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Abstract 

Background: The Hospital Anxiety and Depression Scale (HADS) is a widely used questionnaire in health research, 
but there is little guidance on how to handle missing items. We aimed to investigate approaches to handling item 
non-response, varying sample size, proportion of subjects with missing items, proportion of missing items per sub-
ject, and the missingness mechanism.

Methods: We performed a simulation study based on anxiety and depression data among cancer survivors and 
patients. Item level data were deleted according to random, demographic, and subscale dependent missingness 
mechanisms. Seven methods for handling missing items were assessed for bias and imprecision. Imputation, impu-
tation conditional on the number of non-missing items, and complete case approaches were used. One thousand 
datasets were simulated for each parameter combination.

Results: All methods were most sensitive when missingness was dependent on the subscale (i.e., higher values of 
depression leads to higher levels of missingness). The worst performing approach was to analyze only individuals 
with complete data. The best performing imputation methods depended on whether inference was targeted at the 
individual or at the population.

Conclusions: We recommend the ‘half rule’ using individual subscale means when using the HADS scores at the 
individual level (e.g. screening). For population inference, we recommend relaxing the requirement that at least half 
the items be answered to minimize missing scores.
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Background
The Hospital Anxiety and Depression Scale (HADS) [1] is 
a widely used questionnaire in health research. A 14-item 
questionnaire with two subscales, researchers have used 
the sub-scales separately, or as a composite score to 
measure or screen for distress, in various fields including 
oncology, cardiology, psychology and psychiatry, both in 
research and clinical capacities [2]. It has been shown to 
be valid and reliable in a variety of settings [3]. Despite 
its widespread use, and multiple investigations into its 

validity [4], there are no guidelines for how to handle 
missing items and users must make ad-hoc decisions 
about what to do about missing items.

Missing data is ubiquitous in human research, both in 
randomized trials and observational studies; whether the 
design is longitudinal or cross-sectional. In longitudinal 
designs research participants may be lost to follow-up or 
may intermittently skip assessments, so that their entire 
questionnaires are missing. In both longitudinal and 
cross sectional designs participants may skip individual 
items on questionnaires. Both of these types of missing-
ness have two possible implications: (1) reduced sample 
size and therefore lower power and (2) bias, if the miss-
ingness is non-random [5]. It is difficult to know exactly 
how researchers handle missing HADS items in practice. 
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The most common approach for missing outcomes in 
RCTs, however, is complete case analysis, i.e., discard-
ing data which are not complete [6]. If this is true for 
item level missingness, researchers are at risk of bias and 
imprecision in estimation, depending on the amount of 
missing item data.

If an item is missing, the entire subscale or question-
naire could be deemed missing, a method sometimes 
called case deletion or complete case. This has the effect 
of reducing sample size. If items are missing randomly, 
for example, because a subject did not see the item and 
therefore did not answer it, only power is affected. If 
items are missing non-randomly, however, excluding 
the subject’s entire score is likely to result in bias. For 
example, if subjects who are more anxious are less likely 
to answer all the questions, and a case deletion rule was 
used, anxiety could be underestimated. This is an exam-
ple of subscale dependent missingness. Missingness may 
also depend on other factors, such as subject character-
istics like demographics, risk factors, or health variables 
(for example, if men are more likely to have non-missing 
items than women). This is an example of demographic 
dependent missingness. In addition to case deletion, filling 
in missing item values, or imputation, is another missing 
item approach. Imputing missing items may take care of 
both power and bias issues, but there are several possible 
imputation methods, as detailed below, and the best one 
for the HADS has not been determined.

