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Abstract

The influence of host genetics on susceptibility to Plasmodium falciparum malaria has been extensively studied
over the past twenty years. It is now clear that malaria parasites have imposed strong selective forces on the
human genome in endemic regions. Different genes have been identified that are associated with different malaria
related phenotypes. Factors that promote severity of malaria include parasitaemia, parasite induced inflammation,
anaemia and sequestration of parasitized erythrocytes in brain microvasculature.
Recent advances in human genome research technologies such as genome-wide association studies (GWAS) and
fine genotyping tools have enabled the discovery of several genetic polymorphisms and biomarkers that warrant
further study in host-parasite interactions. This review describes and discusses human gene polymorphisms
identified thus far that have been shown to be associated with susceptibility or resistance to P. falciparum malaria.
Although some polymorphisms play significant roles in susceptibility to malaria, several findings are inconclusive
and contradictory and must be considered with caution. The discovery of genetic markers associated with different
malaria phenotypes will help elucidate the pathophysiology of malaria and enable development of interventions or
cures. Diversity in human populations as well as environmental effects can influence the clinical heterogeneity of
malaria, thus warranting further investigations with a goal of developing new interventions, therapies and better
management against malaria.

Introduction: severity of malaria is influenced by
host genetics
Plasmodium falciparum malaria is a major cause of
mortality and morbidity, particularly in endemic areas of
sub-Saharan Africa [1]. The disease aetiology is variable
and is attributable to environmental factors, host genet-
ics and parasite virulence [2]. Variations in severity of P.
falciparum infections considered as different phenotypes
include hyper or asymptomatic parasitaemia (proportion
of red blood cells that are parasitized), severe malaria
anaemia (SMA) and cerebral malaria (CM). Host genetic
factors contribute to the variability of malaria pheno-
types [3] and thus, should help to determine some of
the mechanisms involved in susceptibility to P. falci-
parum infection. The knowledge gained since 1980s
using molecular genetics approaches has produced
undisputed evidence about polymorphisms associated

with malaria resistance and their complex interactions.
Indeed, several gene mutations and polymorphisms in
the human hosts confer survival advantage and have
increased in frequency through natural selection over
generations. These include sickle cell trait (HbAS) and
haemoglobinopathies such as thalassaemias and glucose-
6-phosphate dehydrogenase (G6PD) deficiency (Table 1)
[4]. In the last decade, the development of molecular
biology technologies and the completion of the human
genome project have identified other loci that appear to
directly or indirectly affect malaria susceptibility by
modulation of the immune response, or by interfering
with host-parasite interactions. This has provided insight
into a dual process of natural selection and co-adapta-
tion of polymorphisms occurring in the malaria parasite
and its human host, to maintain genetic diversity. This
review discusses recent findings on genetic modifiers
shown to be significantly associated with and relevant to
the diverse clinical outcomes of P. falciparum malaria. It
is focused on the new gene polymorphisms found via
genome-wide (GW) association studies (GWAS), case
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control studies on different populations and provides
new perspectives for the different studies presented.

Gene mutations involved in susceptibility and resistance
to P. falciparum malaria
It has been shown that severity of several malaria infec-
tions (such as asymptomatic, CM and SMA) varies sig-
nificantly between individuals and between populations
[5]. Several gene mutations causing inherited diseases or
traits have been reported to influence malaria severity
(Table 1) [6]. Mutations in these genes have been linked
to erythrocytes including haemoglobin (Hb) variants, or
related to proteins such as haptoglobin and Nitric Oxide
metabolism. For example, the heterozygote HbAS (sickle
cell trait) which protects against severe malaria (SM)
[7-10] is widespread in malaria endemic regions as a
result of natural selection over generations [11]. It has
also been shown that the rate limiting enzyme haem
oxygenase I (HO-1), responsible for the catabolism of
free haem in the body, plays an important moderator
role in malaria and is also important in the pathophy-
siology of haemolytic diseases, such as sickle cell disease
[12-15]. Epistatic interactions between genetic disorders

of haemoglobin (HbAS, thalassaemia, HbE, etc.) show
evidence of heterozygote protection from malaria (Table
1) [16] and protection against malaria by the sickle cell
trait is removed if there is co-inheritance of alpha-tha-
lassaemia [17]. These studies emphasize the underlying
complexity of the field and therefore stress the need for
newer methods of genomic analysis. Although malaria
resistance gene mutations have been well studied, genes
associated with red cell disease severity deserve further
scrutiny.

