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We obtain the discrete versions of integral inequalities of Bernoulli type obtained in Choi (2007)
and give an application to study the boundedness of solutions of nonlinear Volterra difference
equations.

1. Introduction

Integral inequalities of Gronwall type have been very useful in the study of ordinary
differential equations. Sugiyama [1] proved the discrete analogue of the well-known
Gronwall-Bellman inequality [2–5] which find numerous applications in the theory of
finite difference equations. See [6–11] for differential inequalities and difference inequali-
ties.

Willett and Wong [12] established some discrete generalizations of the results of
Gronwall [5]. The discrete analogue of the result of Bihari [13] was partially given by
Hull and Luxemburg [14] and was used by them for the numerical treatment of ordinary
differential equations. Pachpatte [15] obtained some general versions of Gronwall-Bellman
inequality. Oguntuase [16] established some generalizations of the inequalities obtained
in [15]. However, there were some defects in the proofs of Theorems 2.1 and 2.7 in [16].
Choi et al. [17] improved the results of [16] and gave an application to boundedness of the
solutions of nonlinear integrodifferential equations.

In this paper, we establish the discrete analogues of integral inequalities of Bernoulli
type in [17] and give an application to study the boundedness of solutions of nonlinear
Volterra difference equations.
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2. Main Results

Pachpatte [11] proved the following useful discrete inequality which can be used in the proof
of various discrete inequalities. Let �(n0) = {n0, n0 + 1, . . . , n0 + k, . . .} and �(n0 , l) = {n0, n0 +
1, . . . , n0 + k, . . . , l} for fixed nonnegative integers n0 and l.

Lemma 2.1 (see [11, Theorem 2.3.4]). Let u(n) be a positive sequence defined on �(n0 ), and let
b(n) and k(n) be nonnegative sequences defined on �(n0 ). Suppose that

Δu(n) ≤ b(n)u(n) + k(n)up(n), n ∈ �(n0), (2.1)

where p ≥ 0, p /= 1 is a constant. Then, one has

u(n) ≤ 1
e(n)

[
u1−p(n0) +

(
1 − p

) n−1∑
s=n0

k(s)e1−p(s + 1)

]1/(1−p)
, n ∈ �(n0, β

)
, (2.2)

where e(n) =
∏n−1

s=n0
[1 + b(s)]−1 and

β = sup

{
n ∈ �(n0) : u1−p(n0) +

(
1 − p

) n−1∑
s=n0

k(s)e1−p(s + 1) > 0

}
. (2.3)

If we set b(n) = 0 in Lemma 2.1, then we can obtain the following corollary.

Corollary 2.2. Suppose that

Δu(n) ≤ k(n)up(n), n ∈ �(n0), p ≥ 0, p /= 1. (2.4)

Then,

u(n) ≤
[
u1−p(n0) +

(
1 − p

) n−1∑
s=n0

k(s)

]1/(1−p)
, n ∈ �(n0, β

)
, (2.5)

where

β = sup

{
n ∈ �(n0) : u1−p(n0) +

(
1 − p

) n−1∑
s=n0

k(s) > 0

}
. (2.6)

Willet and Wong [12, Theorem 4] proved the nonlinear difference inequality by using
the mean value theorem.We obtain the following result which is slightly different fromWillet
and Wong’s Theorem 4.
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Theorem 2.3. Let u(n), b(n), k(n) be nonnegative sequences defined on �(n0) and b(n) < 1 for each
n ∈ �(n0 ). Suppose that

u(n) ≤ u0 +
n−1∑
s=n0

b(s)u(s) +
n−1∑
s=n0

k(s)up(s), n ∈ �(n0), (2.7)

where p ≥ 0, p /= 1 and u0 is a positive constant. Then one has

u(n) ≤ 1
e−b(n)

(
u
1−p
0 +

(
1 − p

) n−1∑
s=n0

k(s)e1−p−b (s)

)1/(1−p)
, n ∈ �(n0, β

)
, (2.8)

where

e−b(n) =
n−1∏
s=n0

(1 − b(s)), β = sup

{
n ∈ �(n0) : u

1−p
0 +

(
1 − p

) n−1∑
s=n0

k(s)e1−p−b (s) > 0

}
. (2.9)

