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Abstract Like human walking, passive dynamic
walking—i.e. walking down a slope with no actuation except
gravity—is energy efficient by exploiting the natural dynam-
ics. In the animal world, neural oscillators termed central
pattern generators (CPGs) provide the basic rhythm for mus-
cular activity in locomotion. We present a CPG model, which
automatically tunes into the resonance frequency of the pas-
sive dynamics of a bipedal walker, i.e. the CPG model exhib-
its resonance tuning behavior. Each leg is coupled to its
own CPG, controlling the hip moment of force. Resonance
tuning above the endogenous frequency of the CPG—i.e.
the CPG’s eigenfrequency—is achieved by feedback of both
limb angles to their corresponding CPG, while integration of
the limb angles provides resonance tuning at and below the
endogenous frequency of the CPG. Feedback of the angular
velocity of both limbs to their corresponding CPG compen-
sates for the time delay in the loop coupling each limb to
its CPG. The resonance tuning behavior of the CPG model
allows the gait velocity to be controlled by a single parame-
ter, while retaining the energy efficiency of passive dynamic
walking.
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1 Introduction

Walking is an important function of the human movement
apparatus. Healthy people are not aware of the complexity
of walking; they walk with little effort, without consciously
thinking about it. During the stance phase, the stance leg
acts as an inverted pendulum with a mass on top. Therefore,
human walking is statically unstable. Thus, an interesting
question is how ‘human gait’ can be dynamically stable,
robust and energy efficient at the same time. In this study,
we focus on the energy efficiency of walking.

Observations of human walking show that most of the
muscles are only highly active at the beginning and end of
the stance and swing phase (Inman et al. 1981). Ballistic
gait models are based on these observations. They exploit
their natural dynamics: the legs behave as a jointed pen-
dulum, moving passively through the swing phase under
the action of gravity (Mochon and McMahon 1980). There-
fore, ballistic gait models are very energy efficient. However,
the lack of control during the swing phase gives them poor
robustness against perturbations. Even small perturbations
can accumulate during the swing phase into large foot place-
ment errors at heel strike. Hence, control is necessary during
the entire gait cycle in order to obtain robust gait, but should
leave the natural dynamics intact as much as possible in order
to obtain energy efficient gait. The latter is not the mainstream
starting-point for bipedal gait control, since path-following
control and control based on keeping the COP (center of pres-
sure) within the foot base of support are common practice in
robotics. However, this kind of control will force the actual
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walking cycle to differ from the natural walking cycle. This
costs a lot of energy and is therefore unlikely to be used in
human gait. Neural oscillators in the spinal cord, termed cen-
tral pattern generators (CPGs), are likely to play a key role in
providing energy efficient human gait, for the following rea-
sons: firstly, many animals use CPGs to control gait. CPGs
excite the muscles in a periodic fashion, giving rise to stable
locomotion. Most evidence of the existence of CPGs in ver-
tebrates comes from lamprey (e.g. Grillner et al. 1981), rats
(e.g. Cazalets et al. 1995; Sqalli-Houssaini et al. 1993), and
cats (e.g. Amemiya and Yamaguchi 1984; Shik et al. 1966);
for reviews see MacKay-Lyons (2002), Whelan (1996), and
Grillener et al. (1998). Secondly, it has been shown that a
simple model of a CPG is able to provide energy efficient
rhythmic single limb movement (Verdaasdonk et al. 2006,
2007b). Although no direct evidence of CPGs in the human
body has been found yet, indications of their existence are
present (e.g. see Dimitrijevic et al. 1998).

It has been shown in bipedal gait models (Taga 1995a;Taga
et al. 1991;Verdaasdonk et al. 2004b, 2007a) that mutual
entrainment of the CPGs with the musculo-skeletal system
and its environment creates a stable limit cycle which is quite
robust against perturbations (Taga 1995b; Verdaasdonk et al.
2007a). The robustness is caused by the coupling between
CPGs and musculo-skeletal system, which continuously
cause perturbed state variables to be pulled back towards
the limit cycle during the entire gait cycle.

The energy efficiency of CPG controlled gait has not been
considered up to now. In previous studies (Verdaasdonk et al.
2006, 2007b), it was shown that CPGs are very suitable for
energy efficient and robust rythmic single limb movement.
The CPGs entrain to reflex inputs, such as muscle length and
velocity. This means that the CPGs adapt their outputs (i.e.
frequency and amplitude) to the ‘mechanical oscillator’ (i.e.
the arm or leg) in such a way that stable rhythmic move-
ment is obtained, which is robust and energy efficient. The
energy efficiency is obtained by tuning into the resonance fre-
quency of the musculo-skeletal system. The type of afferent
feedback to the flexor and extensor centers of the CPG plays
a crucial role in obtaining this resonance tuning behavior
of the CPG. In this study, the ‘mechanical oscillator’ is a
simple gait model and we investigate whether the principles
of CPG-controlled energy efficient and robust rhythmic limb
movement shown in single limb movement (Verdaasdonk et
al. 2006, 2007b) also apply to walking.

Passive dynamic walking (McGeer 1990)—i.e. walking
down a slope with no actuation except gravity—is an extreme
form of ballistic walking (Mochon and McMahon 1980)
and is very energy efficient. Drawbacks of passive dynamic
walking are poor robustness, as shown by the small size of its
basin of attraction (Schwab and Wisse 2001), and of course
the lack of controllability. The goal of this study is to control
the quality of bipedal gait in terms of stride length, stride
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Fig. 1 The passive dynamic walker. The model has a large hip mass
mh relative to the mass of the feet mf . The legs have length lleg and the
hips have rotational stiffness Kh. The model is able to walk passively
down a slope α, for which gravity g supplies all the energy needed
to overcome impact losses. Foot-ground contact is modeled by damp-
ing Bx in the x-direction and by damping By and stiffness Ky in the
y-direction. The generalized co-ordinates are the hip angles θr and θl
and the co-ordinates of the hip mass xh and yh

period and thus velocity, while keeping the energy efficient
behavior of passive dynamic walking intact. To achieve this
goal, we start off with a passive dynamic walking model and
subsequently add biologically inspired control. This control
consists of a CPG tightly coupled to each hip joint.