Genome-wide linkage and association studies in malaria
Some landmark genome wide linkage (GWL) and asso-
ciation studies (GWAS) have been conducted in recent
years in African, European, Asian European and Asian
populations. Application of GWAS to populations in
Africa could provide insights into pathways controlling
resistance to malaria as well as genetic origins of related
diseases.
A GW gene expression study conducted by Griffiths et

al [18] showed that a cluster of genes were expressed in
correlation with absolute neutrophil count. The neutro-
phil-related gene region contained genes predicted to

Table 1 Genetic mutations involved in susceptibility/resistance to P.falciparum malaria

Gene (Symbol) Phenotype Proposed protective mechanisms References

Haemoglobin C
(HbC)

↓UM & ↓SM Reduced cyto-adherence of infected erythrocytes [29,47]

Haemoglobin E
(HbE)

↓SM,
↓parasitaemia

Reduced erythrocyte invasion by merozoites, lower intra-erythrocytic parasite growth, and
enhanced phagocytosis of infected erythrocytes.

[48,49]

Haemoglobin S
(HbS)

↓UM & ↓SM Selective sickling of infected sickle trait erythrocytes leading to enhanced clearance by the
spleen. Reduced erythrocyte invasion, early phagocytosis, and inhibited parasite growth
under oxygen stress in venous micro vessels. Enhancement of innate and acquired

immunity.

[7,50]

a-thalassaemia
(a-thal)

↓SM & ↓SMA Reduced resetting. Increased micro-erythrocyte count in homozygotes reduces the amount
of haemoglobin lost for given parasite density, thus protecting against severe anaemia.

[51-53]

b-thalassaemia
(b-thal)

↓SM [54,55]

Glucose-6-Phosphate
dehydrogenase (G6PD)

↓UM & ↓SM Increased vulnerability of the G6PD deficient erythrocyte to oxidant stress causes its
protection against parasitization.

[56-59]

Pyruvate kinase (PKLR) ↓parasitaemia Invasion defect of erythrocytes and preferential macrophage clearance of ring-stage-
infected erythrocytes.

[60]

Ovalocytosis (SLC4A1) ↓SM & ↓CM Inhibition of merozoite entry into the red cell, impairment of intracellular parasite growth
and prevention of the erythrocyte lysis that occurs with parasite maturation, leading to

release of merozoites into the blood stream.

[61,62]

Elliptocytosis ↓SM [63]

Glycophorins A (GYP ABC) ↓SM [64,65]

Blood Groups
(ABO)

↓SM Reduced P. falciparum rosetting. [66-68]

Haptoglobin
(HP)

↓SM Oxidative damage to uninfected cells might be more marked in HP polymorphic
individuals since HP proteins bind less efficiently to Hb, increasing premature destruction

of erythrocytes and stimulating cytokine release by these circulating cells.

[69-71]

Nitric oxide synthase 2
(NOS2)

↓SM Increased NO production induces Th1 cytokines which activate macrophages and could
thus be an anti-malarial resistance mechanism.

[72,73]

haem oxygenase I (HO-1) ↓CM Release of free haem in the blood stream. [13,14]
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encode mediators of innate and adaptive immunity,
including those for cytokine receptors (IL1R2, IL18R1,
and IL6R), Toll-like receptors (TLR1 and TLR4), heat-
shock proteins (HSPA1A and HSPA1L), the acute-phase
proteins ferritin (FTL) and alkaline phoshatase (ALPL),
and intracellular signaling factors (NFKBIA, JUNB, and
FOSL2). The region also contained genes linked with
neutrophil activation, such as those for grancalcin
(GCA), a degranulation marker (CD66), and MAPK14
kinase. Many other genes, whose transcript levels were
previously noted in human leukocyte models of in vitro
bacterial infection, were also present (e.g., those for
adrenomedullin, pre-B cell colony enhancing factor, and
tumor necrosis factor-associated inducible protein) [18].
Based on changes in expression patterns of these genes,
febrile and convalescent children could be assigned to
distinct groups, indicating that neutrophil response
plays a role in acute malarial infection. A second gene
cluster was found to be associated with parasite density
such that children with malaria could be distinguished
from non-malaria patients, on the basis of different
expression profiles. The cluster included genes encoding
for pro-inflammatory molecules, markers of cellular
stress and pro-apoptotic mediators [18]. Results also
identified host gene responses (HMOX1, HSPCB, and
TNFRSF6) that were related to the level of plasmodium
parasitaemia. These studies identified several interesting
candidate genes for further association studies to deter-
mine their roles in malarial immunity and pathogenesis.
GW linkage analyses of malaria infection severity