Proof. Let the right hand of (2.7) denote by

w(n) = u0 +
n−1∑
s=n0

b(s)u(s) +
n−1∑
s=n0

k(s)up(s). (2.10)

Then, we have

Δw(n) = b(n)u(n) + k(n)up(n)

≤ b(n)w(n) + k(n)wp(n)

≤ b(n)w(n + 1) + k(n)wp(n), n ∈ �(n0),

(2.11)

since w(n) is nondecreasing. Multiplying (2.11) by the factor e−b(n), we obtain

Δ(e−b(n)w(n)) = e−b(n)Δw(n) − b(n)e−b(n)w(n + 1)

≤ k(n)e−b(n)wp(n)

= k(n)e1−p−b (n)(e−b(n)w(n))p, n ∈ �(n0),

(2.12)

since e−b(n) is a positive sequence on �(n0 ). From Corollary 2.2, we obtain

e−b(n)w(n) ≤
[
u
1−p
0 +

(
1 − p

) n−1∑
s=n0

k(s)e1−p−b (s)

]1/(1−p)
, n ∈ �(n0, β

)
, (2.13)
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where

β = sup

{
n ∈ �(n0) : u

1−p
0 +

(
1 − p

) n−1∑
s=n0

k(s)e1−p−b (s) > 0

}
. (2.14)

Since u(n) ≤ w(n) and e−b(n) > 0, this implies that our inequality holds.

Remark 2.4. Note that (2.7) with p = 1 in Theorem 2.3 implies

u(n) ≤ u0

n−1∏
s=n0

(1 + b(s) + k(s))

≤ u0 exp

[
n−1∑
s=n0

(b(s) + k(s))

]
, n ∈ �(n0).

(2.15)

Hence, we can obtain a comparison result for linear difference inequalities.
The following theorem can be regarded as an extension of the inequality given by

Willett and Wong in [12] which is the discrete analogue of the inequality given by Choi et al.
in [17, Theorem 2.7].

Theorem 2.5. Let u(n) and b(n) < 1 be nonnegative sequences defined on �(n0), and let k(n,m) be
a nonnegative function for n,m ∈ �(n0) with n ≥ m. Suppose that

u(n) ≤ c +
n−1∑
s=n0

b(s)

[
u(s) +

s−1∑
τ=n0

k(s, τ)up(τ)

]
, n ∈ �(n0), (2.16)

where c is a positive constant and p > 0, p /= 1 is a constant. Then, one has

u(n) ≤ c +
n−1∑
s=n0

b(s)
e−b(s)

[
cq + q

s−1∑
τ=n0

e
q

−b(τ)

(
k(τ + 1, τ) +

τ−1∑
σ=n0

|Δτk(τ, σ)|
)]1/q

, n ∈ �(n0, β
)
,

(2.17)

where q = 1 − p, e−b(n) =
∏n−1

s=n0
(1 − b(s)), Δnk(n,m) = k(n + 1, m) − k(n,m), and

β = sup

{
n ∈ �(n0) : cq + q

n−1∑
s=n0

e
q

−b(s)

[
k(s + 1, s) +

s−1∑
τ=n0

|Δsk(s, τ)|
]
> 0

}
. (2.18)

Proof. Define v(n) by the right member of (2.16). Then,

Δv(n) = b(n)u(n) + b(n)
n−1∑
s=n0

k(n, s)up(s)

≤ b(n)v(n) + b(n)
n−1∑
s=n0

k(n, s)vp(s),

(2.19)
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by u(n) ≤ v(n) and up(n) ≤ vp(n) for 0 ≤ p /= 1. Letting

w(n) = v(n) +
n−1∑
s=n0

k(n, s)vp(s), w(n0) = v(n0) = c, (2.20)

we obtain

Δw(n) = Δv(n) + k(n + 1, n)vp(n) +
n−1∑
s=n0

Δnk(n, s)vp(s)

≤ b(n)w(n) + k(n + 1, n)wp(n) +
n−1∑
s=n0

|Δnk(n, s)|wp(s)

