̇Ḃp +
˙̄VȦ

p̄ḊĖ
˙̄VḂp̄)(V̇Ċ

qḊĖV̇Ḋq +
˙̄VĊ

q̄ḊĖ ˙̄VḊq̄) , (3.62)

and thus, upon the twistability conditions,

ĠȦḂĊḊ ≡ ṠȦḂĊḊ +
1

2
ΩĖȦḂΩ

Ė
ĊḊ . (3.63)

In the above, for sure, we set

ṠȦḂĊḊ =
1

2

(

ṘȦḂĊḊ + ṘĊḊȦḂ − Γ̇Ė
ȦḂΓ̇ĖĊḊ

)

,

ṘȦḂĊḊ = ∂̇ȦΓ̇ḂĊḊ − ∂̇ḂΓ̇ȦĊḊ + Γ̇ȦĊ
ĖΓ̇ḂĖḊ − Γ̇ḂĊ

ĖΓ̇ȦĖḊ .

(3.64)

Thus, in contrast to the untwisted case (2.50), GȦḂĊḊ differs from ṠȦḂĊḊ after the twist.

In the twisted SDFT to be constructed below, we shall disregard the latter and employ the

former only. The former will be shown to be semi-covariant, while the latter is not.

Starting from the strict equality of (3.62) and using (2.52), one can easily show nev-

ertheless that the infinitesimal transformation of ĠȦḂĊḊ induced by the variations of its

constituting all the twisted fields coincides with that of ṠȦḂĊḊ, up to the twistability

conditions,

δĠȦḂĊḊ ≡ ∇̇[ȦδΓ̇Ḃ]ĊḊ + ∇̇[ĊδΓ̇Ḋ]ȦḂ ≡ δṠȦḂĊḊ . (3.65)

This should be a naturally expected result, if we focus on the variation of the equivalence

relation (3.63) rather than the strict equality (3.62). Since ΩȦḂĊ is not a field variable but

rather a fixed data for a given internal manifold, it is not taken to transform but must be

inert under any ‘symmetry’,11

δUA
Ḃ = 0 , δΩĊȦḂ = 0 , δ(ḊĊ) = 0 . (3.66)

These are also consistent with (3.4) and (3.38) with the identification of ‘ δẊ = L̇Ẋ ’ for

covariant twisted fields.

• Complete covariantizations after the twist.

Here we focus on the twisted diffeomorphism. We twist the relation (2.57) in

order to obtain the difference between the actual transformation of the U-derivative

of a twisted field and its twisted generalized Lie derivative,

(δẊ − L̇Ẋ)ḊĊ ṪȦ1···Ȧn

=
[

ḊĊ , L̇Ẋ

]

ṪȦ1···Ȧn

= ḊḂẊĊḊḂṪȦ1···Ȧn
+ ωT ḊĊḊḂẊ

ḂṪȦ1···Ȧn
+

n
∑

i=1

2ḊĊḊ[Ȧi
ẊḂ]ṪȦ1···Ȧi−1

Ḃ
Ȧi+1···Ȧn

.

(3.67)

11However, L̂ẊUA
Ḃ = ẊĊḊĊUA

Ḃ + (ḊḂẊĊ − ḊĊẊ
Ḃ)UA

Ċ = ḊḂXA −DAẊ
Ḃ 6= 0 .
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Writing the first equality above, we have implicitly assumed (3.66). It follows for the

twisted connection (3.57),

(δẊ−L̂Ẋ)Γ̇ĊȦḂ = 2
[

(Ṗ + ˙̄P)ĊȦḂ
Ḟ ḊĖ − δ Ḟ

Ċ
δ Ḋ

Ȧ
δ Ė

Ḃ

]

ḊḞ Ḋ[ḊẊĖ]

+ 2(Ṗ ′ − ˙̄P ′)ĊȦḂ
Ḟ ḊĖḊĠṖḞ ḊḊĠẊĖ + 2Ṗ[Ȧ

Ḋ ˙̄PḂ]
ĖḊĠṖḊĖḊĠẊĊ

+
2

D − 1
(ṖĊ[ȦṖḂ]

Ė + ˙̄PĊ[Ȧ
˙̄PḂ]

Ė)(ḊĠḊ
ĠẊĖ − 2ḊĠḋḊĠẊĖ) .

(3.68)

To simplify this expression up to the twistability conditions, we use (3.31) and an

identity,
[

2(Ṗ ′+ ˙̄P ′)ĊȦḂ
Ḟ ḊĖ+2Ṗ[Ȧ

Ḋ ˙̄PḂ]
Ḟ δ Ė

Ċ
+

2

D−1
(ṖĊ[ȦṖḂ]

Ḟ+ ˙̄PĊ[Ȧ
˙̄PḂ]

Ḟ )J̇ ḊĖ

]

ΩĠḞ ḊΩ
Ġ
ĖK̇

= 3
(

ṖĊ
Ḟ ˙̄PȦ

Ḋ ˙̄PḂ
Ė + ˙̄PĊ

Ḟ ṖȦ
ḊṖḂ

Ė
)

ΩĠ[ḊĖΩ
Ġ
Ḟ ]K̇

+
[

(Ṗ + ˙̄P)ĊȦḂ
Ḟ ḊĖ − δ Ḟ

Ċ
δ Ḋ

Ȧ
δ Ė

Ḃ

]