revealed significant linkages to chromosome 10p15.3-14
and chromosome 13q [19]. Despite previous convincing
results, no evidence of linkage was obtained for the
5q31 region to parasite density. Interestingly, a weak sig-
nal of linkage was observed for this region to malarial
anaemia. The authors emphasized the difficulty of accu-
rately defining the phenotype of malaria infection that
could partially explain the divergence of linkage results
[20].
Another GW linkage screening was carried out in a

longitudinal survey of parasitological and clinical data
from two independent Senegalese villages, Dielmo and
Ndiop, that differ in ethnicity, malaria transmission and
endemicity [21]. Analysis of several malaria-related phe-
notypes both during clinical disease and asymptomatic
infection showed evidence of strong genetic contribution
to both phenotypes studied. Asymptomatic parasite den-
sity showed linkage to chromosome 5q31, confirming
previous findings [20]. Suggestive linkage values were
also obtained: episodes of clinical malaria disease were
linked to chromosome 5p15 and 13q13, while the maxi-
mum parasite density during asymptomatic infection
was linked to chromosome 12q21. While regions of
linkage showed little overlap with genes known to be

involved in SM, the four regions appeared to overlap
with regions linked to asthma or atopy related traits,
suggesting that common immune related pathways may
be involved. These newly identified linkage regions are
interesting, but will require validation by independent
studies. Also, fine mapped association studies are
required to identify the genes underlying these linkages
[21]. Ockenhouse et al investigated aspects of the ear-
liest responses to malaria infection at the molecular
level, and suggested an important role of innate and
adaptive immune responses in different stages of infec-
tion [22].
Several inter-ethnic comparative studies showed that

the Fulani population from West Africa is more resis-
tant to P. falciparum malaria than are other sympatric
ethnic groups [23]. The analysis of the immune response
to P. falciparum sporozoite and blood stage antigens, as
well as non-malaria antigens, revealed higher immune
reactivity in the Fulani and that higher resistance to
malaria among them could derive from a functional def-
icit of T-regulatory cells [23]. In this study, the results
suggest that T-regulatory cell activity could be central in
the control of malaria infection also in populations
exposed to naturally high P. falciparum transmission.
Furthermore, this study highlights the existence of clear-
cut differences in strategic pathways of the immunore-
gulatory network between sympatric populations differ-
ing in their genetic background and degree of
susceptibility to malaria. A higher resistance against P.
falciparum malaria could have been the driving selective
force of this disorder.
Jallow et al conducted a GWAS of SM in 2,500 chil-

dren from The Gambia, which was replicated in an
additional 3,400 children [24]. Besides the considerable
population stratification found, their result show that
signals of association at known malaria resistance loci
were greatly attenuated due to weak linkage disequili-
brium (LD). Conversely, the GW association analysis did
not identify any of the well-known erythrocyte variants
that have been selected by malaria, other than HbS.
They explained this partly by population genetic factors;
for example, the Duffy FY*O allele has reached fixation
in The Gambia, whereas other variants, such as those
affecting haemoglobin C and Southeast Asian ovalocyto-
sis, are rare or absent in this population. No associations
were found at G6PD and HBA1-HBA2, the loci for glu-
cose-6-phosphate deficiency and b+-thalassaemia,
respectively, possibly due to the lack of fine mapping of
the SNPs (single nucleotide polymorphisms) dataset
within these regions. The group genotyped the SNP
rs1050828, a G6PD coding polymorphism, that was sug-
gested to be a marker for protection against SM [25].
The minor allele frequency of rs1050828 in the Gam-
bian control sample was 0.03, considerably lower than
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for samples from Kenya (0.18) and Malawi (0.19) [24].
The power to detect association with rs1050828 in The
Gambia was affected by this low allele frequency, and
the results were consistent with a modest protective
effect although not statistically significant.
The rs8176719 genotype (a splice-site insertion in the