≤ b(n)w(n) +

[
k(n + 1, n) +

n−1∑
s=n0

|Δnk(n, s)|
]
wp(n),

(2.21)

for each n ∈ �(n0). By Theorem 2.3, we have

w(n) ≤ 1
e−b(n)

[
c1−p +

(
1 − p

) n−1∑
s=n0

e
1−p
−b (s)

(
k(s + 1, s) +

s−1∑
τ=n0

|Δsk(s, τ)|
)]1/(1−p)

, n ∈ �(n0, β
)
,

(2.22)

where e−b(n) =
∏n−1

s=n0
(1 − b(s)) and

β = sup

{
n ∈ �(n0) : cq + q

n−1∑
s=n0

e
1−p
−b (s)

[
k(s + 1, s) +

s−1∑
τ=n0

|Δsk(s, τ)|
]
> 0

}
. (2.23)

Substituting (2.22) into (2.19) and then summing it from n0 to n, we have

v(n) ≤ c +
n−1∑
s=n0

b(s)
e−b(s)

[
cq + q

s−1∑
τ=n0

e
q

−b(τ)

(
k(τ + 1, τ) +

τ−1∑
σ=n0

|Δτk(τ, σ)|
)]1/q

, n ∈ �(n0, β
)
,

(2.24)

where q = 1 − p. Hence, the proof is complete.

Remark 2.6. We suppose further that Δnk(n,m) is a nonnegative function for n,m ∈ �(n0 )
with n ≥ m in Theorem 2.5. Then, we have

u(n) ≤ c +
n−1∑
s=n0

b(s)
e−b(s)

[
cq + q

s−1∑
τ=n0

e
q

−b(τ)

(
k(τ + 1, τ) +

τ−1∑
σ=n0

Δτk(τ, σ)

)]1/q

, n ∈ �(n0, β
)
,

(2.25)
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where

β = sup

{
n ∈ �(n0) : cq + q

n−1∑
s=n0

e
q

−b(s)

[
k(s + 1, s) +

s−1∑
τ=n0

Δsk(s, τ)

]
> 0

}
. (2.26)

If we set k(n,m) = c(n)d(m) in Theorem 2.5, then we obtain the following corollary
from Theorem 2.5. This is an analogue of the nonlinear difference inequality in [17,
Corollary 2.8].

Corollary 2.7. Let u(n), b(n) < 1, c(n), d(n) be nonnegative sequences defined on �(n0), and let
u0 = u(n0) be a positive constant. Suppose that

u(n) ≤ u0 +
n−1∑
s=n0

b(s)

[
u(s) + c(s)

s−1∑
τ=n0

d(τ)up(τ)

]
, n ∈ �(n0), (2.27)

where p ≥ 0, p /= 1 is a constant. Then, one has

u(n) ≤ u0 +
n−1∑
s=n0

b(s)
e−b(s)

[
u
q
0 + q

s−1∑
τ=n0

e
q

−b(τ)

(
c(τ + 1)d(τ) + |Δc(τ)|

τ−1∑
σ=n0

d(σ)

)]1/q

, n ∈ �(n0, β
)
,

(2.28)

where q = 1 − p, e−b(n) =
∏n−1

s=n0
(1 − b(s)), and

β = sup

{
n ∈ �(n0) : u

q
0 + q

n−1∑
s=n0

e
q

−b(s)

(
c(s + 1)d(s) + |Δc(s)|

s−1∑
τ=n0

d(τ)

)
> 0

}
. (2.29)

If we use Lemma 2.1 in the proof of Theorem 2.5, then we obtain the following bound
of u(n) which contains double fold summations.

Corollary 2.8. Let u(n) and b(n) be nonnegative sequences defined on �(n0), and let k(n,m) be a
nonnegative function for n,m ∈ �(n0) with n ≥ m. Suppose that

u(n) ≤ c +
n−1∑
s=n0

b(s)

[
u(s) +

s−1∑
τ=n0

k(s, τ)up(τ)

]
, n ∈ �(n0), (2.30)
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where c is a positive constant, and p > 0, p /= 1 is a constant. Then, one has

u(n) ≤ 1
e(n)

[
c1−p +

(
1 − p

) n−1∑
s=n0

(
b(s)

s−1∑
τ=n0

k(s, τ)

)
e1−p(s + 1)

