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1 Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) with a mass near

126 GeV confirms that the Higgs mechanism is responsible for electroweak symmetry break-

ing in the Standard Model (SM). However, the question of whether the Higgs boson

is naturally light compared to the Planck scale or fine-tuned remains to be established.

Supersymmetry provides a well-known natural solution to this hierarchy problem. The

conspicuously absent superpartners from Run I at the LHC, however, have led to increas-

ingly stringent limits on their masses. This makes an increased residual tuning among the
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parameters of the supersymmetric models necessary in order to obtain a vacuum expecta-

tion value (vev) at the electroweak scale. In the best-case scenario of the Next-to-Minimal

Supersymmetric Standard Model (NMSSM) with Higgs-singlet coupling λ near one, low

messenger scale (20 TeV) and split sparticle spectrum, the fine-tuning is at the 5% level [1].

In addition to direct limits on superpartner masses, the measurement of the Higgs

couplings to fermions and gauge bosons provides another test of naturalness. For example,

stops affect the Higgs couplings to photons and gluons at the one-loop level. Limits on the

deviations of these couplings from the SM yield limits on the stop masses, thereby con-

straining naturalness [2–5]. Here we will instead consider the effect on the Higgs couplings

from the additional CP -even states in the Higgs sector. This arises already at tree-level

and is therefore potentially larger than the aforementioned one-loop effect. How these

fields affect the Higgs couplings is best understood in a field basis where only one linear

combination of Higgs doublets obtains a vev, which couples to SM particles precisely like

the SM Higgs. In general, however, the particle which we identify with the 126 GeV Higgs

observed at the LHC is an admixture of this state with the other CP -even states in the

Higgs sector (one in the Minimal Supersymmetric Standard Model (MSSM) and two in the

NMSSM). This drives the Higgs couplings away from the SM values. The admixture arises

from a non-diagonal mass matrix, and thus the deviations of the Higgs couplings from the

SM can be made smaller in two different ways: on the one hand, the off-diagonal elements

of the mass matrix can be made smaller. However they can typically be arbitrarily small

only if there is an accidental cancellation among the various parameters that determine

their value. This is a new type of tuning that should be taken into account when assessing

the naturalness of the model. Alternatively, the diagonal elements of the mass matrix

corresponding to the additional Higgs states can be made larger. However, this requires

increasing the soft masses which determine these diagonal elements. This exacerbates the

hierarchy between the electroweak and the supersymmetry-breaking scale and thereby in-

creases the fine-tuning. Therefore in either case, the closer the Higgs couplings become to

those in the SM, the less natural the theory, and a tuning price must be paid for SM-like

couplings in supersymmetric models.

The tuning associated with the Higgs couplings can be precisely quantified in super-

symmetric models. For the case of the MSSM, we consider two ways to raise the Higgs

mass to 126 GeV: an additional D-term allows the quartic Higgs coupling to be sufficiently

increased already at tree-level [6–9]. Stops can then remain as light as possible consistent

with the latest collider bounds. Alternatively, loop corrections from the stop sector can

raise the quartic coupling to the required value. This, however, comes with an increased

fine-tuning due to heavy stops. The Higgs sector of the MSSM contains two CP -even

states. As the heavier state is decoupled, the Higgs couplings become more SM-like. We

calculate the fine-tuning measure as a function of the mass of this state and find that it in-

creases quadratically with the mass. Interestingly, however, this increase in fine-tuning can

be offset with large tanβ. In the limit of large tanβ, the fine-tuning is therefore dominated

by the usual contribution from stops, gluinos and Higgsinos (as well as any contribution

from the additional D-term sector). Thus there is not necessarily any additional fine-tuning

from having a Higgs with SM-like couplings in the MSSM.
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This is no longer the case in the NMSSM which has an additional singlet superfield.

