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1 Introduction

In this article we make a quantitative comparison of the performance of different types of

SO(10) Grand Unification Theories (GUT’s) in reproducing the observed values of fermion

masses and mixing, also including the neutrino sector. By now we have a rather precise

knowledge of the leptonic mixing angles [1–9] which, within the experimental accuracy, are

consistent with the Tri-Bimaximal (TB) pattern [10–16] and, as such, are very different

from the quark mixing angles. A still open and challenging problem is that of formulating a

natural model of Grand Unification based on SO(10), leading not only to a good description

of quark masses and mixing but also, in addition, of charged lepton masses and to approx-

imate TB neutrino mixing. In SO(10) the main added difficulty with respect to SU(5) is

clearly that all fermions in one generation belong to a single 16-dimensional representation,

so that one cannot separately play with the properties of the SU(5)-singlet right-handed

neutrinos in order to explain the striking difference between quark and neutrino mixing.

There are a number of rather complete SO(10) models, with different architectures, that,

without having a built-in TB mixing yet are able to reproduce the data on neutrino mixing

angles [31–33, 35, 36, 38, 67, 70]. These models fall in different classes: renormalizable or

not, with lopsided or with symmetric mass matrices, with various assumed flavour sym-

metry, with different types of see-saw and so on. In most of these models some dedicated

parameters are available to fit the observed neutrino masses and mixing angles. In these

models TB mixing appears as accidental, and if the data would become somewhat different,

the new values of the mixing angles could as well be fitted by simply changing the values

of the parameters. These models are certainly interesting and, in this article, a number of
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them will be confronted with the data and their respective performances will be compared

and taken as a reference. A more difficult goal would be the construction of SO(10) models

where TB mixing is built in and is automatic in a well defined first approximation, due, for

example, to an underlying (broken) flavour symmetry. The leading approximation in these

models is particularly constrained and the neutrino mixing angles are fixed in this limit.

There are a number of GUT models of this type based on SU(5) (see, for example, [17, 19–

22]), but, as mentioned, the SO(10) case is more difficult and the existing attempts, in our

opinion, are still not satisfactory in all respects.

A promising strategy in order to separate charged fermions and neutrinos in SO(10)

is to assume the dominance of type-II see-saw [23–25] (with respect to type-I see-saw [26–

30]) for the light neutrino mass matrix. Grand Unified SO(10) models based on type-II

see-saw dominance have been studied in refs. [39–44, 49–51, 57, 58, 60–64]. If type-II

seesaw is responsible for neutrino masses, then the neutrino mass matrix (proportional

to) f (see eqs. (2.1), (2.3), (2.4)) is separated from the dominant contributions to the

charged fermion masses and can therefore show a completely different pattern. This is to

be compared with the case of type-I see-saw where the neutrino mass matrix depends on

the neutrino Dirac and Majorana matrices and, in SO(10), the relation with the charged

fermion mass matrices is tighter. Here we do not consider the problem of formulating a

flavour symmetry or another dynamical principle that can lead to approximate TB mixing,

but rather study the performance of the type-II see-saw SO(10) models in fitting the data

on fermion masses in comparison with other model architectures. Actually, we will show in

section 2 that, without loss of generality, we can always go to a basis where the matrix f is

of the TB type. In fact, since the TB mixing matrix is independent of the mass eigenvalues,

the most general neutrino mass matrix, which is a symmetric complex matrix, can always

be transformed into a TB mixing mass matrix by a change of the charged lepton basis.

The observed deviations from TB mixing will then be generated by the diagonalisation

of charged leptons and, in order to agree with the data, must be small. In turn the

charged lepton mixings are related in SO(10) to the quark mixings. Thus, in this class of

models TB mixing is exact in the approximation of neglecting charged fermion mixings.

When a symmetry guarantees TB mixing in first approximation the corrections from the

diagonalisation of charged leptons are automatically small, while in general could be large.

The main purpose of our analysis is to see to which extent this particular structure models

is supported by the data among different types of SO(10) .

In renormalizable SO(10) models (a non necessary assumption which is only taken

here in some cases for simplicity) the fermion masses are generated by Yukawa couplings

with Higgs fields transforming as 10, 126 (both symmetric) and 120 (antisymmetric).

Alternatively, in non renormalizable SO(10) models the large representations 126 and 120

can be effectively obtained from the tensor products of smaller Higgs representations. The

10 Yukawa couplings contributing to up, down and charged lepton masses in most models

have a large 33 term, corresponding to the large third generation masses, while all other

entries are smaller and lead by themselves to zero CKM mixing (because the 10 contributes

equally to up and down mixing). Quark mixings arise from small corrections due to 126,

the same Higgs representation that determines f which, in models with type-II see-saw, is

– 2 –



J
H
E
P
0
3
(
2
0
1
1
)
1
3
3

dominant in the neutrino sector, and to 120. Thus, in this approach, in the absence of

120, there is a strict relation between quark masses and mixings and the neutrino mass

matrix. The presence of 120 dilutes this connection which however still remains important.

In particular the small deviations from TB mixing induced by the diagonalisation of the

charged lepton mass matrix, barring cancelations, are of the same order as the quark mixing

angles and most of the parameters appear in both.

An interesting question is to see to which extent the data are compatible with the

constraints implied by this interconnected structure. A goal of this work is precisely to

study how the inclusion of TB mixing along these lines is reflected in the ability of the

model in reproducing the data in comparison with different structures. Thus, independent

of the problem of determining a flavour symmetry that can fix the parameters to their

required values, we study SO(10) models based on the dominance of type-II see-saw with

respect to their performance in fitting the fermion masses and mixings in comparison with

alternative realistic SO(10) models. Some other analyses have appeared in the literature

where SO(10) models with dominance of type-II see-saw have been confronted with the

data (see, for example, [57–59, 67]). The present analysis is different and, in some respect,

more general and, in addition, also includes the comparison with the most established

models based on SO(10) that can be considered both realistic (i.e. that have been worked

out to a level that a comparison with the data is possible) and complete (i.e. that also

include the neutrino sector). Each model will be compared with the same set of data on

masses and mixings given at the GUT scale. For this purpose we specify a set of data

for reference. We are not much concerned with the uncertainties which for sure exist in

evolving the physical quantities measured at the electroweak scale up to the corresponding

ones at the GUT scale. We will adopt a reasonable evolution up to the GUT scale, as can

be found in the literature [59, 71–73], and consider the resulting set of data as the truth

and fit all relevant models to that set (to be precise, we actually consider two sets of data,

one for models with small tan β and one for those with large tan β). We argue that if a

particular model is sizably better than another in fitting these idealized data it will also

score better on the real data. For our comparison the first quality factor is the χ2 or the

χ2/d.o.f. obtained from the fit for each model. We also introduce a parameter dFT for a

quantitative measure of the amount of fine-tuning of parameters which is needed in each

model. We find that SO(10) models based on dominance of type-II see-saw can fit the data

remarkably well, both in absolute terms and in comparison with other types of models, but

at the price of a substantial amount of fine-tuning needed to compensate for the tension

introduced by the double role of f in determining both the neutrino mass matrix and the

charged fermion masses and mixings. In particular the smallness of the first generation

masses requires a precise cancellation of larger terms.