ΩĠḊĖΩ
Ġ
Ḟ K̇

= 3
(

ṖĊ
Ḟ ˙̄PȦ

Ḋ ˙̄PḂ
Ė + ˙̄PĊ

Ḟ ṖȦ
ḊṖḂ

Ė
)

(

f[ḊĖ
ĠfḞ ]K̇Ġ + ∂̇[ḊfĖḞ ]K̇ −

1

3
∂̇K̇fḊĖḞ

)

+
[

(Ṗ + ˙̄P)ĊȦḂ
Ḟ ḊĖ − δ Ḟ

Ċ
δ Ḋ

Ȧ
δ Ė

Ḃ

]

ΩĠḊĖΩ
Ġ
Ḟ K̇ ,

(3.69)

which follows from (3.34). Eq. (3.68) can be then rewritten as

(δẊ−L̂Ẋ)Γ̇ĊȦḂ

=
[

(Ṗ + ˙̄P)ĊȦḂ
Ḟ ḊĖ − δ Ḟ

Ċ
δ Ḋ

Ȧ
δ Ė

Ḃ

] (

2ḊḞ Ḋ[ḊẊĖ] +ΩĠḊĖΩ
Ġ
Ḟ K̇Ẋ

K̇
)

+ 2(Ṗ ′− ˙̄P ′)ĊȦḂ
Ḟ ḊĖ

[

(∂̇ĠṖḞ Ḋ+ΩĠḞ
K̇ ṖK̇Ḋ+ΩĠḊ

K̇ ṖḞ K̇)∂̇ĠẊĖ+∂̇ĠṖḞ ḊΩ
Ġ
ĖK̇Ẋ

K̇
]

+ 2Ṗ[Ȧ
Ḋ ˙̄PḂ]

Ė
[

(∂̇ĠṖḊĖ +ΩĠḊ
K̇ ṖK̇Ė +ΩĠĖ

K̇ ṖḊK̇)∂̇ĠẊĊ + ∂̇ĠṖḊĖΩ
Ġ
ĊK̇Ẋ

K̇
]

+ 3
(

ṖĊ
Ḟ ˙̄PȦ

Ḋ ˙̄PḂ
Ė + ˙̄PĊ

Ḟ ṖȦ
ḊṖḂ

Ė
)

(

f[ḊĖ
ĠfḞ ]K̇Ġ + ∂̇[ḊfĖḞ ]K̇ −

1

3
∂̇K̇fḊĖḞ

)

ẊK̇

+
2

D − 1
(ṖĊ[ȦṖḂ]

Ė + ˙̄PĊ[Ȧ
˙̄PḂ]

Ė)
[

∂̇Ġ∂̇
ĠẊĖ + 2ΩĠĖK̇ ∂̇

ĠẊK̇

+(fĠ − 2∂̇Ġḋ)(∂̇
ĠẊĖ +ΩĠ

ĖK̇Ẋ
K̇)
]

+
2

D − 1
(ṖĊ[ȦṖḂ]

Ė + ˙̄PĊ[Ȧ
˙̄PḂ]

Ė)(∂̇Ḟ fḞ ĖK̇ + 2∂̇[ĖfK̇] + 2f ḞΩ[ĖK̇]Ḟ )Ẋ
K̇ .

(3.70)

Hence, upon the twisted section conditions (3.46)–(3.50), we have a rather simple

seminal expression,

(δẊ−L̂Ẋ)Γ̇ĊȦḂ≡
[

(Ṗ+ ˙̄P)ĊȦḂ
Ḟ ḊĖ−δ Ḟ

Ċ
δ Ḋ

Ȧ
δ Ė

Ḃ

] (

2ḊḞ Ḋ[ḊẊĖ]+ΩĠḊĖΩ
Ġ
Ḟ K̇Ẋ

K̇
)

.

(3.71)
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From this, the diffeomorphic anomaly of the twisted semi-covariant derivative follows

easily,

(δẊ − L̂Ẋ)(∇̇Ċ ṪȦ1···Ȧn
)

= ḊĖẊĊḊĖṪȦ1···Ȧn
+ ωT

[

ḊCḊĖẊ
Ė − (δẊ − L̂Ẋ)Γ̇Ė

ĖĊ

]

ṪȦ1···Ȧn

+

n
∑

i=1

[

2ḊĊḊ[Ȧi
XĖ] + (δẊ − L̂Ẋ)Γ̇ĊȦiĖ

]

ṪȦ1···Ȧi−1

Ė
Ȧi+1···Ȧn

≡ ωT fK̇Ḋ
K̇ẊĊ ṪȦ1···Ȧn

+
n
∑

i=1

(P+P̄)ĊȦi

ḂḞ ḊĖ
(

2ḊḞ Ḋ[ḊẊĖ] +ΩĠḊĖΩ
Ġ
Ḟ K̇Ẋ

K̇
)

Ṫ
···Ȧi−1ḂȦi+1···

.