The lack of guidance on how to handle missing items 
in the HADS is in contrast to two well-known question-
naires, the Functional Assessment of Cancer Therapy 
General (FACT-G) which measures quality of life for 
cancer patients and the SF36, which measures wellbeing 
in the general population. The recommended method 
for these questionnaires for missing items is to replace 
the missing items with the mean of the answered items 
in the subscale, if at least half of that subscale has been 
answered [7–9]. This is sometimes called the half-rule, 
and is appealing because it is simple, is not sample 
dependent and can be performed at the time of question-
naire scoring. The rationale behind the half-rule is that 
an individual’s score would not have enough informa-
tion to be valid if fewer items than half were answered. 
It is unknown how most HADS users handle item non-
response. Jörngården et al. use the half-rule; an education 
and health psychology company’s website states that a 
mean imputation may be used, but only in the case of a 
single missing item (if more than one item is missing they 
state that the subscale is invalid). Multiple imputation 
is an approach that has been investigated and found to 
have good properties [10, 11], although implementation 
for outcomes research can be challenging [10, 12], and it 
could not be used for most screening situations. Other 

approaches that could be used for missing items include 
imputing the missing item with: the mean of the non-
missing items of the entire scale for a subject; the mean 
of the non-missing items of the subscale from which the 
item is missing, for a subject; the mean of the item over 
all subjects; and multiple imputation [13].

The question of how to handle missing items for out-
comes research has not received as much attention 
as missing forms, which has a rich history of statistical 
investigation, and poses different challenges. However, 
there have been some investigations into missing items 
for outcomes research. Fayers and colleagues [14] discuss 
missing items in a quality of life context and give guide-
lines about imputation, for example, showing when a 
simple item mean imputation may cause bias. Fairclough 
and Cella [7] performed an in-depth investigation of vari-
ous approaches for handling missing items in the FACT-
G, resulting in the current recommendations for use of 
the half-rule.

In order to make valid inferences using the HADS, a 
principled, evidence-based method of handling missing 
items is needed. The objective of this study was to inves-
tigate seven approaches to handling item non-response, 
using a large sample of Australian cancer patients and 
survivors to base simulations on, while assessing sensi-
tivity to overall sample size, proportion of subjects with 
missing items, the proportion of missing items per sub-
ject, and the missingness mechanism.

Methods
We carried out a simulation study based on real data 
(described below). One thousand datasets were simu-
lated for each parameter combination: three sample sizes, 
three missingness mechanisms, three subject-level prob-
abilities for having a missing item, two item-level prob-
abilities for missingness. Description of these parameters 
follows.

Data sources
The data originated from two large, related, Australian 
studies investigating patient reported outcomes, includ-
ing anxiety and depression, amongst Arabic, Chinese 
and Greek immigrants as compared to Anglo-Austral-
ians cancer survivors and patients. These studies have 
been described previously [15, 16]. Briefly, the first study 
recruited survivors from registries (N  =  596, response 
rate = 26 %); the second involved patients, and was hos-
pital based (N = 845, response rate = 61 %). There were 
593 Anglo-Australians, 202 Arabic participants, 389 
Chinese participants and 257 Greeks participants. Par-
ticipants had a mix of cancer diagnoses including breast 
(20 %), colorectal (17 %) and prostate (14 %). Males made 
up 46 % of the sample. Age ranged from 19 to 87 years 
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with a mean of 63 and standard deviation of 11.8. Immi-
grants had the choice of completing the form in either 
English or their native language. Out of the 1441 HADS 
questionnaires, 1385 (96  %) were complete. Along with 
the HADS, quality of life was assessed using the Func-
tional Assessment of Cancer Therapy-General (FACT-
G), a 27-item questionnaire covering aspects of physical, 
social, family, emotional, and functional well-being [17].

Sample size
Beginning with the complete data set (n = 1385), a ran-
dom sample of subjects was selected, with replacement. 
We chose starting sample sizes based on detecting 
standardized effects, d, considered to be large (d =  0.8, 
n = 52), medium (d = 0.5, n = 128), or small (d = 0.2, 
n = 788), according to Cohen’s criteria [18], and assum-
ing a 2-sided t test with 80 % power and type I error rate 
of 0.05.