This article is organised as follows. In section 2 we define our reference model, renor-

malizable with type-II dominance. In section 3 we discuss the relations between parameters

of the model and measured quantities. In section 4 we specify the set of data that we adopt

at the GUT scale. In section 5 we describe our fitting procedure and the quality indicators

that we consider to compare different models. In section 6 we briefly describe a number

of alternative SO(10) models and we fit them to the same data as we did for our refer-
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ence model. Finally in section 7 we present our summary and conclusion. The best fit

parameters and observables are listed in appendix A for all the competing models.

2 A class of SO(10) models

We consider the class of renormalizable Supersymmetric (SUSY) SO(10) models with dom-

inance of type-II see-saw for neutrino masses [39–44, 49–51, 57, 58, 60–64]. In the following

we indicate the generic model of this class by T-IID (from Type-II Dominance). In renor-

malizable SO(10) models the Higgs fields that contribute to fermion masses are in 10

(denoted by H), 126 (∆) and 120 (Σ). The Yukawa superpotential of this model is then

given by:

WY = hψψH + f ψψ∆̄ + h′ ψψΣ, (2.1)

where the symbol ψ stands for the 16 dimensional representation of SO(10) that includes

all the fermion fields in one generation. The coupling matrices h and f are symmetric,

while h′ is anti-symmetric. The representations H and ∆ have two standard model (SM)

doublets in each of them whereas Σ has four such doublets. At the GUT scale MGUT , once

the GUT and the B − L symmetry are broken, one linear combination of the up-type and

one of down-type doublets remain almost massless whereas the remaining combinations

acquire GUT scale masses. The electroweak symmetry is broken after the light Minimal

Supersymmetric Standard Model (MSSM) doublets (to be called Hu,d) acquire vacuum

expectation values (vevs) and they then generate the fermion masses. The resulting mass

formulae for different fermion masses are given by (see, for example, [61–63]):

Yu = h+ r2f + r3h
′, (2.2)

Yd = r1(h+ f + h′) ,

Ye = r1(h− 3f + ceh
′) ,

YνD = h− 3r2f + cνh
′,

where Ya are mass matrices divided by the electro-weak vev’s vu,d and ra (a = 1, 2, 3 and

cb (b = e, ν) are the mixing parameters which relate the Hu,d to the doublets in the various

GUT multiplets.

In generic SO(10) models of this type, the neutrino mass formula has a type-II [23–25]

and a type-I [26–30] contributions:

Mν = fvL −MD
1

fvR
MT

D , (2.3)

where vL is the vev of the B − L = 2 triplet in the 126 Higgs field. Note that in general,

the two contributions to neutrino mass depend on two different parameters, vL and vR,

and it is possible to have a symmetry breaking pattern in SO(10) such that the first

contribution (the type-II term) dominates over the type-I term. The possible realisation

of this dominance and its consistency with coupling unification has been studied in the
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literature [44, 49–54] and found tricky but not impossible [56]. The neutrino mass formula

then becomes

Mν ∼ fvL. (2.4)

Note that f is the same coupling matrix that appears in the charged fermion masses in

eq. (2.2), up to factors from the Higgs mixings and the Clebsch-Gordan coefficients. Also

note that the neutrino Dirac mass, proportional to YνD in eqs. (2.2), only enters in the

neglected type-I see-saw terms and does not play a role in the following analysis. The

equations (2.2) and (2.4) are the key equations in this approach.

For generic eigenvalues mi, the most general matrix that is diagonalised by the TB

unitary transformation is given by:

f = U∗
TBdiag(m1,m2,m3)U

†
TB . (2.5)

where, with a specific phase convention, we can take:

UTB =









√

2
3

1√
3

0

− 1√
6

1√
3
− 1√

2

− 1√
6

1√
3

1√
2









, (2.6)

In this convention UTB is a real orthogonal matrix and all phases can be included in the

eigenvalues mi. Then the matrix f is symmetric with complex entries and, from eq. (2.5),

one obtains:

f =







f2 f1 f1

f1 f2 + f0 f1 − f0

f1 f1 − f0 f2 + f0






, (2.7)

with: m1 = f2 − f1, m2 = f2 + 2f1 and m3 = f2 − f1 + 2f0.

An important observation is that, for a generic neutrino mass matrix f ′, we can always

go to a basis where f ′ is diagonalised by the TB unitary transformation in eq. (2.6) and

is of the form in eq. (2.7). In fact, if we start from a complex symmetric matrix f ′ not of

that form, it is sufficient to diagonalise it by a unitary transformation U : f ′diag = UT f ′U

and then take the matrix

f = U∗
TBf

′
diagU

†
TB = U∗

TBU
T f ′UU †

TB (2.8)

As a result the matrices f and f ′ are related by a change of the charged lepton basis

induced by the unitary matrix O = UU †
TB (in SO(10) the matrix O rotates the whole

fermion representations 16i). Since TB mixing is a good approximation to the data we

argue that this basis is a good starting point. In other words, for the physical neutrino

mass matrix, TB mixing is a good approximation so that the unitary transformation O is

close to the identity. In this basis the deviations from TB mixing will be generated by the

diagonalisation of charged leptons which, in order to agree with the data, must be small.

At the same time also the quark mixings must be small in order to correspond to the data.
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In the selected basis, the parameterisations adopted for the matrices h (symmetric)

and h′ (antisymmetric) are given by:

h =







h11 h12 h13

h12 h22 h23

h13 h23 Y






, (2.9)

and

h′ = i







0 σ12 σ13

−σ12 0 σ23

−σ13 −σ23 0






, (2.10)

The h33 element of h has been emphasised with the special notation Y because usually it

is the dominant term: Y ≫ hij . All the matrix elements fij , Y , hij and σij , as well as ra
and cb that appear in eq. (2.2), will be taken as real. This leads to a crucial economy of

parameters (justified by the fact that, as we shall see, the resulting fit is very good) and

can be seen to correspond to an underlying “parity” symmetry [60] that implies that all

mass matrices obtained from h, h′ and f are hermitian. Note that, due to the imaginary

unit factor i in front of the h′ matrix, this purely imaginary matrix will in general induce

CP violation in the quark and lepton sectors.