2 Methods

In order to investigate if CPGs are able to maintain the energy
efficiency of passive dynamic walkers, we start off with a
passive dynamic walking model (Sect. 2.1). Subsequently,
each leg is locally coupled to its own CPG at the hip joint
(Sect. 2.2). This coupling is afferent and efferent, associated
with sensory feedback and motor control, respectively. The
total bipedal walker can be seen as two coupled oscillators.
One oscillator is the passive dynamic walker (Fig. 1) and the
other oscillator is the neural oscillator, which consists of one
CPG per hip joint (Fig. 2). By coupling these two oscillators
tightly, the combined system will oscillate at one frequency
and result in stable gait. The energy efficiency of the CPG-
controlled gait model is discussed in Sect. 2.3 and depends
on two factors. The first is the ability of the neural oscillator
to tune into the resonance frequency of the passive dynamic
walker, which is termed resonance tuning ability. The second
is the energy losses by damping, mainly caused by impact
during heel strike.

2.1 The passive dynamic walker

The passive dynamic walking model consists of two rigid legs
(Fig. 1). The legs are connected at the hip by a frictionless
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Fig. 2 The CPG model for leg j ( j = {r, l}). It has supra-spinal input
u0 and afferent input of leg angle θj and angular velocity ωj, which is
fed to the half-center model with gains gp and gd and time delay τc. The
leg angle is integrated by a leaking integrator with large time constant τi
and is fed to the half-center model with gain gi. The half-center model
is the basic rhythm generator, which outputs yFj and yEj are coupled to
the limb by efferent gains keF and keE to provide a hip moment of force
Mj from the torso

hinge joint and have point feet. The model only has three
point masses: one point mass mh at the hip and two smaller
point masses mf located at the feet. Since the walker does not
have knees, ground-clearance during swing phase is provided
artificially (“Appendix A”). The passive dynamic walker is
able to walk passively down a small slope α (i.e. positive
α means declination). In that case, gravity provides exactly
as much energy during the gait cycle as is lost by damping
(mainly at heel strike). The stride frequency of this walker—
its ‘resonance frequency’—is changed by adding rotational
hip stiffness Kh.

The model without hip stiffness (i.e. Kh = 0) resembles
minimalistic models of passive dynamic walking, such as the
‘simplest walking model’ (Garcia et al. 1998) and the ‘com-
pass gait model’ (Goswami et al. 1997). The major difference
between our model and most other passive dynamic walking
models (Borzova and Hurmuzlu 2004; Garcia et al. 1998;
Goswami et al. 1997; McGeer 1990; van der Linde 1999) is
the way that foot-ground contact is described. The ground
reaction force is modeled by viscous damping in both x- and
y-direction and stiffness only in y-direction (see “Appen-
dix A” for details). This makes investigation of walking on
different types of ground (e.g. a slippery surface) possible,
although this was not performed in this study. Most other
models make use of impact equations at heel strike, after
which the legs are switched and a new swing phase starts
(e.g. Schwab and Wisse 2001). Our model is a continuous-
time model, able to walk ‘forever’ instead of one step at a
time. We used the approach of Lagrange in order to construct
the equations of motion (see “Appendix B”). The equations
of motion are expressed in terms of four generalized co-ordi-
nates q = [xh yh θr θl]T, in which xh and yh are the co-ordi-
nates of the hip mass mh parallel and perpendicular to ground
level, respectively, and θr and θl are the right and left leg
angles, relative to the perpendicular of the ground.

2.2 Coupling the legs to central pattern generators

Central patterns generators (CPGs) are neural networks in the
spinal cord, which output periodic excitations to the muscles,
even in a completely isolated spinal cord (Nishimaru and
Kudo 2000; Sqalli-Houssaini et al. 1993). The CPG model
used in this study is similar to the ‘PID-type’ CPG, discussed
in Verdaasdonk et al. (2006). The CPG model features Posi-
tional, Integral and Derivative feedback of the limb angle to
the flexor and extensor centers of the CPG. Previous studies
(Verdaasdonk et al. 2006, 2007b) have shown that this type
of afferent feedback is crucial in providing energy efficient
control in rhythmic single limb movement. In these studies,
feedback of positional information was shown to provide res-
onance tuning above the CPG’s endogenous frequency fCPG

(i.e. the natural frequency at which the uncoupled CPG oscil-
lates). Integral feedback was shown to provide resonance
tuning at and below fCPG. Feedback of velocity information
(i.e. derivative feedback) was shown to be necessary in order
to compensate for the time delay in the loop coupling limb to
the CPG. Resonance tuning is not possible at high movement
frequencies without it (Verdaasdonk et al. 2006).

The CPG model is shown in Fig. 2 and its equations are
summarized in “Appendix C”. The basic rhythm generator
of the CPG is a half-center model. It is based on the work
of Matsuoka (1985, 1987) and was discussed at length in
Verdaasdonk et al. (2006). The literature (Barbeau et al. 1999;
Burke 2001; McCrea 2001; Van de Crommert et al. 1998;
Whelan 1996) suggests feedback from Ia and II fibers to the
flexor and extensor centers are present during walking. This
is abstracted in our model as delayed feedback of the leg’s
angle θj and angular velocity ωj( j = {r, l}) to the half-center
model with gains gp and gd and time delay τc. An inter-
nal process of the CPG ‘integrates’ the delayed leg angle
θj(t − τc) by a leaking integrator with large time constant τi,

which is subsequently fed to the half-center model with gain
gi. The hip joint of each leg j is locally coupled to its own
CPG.

Our passive dynamic walker has no trunk, which has little
effect on the motion of the legs (McGeer 1990). However, in
order to still be able to control the hips separately, as humans
do, a virtual torso is introduced: the torso is considered per-
pendicular to the ground level and is fixed. The output of
the flexor center yF and extensor center yE are amplified by
the respective efferent gains keF and keE to form the motor
signals to the muscles that provide hip flexion and exten-
sion. The ‘muscles’ are modeled most simply, translating the
motor signals linearly to a hip moment of force Mj relative to
the torso ( j = {r, l}). Supra-spinal input u0 to the CPG can
be changed to increase or decrease the outputs of the flexor
and extensor center, and thus the hip moments of force.