ABO gene) is consistent with previous studies, which
found that individuals of different populations who are
not of blood group O, have 1.2-fold increased risk of
SM [26]. Other SNP associations (on CD36, CD40LG,
CR1, ICAM1, IL22, NOS2, and TNF) have been reported
for malaria, but have not been conclusively replicated in
large studies across different populations, and are mostly
thought to be markers rather than true causal variants.
The authors attribute this in part to low tagging effi-
ciency of the Affymetrix 500 K array used and low sta-
tistical power, particularly low allele frequencies. In
addition, they identified several significant association
regions other than HBB (Hb-beta locus): on chromo-
some 2q37 (with the closest genes SPATA3,
LOC257407, PSMD1 and GPR55), on chromosome 5p12
(in a region that has a number of genes encoding pro-
teins of unknown function) and on chromosome 14q21
(in an area with few genes) [26]. Further investigations
are needed to prove that polymorphisms in these genes
significantly affect malaria outcomes.

Gene polymorphisms associated with protection against
P. falciparum malaria
Recently published polymorphisms that are significantly
associated with susceptibility and resistance to P. falci-
parum malaria are summarized in additional file 1. The
large majority of the polymorphisms found in these
reports were mainly genes directly or indirectly involved
with host immunity, including human leukocyte antigen
system (HLA) genes, cytokine genes, complement regu-
latory genes and endothelial receptor genes. These poly-
morphisms do not cause host genetic pathology
themselves, but are associated with malaria severity. A
description of the function of their corresponding gene
products is summarized in Additional file 2.
Although malaria remains a devastating disease

responsible for high global mortalities, only few associa-
tion studies have been reported on malaria phenotypes
and polymorphisms of candidate loci. It is well estab-
lished that in some cases as in haemoglobinopathies,
despite the lack of a consensus on the mechanism of
protection, the actual protective role has been identified
and solid epidemiological evidence has been reported
(Table 1). However, much information remains to be
obtained for many genes related to the red cell surface,
oxidative stress, cyto-adherence and immune response
associated with malaria. In fact, only a few of the asso-
ciations reviewed in Additional file 1 have been tested

in independent studies in different populations and even
when replication has been attempted, results have often
been conflicting; either the initial finding could not be
replicated or a polymorphism initially associated with
increased risk of SM in a study was associated with pro-
tection against SM in another study. Finally, in some
instances the genotypic and/or haplotypic patterns of
association varied across different studies/populations
(Additional file 1). These inconsistencies can be
explained in several ways:

Sample size and source
It has been established that GW screening conducted on
large sample sizes and in multiple populations have
greater potential to be more informative. Sometimes,
the lack of association can be a false negative result due
to lack of statistical power. Another difficulty is that in
most cases, when population based phenotype-genotype
relationships are studied, it is assumed that the popula-
tion is genetically isolated. The extensive genomic diver-
sity within Africa and across different continents
complicates the situation. Association signals for a geno-
typed variant could show different patterns in different
populations, due to local variation in haplotype structure
and linkage disequilibrium architecture. Furthermore, it
is important to emphasize that the genetic basis of sus-
ceptibility/resistance to malaria is due to a broad range
of susceptibility/protective genes, each resulting in small
population effects, which may be missed at low analyti-
cal power, such as low allele frequencies. In both cases,
the use of larger sample sizes would certainly be of
great value.