The charged fermion mass matrices are given by:

Mu = vu







r2f2+h11 r2f1+h12+ir3σ12 r2f1+h13+ir3σ13

r2f1+h12−ir3σ12 r2(f0+f2)+h22 r2(−f0+f1)+h23+ir3σ23

r2f1+h13−ir3σ13 r2(−f0+f1)+h23−ir3σ23 Y +r2(f0+f2)






,

(2.11)

Md =
r1vu

tan β







f2+h11 f1+h12+iσ12 f1+h13+iσ13

f1+h12−iσ12 f0+f2+h22 −f0+f1+h23+iσ23

f1+h13−iσ13 −f0+f1+h23−iσ23 Y +f0+f2






, (2.12)

Me =
r1vu

tan β







−3f2+h11 −3f1+h12+iceσ12 −3f1+h13+iceσ13

−3f1+h12−iceσ12 −3(f0+f2)+h22 −3(−f0+f1)+h23+iceσ23

−3f1+h13−iceσ13 −3(−f0+f1)+h23−iceσ23 Y −3(f0+f2)






,

(2.13)

where tan β = vu/vd, with vu,d being the vacuum expectation values of Hu,d, and Mu, Md

and Me refer to up, down and charged leptons, respectively. Note that all mass matrices

are hermitian, hence each of them can be diagonalised by a unitary matrix. We have 6 real

parameters in h, 3 in h′, 3 in f plus r1/tanβ, r2, r3, ce and the ratio vL/vu, or a total of

17 parameters. The (in principle) measurable quantities are 12 fermion masses, 6 mixing

angles, 2 CP violating phases (we do not include Majorana phases) or a total of 20. Only

18 of these observables have been measured (the PNMS phase and one of the neutrino

masses are unconstrained). In the following more predictive versions of the model with less

free parameters will also be considered (for example, the JK2 model in section 6).
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3 Observables and parameters

Starting from the neutrino mass matrix in eqs. (2.4), (2.7) we obtain:

mν1 = (f2 − f1)vL, mν2 = (f2 + 2f1)vL, mν3 = (f2 − f1 + 2f0)vL. (3.1)

The oscillation frequencies are given by:

∆m2
sol = m2

ν2 −m2
ν1 = 3f1(f1 + 2f2)v

2
L (3.2)

∆m2
atm = m2

ν3 −m2
ν1 = 4f0(f0 + f2 − f1)v

2
L

and their ratio r is:

r =
∆m2

sol

∆m2
atm

=
3f1(f1 + 2f2)

4f0(f0 + f2 − f1)
(3.3)

The experimental smallness of r ∼ 1/30 suggests that f1/f0 is small, |f1/f0| ∼ 0.1 − 0.2

(barring an accidental cancellation with f1 ∼ −2f2).

The deviations of the leptonic mixing angles from the TB values are induced by the

diagonalisation of the charged lepton mass matrix given in eq. (2.13). As Me is hermitian

it is diagonalised by a unitary transformation:

Me = UeM
diag
e U †

e (3.4)

where Mdiag
e stands for a diagonal matrix with real non-negative elements me, mµ, mτ and

Ue is the relevant unitary matrix. Any unitary matrix can in general be written as (see,

for example, [18]):

U = eiφ0diag(ei(φ1+φ2), eiφ2 , 1)Ũdiag(ei(φ3+φ4), eiφ4 , 1) , (3.5)

where φi (i=0,. . . ,4) run from 0 to 2π and Ũ is the standard parameterization for the CKM

mixing matrix, namely

Ũ =







1 0 0

0 c23 s23
0 −s23 c23













c13 0 s13e
iδ

0 1 0

−s13e−iδ 0 c13













c12 s12 0

−s12 c12 0

0 0 1






, (3.6)

where all the mixing angles belong to the first quadrant and δ to [0, 2π]. An approximate

form of me that follows from eq. (3.4) for mτ ≫ mµ ≫ me, in a linear approximation in the

small mixing angles unless non linear terms are rescued by large mass factors, is given by:

Me =







me+mµs
e2
12+mτs

e2
13 (mµs

e
12+mτs

e
13s

e
23e

iδe

)eiφ
e

1 mτs
e
13e

i(δe+φe

1
+φe

2
)

(mµs
e
12+mτs

e
13s

e
23e

−iδe

)e−iφe

1 mµ+mτs
e2
23 mτs

e
23e

iφe

2

mτs
e
13e

−i(δe+φe

1
+φe

2
) mτs

e
23e

−iφe

2 mτ






.

(3.7)

Going back to eq. (2.13) and similar ones for the heavier generations, in the above approx-

imation, we can write down simple analytic expressions for the mass eigenvalues (except

for the first generation mass which is fine tuned in this class of models) and the mixing
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angles and phases. Note, however, that exact expressions are used in our numerical fits.

Starting from the 2-3 family sector we have:

mτ ≈ k[Y − 3(f0 + f2)] (3.8)

mµ ≈ k[h22 − 3(f0 + f2)] −mτs
e2
23

se
23e

iφe

2 ≈ k

mτ
[h23 + 3(f0 − f1) + iceσ23].

with

k =
r1vu

tan β
(3.9)

We also obtain:

se
13e

i(δe+φe

1
+φe

2
) ≈ k

mτ
[h13 − 3f1 + iceσ13] (3.10)

The following expression for se
12 is less accurate but, in general, still sufficiently good,

at least for indicative purposes. It is obtained from the 11 entries of the matrices in

eqs. (2.13), (3.7) by neglecting me:

se
12 ≈

√

k

mµ
(h11 − 3f2) −

mτ

mµ
se2
13 (3.11)

A remaining phase can be derived from the equation (obtained from the 12 entries of the

matrices in eqs. (2.13), (3.7):

(mµs
e
12 +mτs

e
13s

e
23e

iδe

)eiφ
e

1 ≈ k(h12 − 3f1 + iceσ12) (3.12)

From fitting the data one finds that indeed Y is the largest parameter, followed by h13,

h22, h23, σ13, σ23 and f0 while f1, f2, h11, h12 and σ12 are still smaller.

In a linear approximation in the leptonic mixing angles se
ij the corrections to UTB from

the diagonalization of charged leptons are given by (for each matrix element we omit an

overall phase):

U12 ≈ 1√
3
(1 − se

12e
iφe

1 − se
13e

i(δe+φe

1
+φe

2
)) (3.13)

U13 ≈ 1√
2
(se

12 − se
13e

i(δe+φe

2
))

U23 ≈ −1√
2
(1 + se

23e
iφe

2).