It is important to note that the afferent feedback gains are
not chosen by trial and error, but by analyzing the properties
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needed by the afferent feedback to assure resonance tuning.
This analysis is discussed thoroughly in Verdaasdonk et al.
(2006) and will not be repeated here. In summary, it comes
down to choosing the pole of the PI feedback to the CPG’s
flexor and extensor centers at the endogenous frequency of
the CPG (gi = 2π fCPGgp, see “Appendix C”) and choos-
ing the zero of the PD feedback according to the experienced
time delay (gd = 0.08gp for 50 ms time delay, see “Appendix
C”). This way, the only real variable of the afferent feedback
is its strength gp, which can be used to vary the gait velocity
(see Sect. 3.3).

2.3 Energy efficiency analysis

In engineering, the energy efficiency of a system is often
defined as the ratio between the amount of total performed
work (i.e. the sum of positive and negative work) and the
energy expenditure needed to achieve this work. The effi-
ciency η of the CPG-controlled actuation at the hips can be
determined during one gait cycle:

η = 100
W

Eexp
% (1)

with W the total amount of work performed by the hip
muscles during one gait cycle and Eexp the accompanying
energy expenditure. The work W is necessary to compen-
sate for the damping losses, which mainly consist of impact
losses that occur when the heel strikes the ground at the end
of the swing phase. The hip muscles of our gait model do not
store energy, which means that performing positive as well
as negative work costs energy. Thus, the energy expenditure
Eexp is calculated as follows:

Eexp =
∑

j

⎛

⎝
T∫

0

|(Mjωj)|dt

⎞

⎠ J j = {r, l} (2)

with Eexp the energy expended during one gait cycle, T the
period of the gait cycle, Mj the muscle moment of force about
hip joint j relative to the torso, and ωj the angular velocity
of leg j . When the signs of Mj and ωj are equal, positive
work is done; else negative work is done. The energy effi-
ciency ratio η is 100% if only positive work is performed by
the hip muscles during the gait cycle. Note that for perfect
resonance tuning in a mass-spring system with spring exten-
sion x and sinusoidal actuation force F, the energy efficiency
ratio η is 100%. This is due to the fact that the phase of the
transfer function H(s) = x(s)/F(s) is −90◦ at the reso-
nance frequency, i.e. the force F and velocity v = dx/dt are
in phase and only positive work is performed. In a similar
way, an energy efficiency ratio η of 100% is obtained for
our CPG-controlled gait model if the stride frequency equals
the ‘resonance frequency’ of the passive dynamic walker.
Resonance tuning leaves the natural exchange between

potential and kinetic energy intact: no active braking of the
legs is necessary and thus only positive work is performed
by the hip muscles. Forcing the gait model to walk slower or
faster than its natural frequency at given gait velocity, would
imply a control that actively brakes and thus performs nega-
tive work.

The efficiency ratio η is a good measure of the resonance
tuning capability of the CPGs. However, it gives an
incomplete view of the energy efficiency of walking. Even if
the efficiency η of the hip muscles is 100%, a given distance
can be walked with different energy expenditures. For our
simple gait model, this is caused by different collision losses
at heel strike (i.e. the negative work done by the dampers Bx

and especially By) for different gait qualities (i.e. different
stride length S and/or stride period T ). Therefore, the energy
expenditure per unit distance walked Em is also determined
(normalized to mass). In the field of bio-mechanics this is
a widely used measure for the energy efficiency of walking
(Koopman et al. 1989; McMahon 1984). The energy Eexp

expended during one gait cycle is divided by the stride length
S and total mass (2mf + mh) of the gait model in order to
yield Em :

Em = Eexp

S(2mf + mh)
J/(kg m) (3)

To perform the aforementioned energy efficiency analysis,
periodic cycles of the gait model have to be found and ana-
lyzed. This is done with help of Poincaré mapping as dis-
cussed in depth in Verdaasdonk et al. (2007a)

3 Results

3.1 Passive dynamic walking

The gait model (Fig. 1) is able to walk down certain slopes
α without any control, i.e. it is a passive dynamic walker
(Sect. 2.1). For small slopes α, the gravitational energy
received by the passive dynamic walker—i.e. the work Wg

performed by gravity—is proportional to the slope. To be pre-
cise, it equals (2mf + mh)g sin (α) Joule per meter walked.
Figure 3 shows the stride length S, stride period T and
gait velocity v against downward slope α for all stable gait
solutions. Since the stride period T is almost invariant with
respect to the slope, which was also shown by Kuo (2002) and
Garcia et al. (1998), increasing gait velocityv = S/T implies
increasing stride length S. A larger stride length means more
mechanical work has to be done by gravity in order to redi-
rect the hip mass velocity at heel strike (Donelan et al. 2002),
which corresponds to a steeper slope in passive dynamic
walking. Hence, the gait model walks faster down a steep
slope than a shallow one.
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Fig. 3 Passive dynamic walking for increasing slope α. The top graph
shows the stride length S, the middle graph shows the stride period T,

and the bottom graph shows the gait velocity v. At steep slopes there is a
route to chaos, which is depicted in Fig. 4. Beyond slopes of 0.0114 rad
stable walking is not possible

Stable passive dynamic walking is not possible for slopes
below 6.44 × 10−4 rad, because in our model the foot of
the stance leg sinks a little into the ground, which is modeled
as a spring-damper. For very small stride lengths this sinking
depth is relative large compared to the angle between both
legs at heel strike. Therefore, after heel strike, the foot of
the former stance leg does not lift above ground level and
the walker stumbles and falls. For higher values of the slope
the walker undergoes a series of bifurcations, which eventu-
ally lead to chaotic gait. Finally, at a slope of 0.0114 rad, the
gait becomes unstable. Beyond this slope stable gait is not
possible.