(3.72)

Hence, upon all the twistability conditions, finally we obtain

(δẊ − L̂Ẋ)(∇̇Ċ ṪȦ1···Ȧn
) ≡

n
∑

i=1

(P+P̄)ĊȦi

ḂṪȦ1···Ȧi−1ḂȦi+1···Ȧn
, (3.73)

where we have introduced shorthand notations,

ṖȦḂĊ = ṖȦḂĊ
Ḟ ḊĖ(2ḊḞ Ḋ[ḊẊĖ] +ΩĠḊĖΩ

Ġ
Ḟ K̇Ẋ

K̇) ,

˙̄PȦḂĊ = ˙̄PȦḂĊ
Ḟ ḊĖ(2ḊḞ Ḋ[ḊẊĖ] +ΩĠḊĖΩ

Ġ
Ḟ K̇Ẋ

K̇) .
(3.74)

From (2.16) and (3.34), they satisfy up to the twistability conditions,

Ṗ[ȦḂĊ] ≡ 0 , ˙̄P[ȦḂĊ] ≡ 0 . (3.75)

Eq. (3.73) immediately implies for the spin connections,

(δẊ − L̂Ẋ)Φ̇Ȧpq = (δẊ − L̂Ẋ)(V̇ Ḃ
p∇̇ȦV̇Ḃq) ≡ ṖȦpq ,

(δẊ − L̂Ẋ) ˙̄ΦȦp̄q̄ = (δẊ − L̂Ẋ)( ˙̄V Ḃ
p̄∇̇Ȧ

˙̄VḂq̄) ≡
˙̄PȦp̄q̄ .

(3.76)

Although the final expressions of (3.73) and (3.76) differ in detail from what one

would naively expect by ‘twisting’ the results of (2.65) and (2.85),12 what remains still

true and crucial is that, once again the anomalies are all controlled by the index-six

projection operators. Namely, they are still semi-covariant. Thus, the cancellation

mechanism is identical before and after the twist, and all the previous completely

covariant derivatives, (2.67), (2.68), (2.81) and (2.87) are still completely covariant

12Twisting (2.65) or (2.85) is naive, because they are not exact formulas. They are valid only up to the

original section condition.
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after the twist. We recall them exhaustively after performing the twist,

ṖĊ
Ḋ ˙̄P Ȧ1

Ḃ1 · · · ˙̄P Ȧn

Ḃn∇̇ḊṪḂ1···Ḃn
, ˙̄P Ċ

ḊṖȦ1

Ḃ1 · · · ṖȦn

Ḃn∇̇ḊṪḂ1···Ḃn
,

Ṗ ȦḂP̄Ċ1

Ḋ1 · · · ˙̄P Ċn

Ḋn∇̇ȦṪḂḊ1···Ḋn
, ˙̄P ȦḂṖĊ1

Ḋ1 · · · ṖĊn

Ḋn∇̇ȦṪḂḊ1···Ḋn

(divergences) ,

ṖAB ˙̄P Ċ1

Ḋ1 · · · ˙̄P Ċn

Ḋn∇̇Ȧ∇̇ḂṪḊ1···Ḋn
, ˙̄P

ȦḂ
ṖĊ1

Ḋ1 · · · ṖĊn

Ḋn∇̇Ȧ∇̇ḂṪḊ1···Ḋn

(Laplacians) ,

(3.77)

ḊpTq̄1···q̄n , Ḋp̄Tq1···qn , ḊpT
p
q̄1···q̄n , Ḋp̄T

p̄
q1···qn , ḊpḊ

pTq̄1···q̄n , Ḋp̄Ḋ
p̄Tq1···qn ,

(3.78)

Ḋ+T , Ḋ−T , Ḟ = Ḋ+C , (3.79)

and

γpḊpρ , γpḊpψp̄ , Ḋp̄ρ , Ḋp̄ψ
p̄ , ψ̄Ȧγp

(

ḊȦψq̄ −
1

2
Ḋq̄ψȦ

)

,

γ̄p̄Ḋp̄ρ
′ , γ̄p̄Ḋp̄ψ

′

p , Ḋpρ
′ , Ḋpψ

′p , ψ̄′Ȧγ̄p̄

(

ḊȦψ
′

q −
1

2
Ḋqψ

′

Ȧ

)

.

(3.80)

Now we turn to the curvatures. The relations, (3.75), (3.76), give sequently,

(δẊ − L̂Ẋ)ḞȦḂpq ≡ 2Ḋ[ȦṖḂ]pq − (Ṗ + ˙̄P)Ė ȦḂΦ̇Ėpq ,

(δẊ − L̂Ẋ) ˙̄F ȦḂp̄q̄ ≡ 2Ḋ[Ȧ
˙̄PḂ]p̄q̄ − (Ṗ + ˙̄P)Ė ȦḂ

˙̄ΦĖp̄q̄ ,

(δẊ − L̂Ẋ)(Ḟ + ˙̄F)ȦḂĊḊ ≡ 2Ḋ[Ȧ(Ṗ + ˙̄P)Ḃ]ĊḊ − (Ṗ + ˙̄P)Ė ȦḂ(Φ̇ + ˙̄Φ)ĖĊḊ ,

(3.81)

and thus, another crucial result follows

(δẊ − L̂Ẋ)ĠȦḂĊḊ ≡ Ḋ[Ȧ(Ṗ + ˙̄P)Ḃ]ĊḊ + Ḋ[Ċ(Ṗ + ˙̄P)Ḋ]ȦḂ . (3.82)

This shows that, in an identical manner to the untwisted case (2.66), ĠȦḂĊḊ is still

semi-covariant after the twist. The completely covariant index-two (“Ricci”) and

index-zero (scalar) twisted curvatures are as untwisted cases,

Ġprq̄
r , Ġpr̄q̄

r̄ , Ġpq
pq , Ġp̄q̄

p̄q̄ . (3.83)

Finally we look into ṠȦḂĊḊ . It is straightforward to check that it is not semi-

covariant. It produces additional anomalous terms which are not governed by the
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index-six projectors,13

(δẊ − L̂Ẋ)ṠȦḂĊḊ

= ∇̇[A(δẊ−L̂Ẋ)Γ̇Ḃ]ĊḊ+2∇̇[ȦḊḂ]Ḋ[ĊXḊ]+ḊĖẊ[ȦḊ
ĖΓ̇Ḃ]ĊḊ+

[

(Ȧ, Ḃ) ↔ (Ċ, Ḋ)
]

≡ ∇̇[A(Ṗ + ˙̄P)Ḃ]ĊḊ − Ḋ[Ȧ

(

ΩĖ
Ḃ]K̇ΩĖĊḊẊ

K̇
)

+
[

(Ȧ, Ḃ) ↔ (Ċ, Ḋ)
]

.