The corresponding corrected mixing angles are:

sin θ12 = |U12| ≈
1√
3
(1 − se

12 cosφe
1 − se

13 cos (δe + φe
1 + φe

2)) (3.14)

θ13 = |U13| ≈
1√
2

√

se2
12 + se2

13 − 2se
12s

e
13 cos (δe + φe

2)

sin θ23 = |U23| ≈
1√
2
(1 + se

23 cosφe
2).
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It turns out, however, that the above linear approximations are often not sufficiently accu-

rate because the leptonic mixing angles se
ij are not small enough. This is particularly true

for sin θ12 and sin θ13. So the above linearised formulae are only given for indicative pur-

poses and, in our fit, we used the exact expressions for the mixing, obtained from U †
eUTB

from eqs. (3.5), (3.6). But the approximate analytic formulae are useful to understand the

need of fine tuning to reproduce the observed masses for the light generations of leptons

and the neutrino masses and mixing. We see in fact from eqs. (3.2), (3.3) that neutrino

masses impose a strong constraint on the values of fi. But the same fi enter in the charged

lepton masses and the leptonic mixing angles eqs. (3.9), (3.10), (3.11) and they must con-

spire with the hij and σij parameters in order to reproduce the observed values. And the

same is also true for the quark masses that we now discuss.

In the quark sector the approximate formulae for the 2-3 families, analoguous to

eqs. (3.9) for charged leptons, are derived from eqs. (2.11), (2.12):

mb ≈ k[Y + f0 + f2] (3.15)

ms ≈ k[h22 + f0 + f2] −mbs
d2
23

sd
23e

iφd

2 ≈ k

mτ
[h23 − f0 + f1 + iσ23].

mt ≈ vu[Y + r2(f0 + f2)] (3.16)

mc ≈ vu[r2f0 + r2f2 + h22] −mts
u2
23

su
23e

iφu

2 ≈ vu

mτ
[h23 + r2(f1 − f0) + ir3σ23].

Note that, as Y ≫ |fi|, mb = mτ approximately holds at the GUT scale (bottom-tau

unification). Relations analogous to eqs. (3.10), (3.11), (3.12) can be readily written down

for the up and down quark sectors. For the CKM mixing matrix we go back to eq. (3.5)

and derive Uu and Ud that diagonalise mu and md, given in eqs. (2.11), (2.12), respectively.

We then construct VCKM = U †
uUd.

4 A set of idealized data at the GUT scale

For the charged fermion masses and CKM mixings at the GUT scale we used the values

given in table 1(a)-table 1(b) as input for our fitting procedure. These values are based

on the analysis of ref. [72], in the MSSM framework, and were obtained from a two-loop

Renormalization Group Evolution (RGE) from the SUSY scale at about 1 TeV to the

GUT scale ∼ 2 × 1016 GeV . Ref. [72] can be considered as an upgrade of a previous

work [71]. This analysis has been repeated for two different values of the supersymmetric

(SUSY) parameter tanβ: tanβ = 10 and tanβ = 55. In fact tan β is the most important

SUSY parameter that directly affects the RGE. So these tables have been used to fit two

typical classes of models with small or large tan β. Actually for both values of tan β we

have used in the fit an updated version of the data which was derived in refs. [59, 73]

shown in table 1. In particular, refs. [59, 73] use more recent values for mu, md and ms

at low energy with respect to the ones used in ref. [72]. The errors taken on the data
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Observables Input data

mu[MeV ] 0.55 ± 0.25

mc[MeV ] 210 ± 21

mt [GeV] 82.4+30.3
−14.8

md[MeV ] 1.24 ± 0.41

ms[MeV ] 21.7 ± 5.2

mb[GeV ] 1.06+0.14
−0.09

me[MeV ] 0.3585 ± 0.0003

mµ[MeV ] 75.672 ± 0.058

mτ [GeV ] 1.2922 ± 0.0013

Vus 0.2243 ± 0.0016

Vcb 0.0351 ± 0.0013

Vub 0.0032 ± 0.0005

J × 10−5 2.2 ± 0.6
(a) tgβ = 10

Observables Values

mu[MeV ] 0.45 ± 0.2

mc[MeV ] 217 ± 35

mt[GeV ] 97 ± 38

md[MeV ] 1.3 ± 0.6

ms[MeV ] 23 ± 6

mb[GeV ] 1.4 ± 0.6

me[MeV ] 0.3565 ± 0.001

mµ[MeV ] 75.3 ± 0.12

mτ [GeV ] 1.629 ± 0.037

Vus 0.2243 ± 0.0016

Vcb 0.0351 ± 0.0013

Vub 0.0032 ± 0.0005

J × 10−5 2.2 ± 0.6
(b) tan β = 55

Table 1. GUT scale data for charged fermions for tgβ = 10 (ref. [59]) and tanβ = 55 (ref. [73])

points at the GUT scale are those shown in ref. [59] or in ref. [73] and do not include an

estimate of the additional ambiguities associated with the chosen procedure. For example,

the SUSY spectrum parameters, which mainly enter in the evolution through the threshold

corrections, are subject to considerable ambiguities [74–76]. Moreover at the GUT scale

other threshold corrections appear, but they are again affected by large uncertainties and

model dependent. As we are only interested in defining a set of idealized data in order to

make a meaningful performance test for a number of different models, we decided to ignore

the uncertainties on both the SUSY- and GUT-scale threshold corrections. As already

discussed we are not much concerned with these uncertainties, rather we prefer to fit all

models on the same set of data, arguing that if a particular model is better than another in

fitting these idealized data it would also score better on the real data if they were known.

Concerning the neutrino sector, we have ignored the effects of the evolution from the

low energy scale to the GUT scale. In fact for all the models analysed here the mass

spectrum is non degenerate, so that the evolution can be considered negligible to a good

approximation [79]. The low energy data are taken from [8, 9] and the corresponding values

are given in table 2.

5 Fitting procedure and quality factors

As already discussed, the class of models T-IID described in section 2 contains a total

of 17 independent parameters. We are going to compare these models with the set of

18 “measurements” described in the previous section. As shown in eq. (2.12), (2.13) the

parameter tan β always enters in the combination r1/ tan β in all the observables. So

in these models it is possible to obtain a large ratio mt/mb without making tanβ large
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Observable Input data

∆m2
21 × 10−5[eV 2] 7.65 ± 0.23

∆m2
31 × 10−3[eV 2] 2.40 ± 0.12

sin2θ13 0.010 ± 0.016

sin2θ12 0.304 ± 0.022

sin2θ23 0.50 ± 0.07

Table 2. Neutrino masses and mixing ([8, 9])

(in fact, large tan β can be problematic in the MSSM with a GUT Yukawa t − b − τ

unification [77, 78]). Here we are going to fit the model presented in section 2 on the data

in table 1(a), which refer to the tanβ = 10 case. We use the numerical minimization tool

Minuit2 developed at CERN.