Figure 4 shows the route to chaos in terms of the maximal
segment angle of the right leg θr during one gait cycle. This
route to chaos resembles the ones in Garcia et al. (1998) and
Goswami et al. (1998), except that it starts of with a pitch-
fork bifurcation instead of a period doubling bifurcation. This
is due to the different way in which gait is modeled in this
study. Our model is a continuous-time model in which a com-
plete stride (i.e. two steps) corresponds to the smallest pos-
sible recurrent period, while for the models in Garcia et al.
(1998) and Goswami et al. (1998) one step is the smallest
possible recurrent period, as they swap the indices of the
legs after each heel strike (i.e. right becomes left and vice
versa). Thus, the pitchfork bifurcation in the bifurcation dia-
gram corresponds to the slope beyond which asymmetrical
gait, i.e. a limping gait, emerges. Figure 4 shows a zoom-in up
to the fourth period doubling bifurcation. The onset of chaos
can be estimated with the help of Feigenbaum’s universal
scaling law (Feigenbaum 1978), which is shown in Eq. 4.
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Fig. 4 Route to chaos. The passive dynamic walker initially exhibits
a pitchfork bifurcation, marked PF, and subsequently period doubling
bifurcations, marked PDn, for increasing slope α. The zoom-in in the
upper-left corner shows up to the fourth period doubling bifurcation and
the estimated slope αchaos at which chaotic gait begins (for n → ∞)

lim
n→∞

αPD,n − αPD,n−1

αPD,n+1 − αPD,n
= δ (4)

where αPD,n is the slope at which the nth period doubling
bifurcation occurs and δ is the Feigenbaum constant, which
has a value of 4.6692…

From Eq. 4 the asymptotic value of the slope where infinite
period doubling bifurcations have occurred can be derived.
This is the slope αchaos beyond which chaos emerges (Eq. 5).

αchaos = αPD,∞ = αPD,n − αPD,n−1

δ − 1
(5)

By filling in Eq. 5 for n = 4 a rough estimate of αchaos =
0.0103 rad is obtained.

Since the stride frequency of the passive dynamic walker
fPDW = 1/T is almost constant for all slopes, the walker
can be thought of having a kind of ‘resonance frequency’.
Adding rotational hip stiffness Kh increases this resonance
frequency, as is shown in Fig. 5. The stride frequency fPDW

increases with increasing Kh, while the stride length S
decreases. The graph shows that the gait model walks faster
for a higher Kh, while the energetic input from gravity
remains the same (α = −2.6 × 10−3 rad). The reason for
this more energy efficient gait is that energy is buffered in the
hip springs, thereby decreasing the stride length and accom-
panying collision costs.

The resonance frequency

fpend = 1

2π

√√√√
(

g

lleg
+ Kh

mf l2
leg

)

of the swing leg—that is, if it is swinging freely as a sin-
gle hanging pendulum—is higher than the stride frequency
fPDW (see Fig. 5), because the swing leg covers more than
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Fig. 5 Passive dynamic walking for increasing hip stiffness Kh. The
top graph shows the stride length S, the middle graph shows the stride
frequency fPDW (solid line) versus the resonance frequency of the swing
leg fpend as free hanging pendulum (dashed line), and the bottom graph
shows the gait velocity v

half a period during the swing phase. The swing leg starts
with a negative angular velocity to clear the ground, sub-
sequently becomes positive to swing forward and becomes
negative again just before heel strike (see Fig. 6). Actu-
ally, half a period (i.e. from zero angular velocity to zero
angular velocity) of the swing phase is shorter than half a
period of the free hanging pendulum. This higher ‘resonance
frequency’ of the swing leg during gait is caused by the grav-
ity-induced initial deceleration and subsequent acceleration
of the hip mass to which the swing leg is hinged. The ‘reso-
nance frequency’ of the swing leg during gait becomes closer
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Fig. 6 Comparison of CPG-controlled walking (black lines) with pas-
sive dynamic walking (grey lines) for a no hip springs (Kh = 0 Nm/rad)
b maximal spring constant (Kh = 61.05 Nm/rad). Time series of the
angle θr, angular velocity ωr and the muscle moment of force Mr of the
right leg are shown during one gait cycle

to the resonance frequency of the free hanging pendulum
if hip springs are added, because the exchange of energy
between the hip springs and the large hip mass (i.e. the poten-
tial energy in the springs is in counter-phase with that of the
hip mass) flattens the velocity profile of the stance leg (com-
pare angular velocity ωr in Fig. 6a with that in Fig. 6b), and
thereby decreases the deceleration and acceleration of the hip
mass.

3.2 Energy efficient CPG-controlled walking
by resonance tuning

3.2.1 Comparison between CPG-controlled walking
and passive dynamic walking

In this section, the ability of the CPG to provide energy effi-
cient gait by tuning into the resonance frequency of the pas-
sive walker is investigated. CPG-controlled walking at level
ground is compared to the stable gait solutions of passive
dynamic walking, shown in the previous section (see Fig. 5),
for the same range of hip stiffness values Kh. The strength of
afferent feedback gp—and by that gd and gi (see “Appendix
C”)—is adapted for all gait solutions, in such a way that the
gait velocity matches that of passive dynamic walking for all
values of Kh. This is done to dispose of the weak dependence
of the stride frequency on gait velocity. Figure 7 compares
the stride frequency 1/T of CPG-controlled walking (solid
line) to that of passive dynamic walking (dotted line) for
the above-mentioned range of Kh values, while Fig. 8 plots
the accompanying energy efficiency. The two most extreme
cases are depicted in Fig. 6, which compares the time series
of one gait cycle of CPG-controlled walking (black lines)
with passive dynamic walking (grey lines) in case of no hip
stiffness (Fig. 6a) and maximal hip stiffness (Fig. 6b). Below
we discuss the results in detail.