Missingness
To create missingness, items were deleted from the com-
plete data in three ways (i.e., there were three missing-
ness mechanisms): (1) completely random; (2) based on 
demographic information or (3) based on the subscale’s 
value (higher values were more likely to be deleted). To 
mimic the real situation where missing items are clus-
tered by subject, each of the methods used a procedure, 
based on the missingness mechanism, to select psub = 10, 
20 or 50 % of the subjects to be candidates for item dele-
tion, as detailed below. The probability of missing items 
within these candidates was then set at pitem = 20 or 50 % 
and item deletion followed by drawing random uniform 
numbers for each item (range 0–1). If the probability of 
missing items was set at 20 %, for example, then all items 
with a random number less than 0.2 would be deleted. 
The procedure of selecting candidates for missingness 
(with probability psub) and then randomly selecting items 
for deletion (with probability = pitem) resulted in overall 
missing item rates of 2, 4, 5, 10 and 25  %. These values 
were chosen to provide a range of missing rates: smaller 
values that mimicked our data as well as higher values 
that would discriminate between the methods. The steps 
of the simulation are shown in Fig. 1.

Random missingness was induced by drawing a ran-
dom number from the uniform distribution (range 0–1) 
for each subject. Item deletion within these subjects was 
then performed by randomly selecting items for deletion 
with probabilities pitem = 20 or 50 %, as described above.

Subscale dependent missingness was carried out by 
choosing candidates for missingness based on higher 
subscale scores, so that subjects with higher anxiety, for 
example, were more likely to have missing items. The 
highest 10  % (for example) of anxious subjects were 

candidates for item deletion, which was performed as 
described above.

Demographic missingness was achieved by increasing 
the likelihood of deletion based on older age, being on 
treatment, being male, or being an immigrant. Specifi-
cally, each subject’s probability of missing any item (being 
a missingness candidate) was calculated from a logistic 
model using the above demographic variables. Subjects 
with the highest probabilities (e.g., if psub = 10 %, we used 
the top 10 %) were then candidates for missing items and 
item deletion was carried out as in the previous method. 
The demographic variables were chosen based on pre-
dictors of missingness in the original dataset (n = 1441). 
These variables are specific to our dataset; other datasets 
are likely to have different predictors of missingness.

Imputation and scoring
For each dataset there were six ways of imputing missing 
items: (1) subject’s mean; (2) subject’s subscale mean; (3) 
subject’s subscale mean if at least half of items were 
answered (the so-called half-rule); (4) item mean (across 
all subjects); (5) multiple imputation (MI); and (6) MI if 
at least half of items are answered. We also scored using a 
“complete case” approach, where subjects with any miss-
ing items were excluded. We used multiple imputation 
with chained equations (also known as fully conditional 
specification) for methods 5 and 6, which sequentially 
imputes missing values using regression [19, 20]. All 14 
items were used in the imputation algorithm and 
imputed items outside the range were truncated (e.g. set 
to 0 or 3). We created ten complete data sets using SAS 
Proc MI and averaged the items across the sets to make 
one complete set from which the anxiety and depression 
scores are created (see below). This is equivalent to creat-
ing ten anxiety and depression scores and combining 
them using Rubin’s rules to get the point estimate (which 
is just the average of the estimates) [21].1 Each of the 
methods were chosen based on their current use by 
researchers or their ease of use.