(3.84)

We conclude that ṠȦḂĊḊ is of no use in the twisted double field theory. We discard

it and keep GȦḂĊḊ only.

• Identities which still hold after the twist.

Straightforward yet useful implications of the twistability conditions include

ḊȦḊ
Ȧ − 2ḊȦḋḊ

Ȧ ≡ f ȦḊȦ ≡ 0 , Γ̇Ċ
pq̄∂̇Ċ ≡ 0 . (3.85)

From (2.54), (3.52) and (3.62), the Bianchi identity of GȦḂĊḊ is valid upon the

twistability conditions,

ĠȦ[ḂĊḊ] ≡ 0 . (3.86)

Further from (2.55), it is straightforward to show

Ġpqr̄s̄ ≡
3

2
ΩĖȦ[ḂΩ

Ė
ĊḊ]V̇

Ȧ
pV̇

Ḃ
q
˙̄V Ċ

r̄
˙̄V Ḋ

s̄ ≡ 0 , Ġpq̄rs̄ ≡ 0 , Ġprq̄
r ≡ Ġpr̄q̄

r̄ ≡
1

2
Ġpq̄ ,

(3.87)

and notably,

Ġpq
pq + Ġp̄q̄

p̄q̄ ≡
1

6
fȦḂĊf

ȦḂĊ . (3.88)

That is to say, replacing ṠȦḂĊḊ by ĠȦḂĊḊ, almost all the properties of the four-index

curvature (2.55) still hold after the twist, up to the twistability conditions. The only

exception is (3.88) and this is also crucial.

The relations between the completely covariant curvatures and the completely

covariant derivatives (2.89), (2.95), (2.96) still hold after the twist,

1

2
[Ḋp, Ḋq̄]T

p ≡ Ġprq̄
rT p ,

1

2
[Ḋp, Ḋq̄]T

q̄ ≡ −Ġpr̄q̄
r̄T q̄ ,

[γpḊp, Ḋq̄]ε ≡ Ġprq̄
rγpε , [Ḋp, γ̄

q̄Ḋq̄]ε
′ ≡ −Ġpr̄q̄

r̄γ q̄ε′ ,

(γpḊp)
2ε+ Ḋp̄Ḋ

p̄ε ≡ −
1

4
Ġpq

pqε , (γ̄p̄Ḋp̄)
2ε′ + ḊpḊ

pε′ ≡ −
1

4
Ġp̄q̄

p̄q̄ε′ .

(3.89)

But, in contrast to (2.83), we get after the twist,

(Ḋ±)
2T ≡ −

1

24
fȦḂĊf

ȦḂĊT . (3.90)

13Putting the three relations (3.65), (3.66) and (3.82) together, we conjecture an equivalence relation,

L̇Ẋ(ΩĖȦḂΩ
Ė

ĊḊ) ≡ −2Ḋ[Ȧ

(

ΩĖ
Ḃ]K̇ΩĖĊḊẊ

K̇
)

− 2Ḋ[Ċ

(

ΩĖ
Ḋ]K̇ΩĖȦḂẊ

K̇
)

,

of which a direct proof is desirable.
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This indicates that in addition to the twistability conditions, in the presence of the

R-R sector, in order to ensure the nilpotency of the differential operators, Ḋ±, which

should define the twisted R-R gauge symmetry or the ‘twisted R-R cohomology’

consistently, we should separately impose

fȦḂĊf
ȦḂĊ ≡ 0 . (3.91)

For a relevant previous work we refer the readers to [28] where the R-R sector was

treated as anO(10, 10) spinor which can be related to our treatment after the diagonal

gauge fixing of the twofold local Lorentz symmetries [38]. We shall see shortly that

this extra condition is also required for the supersymmetric invariance of the twisted

maximal SDFT.

• “Effective connection” and internal coordinate independence.

Writing explicitly,

ḊȦ = ∂̇Ȧ +ΩȦ , ∇̇Ȧ = ∂̇Ȧ +ΩȦ + Γ̇Ȧ , (3.92)

it may appear plausible to view ΩȦ + Γ̇Ȧ as the “effective connection”. Upon

the twistability conditions (3.46)–(3.50), this “effective connection” reads explicitly,

cf. [29],

ΩĊȦḂ + Γ̇ĊȦḂ ≡ 2(Ṗ ∂̇Ċ Ṗ
˙̄P )[ȦḂ] + 2( ˙̄P [Ȧ

Ḋ ˙̄P Ḃ]
Ė − Ṗ[Ȧ

ḊṖḂ]
Ė)∂̇ḊṖĖĊ

−
4

D − 1
( ˙̄PĊ[Ȧ

˙̄PḂ]
Ḋ + ṖĊ[ȦṖḂ]

Ḋ)
(

∂̇Ḋḋ+ (Ṗ ∂̇ĖṖ ˙̄P )[ĖḊ]

)

+ ( ˙̄PĊ
ḊṖȦ

ĖṖḂ
Ḟ + ṖĊ

Ḋ ˙̄PȦ
Ė ˙̄PḂ

Ḟ )fḊĖḞ

+ (Ṗ + ˙̄P)ĊȦḂ
ḊĖḞΩḊĖḞ .