Figure 7 shows the entrained stride frequency 1/T to equal
the frequency of passive dynamic walking fPDW very well.
However, for stride frequencies below the endogenous
frequency fCPG—i.e. the eigenfrequency of the CPG, which
is 0.62 1/s for the parameter settings in this study—there
are slight deviations (best visible in Fig. 7 by looking at S,

as v = S/T is constant for given fPDW). The top graph
of Fig. 8 shows that this slight deviation from perfect res-
onance tuning at low stride frequencies causes the energy
expenditure Em of the CPG-controlled muscles (black solid
line) to be somewhat higher than the work Wm (grey solid
line) that they perform. This is expressed by the efficiency
η (see Eq. 1, Sect 2.3) in the bottom graph of Fig. 8, which
has its minimum of 96.9% at the lowest stride frequency
(i.e. Kh = 0 Nm/rad). The accompanying time series of one
gait cycle of CPG-controlled walking in Fig 6a (black lines)
shows that just before heel strike and just after toe-off, the
moment of force Mr is indeed a short period of time out of
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top graph shows the energy expenditure Em of the muscles (solid black
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Wg done by gravity in case of passive dynamic walking (dotted grey
line). The middle graph shows Em and Wm in case of no derivative and
integral feedback to the half-center model (dashed black and grey lines,
respectively) and in case of—besides the lack of integral and deriv-
ative feedback—the absence of time delay τc (dashed-dot black and
grey lines, respectively); both are plotted versus Wg (dotted grey line).
The bottom graph shows the accompanying efficiency η of the muscles
in CPG-controlled walking (same legend applies as in top and middle
graph). The endogenous frequency fCPG is shown by a vertical line

phase with the angular velocity ωr, thus performing nega-
tive work. Figure 6b shows that for the highest considered
stride frequency (i.e. Kh = 61.05 Nm/rad), Mr is only a
very short period of time—just before heel strike—out of
phase with ωr, giving a η of 99.4%. The small differences in
work Wm performed by the CPG-controlled muscles (solid

grey line) and work Wg performed by gravity for passive
dynamic walking (dotted grey line)—shown in the top graph
of Fig. 8—can be explained by small differences in the stride
length S and the swing leg’s angular velocity at heel strike.
At low stride frequencies, the foot mass looses more kinetic
energy at heel strike in CPG-controlled walking than in pas-
sive dynamic walking (see zoom-in of ωr in Fig. 6a), while
it is vice versa at high frequencies. This causes Wm to be
smaller than Wg for high stride frequencies and higher than
Wg for low frequencies, with the exception of the lowest fre-
quencies. At the lowest stride frequencies the smaller stride
length in CPG-controlled walking means smaller collision
losses, which cause Wm to be smaller than Wg.

It should be noted that the route to chaos, which is present
in passive dynamic walking (Fig. 4), has not been
encountered in CPG-controlled walking. This is based on
a vast amount of simulations, many of which have not been
discussed in this paper. The CPG seems to prevent or retard
this route to chaos. Stable symmetric gait solutions exist for a
certain parameter space and become unstable almost immedi-
ately after leaving this parameter space, sometimes preceded
by asymmetric gait and one or two period doubling bifur-
cations. Thus, it could be that the route to chaos is present,
but is compressed by the CPG into a very small area of the
parameter space.

3.2.2 The influence of the integral and derivative feedback

Aforementioned results show that the CPG is able to control
gait in an energy efficient way by resonance tuning. The type
of afferent feedback to the half-center model is important in
achieving this. To show the influence of integral and deriv-
ative feedback of the legs’ angles to the half center model,
we also performed simulations without these types of feed-
back. The dashed line in Fig. 7 shows the entrained gait solu-
tions when there is no feedback of angular velocity or the
integrated angle (i.e. gd = gi = 0), again with the affer-
ent strength adapted to match the passive dynamic walking
velocities. The influence of integral feedback shows at low
frequencies. Without it, the stride frequency 1/T deviates
substantially from fPDW below fCPG. Walking without hip
stiffness is no longer possible (the minimal Kh for stable gait
is 0.05). Even at and beyond fCPG small deviations are pres-
ent. This poor resonance tuning behavior causes to drop the
efficiency η of the muscles to a minimum of 66.8% for the
lowest stride length (bottom graph, Fig. 8). Although Wm is
smaller than Wg at low frequencies—merely due to smaller
stride lengths—the bad efficiency causes Em to be larger than
Wg (middle graph, Fig. 8). The influence of derivative feed-
back shows at high frequencies. Although without derivative
feedback 1/T is only slightly lower than fPDW at high fre-
quencies (top graph, Fig. 7), the efficiency η goes down to
58.3% for the highest stride frequency. This shows that η is a
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better measure for resonance tuning than the entrained stride
frequency itself. By increasing the afferent strength signifi-
cantly (bottom graph, Fig. 7), the entrained frequency comes
close to fPDW, giving a false sense of good resonance tuning
behavior, while in fact the energy expenditure is very high
(middle graph, Fig. 8).

The dashed-dot lines in Fig. 7 and 8 show simulations
for which—besides the integral and derivative afferent feed-
back—the time delay τc in the loop coupling the CPGs to
the limbs is absent (i.e. gd = gi = τc = 0). These show
almost perfect resonance tuning at high stride frequencies
with a minimum efficiency η of 99.97% at the highest stride
frequency. Hence, these results clearly show that velocity
feedback is necessary to compensate for the time delay in the
loop, just as in rhythmic single limb movement (Verdaasdonk
et al. 2006, 2007b). At low stride frequencies, the absence
of time delay makes the resonance tuning worse with a min-
imum efficiency η of 62.5% at the lowest stride frequency.
Moreover, a minimum Kh of 0.15 Nm/rad is necessary to
obtain stable gait. The performance at low stride frequen-
cies is worse, because absence of time delay means absence
of extra phase lag in the feedback loop to the half-center
model. Extra phase lag is necessary for frequencies below
the CPG’s endogenous frequency to obtain resonance tuning
(for a detailed explanation, see Verdaasdonk et al. (2006)). In
fact, this is the reason that integral feedback is necessary for
achieving energy efficient walking at low stride frequencies.