The standard scoring algorithm was used: anxiety 
score = sum of items 1*, 3*, 5*, 7, 9, 11*, 13*; and depres-
sion = sum of items 2, 4, 6*, 8*, 10*, 12, 14 where starred 
items are reverse scored. Both subscales have a possible 

1 MI generally proceeds as follows: (1) Create M complete datasets. (2) 
Analyze each of the datasets and get an estimate. (3) Combine M estimates 
using Rubin’s rules. The point estimate is the average of the M estimates. 
Since we are not using the variance estimates, it is equivalent to average the 
items across M multiply imputed datasets and then create one score. Let 
m = 1, . . . , M imputations, i = 1, . . . k items X and Hm = the HADS score for 
the mth imputed dataset = 

∑
k

i=1 Xmi. Then the combined estimate of the 
HADS score is H =

1
M

∑
M

m
Hm =

1
M

∑
M

m=1

∑
k

i=1 Xmi =

∑
k

i=1
1
M

∑
M

m=1 Xmi. 
We are not using the variance estimates in this simulation because we are 
not performing analyses.
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Calculate bias, 
precision, coverage, 

etc. 
Fig. 1 Simulation study flow
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range of 0–21, with higher scores indicating higher anxi-
ety and/or depression. The anxiety and depression scores 
from the complete (but reduced, n = 52, 128, 788) data-
set were calculated in order to assess the performance 
of the other methods. Thus for each dataset and its sub-
set with the missing items, eight anxiety and depression 
scores were calculated.

Statistical methods
We assessed each method by considering performance 
with respect to both individual and population scores. 
For individual scores, bias was assessed by computing 
the average difference of the individual’s imputed and 
observed (complete) subscale or total score and impreci-
sion was assessed by averaging the squared differences.

For the population, bias was measured as the differ-
ence between the mean imputed score (or case-wise 
deleted score) and the mean complete score in the sam-
ple. Imprecision was calculated as the squared difference. 
A difference of 10 % of a scale is sometimes considered 
to be the minimum important difference (MID) [22], so 
we used 10 % of the subscale (2.1 points) to indicate an 
important level of bias. At the suggestion of a reviewer, 
correlation with quality of life was also estimated.

Results
Descriptive statistics for the original sample are given in 
Table 1. The mean anxiety score was 5.66 with a stand-
ard deviation of 4.20; the mean depression score was 5.07 
with a standard deviation of 4.11. Most participants were 
in the normal range (0–7) for both anxiety (73.6 %) and 
depression (76.1  %); 17.2 and 16.6  % were in the mild 
range (8–10); 7.0 and 5.9 % were in the moderate range 
(11–14); and 2.1 and 1.5 % were in the severe range (15–
21) for anxiety and depression respectively. Cronbach’s 
alpha was 0.87, 0.83 and 0.90 for anxiety, depression and 
distress respectively. Missing HADS item rates ranged 
from 1.7 to 2.1 %.

Simulation results: individual scores
Results for the depression subscale are shown in Table 2, 
for n = 52, since results did not vary by sample size. Full 
results including anxiety, distress, each of the missing 
item rates and each of the sample sizes are given in Addi-
tional file 1: Appendix S1.

The methods were most sensitive within the subscale 
missingness mechanism, with higher values of bias and 
imprecision than the mechanisms of demographic and 
random, which had similar values. The method that con-
sistently yielded the lowest imprecision and bias for indi-
vidual scores was the subscale half mean. The next best 
method for bias was the subscale mean, and the MI ½ 
for imprecision. The worst method was the item mean, 

followed by MI and the subject mean, which were simi-
lar. These results were consistent regardless of outcome 
(depression, anxiety, distress), overall sample size, pro-
portion of subjects with missing items, the propor-
tion of missing items per subject, and the missingness 
mechanism.

Simulation results: population means
Results for population means, at 10 and 25  % missing 
item rate, are given in Table 3. Results were not depend-
ent on sample size, so only n =  52 is shown. Similar to 
the individual scores, methods were the most sensitive 
within the subscale missingness mechanism, with higher 
values of bias and imprecision than the random and 
demographic missingness. The correlation with QoL was 
highly effected when no imputation was used for subscale 
dependent missingness. For example, correlation was 
estimated at −0.427 for n = 52 and pitem = 0.5, when the 
correlation for the entire sample was −0.767. The other 
estimates for this proportion of missing data ranged 
from −0.701 to −0.769. Although estimated correla-
tions were not as disparate for smaller rates of missing 
data, the magnitude of the correlation was consistently 
underestimated.