(3.93)

In particular, we have

V̇ Ȧ
pV̇

Ḃ
qV̇

Ċ
r(Ω[ȦḂĊ] + Γ̇[ȦḂĊ]) =

1

3
fpqr ,

˙̄V Ȧ
p̄
˙̄V Ḃ

q̄
˙̄V Ċ

r̄(Ω[ȦḂĊ] + Γ̇[ȦḂĊ]) =
1

3
fp̄q̄r̄ .

(3.94)

We may view the last two lines of (3.93) as “effective torsions”. They satisfy the

desired properties (2.28). In this “effective” point of view, the “torsion” should

be defined from the difference, L̂X(∇̇) − L̂X(∂̇), instead of the trivial one (3.59),

L̂X(∇̇)−L̂X(Ḋ) = 0. For further related discussion, we refer readers to section 3.4.2

of [25].

We also note that only the last line, i.e. the six-index projection of ΩḊĖḞ , may de-

pend on the internal coordinates, which could be problematic. However, as seen

in (3.94), it is easy to see that this potentially dangerous internal coordinate de-

pendency disappears thoroughly inside the completely covariant derivatives, listed

in (3.77), (3.78), (3.79) and (3.80). This cancellation further implies that the com-

pletely covariant curvatures (3.83) are also independent of the internal coordinates,

– 34 –



J
H
E
P
0
8
(
2
0
1
5
)
0
8
4

since the completely covariant curvatures can be constructed from the quadratic com-

pletely covariant differential operators, see (3.89) with (3.80).

The above expression of the effective connection (3.93) is also comparable to the

torsionful connection proposed by Berman and Lee in [29]. With the intention of

handling the twisted generalized Lie derivative [27, 29], i.e. (3.54), they introduced

torsions by clever guess work. Their torsionful connection differs from our effective

connection (3.93). Yet, it nevertheless satisfies (3.94) and the difference amounts

to certain six-index projection terms. Accordingly, their proposal is practically con-

sistent with our result. A novel contribution of the present work is to derive the

effective connection (3.93) straightforwardly by applying the U-twisting ansatz (3.3)

to the semi-covariant formalism, without any ambiguity.

4 Twisted supersymmetric double field theory

Here we present explicitly half-maximal (i.e. sixteen) and maximal (i.e. thirty two) super-

symmetric gauged double field theories as the twists of the previously constructed N = 1

and N = 2, D = 10 supersymmetric double field theories. All the fields satisfy the twista-

bility conditions, (3.46)–(3.50), and in the case of the maximal supersymmetric twist, one

extra condition, i.e. (3.91) must be also met in order to ensure both the R-R gauge sym-

metry and the 32 supersymmetries unbroken.

4.1 Half-maximal supersymmetric gauged double field theory

After replacing SABCD by GABCD and adding section-condition-vanishing purely bosonic

terms of (2.75), we twist the N = 1 D = 10 SDFT which was constructed in [36] to the

full order in fermions. The twist leads to a half-maximal supersymmetric gauged double

field theory of which the Lagrangian is

L̇Half-maximal
Twisted SDFT = e−2ḋ

[

1

4
Ġpq

pq + i
1

2
ρ̄γpḊpρ− iψ̄p̄Ḋp̄ρ− i

1

2
ψ̄p̄γqḊqψp̄

]

. (4.1)

Each term in the Lagrangian is completely covariant with respect to the twisted diffeo-

morphisms, (3.37) or (3.54), the Spin(1, 9)× Spin(9, 1) local Lorentz symmetries, and a

subgroup of O(10, 10) which preserves the structure constant, fȦḂĊ . Being completely

covariant, each term is also independent of the internal coordinates.

The leading order half-maximal (i.e. sixteen) twisted supersymmetry transformation

rules are, for the twisted bosons,

δεḋ = −i
1

2
ε̄ρ , δεV̇Ap = −i ˙̄VA

q̄ ε̄γpψq̄ , δε
˙̄VAp̄ = +iV̇A

q ε̄γqψp̄ , (4.2)

and for the ‘untwisted’ fermions,

δερ = −γpḊpε , δεψp̄ = Ḋp̄ε . (4.3)

– 35 –



J
H
E
P
0
8
(
2
0
1
5
)
0
8
4

The supersymmetry works, as the induced leading order variation of the Lagrangian van-

ishes, up to total derivatives and the twistability conditions, thanks to (3.89),

δεL̇
Half-maximal
Twisted SDFT≡−ie−2ḋρ̄

[

(γpḊp)
2+Ḋp̄Ḋ

p̄+
1

4
Ġpq

pq

]

ε+ ie−2ḋψ̄p̄
[

Ġp̄rq
rγq+[Ḋp̄, γ

qḊq]
]

ε≡0 .

(4.4)

As discussed at the end of section 3.2, the leading order supersymmetric invariance is

sufficient to guarantee the full order completion. Outsourcing from the full order untwisted

N = 1 D = 10 SDFT [36], we only need to add the quartic fermions therein to the twisted

Lagrangian (4.1) and the cubic fermions to the twisted supersymmetry transformation rules

for the fermions (4.3).