We introduce a parameter dFT for a quantitative measure of the amount of fine-tuning

needed in the models. This adimensional quantity is obtained as the sum of the absolute

values of the ratios between each parameter and its “error”, defined for this purpose as

the shift from the best fit value that changes χ2 by one unit, with all other parameters

fixed at their best fit values (this is not the error given by the fitting procedure because

in that case all the parameters are varied at the same time and the correlations are taken

into account):

dFT =
∑

∣

∣

∣

∣

pari
erri

∣

∣

∣

∣

(5.1)

It is clear that dFT gives a rough idea of the amount of fine-tuning involved in the fit

because if some |erri/pari| are very small it means that it takes a minimal variation of the

corresponding parameters to make a large difference on χ2. The value of dFT for our best

fit output is shown in table 3(a). To get a better idea of the significance of this number, one

can compare it with a similar number dData based on the data, i.e. the sum of the absolute

values of the ratios between each observable and its error as derived from the input data:

dData =
∑

| obsi

erri
| (5.2)

In particular for the set of data in table 1(a) dData ∼ 3800 and for table 1(b) dData ∼ 1300.

The best fit results for the models T-IID are shown in table 3. In table 3(a) we indicate

the values of the observables obtained at the GUT scale, the χ2 calculated in each sector

(quarks, charged leptons, neutrinos), the χ2/d.o.f. (in the case of T-IID we have one degree

of freedom, so the reduced χ2/d.o.f. is the same as the χ2) and the fine-tuning parameter

dFT. In table 3(b) we show the best fit parameters.

We caution that, due to the non linearity of the problem and the large number of

parameters, many local minima are present in all the fits we have performed. Although

we have carefully tested the selected minimum for possible improvements, still we cannot

be sure that it indeed is the global minimum, within reasonable ranges for the parameters.

But, since we obtain an excellent agreement with the data, we are not much concerned
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Observable Best fit value

mu[MeV ] 0.553

mc[MeV ] 210

mt[GeV ] 82.6

md[MeV ] 1.15

ms[MeV ] 22.4

mb[GeV ] 1.08

me[MeV ] 0.3585

mµ[MeV ] 75.67

mτ [GeV ] 1.292

Vus 0.224

Vcb 0.0351

Vub 0.00320

J × 10−5 2.19

∆m2
21 × 10−5[eV 2] 7.65

∆m2
32 × 10−3[eV 2] 2.40

sin2θ13 0.0126

sin2θ12 0.305

sin2θ23 0.499

χ2 quark 0.0959

χ2 charged fermions 0.0959

χ2 neutrino 0.0316

χ2 totale 0.127

χ2/dof totale 0.127

dFT 469777
(a)

Parameter Best fit value

h11vu[GeV ] 0.808

h12vu[GeV ] 1.17

h13vu[GeV ] 6.06

h22vu[GeV ] 5.37

h23vu[GeV ] 5.64

Y vu[GeV ] 85.0

f0vu[GeV ] -2.20

f1vu[GeV ] -0.276

f2vu[GeV ] -0.228

σ12vu[GeV ] -0.270

σ13vu[GeV ] 2.27

σ23vu[GeV ] 6.37

r1/ tan β 0.0129

r2 1.66

r3 0.612

ce 3.85

vL/vu × 10−9 0.0112
(b)

Table 3. Fit result for the model T-IID described in section 2

with this problem. In fact the resulting χ2 ∼ 0.13 is very good. We note however that a

substantial level of fine tuning is needed. We in fact obtain dFT ∼ 4.7 105 from the fit, to

be compared with dData ∼ 3.8 103. As explained in section 3, this is due to the fact that

the neutrino oscillation frequency data impose strong constraints on the fi values. Those

also enter in the expressions of the mass values and the mixings of charged fermions and

in the deviations from TB neutrino mixing. As a result, the strong suppression of the first

generation masses and the observed values of mixing angles can only be obtained by a fine

tuning among the fi parameters with those of the 10 and 120 matrices.

An important conclusion that we can already give at this stage is that models of the

T-IID type formulated in section 2 in the general framework of type-II see-saw dominance

can lead at a very good fit of the data but at the price of a pronounced level of fine tuning.

In the following section we will compare this class of models with some other “realistic”

SO(10) models in the literature.
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6 Comparison with other SO(10) models

In order to appreciate the performance of the above class of models in fitting the fermion

masses and mixings we present a comparison with some other realistic SO(10) models

present in literature. For a meaningful comparison we applied the same fitting procedure

to each model, using the same set of data as described in the previous section. A list of

realistic SO(10) theories can be found in [31]. Here we consider a number of models, with

different structure and type (renormalizable, non renormalizable, lopsided or symmetric,

with type-I and/or type-II see-saw and so on).

The model introduced and discussed in a series of papers by Dermisek and Raby

(DR) [32, 33] is an example of non-renormalizable SO(10) theory, with Higgs multiplets

in the 10, 45 and 16, based on the flavour symmetry S3 × U(1) × Z2 × Z2. This model

can be considered as a descendant of the model by Barbieri et al, [34], with the two

lightest generations in a doublet of U(2) and the third generation in a singlet. In fact,

S3, the permutation group of 3 objects, is a discrete subgroup of SO(3) (and SU(2) is

the covering group of SO(3)) with inequivalent irreducible representations 2, 1 and 1’. In

the S3 symmetry limit only the third generation masses are allowed. Then the second

generation masses are generated by a symmetry breaking stage with intensity proportional

to a parameter ǫ, and finally the first generation masses only arise when an additional stage

with intensity ǫ′ is switched on. The magnitudes of ǫ and ǫ′ are determined by a Froggatt-

Nielsen mechanism, which is induced by a set of heavy fields that are then integrated away.

In the neutrino sector a type-I see-saw mechanism with a hierarchical Majorana mass

matrix is adopted. New SO(10)-singlet neutrino and scalar fields are introduced, so that,

enough freedom is allowed that is essential to reproduce the observed neutrino properties.

In this model the ratio of top to bottom masses is of order tan β, which must be large:

mt(mt)/mb(mt) ∼ tan β ∼ 50.