]1/(1−p)
, n ∈ �(n0, β

)
, (2.31)

where e(n) =
∏n−1

s=n0
[1 + b(s)]−1 and

β = sup

{
n ∈ �(n0) : c1−p +

(
1 − p

) n−1∑
s=n0

(
b(s)

s−1∑
τ=n0

k(s, τ)

)
e1−p(s + 1) > 0

}
. (2.32)

Proof. Define v(n) by the right member of (2.30). Then, we have

Δv(n) = b(n)u(n) + b(n)
n−1∑
s=n0

k(n, s)up(s)

≤ b(n)v(n) + b(n)
n−1∑
s=n0

k(n, s)vp(s)

≤ b(n)v(n) +

(
b(n)

n−1∑
s=n0

k(n, s)

)
vp(n),

(2.33)

since u(n) ≤ v(n) and vp(n) is nondecreasing in n. From Lemma 2.1, we obtain

v(n) ≤ 1
e(n)

[
c1−p +

(
1 − p

) n−1∑
s=n0

(
b(s)

s−1∑
τ=n0

k(s, τ)

)
e1−p(s + 1)

]1/(1−p)
, n ∈ �(n0, β

)
, (2.34)

where e(n) =
∏n−1

s=n0
[1 + b(s)]−1 and

β = sup

{
n ∈ �(n0) : c1−p +

(
1 − p

) n−1∑
s=n0

(
b(s)

s−1∑
τ=n0

k(s, τ)

)
e1−p(s + 1) > 0

}
. (2.35)

Since u(n) ≤ v(n), the proof is complete.

If we set p = 1 in Theorem 2.5, then we can obtain the following discrete analogue of
Theorem 2.2 in [17] which improve in [16, Theorem 2.1].

Corollary 2.9. Let u(n) and b(n) be nonnegative sequences defined on �(n0) and k(n,m) be a
nonnegative function for each n,m ∈ �(n0) with n ≥ m. Suppose that

u(n) ≤ c +
n−1∑
s=n0

b(s)

(
u(s) +

s−1∑
τ=n0

k(s, τ)u(τ)

)
, n ∈ �(n0), (2.36)



8 Journal of Inequalities and Applications

where c is a positive constant. Then, one has

u(n) ≤ c

[
1 +

n−1∑
s=n0

b(s)
s−1∏
τ=n0

(
1 + p(τ)

)]

≤ c

[
1 +

n−1∑
s=n0

b(s) exp

(
s−1∑
τ=n0

p(τ)

)]
, n ∈ �(n0),

(2.37)

where p(n) = b(n) + k(n + 1, n) +
∑n−1

s=n0
|Δnk(n, s)|.

The proof of this corollary follows by the similar argument as in the proof of
Theorem 2.5. We omit the details.

3. An Application

In this section, we present an application of nonlinear difference inequalities established
in Theorem 2.5 to study the boundedness of the solutions of nonlinear Volterra difference
equations.

Consider the difference equation of Volterra type

Δx(n) = A(n)x(n) +
n−1∑
s=n0

K(n, s)x(s) + F(n), x(n0) = x0, (3.1)

where A(n) andK(n, s) are d × d matrices for each n, s ∈ �(n0 ) and F : �(n0) → �
d .

Lemma 3.1 (see [18, Theorem 2.9.1]). Assume that there exists a d × d matrix L(n, s) defined on
�(n0) × �(n0 ) and satisfying

K(n, s) + ΔsL(n, s) + L(n, s + 1)A(s) +
n−1∑

τ=s+1

L(n, τ + 1)K(τ, s) = 0, (3.2)

where ΔsL(n, s) = L(n, s + 1) − L(n, s).

Then, (3.1) is equivalent to the ordinary linear difference equation

Δy(n) = B(n)y(n) + L(n, n0)x0 +H(n), y(n0) = x0, (3.3)

where B(n) = A(n) − L(n, n) and

H(n) = F(n) +
n−1∑
s=n0

L(n, s + 1)F(s). (3.4)
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Consider the linear nonhomogeneous difference equation

Δx(n) = B(n)x(n) + P(n), x(n0) = x0, (3.5)

where B(n) is a d×dmatrix over � and P : �(n0) → �
d . We present the variation of constants

formula of difference equations.