As in the untwisted SDFT [36], the conventional Rarita-Schwinger term is forbidden,

and this is due to the hybrid nature of the gravitino indices, ψα
p̄ : one Spin(9, 1) vectorial

and the other Spin(1, 9) spinorial. Simply they cannot be mixed. Nonetheless, the N = 1

D = 10 SDFT reduces consistently to the minimal supergravity in ten-dimensions after

the diagonal gauge fixing, Spin(1, 9)×Spin(9, 1) → Spin(1, 9)D , see the appendix of [36]

for details.

It is worth while to note from the Z2 symmetry which exchanges the two spin groups,

Spin(1, 9) ↔ Spin(9, 1), there is a parallel formulation of the half-maximal SDFT,

L̇Half-maximal
Twisted SDFT = e−2ḋ

[

−
1

4
Ġp̄q̄

p̄q̄ − i
1

2
ρ̄′γ̄p̄Ḋp̄ρ

′ + iψ̄′pḊpρ
′ + i

1

2
ψ̄′pγ̄ q̄Ḋq̄ψ

′

p

]

. (4.5)

The supersymmetry is realized by

δεḋ = −i
1

2
ε̄′ρ′ , δεV̇Ȧp = +iε̄′γ̄Ȧψ

′

p , δε
˙̄VȦp̄ = −iε̄′γ̄p̄ψ

′

Ȧ
, δερ

′ = −γ̄p̄Ḋp̄ε
′ , δεψ

′

p = Ḋpε
′ .

(4.6)

4.2 Maximal supersymmetric gauged double field theory

The twisting of the N = 2 D = 10 SDFT which was constructed to the full order in

fermions in [37], leads to the following maximal supersymmetric gauged double field theory

Lagrangian,

L̇Maximal
Twisted SDFT = e−2ḋ

[

1

8
(Ġpq

pq − Ġp̄q̄
p̄q̄) +

1

2
Tr(Ḟ ¯̇

F)− iρ̄Ḟρ′ + iψ̄p̄γqḞ γ̄
p̄ψ′q + i

1

2
ρ̄γpḊpρ

−iψ̄p̄Ḋp̄ρ− i
1

2
ψ̄p̄γqḊqψp̄ − i

1

2
ρ̄′γ̄p̄Ḋp̄ρ

′ + iψ̄′pḊpρ
′ + i

1

2
ψ̄′pγ̄ q̄Ḋq̄ψ

′

p

]

.

(4.7)

As in the half-maximal case (4.1), each term in the Lagrangian is independent of the inter-

nal coordinates, and is completely covariant with respect to the twisted diffeomorphisms,

the Spin(1, 9)× Spin(9, 1) local Lorentz symmetries, the structure constant preserving

subgroup of O(10, 10), and further the R-R gauge symmetry provided the extra condition

of (3.91),

δC = Ḋ+Λ −→ δḞ = (Ḋ+)
2Λ ≡ −

1

24
fȦḂĊf

ȦḂĊΛ ≡ 0 . (4.8)
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The leading order maximal (i.e. thirty two) twisted supersymmetry transformation rules

are, for the bosons,

δεḋ = −i
1

2
(ε̄ρ+ ε̄′ρ′) , δεV̇Ȧp = i ˙̄VȦ

q̄(ε̄′γ̄q̄ψ
′

p − ε̄γpψq̄) , δε
˙̄VȦp̄ = iV̇Ȧ

q(ε̄γqψp̄ − ε̄′γ̄p̄ψ
′

q) ,

δεC = i
1

2
(γpεψ̄′

p − ερ̄′ − ψp̄ε̄
′γ̄p̄ + ρε̄′) + Cδεḋ−

1

2
( ˙̄V Ȧ

q̄ δεV̇Ȧp)γ
(11)γpCγ̄ q̄ ,

(4.9)

and for the fermions,

δερ = −γpḊpε , δερ
′ = −γ̄p̄Ḋp̄ε

′ , δεψp̄ = Ḋp̄ε+ Ḟ γ̄p̄ε
′ , δεψ

′

p = Ḋpε
′ + ¯̇

Fγpε . (4.10)

Ignoring total derivatives and up to the twistability conditions, the supersymmetric in-

finitesimal variation of the Lagrangian is, from (3.87), (3.88), (3.89), (3.90) and the appen-

dices of [37],

δεL̇
Maximal
Twisted SDFT ≡ i

1

8
e−2ḋ(ρ̄ε−ρ̄′ε′)(Ġpq

pq+Ġp̄q̄
p̄q̄)−i

1

2
e−2ḋ(ψ̄q̄γpε+ψ̄′pγ̄ q̄ε′)(Ġprq̄

r−Ġpr̄q̄
r̄)

+ i
1

2
e−2ḋTr

[

(ρ′ε̄+ ψ′

pε̄γ
p + ε′ρ̄+ γ̄p̄ε′ψ̄p̄)(D+)

2C
]

+ i
1

8
e−2d(ε̄γpψq̄ − ε̄′γ̄q̄ψ

′

p) Tr
(

γpḞ−γ̄
q̄Ḟ−

)

≡ i
1

48
e−2ḋ

(

ρ̄ε− ρ̄′ε′ + ε̄Cρ′ + ε̄γpCψ′

p + ρ̄Cε′ + ψ̄p̄Cγ̄
p̄ε′
)

× fȦḂĊf
ȦḂĊ

+ i
1

8
e−2d(ε̄γpψq̄ − ε̄′γ̄q̄ψ

′

p) Tr
(

γpḞ−γ̄
q̄Ḟ−

)

.