3.2.3 Relationship between velocity feedback and time
delay in the loop

Figure 9 shows the gait solutions for increasing time delay
in case there is no velocity feedback (i.e. gd = 0), default
velocity feedback (i.e. gd = 0.08gp) and velocity feedback
for which the strength is linearly dependent on the size of the
delay (i.e. gd = 0.08gpτc/50 × 10−3). We start off with the
gait solution of Figs. 7 and 8 belonging to a stride frequency
fPDW of 2.0 1/s (i.e. Kh is 10 Nm/rad) and leave the accom-
panying afferent positional gain gp at the constant value of
19.0 for all simulations. The default velocity feedback (solid
lines) shows that the value of gd relative to gp is laid out
to compensate phase lags of time delays around 50 ms. The
efficiency η is close to 100% and the gait velocity v is close
to that of passive dynamic walking as long as the time delay
is close to 50 ms. Much lower and much higher time delays
will cause bad resonance tuning behavior, with accompa-
nying bad efficiency and lower gait velocities. The energy
expenditure in these cases is less, because the stride length
S diminishes with v, which means lower collision costs. No
velocity feedback (dotted lines) causes the efficiency η to be
near 100% only in case of no delay. Even in that case the gait
velocity v is lower than in passive dynamic walking, because
the afferent gain gp is not adapted to match the latter veloc-
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Fig. 9 Compensation of time delay by velocity feedback. The top
graph shows the gait velocity v, the middle graph shows the mus-
cles’ energy expenditure Em and their performed work Wm (black and
grey lines, respectively), and the bottom graph shows the muscle effi-
ciency η. The dotted lines represent gait solutions obtained without
derivative feedback to the half-center model (i.e. gd = 0), the solid
lines represent gait solutions for the default velocity feedback (i.e.
gd = 0.08gp), and the dashed lines represent gait solutions for velocity
feedback with strength proportional to the time delay τc in the loop (i.e.
gd = 0.08gpτc/50 × 10−3)

ity. Hence, the CPG gets less total afferent input (as there
is no velocity feedback) and will walk with the same stride
frequency, but with lower stride length S and therefore with
less energy expenditure Em.

The combination of positional and velocity feedback is
similar to a PD-controller and gives maximal 90◦ phase lead.
As the phase lag of the time delay increases with frequency
(Hτ = e− jωτ ), there is a limit to the time delay, which can
be compensated. The maximal time delay for which stable
walking is possible is 0.244 s and is shown by the dashed
lines in Fig. 9, which represent velocity feedback for which
the strength is linearly dependent on the size of the delay. For
this type of velocity feedback, the efficiencyη shows that very
good resonance tuning behavior is achieved for time delays
up to 0.15 s. In other words, velocity feedback is essential
for achieving stable and energy efficient walking when large
time delays are present in the neural pathways.

3.3 Velocity Control

For a given hip stiffness Kh, increasing gait velocity v of the
CPG-controlled walker is achieved by increasing the energy
expenditure of the muscles. This can be accomplished by
increasing the afferent gain gp, the efferent gain keE, or the
supra-spinal input u0. Figure 10 shows the range of hip stiff-
ness values Kh at which stable gait is possible for afferent
strengths of 2, 20, 60, and 100. For a given hip stiffness Kh,

the velocity v is increased by increasing gp (top graph). The
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increasing gait velocity is achieved by increasing the stride
length S (second graph), because the CPG tunes into the
resonance frequency of the walker regardless of the afferent
strength gp (within certain limits), and is accompanied by a
higher energy expenditure Em (fourth graph). The fact that
the CPG tunes into the walker’s resonance frequency for all
afferent strengths gp is shown by the overlapping plots of
the stride frequency 1/T versus the hip stiffness Kh (middle
graph). This good resonance tuning behavior is also shown
by the muscle efficiency η (bottom graph). The range of reso-
nance frequencies (i.e. range of values of Kh) for which stable
walking is possible increases with increasing gp, although the
lowest possible stride frequency becomes somewhat higher.
For given afferent strength gp, higher hip stiffness Kh does
not affect the gait velocity v much (top graph), as long as
Kh is in the range where resonance tuning behavior is almost
perfect, i.e. η close to 100% (bottom graph). However, the
energy expenditure Em is much less for higher Kh, because
of the lower collision costs associated with smaller stride
lengths S.

Hence, the stride length S is increased or decreased by
increasing or decreasing the afferent gain gp, the efferent gain

keE, or the supra-spinal input u0, while the stride frequency
1/T stays close to the mechanical resonance frequency of
the walker due to the resonance tuning behavior of the CPG.
This way, a range of gait velocities v can be achieved by
changing only one parameter. For example, for given gp of
20 and Kh of 5, a range of gait velocities is achieved from 0.28
up to 0.75 m/s—with accompanying range of stride lengths
from 0.20 to 0.54 m—by changing the supra-spinal input u0

from 0.12 to 8.19.
The range of velocities for which stable gait is possible

can be made much larger by increasing and decreasing the
walker’s resonance frequency with gait velocity. The reso-
nance frequency can be increased by increasing the hip stiff-
ness Kh by a local positional feedback, just as a stretch reflex
can increase the muscle stiffness (Verdaasdonk et al. 2004a)
and thereby the resonance frequency of a limb (Verdaasdonk
et al. 2007b). Thus, by making the local positional feedback
gain dependent (e.g. proportionally) on gp, keE, or u0, a large
range of gait velocities can be obtained by controlling only
one parameter (gp, keE, or u0). It is noted that controlling Kh

in this way costs energy, as the obtained resonance frequency
differs from the real mechanical resonance frequency. This
additional energy expenditure is not taken into account in
the presented results, since Kh is considered to be an energy
conserving spring in this study.

4 Discussion

4.1 Efficiency

It is generally agreed that human walking is very energy
efficient. Waters and Mulroy (1999) showed that the
metabolic energy expenditure at (near) optimal walking speed
(around 1.3 m/s) is about 3.1 J/(kg m) for young adults. Tak-
ing into account that the metabolic efficiency of human mus-
cular labor is about 30%, this agrees with the inverse dynam-
ics analysis of van der Kooij et al. 2003) that showed the
positive mechanical work done by the joint muscles to be
around 0.8 J/(kg m).