Lemma 3.2. The solution x(n) = x(n, n0, x0) of (3.5) is given by the variation of constants formula

x(n) = Φ(n, n0)x0 +
n−1∑
s=n0

Φ(n, s + 1)P(s), (3.6)

where Φ(n, n0) is a fundamental matrix solution of the difference equation Δx(n) = B(n)x(n) such
that Φ(n0, n0) is the identity matrix.

Now, we give an application of our results. We consider the perturbation of linear
Volterra difference equation (3.1) with F(n) = 0

Δx(n) = A(n)x(n) +
n−1∑
s=n0

K(n, s)x(s) +G(n, x(n)), (3.7)

with initial condition x(n0) = x0, where G : �(n0) × �d → �
d .

Theorem 3.3. Suppose that the following conditions hold for n ≥ n0, 0 < α < 1:

(i) |Φ(n, n0)| ≤ M1,

(ii) |L(n, s)| ≤ M2α(n−s),

(iii) |G(s, x)| ≤ b(s)|x|, n ≥ s ≥ n0,

where M1 and M2 are some positive constants and b(n) is a nonnegative sequence defined on �(n0 )
with

∑∞
s=n0

α−sb(s) < ∞. Then, all solutions of (3.7) are bounded in �(n0 ).

Proof. By Lemma 3.1, (3.7) is equivalent to

Δx(n) = B(n)x(n) + L(n, n0)x0 +G(n, x(n)) +
n−1∑
s=n0

L(n, s + 1)G(s, x(s)), (3.8)

with x(n0) = x0, where B(n) = A(n) − L(n, n) and L(n, s) is a solution of (3.2). It follow from
Lemma 3.2 that the solution x(n, n0, x0) of (3.8) is given by

x(n) = Φ(n, n0)x0 +
n−1∑
s=n0

Φ(n, s+1)

[
L(s, n0)x0+G(s, x(s))+

s−1∑
τ=n0

L(s, τ+1)G(τ, x(τ))

]
, n ≥ n0.

(3.9)
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By using the conditions (i)–(iii), we obtain

|x(n)| = |Φ(n, n0)||x0| +
n−1∑
s=n0

|Φ(n, s + 1)||L(s, n0)||x0|

+
n−1∑
s=n0

|Φ(n, s + 1)|
[
|G(s, x(s))| +

s−1∑
τ=n0

|L(s, τ + 1)||G(τ, x(τ))|
]

≤ M1|x0| +M1

n−1∑
s=n0

M2α
s−n0 |x0| +M1

n−1∑
s=n0

b(s)

[
|x(s)| +

s−1∑
τ=n0

|L(s, τ + 1)|b(τ)|x(τ)|
]

≤ (1 +M2 − α)
1 − α

M1|x0| +
n−1∑
s=n0

M1b(s)

[
|x(s)| +

s−1∑
τ=n0

|L(s, τ + 1)|b(τ)|x(τ)|
]
, n ≥ n0.

(3.10)

Letting u(n) = |x(n)|, c = ((1 +M2 − α)/(1 − α))M1|x0| and

|L(s, τ + 1)|b(τ) ≤ M2α
(s−τ−1)b(τ) = k(s, τ), (3.11)

and employing the above estimate by Corollary 2.9, then we have

u(n) ≤ c

[
1 +

n−1∑
s=n0

M1b(s) exp

(
s−1∑
τ=n0

p(τ)

)]
≤ M, n ∈ �(n0), (3.12)

where M = c[1 +
∑∞

s=n0
M1b(s) exp(

∑∞
τ=n0

p(τ))], because

p(τ) = b(τ) + k(τ + 1, τ) +
τ−1∑
σ=n0

|Δτk(τ, σ)|

= b(τ) +M2αb(τ) +M2
(1 − α)

α
ατ

τ−1∑
σ=n0

α−σb(σ)

≤ b(τ)(1 +M2α) + ατM2
(1 − α)

α

∞∑
σ=n0

α−σb(σ),

(3.13)

and
∑∞

τ=n0
p(τ) < ∞. Hence, the solutions x(n) of (3.7) are bounded in �(n0), and the proof is

complete.
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