A good realisation of the lopsided idea is given by the model by Albright, Babu and

Barr (ABB) [35, 36], also non-renormalizable and with type-I see-saw. In minimal SU(5)

the down quark and the charged lepton mass matrices are connected by a transposition,

as the roles of 5̄ and 10 are interchanged in the respective mass matrices. So, if the mass

matrices are asymmetric (lopsided), left-handed mixings of charged leptons can be large

without implying large left-handed mixings for quarks (in fact, this only implies large right-

handed quark mixings which are not observable). In turn large charged lepton left-handed

mixings contribute to the observed large neutrino mixings. In the ABB model the breaking

of SO(10) in fact preserves SU(5) in a first stage, which makes this connection with lopsid-

edness relevant. This model is based on a flavour symmetry U(1)×Z2×Z2, which, however,

plays a different role than in the DR model. In fact, while in the DR model the flavour

symmetry and its breaking are mainly used to reproduce the hierarchy of fermion masses

and mixings, in the ABB construction, the main goal is to select the Lagrangian terms

which are desired and reject those that would not reproduce the data. In particular, in the

Higgs sector the symmetry is crucial in order to implement and preserve the mechanism of

Dimopoulos and Wilczek for the solution of the doublet-triplet splitting problem [37]. As

is often the case in non renormalizable models, the Higgs sector is inspired by a minimality

– 13 –



J
H
E
P
0
3
(
2
0
1
1
)
1
3
3

requirement that demands the smallest possible representations compatible with realistic

properties. Accordingly the Higgs sector contains 10, 16 + 16, 45 representations and a

few SO(10) singlets. The ABB model was originally formulated when the neutrino frequen-

cies and mixing angles were not as precisely measured as now. Later the lepton sector has

been revised in ref. [36] with some ad hoc arbitrary ingredients and we have adopted this

last description here as it can be fitted to the present data.

We have also considered a variation of this model proposed by Ji, Li, Mohapatra

(JLM) [38] which was motivated by a less ad-hoc treatment of the neutrino sector. Precisely,

the down quark and the charged lepton mass matrices are the same as in ABB, while the

up and Dirac neutrino mass matrices are modified by introducing some new vertices. The

structure of neutrino mixing is not attributed to the Majorana matrix, which in this model

is diagonal, but rather to the modified Dirac matrix. The model is again based on type-I

see-saw and the new added operators introduce a sufficient number of new free parameters

to accommodate the neutrino mixing angles.

Turning now to renormalizable models we have analysed the model referred to as BSV

in table 4. In this version one is introducing the minimal Higgs content in the Yukawa

sector (10, 126). This minimal model has been discussed in ref. [42, 43] and compared

with the data in ref. [59] (where also the cases of type-I and mixed type-I and type-II

were considered). A different perspective on this model is presented in ref. [48], also

including some comparison with the data (with mixed type-I and type-II see-saw). With

this restricted Higgs content one cannot impose the L-R parity that leads to real hermitian

h and f matrices, otherwise there is no CP violation and the too restricted number of

parameters does not allow a good fit. Thus in ref. [59] complex h and f matrices were

taken. As a consequence there are more parameters than observables. We have repeated

the fit of that model within our procedure and the results are listed in table 4. We see from

our fit in table 4 that, in spite of this multitude of parameters, with type-II dominance, in

the absence of the 120, no good fit of the data can be obtained.

Another particular class of renormalizable models with type-II see-saw dominance has

been discussed by Joshipura and Kodrani (JK) [67]. This model comes in two versions, one

with type-I dominance (JK1) and one with type-II dominance (JK2). The Higgs coupled

to fermions are in 10, 126 and 120, like in the T-IID model. The characteristic feature

of the model is the presence of a broken µ − τ symmetry (an explicit breaking is present

in the 10 mass terms) in addition to the parity symmetry which leads to hermitian mass

matrices. In the case of type-II see-saw dominance this model is a particular case of T-IID

with some restrictions on the parameters imposed by the ansatz of broken µ− τ symmetry.

The renormalizable model proposed by Grimus and Kuhbock [70] is of particular in-

terest for us because it closely corresponds to the T-IID model (the fermions masses arise

from Higgs in 10, 126 and 120 and the parity symmetry of ref. [60] is assumed) except for

the fact that it is based on type-I see-saw dominance. There is one more parameter, vR

(see eq. (2.3), than in the model T-IID. The only other difference is that this model was

fitted in the basis where the matrix h from the 10 is diagonal and real, while for the T-IID

we worked in the TB basis for the matrix f of the 126.
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Model d.o.f. χ2 χ2/d.o.f. dFT dData

DR [32, 33] 4 0.41 0.10 7.0 103 1.3 103

ABB [35–37] 6 2.8 0.47 8.1 103 3.8 103

JLM [38] 4 2.9 0.74 9.4 103 3.8 103

BSV [59] < 0 6.9 - 2.0 105 3.8 103

JK2 [67] 3 3.4 1.1 4.7 105 3.8 103

GK [70] 0 0.15 - 1.5 105 3.8 103

T-IID 1 0.13 0.13 4.7 105 3.8 103

Table 4. Comparison of different SO(10) models fitted to the data. The double lines mark three

sectors: the DR model, non renormalizable with type-I see-saw and the only one with large tanβ,

the non renormalizable models ABB and JLM, lopsided with type-I see-saw and the renormalizable

models BSV, JK2, T-IID, with type-II see-saw, and GK, renormalizable with type-I see-saw

The model by Dermisek and Raby is the only one that demands a large value of

tan β, so we fit it on the data in table 1(b), while all other models are fitted on the values

in table 1(a). A collection of our results on comparing the different models is shown in

table 4. In appendix A we show the mass matrices of the different models in terms of the

corresponding parameters and the results of the fitting procedure.

The results in table 4 are in some cases somewhat different than those from the fits

described by the authors of the various models. One obvious reason is that the set of the

input data for the fit is different, as explained in section 4. In some cases (e.g. for JK2

and GK) the difference also comes from the fact that, for hermitian matrices, we fitted the

eigenvalues of mi, that is of the mass matrices and not those of m†
imi. Indeed, from fitting

the squares of masses one can end up with solutions of negative mass which we discard.