The worst methods for bias and imprecision were those 
that resulted in a reduced number of individuals with 
scores, and the item mean. The worst performing was 
the complete case. This was largely consistent regardless 
of outcome (depression, anxiety, distress), overall sample 
size, proportion of subjects with missing items, the pro-
portion of missing items per subject, and the missingness 
mechanism. The best method for bias and imprecision 
was the subject mean, followed by the subscale mean 
and MI. The magnitude of the bias and imprecision was 
independent of sample size. Bias ranged from 0 (subject 
mean) to −3.2 (complete case, subscale missingness, 
25 % missing rate). The largest bias amongst the imputa-
tion methods was about −1.1 to −1.2, for both the half 
methods, which is slightly less than the pre-specified 2.1 
point importance criteria.

Bias and imprecision were not affected by sample size, 
but they did vary slightly by missingness rates, and by 
psub and pitem. However, comparing the two cases where 
the missing item rate was 10  %, we see that the worst 
methods, overall, were still the complete case, item mean, 
and the half methods. At 2 % missing item rate, the miss-
ing item rate of the source data, bias and imprecision is 
very small.

Discussion
We performed an extensive simulation study to inves-
tigate the best of seven approaches for handling miss-
ing items in the HADS. We varied the missingness 
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mechanism, the overall sample size, proportion of sub-
jects with missing items, and the proportion of missing 
items per subject. We assessed the methods based on 
both population and individual values. All imputation 
methods were superior to omitting subjects with miss-
ing data (complete case analysis). The best performing 
imputation methods depended on whether inference was 

targeted at the individual or at the population. For indi-
viduals, the top performing method was the subscale half 
mean. This method, however, performed poorly accord-
ing to population measures, with higher bias and impre-
cision when the proportions of missing data were high. 
The best method for population inference was the subject 
mean. However, these issues mostly disappeared as the 

Table 1 Descriptive statistics for the Hospital Anxiety and Depression Score (HADS), and correlation with quality of life 
(QoL) for 1444 Australian cancer patients and survivors

Higher values indicate higher anxiety or depression
a Possible range of each item is 0–3; range for subscales is 0–21; range for distress is 0–42
b Correlation of item with total of remaining items in subscale
c QoL is measured by the FACT-G

Item number Item content Number missing % missing Meana Standard deviation Correlation 
with totalb

Correlation 
with QoLc

Anxiety subscale (Cronbach’s alpha = 0.87) 5.66 4.20 −0.687

1 I feel tense or  
wound up

26 1.8 0.87 0.77 0.69

3 I get a sort of fright-
ened feeling, as if 
something awful is 
about to happen

26 1.8 0.86 0.83 0.70

5 Worrying thoughts 
go through my 
head

25 1.7 1.00 0.68

7 I can sit at ease and 
feel relaxed

24 1.7 0.92 0.77 0.62

9 I get a frightened 
feeling like but-
terflies in the 
stomach

31 2.1 0.56 0.73 0.60

11 I feel restless as if I 
have to be on the 
move

28 1.9 0.87 0.84 0.50

13 I get sudden feelings 
of panic

28 1.9 0.44 0.72 0.73

Depression subscale (Cronbach’s 
alpha = 0.84)

5.07 4.11 −0.767

2 I still enjoy things I 
used to enjoy

24 1.7 0.74 0.83 0.58

4 I can laugh and see 
the funny side of 
things

28 1.9 0.51 0.76 0.64

6 I feel cheerful 24 1.7 0.65 0.75 0.68

8 I feel as if I am 
slowed down

28 1.9 1.36 0.92 0.50

10 I have lost interest in 
my appearance

29 2.0 0.75 0.98 0.51

12 I look forward with 
enjoyment to 
things

28 1.9 0.66 0.84 0.71

14 I can enjoy a good 
book or radio or TV 
program

28 1.9 0.44 0.72 0.49

Distress total score (Cronbach’s 
alpha = 0.90)

10.74 7.60 −0.796
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proportions approached the levels observed in the source 
data (~2 %). This is consistent with the lack of bias at the 
individual level particularly for the method that used the 
subscale mean.