Population substructure and/or admixture
Inconsistency of results may also be due to issues of
population structure and/or admixture [27]. This is par-
ticularly true in African populations, where genetic
diversity is exceptionally high. Studies on the same
population but in different areas (endemic versus non-
endemic regions) have revealed differences in host
response to P. falciparum [28]. There is also the possi-
ble impact of variation in environment (climate, nutri-
tional status) which results in variation of pathogen
epidemiology and which becomes more relevant in the
rapidly changing socio-economic forces impacting these
populations. Furthermore, the lesson learned about
genetics of haemoglobinopathies illustrates how distinct
malaria resistant alleles have emerged in different popu-
lations due to selective pressure, with HbS being found
much more endemic in Africa (on four distinct haplo-
types) than in Asia, and the opposite for HbE, or again
with the relative prevalence of HbS and HbC varying
greatly between neighboring countries and even villages
[29]. Fine mapping of GW SNP studies in several
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different populations, and re-confirmed sequencing of
regions of special interest, could provide accurate repre-
sentations of the genetic background and, therefore, a
more effective interpretation of association results.

Variation in sampling methodology
Another very important cause of discrepancy is the way
severity of malaria is defined. Each of the reported stu-
dies classifies malaria severity on the basis of different
criteria and thus a common unified and systematic
international classification is absolutely needed. This
must be considered when studying a large number of
individuals across geographical populations. Factors like
age may have an important effect on results. Studies
that have both children and adults will yield very differ-
ent results from those involving only adults. The setting
where samples are collected may also impact results
(urban vs. rural, hospital/clinic based vs. population ran-
dom cluster sampling).
The establishment of a well-characterized tissue repo-

sitory with accompanying databases and a robust data-
sharing plan would be of great benefit for standardizing
phenotype definition, genotyping technology, experi-
mental and analytical plans across multiple sites, to
improve the power of the GW studies and ensure repro-
ducibility of the results.
A major driving force in this field of research has been

the recent availability of the genome variations data and
other information free on line. Databases like dbSNP
and Nucleotide, Genome and Entrez and PubMed among
others have helped scientists around the world, espe-
cially in Africa, to obtain uniform data on host genetics
and infectious diseases. Another factor is the benefit of
using high throughput technologies and automated
microarrays that can screen whole genomes simulta-
neously. This kind of costly research will only be possi-
ble if serious, consistent and strong collaborative effort
is encouraged. Infrastructure to conduct case-controlled
GW and multi-centre association studies on malaria
susceptibility and resistance must be established where
the disease in endemic. Such important studies are very
necessary and will provide new insights into the effects
of genetic variation on malaria susceptibility and on
molecular mechanisms for protective immune responses
[30]. However, some studies using these technologies
missed some of the significant associations unequivo-
cally determined by classical genetics [24] and the role
of regions of the genome involved in malaria resistance,
such as alpha-thalassaemia or G6PD deficiency was
missed. This raises doubts about the sensitivity of the
approach employed. The major limiting factor, at all
stages of GW association analysis in Africa, is the need
for population-specific data on genome sequence varia-
tion. In the near future, this limiting factor should be

overcome by advances in genome sequencing technolo-
gies, through initiatives such as the 1000 Genomes
Project.

Sensitivity of methods
Until GW studies picked up sickle cell trait as a bench
mark reference protective factor, utility of these studies
in understanding genes associated with malaria severity
continues to be limited to identifying only broad asso-
ciations within the genome. It will be beneficial to use
sickle cell trait to assess the power of GWAS. There is
also a need for associating gene polymorphism to
expressed protein variants using sensitive immunoassay
procedures that could identify clusters of biomarker
proteins associated with susceptibility and severity of
malaria. This approach could be used to establish panels
for predicting potentially fatal malaria. Multiplex immu-
noassay procedures and proteomic technologies should
be combined with GWAS and new diagnostics for
detecting susceptibility to fatal disease [31]. For example,
recent human and murine gene knock out studies sug-
gest that plasma levels of Interferon inducible protein
10 (IP-10; CXCL10) [32], soluble TNF receptor 2
(sTNF-R2) [33] and soluble Fas (sFas) [34] predict risk
of malaria related mortality and may be potential bio-
markers of CM severity. Additionally, angiogenic factors
such as vascular endothelial growth factor (VEGF) were
found to be protective against CM associated mortality
and may be considered for adjunctive therapy, to
improve treatment outcomes in CM patients [35]. Other
potential biomarker candidates are interleukin-10 (IL10)
and the Granulocyte colony-stimulating factor (G-CSF),
cytokines which are associated with susceptibility to
asymptomatic malaria during pregnancy [36]. Another
recent study has suggested a prominent role for CXCL4
and CXCL10 in the pathogenesis of fatal CM [37].
Clearly, assessment of polymorphisms associated with
these significant risk factors or prognostic biomarkers
could predict fatal disease outcomes and must be inves-
tigated in malaria endemic population. Recent studies
have implicated several other genes in the pathogenesis
of SMA, CM and placental malarial. It is very important
to determine if any gene polymorphisms are associated
with these candidate genes.
The Macrophage migration inhibitory factor (MIF) has