(4.11)

Here Ḟ− denotes the (leading order) self-dual part of the R-R field strength, cf. (2.110),

Ḟ− := (1− γ(11))Ḟ . (4.12)

Thus, requiring the extra condition (3.91) which we recall here,

fȦḂĊf
ȦḂĊ ≡ 0 , (4.13)

the action is supersymmetric invariant modulo the self-duality,14 up to surface integrals.

Once again, the leading order supersymmetric invariance guarantees the full order

completion.

4.3 Explicit comparison with the untwisted case

To compare with the untwisted DFT and to identify the newly added terms after the

U-twist, we dismantle the U-derivatives, ḊȦ, explicitly and obtain up to the twistability

14For consistency , the supersymmetric variation of the self-duality relation is, even in the full order

supersymmetric completion, precisely closed by the gravitino equations of motion [37].
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conditions,

+Ġpq
pq ≡

1

16
ḢȦḂ ∂̇ȦḢĊḊ∂̇ḂḢ

ĊḊ +
1

4
ḢȦḂ ∂̇ĊḢȦḊ∂̇

ḊḢḂĊ −
1

2
∂̇Ȧ∂̇ḂḢ

ȦḂ

− 2ḢȦḂ ∂̇Ȧḋ∂̇Ḃ ḋ+ 2ḢȦḂ ∂̇Ȧ∂̇Ḃ ḋ+ 2∂̇ȦḢ
ȦḂ ∂̇Ḃ ḋ

+
1

8
fȦḂĊf

ȦḂ
ḊḢ

ĊḊ −
1

24
fȦḂĊfḊĖḞ Ḣ

ȦḊḢḂĖḢĊḞ −
1

4
fȦḂĊḢ

ḂḊḢĊĖ ∂̇ḊḢĖ
Ȧ

+
1

12
fȦḂĊf

ȦḂĊ ,

−Ġp̄q̄
p̄q̄ ≡

1

16
ḢȦḂ ∂̇ȦḢĊḊ∂̇ḂḢ

ĊḊ +
1

4
ḢȦḂ ∂̇ĊḢȦḊ∂̇

ḊḢḂĊ −
1

2
∂̇Ȧ∂̇ḂḢ

ȦḂ

− 2ḢȦḂ ∂̇Ȧḋ∂̇Ḃ ḋ+ 2ḢȦḂ ∂̇Ȧ∂̇Ḃ ḋ+ 2∂̇ȦḢ
ȦḂ ∂̇Ḃ ḋ

+
1

8
fȦḂĊf

ȦḂ
ḊḢ

ĊḊ −
1

24
fȦḂĊfḊĖḞ Ḣ

ȦḊḢḂĖḢĊḞ −
1

4
fȦḂĊḢ

ḂḊḢĊĖ ∂̇ḊḢĖ
Ȧ

−
1

12
fȦḂĊf

ȦḂĊ .

(4.14)

It follows that the sum, Ġpq
pq+ Ġp̄q̄

p̄q̄ = 1
6fȦḂĊf

ȦḂĊ , indeed gives (3.88), and the difference

reads

Ġpq
pq − Ġp̄q̄

p̄q̄

≡
1

8
ḢȦḂ ∂̇ȦḢĊḊ∂̇ḂḢ

ĊḊ +
1

2
ḢȦḂ ∂̇ĊḢȦḊ∂̇

ḊḢḂĊ − ∂̇Ȧ∂̇ḂḢ
ȦḂ

− 4ḢȦḂ ∂̇Ȧḋ∂̇Ḃ ḋ+ 4ḢȦḂ ∂̇Ȧ∂̇Ḃ ḋ+ 4∂̇ȦḢ
ȦḂ ∂̇Ḃ ḋ

+
1

4
fȦḂĊf

ȦḂ
ḊḢ

ĊḊ −
1

12
fȦḂĊfḊĖḞ Ḣ

ȦḊḢḂĖḢĊḞ −
1

2
fȦḂĊḢ

ḂḊḢĊĖ ∂̇ḊḢĖ
Ȧ .

(4.15)

In the above, i.e. (4.14) and (4.15), the first two lines on the right hand sides essentially

correspond to the original untwisted DFT Lagrangian [4] i.e. (2.98) written in terms of the

generalized metric. The third line then matches with the literature [21, 22, 27, 29, 50]. The

last lines in (4.14) correspond to the DFT cosmological constant [35] which is apparently

the special feature of the half-maximal supersymmetric DFT [21, 22, 27, 29]. Depending

on the choice of +Ġpq
pq or −Ġp̄q̄

p̄q̄ we may freely fix the sign of it.