To further investigate the effect of high numbers 
of missing items within an individual, we conducted 
another small simulation study to compare the subscale 
mean and the subscale half mean methods for population 
measures. We let pitem range from 0.5 to 0.929, which cor-
responds to 7–13 missing items out of the 14. We used 
psub = 0.1 and 0.5 (=probability a subject has a missing 
item) and 1000 simulated datasets of n =  52 with sub-
scale dependent missingness mechanism. We found that 
when psub = 0.1, both methods worked well for bias, even 
with high numbers of missing items. When psub =  0.5 

the subscale mean performed well, in terms of bias and 
imprecision for up to 12 missing items. The half mean 
method broke down much sooner. For example, with 
nine missing items, the bias for the subscale mean was 
−0.10, as compared to −2.19 for the half method. This 
indicates that very few complete items may be needed, if 
inference is population based. Full results can be found in 
Additional file 2: Appendix S2.

The relatively strong performance of the subscale 
half mean relative to MI for individuals is likely to have 
occurred because our study assumed that particular items 
in the HADS were not more likely to be missing than oth-
ers, an assumption borne out by examination of missing 
item rates in the original dataset. If missingness had been 
particularly high for the items with low (or high) overall 

Table 2 Mean bias and  imprecision of  individual scores for  depression, n =  52 for  random, demographic and  subscale 
dependent missingness mechanisms