From the results in table 4 we see that the most established realistic SO(10) models,

DR, ABB, JLM, which are non renormalizable with type-I see-saw, achieve a χ2/d.o.f.

smaller than 1 with a moderate level of fine tuning, defined by the parameter dFT. In

the above list of models DR is special as it has large tan β, so that it was fitted to a

different set of data, given in the right panel of table 1, which were obtained by evolving

up to the GUT scale with large tanβ. The model T-IID which we have introduced and

described in section 2, realizes an excellent fit, but with a level of fine tuning considerably

larger than in the DR, ABB and JLM models. As already mentioned, this large fine

tuning arises from the difficulty of fitting the light 1st generation charged fermion masses,

together with the neutrino oscillation frequencies and mixing angles. In fact the neutrino

oscillation frequencies and mixing angles lead to f matrix elements of comparable size

that need cancelations to occur with the parameters in h and h′ in order to reproduce

the light quark and lepton masses. Note that in the DR, ABB, JLM the fine tuning is

less pronounced because in all these models new parameters appear in the neutrino sector,

so that the neutrino masses and mixings are more independent from the charged fermion

sectors. In the JK2 model the constraints from the broken µ − τ symmetry reduce the

number of parameters within the general framework of the T-IID model. As a consequence
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the quality of the fit worsens and the level of fine tuning is the same. Instead the poor

result of the BSV model, both in terms of χ2 and of dFT shows that the presence of the 120

is crucial [49–51, 57, 58]. In ref. [44–47, 53, 54, 59] it was also shown that the contribution

from the 120 is essential for consistency with the existing proton decay bounds. Finally

the GK model shows that if one takes the same framework of T-IID, except that the

assumption of type-I see-saw dominance is made, an excellent fit is also obtained, still with

a substantial level of fine tuning.

We conclude this section by recalling that in this work we have compared the models

only on the basis of their ability to fit the fermion masses and mixings. Clearly for a model

to be complete and satisfactory many more aspects are important, like the mechanism of

the GUT symmetry breaking, the running of the couplings towards the GUT unification,

the compatibility of the model with the proton decay bounds and so on (see ref. [53, 54] and

refs therein). Also, for the models based on type-II see-saw dominance we assumed here

that the dominance is absolute, while in reality one should estimate the corrections to this

approximation or include the normal type-I see-saw terms [59]. Additional quality factors

could be considered. In models with an underlying flavour symmetry the smallness of some

of the parameters is guaranteed by the broken flavour symmetry. Thus an important quality

factor is the percentage of small quantities that are predicted to be small. For some of the

models there is a broken flavour symmetry that reproduces, at least in part, the observed

hierarchies. But this is not the case for T-IID where the problem of an underlying flavour

symmetry was not addressd here.

7 Summary and conclusion

We have made a quantitative comparison of the performance of different types of SO(10)

Grand Unification Theories (GUT’s) in reproducing the observed values of fermion masses

and mixing, also including the neutrino sector. All models, chosen among the most com-

plete and sufficiently realistic, have been confronted with the same set of data (except for

DR that requires a large value of tanβ), using the same fitting procedure. We have shown

that a SO(10) model with type-II see-saw dominance can achieve a very good fit of fermion

masses and mixings also including the neutrino sector (provided that the representations

10, 126 and 120 are all included). The quality of the fit in terms of χ2 and χ2/d.o.f.

is comparable with the best realistic SO(10) model that we have tested. However, the

tight structure of the T-IID model implies a significantly larger amount of fine tuning with

respect to more conventional models like the DR or the ABB and JLM models. But those

models have no built-in TB mixing and in fact could accommodate a wide range of mixing

angle values. A model with type-II see-saw dominance can offer a convenient framework

for obtaining a GUT model with approximate TB mixing in the neutrino sector. For this

goal a suitable flavour symmetry should be introduced in order to enforce TB mixing as a

first approximation. Such a flavour symmetry construction was attempted in ref. [64] but

the resulting model is very sketchy and can only be considered as a first step. In fact, when

the model of ref. [64] is submitted to our fitting procedure it leads to χ2 ∼ 342, χ2/d.o.f

∼ 38 and dFT ∼ 1.2 104 which is quite far from the performance of all models that we
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considered. The formulation of a natural and elegant model along these lines is not an easy

task and more work is demanded.
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A Model parameters and their best fit values

In this section we show the Yukawa matrices for every model that we have analysed together

with the parameter values obtained from our fitting procedure. Mu/d/e/ν are the Dirac

matrices for up-quarks/down-quarks/charged leptons/neutrinos. MR/L are the Majorana

matrices for the right/left neutrinos.

• Model DR

Mu =







0 ǫ′ ρ −ǫ ε
−ǫ′ ρ ǫ̃ ρ −ǫ
ǫ ε ǫ 1






λ sinβ

Md =







0 ǫ′ −ǫ ε σ
−ǫ′ ǫ̃ −ǫ σ
ǫ ε ǫ 1






λ cos β

Me =







0 −ǫ′ 3 ǫ ε

−ǫ′ 3 ǫ̃ 3 ǫ

−3 ǫ ε σ −3 ǫ σ 1






λ cos β

Mν =







0 −ǫ′ ω 3
2 ǫ ε ω

−ǫ′ ω 3 ǫ̃ ω 3
2 ǫ ω

−3 ǫ ε σ −3 ǫ σ 1






λ sin β

MR =







MR1
0 0

0 MR2
0

0 0 MR3







Parameter Best fit value

λ 0.464

λǫ -0.0215

|σ| 0.256

δσ 0.120

|ρ| 0.0565

δρ -1.59

λ|ǫ̃| 0.00656

δǫ̃ -0.57

λǫ′ -0.00157

λ|ε| 0.00286

δε -2.45

MR1
× 1013[GeV ] 0.000226

MR2
× 1013[GeV ] 0.0144

MR3
× 1013[GeV ] −17.5

As specified by the authors of the model we have taken tan β = 50.34. Some of the

parameters are complex and, in these cases, we have set z = |z|eiδz and all the phases

are expressed in radiants. The quantity ω is given by ω = 2σ
2σ−1 .
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• Model ABB

Mu =







η 0 0

0 0 ǫ/3

0 −ǫ/3 1






MU

Md =







0 δ δ′eiφ

δ 0 σ + ǫ/3

δ′eiφ −ǫ/3 1






MD

Me =







0 δ δ′eiφ

δ 0 −ǫ
δ′eiφ σ + ǫ 1






MD

Mν =







η 0 0

0 0 −ǫ
0 ǫ 1






MU

MR =







c2η2 −bǫη aη
−bǫη ǫ2 −ǫ
aη −ǫ 1






ΛR

Parameter Best fit value

ǫ 0.140

MU [GeV ] 95.5

η 0.00000576

σ 1.72

MD[GeV ] 0.612

δ 0.00795

δ′ -0.00836

φ -1.12

a -1.48

b -2.55

c 2.95

ΛR × 1014[GeV ] 2.04

• Model JLM

Mu =







η 0 k + ρ/3

0 0 ω

k − ρ/3 ω 1






MU

Md =







0 δ δ′eiφ

δ 0 σ + ǫ/3

δ′eiφ −ǫ/3 1






MD

Me =







0 δ δ′eiφ

δ 0 −ǫ
δ′eiφ σ + ǫ 1






MD

Mν =







η 0 k − ρ

0 0 ω

k + ρ ω 1






MU

MR =







a 0 0

0 b 0

0 0 1






ΛR

Parameter Best fit value

ǫ 0.144

MU [GeV ] 87.6

η 0.00000739

σ 1.81

MD[GeV ] 0.589

δ 0.00991

δ′ 0.0141

φ 0.468

ω -0.0451

ρ 0.00899

k 0.0188

a -0.00159

b -0.00193

ΛR × 1013[GeV ] 2.07
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• Model BSV