also been suggested to have a protective role in patho-
genesis of malaria [38]. MIF is a multifunctional cyto-
kine which is an important regulator of immune and
inflammatory responses in a number of human diseases,
such as sepsis, rheumatoid arthritis, cancer and inflam-
matory neurological diseases [39]. The potential role of
MIF in the pathogenesis of malaria anaemia became
apparent in an experimental study using a mouse model
in which high MIF levels were associated with malaria
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anaemia [40]. Human studies conducted on African
children reported lower levels of MIF in malaria infected
children compared with healthy asymptomatic children
[41]. Another study demonstrated a decline in MIF
levels during experimental malaria infection using
healthy European volunteers [42]. The role of circulating
MIF, gene polymorphisms as well as potential interac-
tions with other factors in the pathogenesis of CM and
its outcome, need to be further investigated.

Role of co-infection in hosts
Several gene pathways reported here are also involved in
host responses to bacterial infection. However, caution
must be exercised when defining severity phenotype.
For example, in high transmission areas most children
will have asymptomatic carriage of parasites in their
blood such that any acute illness may be ascribed to
malaria. It is becoming clear that many of these children
carry bacterial sepsis along with the malaria [43]. It will,
therefore, be necessary to check for bacterial infection
to exclude combined effects during recruitment of
volunteer participants in case control studies. Another
important factor is to determine whether individual
patients have multiple Plasmodium infections since each
species may present different etiologies. For example, it
would be very interesting to determine host factors
mediating susceptibility to Plasmodium vivax malaria,
which is fast becoming recognized as a major cause of
SM in Southeast Asia and elsewhere [44,45].

Gene polymorphisms associated with multiple diseases
A recent review of gene polymorphisms involved in dif-
ferent phenotypes of sickle cell disease [46] revealed
that many genes or pathways mediating sickle cell dis-
ease severity are also involved in malaria severity/resis-
tance. For example, the TNFa (-308A, rs1800629)
polymorphism, which reduces SM, CM, SMA and iron
deficiency anaemia, is also protective against large vessel
stroke in sickle cell disease. Findings such as these,
which reveal genetic similarities across related diseases,
will be valuable for identifying important diagnostic bio-
markers and for population comparisons.

Conclusion
It is clear that genetically-based alterations conferring
protection against malaria have led to co-adaptation of
various human populations with widespread malaria
parasites. This co-adaptative process has resulted in
benefits for host (protection) and parasite (reduced viru-
lence/chronicity). A global collaborative effort or con-
sortium must be made to collect information about
involvements of biomarkers in malaria susceptibility.
This collaboration should include phenotype and clinical
data as well as genomics, proteomics, metabolomics and

parasitomics. GW research on protective polymorphisms
against malaria will lead to better understanding of the
mechanisms underlying malaria severity, which can be
used in developing novel therapeutic solutions.

Additional material

Additional file 1: Review of gene polymorphisms reported to date
to be significantly associated the host phenotype of susceptibility/
resistance to P. falciparum malaria. ↑increase, ↓decrease, SM: Severe
Malaria. SMA: Severe Malaria Anaemia. CM: Cerebral Malaria. MM: Mild
Malaria. UM: Uncomplicated Malaria [74-121].

Additional file 2: Summary of gene functions [122-137].
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Haemoglobin AS or sickle cell trait; G6PD: glucose-6-phosphate
dehydrogenase; GW: genome-wide; SM: severe malaria; HLA: human
leukocyte antigen system; GWL: genome wide linkage; GWAS: genome wide
association studies; SNP: Single Nucleotide Polymorphism; LD: linkage
disequilibrium
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