1000 simulated datasets
a Sample size after imputation

Method Bias Imprecision n methoda

Random Demog Subscale Random Demog Subscale

25 % missing item rate, psub = 0.5 pitem = 0.5

 Subject mean 0.083 0.002 −0.060 1.638 1.707 2.177 52

 Subscale mean 0.004 −0.007 −0.010 2.316 2.533 3.483 52

 Subscale ½ mean 0.006 −0.002 −0.003 0.617 0.637 0.886 40

 Item mean 0.001 −0.360 −1.110 2.755 3.453 4.745 52

 Multiple imputation 0.016 −0.087 −0.324 1.727 2.043 2.623 52

 Multiple imputation ½ 0.010 −0.027 −0.119 0.635 0.738 0.965 40

10 % missing item rate, psub = 0.5 pitem = 0.2

 Subject mean 0.028 0.002 −0.025 0.459 0.474 0.632 52

 Subscale mean −0.003 0.001 −0.002 0.526 0.543 0.767 52

 Subscale ½ mean −0.002 0.001 −0.000 0.437 0.453 0.631 47

 Item mean −0.002 −0.123 −0.372 0.747 0.897 1.052 52

 Multiple imputation 0.005 −0.012 −0.075 0.532 0.612 0.773 52

 Multiple imputation ½ 0.001 −0.007 −0.063 0.472 0.545 0.672 47

10 % missing item rate, psub = 0.2 pitem = 0.5

 Subject mean 0.034 −0.003 −0.082 0.674 0.685 0.991 52

 Subscale mean −0.001 −0.004 0.001 0.986 1.025 1.468 52

 Subscale ½ mean 0.004 −0.002 −0.001 0.212 0.212 0.313 47

 Item mean −0.002 −0.132 −0.702 1.102 1.310 3.435 52

 Multiple imputation 0.005 −0.027 −0.234 0.662 0.751 1.276 52

 Multiple imputation ½ 0.002 −0.007 −0.074 0.195 0.222 0.363 47

2 % missing item rate, psub = 0.1 pitem = 0.2

 Subject mean 0.006 −0.000 −0.023 0.091 0.098 0.151 52

 Subscale mean −0.000 −0.000 0.001 0.106 0.110 0.158 52

 Subscale ½ mean 0.000 0.000 0.001 0.083 0.086 0.128 51

 Item mean 0.000 −0.029 −0.164 0.141 0.177 0.541 52

 Multiple imputation 0.001 −0.004 −0.038 0.101 0.112 0.192 52

 Multiple imputation ½ 0.000 −0.002 −0.033 0.086 0.193 0.163 51
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means, it may not have performed as well [14]. This uni-
form missingness is not always the case for all question-
naires. For example, Bell et  al. [23] showed that items 
concerning sexuality were more likely to be missing, and 
missing informatively, in the FACT-G and the Supportive 
Care Needs Survey [24]. For questionnaires with varying 
levels of difficulty, and therefore potential for differential 
missingness, item response theory may be more appro-
priate [25] though implementation will be a challenge in 
settings with limited computational resources.

A strength of this study is the large sample size 
amongst a diverse population, with both cancer patients 

and survivors, and varying ethnicity. The standard devia-
tions of 4.11 for anxiety, 4.19 for depression and 7.60 for 
distress are similar to other psychosocial research studies 
[26], indicating that the study is likely to be generalizable. 
Another strength is the investigation into performance 
at both the individual and population level. A limitation 
is that our study was based on individuals affected by 
cancer and it is possible that results could vary for dif-
ferent conditions. In particular, if these individuals were 
more distressed than other populations there would be 
more right skewness in this sample, which would make 
the item mean imputation more biased towards higher 

Table 3 Bias and imprecision of population means for the HADS depression subscale, and correlation with quality of life

N = 52 for random, demographic dependent and subscale dependent missingness mechanisms. 1000 simulated datasets
a Correlation = −0.767 for original data (n = 1444)