This singlet gives a contribution to the quartic coupling of the Higgs and thereby allows its

mass to already be raised at tree-level. In order to raise the mass to 126 GeV, a relatively

large Higgs-singlet coupling near one is required [10–12]. The Higgs sector now consists

of three CP -even states. The limit of SM Higgs couplings is obtained by decoupling the

two heavy states, one of which is the singlet. We consider two versions of the NMSSM,

one with a superpotential that has explicit mass terms and the other with a scale-invariant

superpotential. Since the latter has no dimensionful parameters at the renormalizable level,

it has the advantage of addressing the µ-problem. We derive the leading contribution to the

fine-tuning measure from an expansion for large masses of the two heavy states. We find

that for both superpotentials the fine-tuning measure grows with the mass of the second

CP -even state which is already present in the MSSM. It does not, on the other hand, grow

with the singlet mass. For a Higgs-singlet coupling near one, constraints from electroweak

precision tests (primarily due to the T -parameter) limit tanβ to small values. This means

that the increase in fine-tuning from the decoupling of the heavy CP -even states can no

longer be compensated with large tanβ. We verify our approximations in deriving the

leading contributions to the fine-tuning measure with a numerical scan over the parameter

space for the scale-invariant superpotential.

In the limit of weak mixing in the Higgs sector, we derive approximate formulas for the

coupling of the lightest CP -even state (which we identify with the Higgs) to SM fermions

and W,Z gauge bosons. Using these formulas, we make a connection between the Higgs

couplings and the fine-tuning measure and show that the tuning associated with the elec-

troweak vev increases as the Higgs couplings become more SM-like. In particular we derive

a lower bound on the tuning as a function of the deviations in the Higgs couplings from

SM values. The achievable precision in the measurement of the Higgs couplings at the

LHC and possibly the ILC was estimated in [13]. We use these estimates to see what the

LHC and ILC can teach us about the naturalness of the scale-invariant NMSSM. We find

that the LHC may probe the naturalness of this model down to the few-percent level. For

the model considered in [1] with a low messenger scale (20 TeV) and split families, this

is comparable to the level of fine-tuning that can be deduced from direct searches at the

LHC. The ILC, on the other hand, may probe naturalness down to the per-mille level. For

this collider, Higgs coupling measurements can become the primary means of constraining

the naturalness of supersymmetric models.

The results obtained in this paper complement previous work in ref. [14] which also

found that Higgs coupling measurements will test the naturalness of the NMSSM with a

large Higgs-singlet coupling. An analysis of Higgs couplings in supersymmetric models has

also been done in [15–19].

The paper is organised as follows. In section 2, we analyse the fine-tuning in the

MSSM for two scenarios, first including additional D-terms to raise the Higgs mass and

then with large loop corrections from the stop sector. The fine-tuning in the NMSSM is

discussed in section 3. We consider two different superpotentials, with and without explicit

mass terms. For the scale-invariant superpotential, we derive a lower bound on the fine-

tuning and analyse the implications for naturalness of future measurements of the Higgs
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couplings. In section 4, we present our conclusions. Technical details of the calculation are

summarised in the appendix.

2 The MSSM

We consider the MSSM with an explicit µ-term in the superpotential,

W ⊃ µHuHd , (2.1)

where Hu and Hd are the two Higgs superfields. Including soft terms and the D-term

contribution, the potential for the electromagnetically neutral Higgs scalars H0
u and H0

d is

then given by

V = (|µ|2+m2
Hu) |H0

u|2+(|µ|2+m2
Hd

) |H0
d |2−(BµH

0
uH

0
d+h.c.)+ g̃2 (|H0

u|2−|H0
d |2)2 . (2.2)

Using field redefinitions, Bµ and the vevs 〈H0
u〉 and 〈H0

d〉 can be chosen real and positive.

As is well known, the quartic coupling in the MSSM (g̃2 = (g21 + g22)/8, where g1
and g2 are the gauge couplings of, respectively, U(1)Y and SU(2)L) is too small to give a

Higgs mass of 126 GeV. An additional contribution is thus required. We will first discuss

additional D-terms to raise the Higgs mass in section 2.1 and then consider stop-loop

corrections in section 2.2.