It is further worth while to note

Ḟ = Ḋ+C = Ḋ+C

∣

∣

∣

Ḋ
≡ Ḋ+C

∣

∣

∣

∂̇
+

1

12
fpqrγ

pqrC −
1

4
fpq̄r̄γ

pCγ̄ q̄r̄

−
1

12
fp̄q̄r̄γ

(11)Cγ̄p̄q̄r̄ +
1

4
fpqr̄γ

(11)γpqCγ̄ r̄ ,

(4.16)

γpḊpρ = γpḊpρ
∣

∣

∣

Ḋ
≡ γpḊpρ

∣

∣

∣

∂̇
+

1

12
fpqrγ

pqrρ ,

Ḋp̄ρ = Ḋp̄ρ
∣

∣

∣

Ḋ
≡ Ḋp̄ρ

∣

∣

∣

∂̇
+

1

4
fp̄qrγ

qrρ ,

γqḊqψp̄ = γqḊqψp̄

∣

∣

∣

Ḋ
≡ γqḊqψp̄

∣

∣

∣

∂̇
+

1

12
fqrsγ

qrsψp̄ + frp̄q̄γ
rψq̄ ,

(4.17)
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and

γ̄p̄Ḋp̄ρ
′ = γ̄p̄Ḋp̄ρ

′

∣

∣

∣

Ḋ
≡ γ̄p̄Ḋp̄ρ

′

∣

∣

∣

∂̇
+

1

12
fp̄q̄r̄γ̄

p̄q̄r̄ρ′ ,

Ḋpρ
′ = Ḋpρ

′

∣

∣

∣

Ḋ
≡ Ḋpρ

′

∣

∣

∣

∂̇
+

1

4
fpq̄r̄γ̄

q̄r̄ρ′ ,

γ̄ q̄Ḋq̄ψ
′

p = γ̄ q̄Ḋq̄ψ
′

p

∣

∣

∣

Ḋ
≡ γ̄ q̄Ḋq̄ψ

′

p

∣

∣

∣

∂̇
+

1

12
fq̄r̄s̄γ̄

q̄r̄s̄ψ′

p + fr̄pqγ̄
r̄ψ′q .

(4.18)

As expected from the consistency of the “effective connection”, (4.17) and (4.18) agree

with Berman and Lee [29], while (4.16) is a new result we report in this work.

5 Discussion

In this paper, we have successfully twisted the semi-covariant formulations of the N = 2

and the N = 1, D = 10 SDFT constructed in [36, 37], and systematically derived the

gauged maximal and half-maximal supersymmetric double field theories, (4.1) (4.5), (4.7),

along with their supersymmetry transformation rules, (4.2), (4.3), (4.9), (4.5), (4.10). Our

derivation is systematic in the sense that, we only applied the twisting ansatz (3.3) to the

untwisted SDFT of [36, 37], and then without any ambiguity the gauged supersymmetric

double field theories were straightforwardly derived. Further, just like the untwisted SDFT

yet now subject to the twistability conditions, (3.46)–(3.50) and also (3.91) for the maximal

supersymmetric twist, each term in the constructed Lagrangian is completely covariant.

Namely, the NS-NS curvature term, the fermionic kinetic terms and the R-R kinetic term

are all completely covariant, with respect to the twisted diffeomorphisms, the Spin(1, 9)×

Spin(9, 1) local Lorentz symmetries, the R-R gauge symmetry for the maximal case, and

a subgroup of O(10, 10) which preserves the structure constant. The twofold Lorentz

symmetries are ‘local’ with respect to the dimensionally reduced external spacetime. The

twisted and hence gauged SDFTs are completely fixed by requiring the supersymmetry to

be unbroken, in the precisely same manner as the untwisted SDFTs.

The nilpotency of the twisted R-R cohomology differential operators (3.90), (3.91),

implies the Bianchi identity for the twisted R-R flux,

Ḋ+Ḟ = (Ḋ+)
2C ≡ 0 . (5.1)

As demonstrated in the section 4.3 of [38], one may take the diagonal gauge fixing of the

local Lorentz symmetry, expand the R-R potential in terms of the conventional p-form

fields coupled to gamma matrices in a ‘democratic’ manner [51], and compute the R-R

field strengths explicitly. The above Bianchi identity is then naturally expected to produce

the ‘tensor hierarchy’ [52–54].

It is worth while to note that, while the twist breaks the O(10, 10) T-duality to its

subgroup which preserves the structure constant, fȦḂĊ , the Spin(1, 9) × Spin(9, 1) local

Lorentz symmetries are still all unbroken after the twist and the dimensional reduction.

When the twisting data, UA
Ȧ, λ, do not satisfy the original section condition, the

corresponding background cannot be identified as a solution to the untwisted ‘D = 10’

supersymmetric double field theories. This might well motivate one to wonder about the
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existence of unknown genuinely ten-dimensional “generalized double field theory” with

“relaxed” section conditions. However, the twistability conditions seem to admit only lower

dimensional sections, as the non-trivial solutions. In those lower dimensions, the standard

section condition must be obeyed, see (3.46), and its doubled coordinates are still to be

gauged. We regard the twist not as an indication of the existence of any unknown D = 10

“generalized DFT” but as a lower dimensional deformation of the known rigid untwisted

D = 10 theories, i.e. [36, 37]. A well known such example is the massive supersymmetric

deformations of the super Yang-Mills quantum mechanics [55, 56]. The deformations do not

necessarily mean that the parental super Yang-Mills field theories can be likely deformed.

In this work, the R-R sector is taken as O(10, 10) singlet and assumes the Spin(1, 9)×

Spin(9, 1) local Lorentz bi-spinorial representation [25, 26, 37, 38, 57–60].15 This made

the twisting of the R-R sector rather trivial. Essentially, the R-R potential, Cα
ᾱ , is not

twisted, like other fermions. Only the R-R field strength, Ḟ = Ḋ+C, is influenced by the

twist through the twisted nilpotent differential operator. We expect that this feature should

change when the U-duality group is twisted in M-theory setup, but this goes beyond the

scope of the present work.
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