Mu = vu







r2f2 + h11 r2f1 + h12 r2f1 + h13

r2f1 + h12 r2(f0 + f2) + h22 r2(−f0 + f1) + h23

r2f1 + h13 r2(−f0 + f1) + h23 Y + r2(f0 + f2)







Md =
r1vu

tan β







f2 + h11 f1 + h12 f1 + h13

f1 + h12 f0 + f2 + h22 −f0 + f1 + h23

f1 + h13 −f0 + f1 + h23 Y + f0 + f2







Me =
r1vu

tan β







−3f2 + h11 −3f1 + h12 −3f1 + h13

−3f1 + h12 −3(f0 + f2) + h22 −3(−f0 + f1) + h23

−3f1 + h13 −3(−f0 + f1) + h23 Y − 3(f0 + f2)







ML =







f2 f1 f1

f1 f2 + f0 f1 − f0

f1 f1 − f0 f2 + f0






vL

Parameter Best fit value

|h11|vu[GeV ] 1.42

δh11
-0.496

|h12|vu[GeV ] 0.435

δh12
3.09

|h13|vu[GeV ] 10.7

δh13
-0.614

|h22|vu[GeV ] 0.793

δh22
1.22

|h23|vu[GeV ] 3.20

δh23
2.80

|Y |vu[GeV ] 79.9

δY -0.732

f0vu[GeV ] -2.13

f1vu[GeV ] 0.369

f2vu[GeV ] 0.110

r1/ tan β 0.0148

|r2| 0.515

δr2
1.52

vL/vu × 10−9 0.0108

Here again the complex parameters are understood as z = |z|eiδz and the phases are

in radiants.
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• Model JK2

Mu =







rh11 + sf11 rh12 + sf12 + itg12 rh12 + sf12 − itg12
rh12 + sf12 − itg12 rh22 + sf22 rh23 + sf23 + itg23
rh12 + sf12 + itg12 rh23 + sf23 − itg23 rh33 + sf22






v

Md =







h11 + f11 h12 + f12 + ig12 h12 + f12 − ig12
h12 + f12 − ig12 h22 + f22 h23 + f23 + ig23
h12 + f12 + ig12 h23 + f23 − ig23 h33 + f22






v

Me =







h11 − 3f11 h12 − 3f12 + ipg12 h12 − 3f12 − ipg12
h12 − 3f12 − ipg12 h22 − 3f22 h23 − 3f23 + ipg23
h12 − 3f12 + ipg12 h23 − 3f23 − ipg23 h33 − 3f22






v

ML =







f11 f12 f12

f12 f22 f23

f12 f23 f22






rL

Parameter Best fit value

h11v[GeV ] 0.00204

h22v[GeV ] 0.576

h23v[GeV ] 0.120

h33v[GeV ] 0.619

f11v[GeV ] -0.000960

f12v[GeV ] -0.00398

f22v[GeV ] -0.0282

f23v[GeV ] 0.0381

g12v[GeV ] 0.00514

g23v[GeV ] 0.522

r 74.0

s 141

t 71.6

p 1.17

rL/v × 10−9 -0.741
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• Model GK

Mu =







rHh11 + rF f11 rF f12 + irug12 rF f13 + irug13
rF f12 − irug12 rHh22 + rF f22 rF f23 + irug23
rF f13 − irug13 rF f23 − irug23 rHh33 + rF f33






v

Md =







h11 + f11 f12 + ig12 f13 + ig13
f12 − ig12 h22 + f22 f23 + ig23
f13 − ig13 f23 − ig23 h33 + f33






v

Me =







h11 − 3f11 −3f12 + irlg12 −3f13 + irlg13
−3f12 − irlg12 h22 − 3f22 −3f23 + irlg23
−3f13 − irlg13 −3f23 − irlg23 h33 − 3f22






v

Mν =







rHh11 − 3rF f11 −3rF f12 + irDg12 −3rF f13 + irDg13
−3rF f12 − irDg12 rHh22 − 3rF f22 −3rF f23 + irDg23
−3rF f13 − irDg13 −3rF f23 − irDg23 rHh33 − 3rF f33






v

MR =







f11 f12 f13

f12 f22 f23

f13 f23 h33







1

rR
(A.1)

Parameter Best fit value

h11v[GeV ] 2.91

h22v[GeV ] 36.4

h33v[GeV ] 1130

f11v[GeV ] -1.40

f12v[GeV ] 0.779

f13v[GeV ] 6.29

f22v[GeV ] -15.1

f23v[GeV ] 40.6

f33v[GeV ] -48.2

g12v[GeV ] -2.06

g13v[GeV ] -1.77

g23v[GeV ] 0.427

rH 78.0

rF 146

ru 0.190

rl -9.19

rD -6780

rR/v × 10−10 2.27

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.
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[48] B. Bajc, I. Dorsner and M. Nemevšek, Minimal SO(10) splits supersymmetry,

JHEP 11 (2008) 007 [arXiv:0809.1069] [SPIRES].

[49] H.S. Goh, R.N. Mohapatra and S.-P. Ng, Minimal SUSY SO(10), bτ unification and large

neutrino mixings, Phys. Lett. B 570 (2003) 215 [hep-ph/0303055] [SPIRES].

[50] H.S. Goh, R.N. Mohapatra and S.-P. Ng, Minimal SUSY SO(10) model and predictions for

neutrino mixings and leptonic CP-violation, Phys. Rev. D 68 (2003) 115008

[hep-ph/0308197] [SPIRES].

[51] H.S. Goh, R.N. Mohapatra and S. Nasri, SO(10) symmetry breaking and type-II seesaw,

Phys. Rev. D 70 (2004) 075022 [hep-ph/0408139] [SPIRES].

[52] C.S. Aulakh, B. Bajc, A. Melfo, G. Senjanović and F. Vissani, The minimal supersymmetric
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