Method Bias Imprecision Correlation with QoLa

Random Demog Subscale Random Demog Subscale Random Demog Subscale

25 % missing item, rate = psub = 0.5 pitem = 0.5

 Subject mean 0.083 0.002 −0.061 0.037 0.033 0.047 −0.754 −0.759 −0.752

 Subscale mean 0.004 −0.011 −0.024 0.046 0.051 0.071 −0.722 −0.715 −0.701

 Subscale ½ mean 0.000 −0.357 −1.102 0.141 0.258 1.377 −0.756 −0.757 −0.729

 Item mean 0.001 −0.360 −1.110 0.062 0.189 1.277 −0.756 −0.721 −0.717

 Multiple imputation 0.016 −0.086 −0.324 0.038 0.053 0.175 −0.711 −0.744 −0.729

 Multiple imputation ½ 0.005 −0.382 −1.218 0.136 0.274 1.638 −0.742 −0.769 −0.732

 Complete case −0.016 −1.026 −3.168 0.348 1.347 10.162 −0.769 −0.769 −0.427

10 % missing item rate, psub = 0.5 pitem = 0.2

 Subject mean 0.028 0.002 −0.025 0.010 0.009 0.013 −0.768 −0.769 −0.768

 Subscale mean −0.003 0.001 −0.002 0.010 0.010 0.015 −0.760 −0.768 −0.754

 Subscale ½ mean −0.000 −0.025 −0.067 0.016 0.019 0.026 −0.769 −0.768 −0.743

 Item mean −0.002 −0.123 −0.372 0.014 0.030 0.154 −0.758 −0.755 −0.743

 Multiple imputation 0.005 −0.012 −0.075 0.011 0.012 0.023 −0.766 −0.765 −0.765

 Multiple imputation ½ 0.003 −0.033 −0.130 0.016 0.021 0.040 −0.770 −0.769 −0.746

 Complete case −0.000 −0.695 −2.122 0.201 0.699 4.720 −0.770 −0.770 −0.716

10 % missing item rate, psub = 0.2 pitem = 0.5

 Subject mean 0.034 0.003 −0.082 0.014 0.014 0.025 −0.764 −0.767 −0.765

 Subscale mean 0.000 −0.006 −0.010 0.018 0.020 0.028 −0.750 −0.747 −0.740

 Subscale ½ mean 0.002 −0.134 −0.701 0.041 0.064 0.575 −0.764 −0.766 −0.730

 Item mean −0.002 −0.132 −0.702 0.022 0.041 0.514 −0.745 −0.746 −0.731

 Multiple imputation −0.005 −0.027 −0.234 0.013 0.015 0.080 −0.761 −0.761 −0.758

 Multiple imputation ½ −0.000 −0.139 −0.774 0.040 0.064 0.672 −0.766 −0.769 −0.734

 Complete case −0.003 −0.285 −1.540 0.077 0.161 2.409 −0.768 −0.772 −0.666

2 % missing item rate, psub = 0.1 pitem = 0.2

 Subject mean 0.006 −0.000 −0.023 0.002 0.002 0.003 −0.769 −0.771 −0.771

 Subscale mean −0.000 −0.000 0.001 0.002 0.002 0.003 −0.767 −0.767 −0.767

 Subscale ½ mean 0.000 −0.009 −0.034 0.003 0.004 0.010 −0.768 −0.768 −0.766

 Item mean 0.000 −0.029 −0.166 0.003 0.004 0.033 −0.766 −0.766 −0.767

 Multiple imputation 0.001 −0.004 −0.038 0.002 0.002 0.005 −0.768 −0.769 −0.769

 Multiple imputation ½ 0.001 −0.01 −0.068 0.003 0.004 0.014 −0.769 −0.769 −0.768

 Complete case −0.000 −0.119 −0.679 0.026 0.043 0.500 −0.770 −0.770 −0.729



Page 9 of 10Bell et al. BMC Res Notes  (2016) 9:479 

distress. This would not affect imputation methods based 
on a subject’s own mean. In practice, the true missing 
mechanism can be difficult or impossible to determine. 
Furthermore, missingness is unlikely to be due to a sin-
gle mechanism. The simulations we have conducted show 
the extreme cases: random missingness, where the effect 
of missingness is very small, to subscale dependent miss-
ingness, where the effect is larger. In a study, where there 
are multiple mechanisms, bias and imprecision is likely 
to fall somewhere in between the two extremes we have 
shown.

Some researchers use the HADS to classify patients 
into “depressed” or “anxious” based on a cutoff of eight 
points [4]. It is well known that dichotomizing continu-
ous variables can lead to problems including misclassifi-
cation bias [27], and lower power. Given the consistent 
underestimation of depression in this study, the likeli-
hood of misclassifying depressed (or anxious) individuals 
as not depressed (or anxious) is increased, although only 
very slightly for small rates of missingness, and primarily 
for the complete case approach.

Our objective was to investigate handling missing items 
in a particular questionnaire, the HADS, so that the sub-
scales or total score can be used for either screening or 
analyses, such as regression models. If other variables 
or the entire HADS questionnaire are missing, one may 
consider using multiple imputation, at least as a sensitiv-
ity analysis [5, 28].

Conclusions
Based on these simulations, we strongly recommend the 
‘half rule’ using individual subscale means when using 
the HADS scores at the individual level (e.g. screening). 
For investigations relying on summary statistics (e.g. 
sample means), either individual subject, subscale means 
or MI would be preferable, although we prefer the subject 
or subscale means due to the comparative simplicity of 
use. The issue of whether to impose the ‘half rule’ may be 
academic for studies such as those we used as our source 
data, as the proportions of subjects who would have more 
than half the items missing are often quite small. When 
missing item rates increased, however, important levels 
of bias occurred, both in the mean of the HADS and the 
correlation with QoL, underscoring the importance of 
avoiding missing data.

Additional files

Additional file 1: Appendix S1. Individual results.

Additional file 2: Appendix S2. Simulation increasing number of miss-
ing items.
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