A good comparison of energy expenditures of our
CPG-controlled gait model with human walking is hard to
make. On the one hand, our gait model has no knees and feet.
If it had those, it could walk even more efficiently, especially
at higher velocities (i.e. larger stride lengths). On the other
hand, our model is a 2D model without a trunk, while humans
need energy to maintain stability in a 3D environment (e.g.
actively swinging the arms and balancing the trunk costs
energy). If a comparison is to be made between the mechan-
ical energy expenditure of our CPG-controlled gait model
and human walking, our results show that our gait model
is much more efficient at low speeds (expenditure is much
less than 0.8 J/(kg m)). However, if our gait model has low

123



58 Biol Cybern (2009) 101:49–61

hip stiffness it is less efficient than human walking at the
(near) optimal human walking velocity of 1.3 m/s (you can
see this by extrapolating Fig. 10), because high stride lengths
are necessary at high velocities with the accompanying large
kinetic energy losses at heel strike. However, with higher
hip stiffness our gait model could walk more efficiently than
humans.

It is more appropriate to compare the energy efficiency of
our CPG-controlled gait model with passive dynamic walk-
ing for the same passive walker (i.e. same segment model).
Passive dynamic walking is considered to be very efficient
(Garcia et al. 1998, McGeer 1990), although it has a small
basin of attraction (Schwab and Wisse 2001), that is, poor
stability properties. Fig. 8 shows that the CPG achieves con-
trol of the passive walker with similar energy expenditure on
flat ground compared to passive dynamic walking, while it
can achieve speeds that greatly exceed the region of stability
of passive dynamic walking.

Actually, the best way to determine the energy efficiency
of muscle activated walking is by looking at the efficiency
η of the muscles. As shown by the simulations in this study
(e.g. Fig. 8), the CPG achieves an efficiency η of (nearly)
100% for large ranges in mechanical properties of the pas-
sive walker (e.g. the resonance frequency) without changing
any of the CPG-related parameters in the model.

4.2 Robustness versus efficiency

In this study, we have focused on the energy efficiency of
CPG-controlled walking. However, CPGs also play an
important role in the recovery from small and medium-sized
perturbations, and even from large perturbations, as was
shown for a model of rhythmic arm movement in a pre-
vious study (Verdaasdonk et al. 2007b). In that study the
forearm was also actuated at its resonance frequency by a
CPG that was modeled in the same way as the one in this
study. It showed that the CPG’s contribution to the recov-
ery of the forearm after large perturbations (40 Nm over an
angular range of 0.1 rad) was quite high ( 41%, the rest came
from reflexes).

Although the CPG in the current study also adds a reason-
able amount of robustness to the walking model, compared
to uncontrolled passive dynamic walking, the question arises
whether efficiency does not come at the expense of robust-
ness. In a previous study we showed that there is indeed
such a trade-off between energy consumption and robustness
(Verdaasdonk et al. 2007a) in a similar CPG-controlled
bipedal walking model (although that one could not passively
walk down a slope, because it had human inertial distribu-
tion). The study showed that the robustness against large
perturbations is increased with the velocity of the swing leg,
which agrees with the statement of Wisse et al. (2005) that
you will never fall forward if the swing leg is put fast enough

in front of the stance leg. There are two methods to increase
swing leg velocities and by that the robustness against large
perturbations. In the current gait model with resonance tun-
ing it is achieved by larger stride lengths. This will indeed
cost more energy per unit distance walked, because of the
mechanics of the passive dynamic walker: the change in
direction of the hip mass’ velocity at heel strike increases
with stride length, which means more kinetic energy losses.
Another method would be not to use resonance tuning, but to
accelerate the swing leg at the beginning of the swing when
the velocity is still in the reverse direction and to decelerate
the leg before the end of the swing (i.e. break). This can be
achieved by other feedback gains of the leg’s sensory infor-
mation to the CPG, but will cost a lot of energy because a lot
of negative work will be performed by the muscles. The for-
mer method (i.e. resonance tuning) seems a better alternative,
because for a more sophisticated passive dynamic walker
with knees, feet and a way to store the kinetic energy now
lost at heel strike (e.g. tendons) the kinetic energy losses can
be minimized, while not actuating a passive dynamic walker
in its natural dynamics (i.e. eigenmode) will always mean
energy losses.

Besides increasing the robustness by increasing the swing
leg velocity, which is mechanical in origin, it could be a good
idea to extend the CPG or to add reflexes to the walking model
in such a way that the walker is pulled back harder towards
the limit cycle (i.e. the normal unperturbed gait cycle) if it
is perturbed further away from it. This way, a larger robust-
ness can be achieved, while it only costs more energy in
case of actual perturbations. Thus, reflexes with non-linear
gains—being larger when further away from the unperturbed
gait cycle—could improve the robustness as well as the speed
of recovery, while leaving the limit cycle of the rhythmic
movement—and thus the corresponding energy efficiency—
intact.

4.3 Conclusion

The most efficient way to actuate a ‘mechanical oscillator’—
in this case a passive dynamic walker—is at its resonance
frequency (i.e. resonance tuning). This study has shown that
given the proper afferent feedback the CPG is able to auto-
matically tune into this resonance frequency, thereby pro-
viding energy efficient gait control. Feedback of positional
information provides resonance tuning above the endogenous
frequency of the CPG. Integral feedback provides resonance
tuning at and below the endogenous frequency. Feedback of
velocity information is necessary to compensate for the time
delay in the loop, coupling limb to CPG; without velocity
feedback resonance tuning is not possible at high stride fre-
quencies.

Considering the mechanical limitations of the passive
dynamic walker (i.e. no feet, no knees, etc.), the gait velocity
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can be varied over quite a large range, while keeping the
energy efficient behavior of passive dynamic walking intact.
These velocity changes can be achieved by changing only a
single parameter. Increasing the strength of one or more of
the CPG inputs (afferent gain, efferent gain, or supra-spinal
input) leads to a higher gait velocity. Since the CPG actu-
ates the passive dynamic walker at its resonance frequency,
the velocity change will be achieved by a change in stride
length.

A change in stride frequency will only occur if the reso-
nance frequency of the passive dynamic walker is changed,
because the CPG will then actuate the passive dynamic walker
at its new resonance frequency.

Our CPG model on the one hand might elucidate how
humans achieve energy efficient walking, and on the other
hand can be used as (part of a) gait controller in applications
such as walking robots or powered walking orthoses.

Open Access This article is distributed under the terms of the Creative
Commons Attribution Noncommercial License which permits any
noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix A: Ground reaction forces

The ground reaction force for a foot standing on the ground,
FGjd, is modeled by viscous damping in both x- and
y-direction and stiffness only in y-direction:

FGjx = −Bx ẋfj,

FGjy =
{−By ẏfj − Ky yfj if ẏfj < 0

−Ky yfj else

(A.1)

with Bx, By and Ky constant damping and stiffness factors,
chosen such that an overdamped contact with negligible slip
is obtained, xjf and yjf the co-ordinates of the feet relative
to a base point on the ground. The indices j and d have the
following meaning:
j = {r, l} leg index
d = {x, y} direction ground reaction force

Since our walker does not have knees, ground-clearance
during swing phase must be provided artificially. This is
accomplished by a ground reaction force Gfjd at foot j, stated
as follows:

Gfjd =
{

FGjd if leg j in Stance Phase

0 else
(A.2)

A leg is said to be in stance phase when its foot is below
ground level and its angular velocity is below a threshold
value ωG = 0.1 (yfj < 0 & ωj < ωG). The threshold value
ωG is used because at very low speeds, heel strike (the begin-
ning of stance phase) can occur at slightly positive angular
velocity.

Appendix B: Lagrange’s equations for the passive
dynamic walker

The indices j , n, and d in this appendix have the following
meaning:
j = {r, l} leg index
n = {1, 2, 3, 4} generalized co-ordinate index
d = {x,y} direction ground reaction force

The generalized co-ordinates q are defined as the position
of the hip mass mh in the global system, (xh, yh), and the
angles of the right and left leg relative to the vertical (i.e.
segment angles), θr and θl:

q = [xh yh θr θl]T (B.1)

The positions of the feet xf = [xfr yfr xfl yfl]T are expressed
in q as follows:

xfj(q) = xh + lleg sin(θj)

yfj(q) = yh − lleg cos(θj)
(B.2)

The scalar kinetic energy function T(q) is given by:

T (q, q̇) = 1

2
mh ẋ2

h + 1

2
mh ẏ2

h
(B.3)

+
∑

j

(
1

2
mf ẋ2

fj(q) + 1

2
mf ẏ2

fj(q)

)

The scalar gravitational potential energy function Vg(q) is
given by:

V (q) = mhg(sin(−α)xh + cos(−α)yh) +
∑

j

1

2
Khθ

2
j

+
∑

j

mf g(sin(−α)xfj(q) + cos(−α)yfj(q)) (B.4)

The foot-ground contact forces Eq. A.2 are written as vector
Gf(xf) = [Gfrx Gfry Gflx Gfly]T, which is expressed in local
foot co-ordinates xf and must be transformed to an expres-
sion in generalized co-ordinates before entering Lagrange’s
equations of motion:

Gn(q, q̇) =
4∑

k=1

Gf k(xf)
∂xf k

∂qn
(B.5)

Lagrange’s equations of motion are now:

d

dt

(
∂T

∂ q̇n

)
− ∂T

∂qn
+ ∂V

∂qn
= Mn+Gn (B.6)

with M the vector of generalized forces, comprising the
CPG-controlled hip moments of force (Eq. C.8):
M = [0 0 Mr Ml]T.

Parameters

mh = 1.0 kg, hip mass
mf = 0.04 kg, foot mass
lleg= 1.0 m, leg length
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g = 9.81 m/s2, gravity constant
Ky = 1 × 105 N/m, ground stiffness in y-direction
By = 1 × 104 Ns/m, ground damping in y-direction
Bx = 1 × 106 Ns/m, ground damping in x-direction

Variables with default values

α = 2.6 × 10−3 rad, ground slope
Kh = 0 Nm/rad, rotational stiffness of the hip

Appendix C: Central pattern generator

The dynamics for the CPG coupled to leg j ( j = {r, l}) are
given by the following equations:

u̇Fj = 1

τr
(u0 − uFj − βvFj − wyEj − gpθj(t − τc)

−gdωj(t − τc) − giϕj(t − τc)) (C.1)

v̇Fj = 1

τa
(yFj − vFj) (C.2)

u̇Ej = 1

τr
(u0 − uEj − βvEj − wyFj + gpθj(t − τc)

+gdωj(t − τc) + giϕj(t − τc)) (C.3)

v̇Ej = 1

τa
(yEj − vEj) (C.4)

ϕ̇j = 1

τi
(τiθj − ϕj) (C.5)

in which uFj, vFj, uEj and vEj are the state variables of the
flexor (F) and extensor (E) centers and φj is the integral of
the angle θj. Integration of the angle θj is assumed to be per-
formed by an internal process of the CPG, which is modeled
as leaking integrator (pole at −1/τi see Eq. C.5).

The outputs of the flexor and extensor centers, yFj and yEj,

are given by:

yFj = max(0, uFj) (C.6)

yEj = max(0, uEj) (C.7)

The actuation moments of force of our CPG-controlled hip
muscles are then given by:

Mj = keE yEj − keF yFj (C.8)

Parameters

τr = 0.18 s, rise time constant
τa = 0.36 s, adaptation time constant
τi = 10.0 s, time constant for leaking integrator
β = 2.0, strength adaptation effect
w = 2.0, strength of reciprocal inhibition
keE = 0.04, efferent gain associated with extensor center
keF = 0.1keE, efferent gain associated with flexor center

Variables with default values

u0 = 1.0, tonic input from supra-spinal centers
gp = 2.0, feedback strength of limb angle
gd = 0.08gp, feedback strength of limb’s angular velocity
gi = 2π fCPGgp, feedback strength of integrated limb angle
τc = 50 × 10−3 s, time delay in feedback loop
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