2.1 Using D-terms to raise the quartic coupling

2.1.1 The Higgs sector

In this section, we shall assume additional D-terms in order to lift the quartic coupling

to the required value [6]. For example, assume a two-site moose model with gauge group

SU(N)A × SU(N)B, where the Higgs doublets Hu and Hd form a vector representation

under SU(N)A (so that the µ-term (2.1) is allowed). Two link fields Σ and Σ̃ in the bi-

fundamental representation break this group down to the electroweak group SU(2)L. The

quartic coupling g̃2 is then given by (see for example, [16])

g̃2 =
1

8

(
g21 (1 + ∆1) + g22 (1 + ∆2)

)
, (2.3)

where ∆1 and ∆2 parameterize the contribution from the additional D-terms and are

determined by the gauge couplings, gaugino masses and the breaking scale of the SU(N)A×
SU(N)B-sector. For our purposes, it is enough to know that realistic models can achieve

∆1 and ∆2 sufficiently large to raise the quartic coupling to the required value (see [6, 9, 16]

for more details). In this section, we will therefore treat g̃ as a free parameter whose value

is fixed by the requirement that mHiggs ≈ 126 GeV. Since loop corrections, e.g. from the

stop sector, are then not required to raise g̃2, we shall assume that their effect on the

potential is small and will here correspondingly work with the tree-level potential (2.2).

Corrections from the Coleman-Weinberg potential will be considered in section 2.2.1. In

addition we assume that the underlying physics responsible for the D-term corrections does

not increase the tuning.
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We are interested in the limit where the couplings of the lightest CP -even Higgs are

very similar to those of the SM Higgs. To study this limit, it is convenient to rotate into

the basis (
h+ihI√

2
H+iHI√

2

)
=

(
sinβ cosβ

− cosβ sinβ

)(
H0
u

H0
d

)
, (2.4)

where tanβ ≡ 〈H0
u〉/〈H0

d〉 and we have decomposed the fields into CP -even and

CP -odd states. The new basis is chosen such that H does not obtain a vev,

〈H〉 = 0, and solely the vev of h is responsible for electroweak symmetry breaking,

v ≡ 〈h〉 =
√

2(〈H0
u〉2 + 〈H0

d〉2)1/2 ' 246 GeV. This state therefore couples to SM particles

precisely like the SM Higgs. The Higgs thus becomes more like the SM Higgs, the larger

its component of h. The admixture of the orthogonal state H, on the other hand, drives

the couplings away from those in the SM.

We parameterize the mass matrix for the CP -even states h and H by

M2 =

(
m2
h m2

hH

m2
hH m2

H

)
. (2.5)

Expressions for the matrix elements are given in eq. (A.2) in appendix A. In the limit

of small mixing, the mass of the lightest CP -even Higgs is well approximated by (see

appendix A)

m2
Higgs ' m2

h −
m4
hH

m2
H

. (2.6)

We can decouple h from H (and thus make the Higgs more SM-like) either by making the

off-diagonal matrix element m2
hH smaller or by making the diagonal element m2

H larger.

We define

ru ≡
Higgs coupling to up-type fermions

SM Higgs coupling to up-type fermions
(2.7)

and similarly the coupling ratios rd to down-type fermions and rV to SM gauge bosons.

To order m4
hH/m

4
H , we have (see appendix B; see also [18]):

ru ' 1 + cotβ

(
m2
hH

m2
H

+
m2
hm

2
hH

m4
H

)
−
m4
hH

2m4
H

(2.8a)

rd ' 1− tanβ

(
m2
hH

m2
H

+
m2
hm

2
hH

m4
H

)
−
m4
hH

2m4
H

(2.8b)

rV ' 1−
m4
hH

2m4
H

. (2.8c)

We see that the Higgs couplings become indeed like in the SM in the limit m2
hH/m

2
H → 0.

2.1.2 The fine-tuning measure

We seek to quantify whether taking the limit of SM Higgs couplings requires an increase

in the fine-tuning. To this end, we define the fine-tuning measure as [20]

Σ ≡

√√√√∑
ξ

(
d log v2

d log ξ

)2

, (2.9)
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where the sum runs over the parameters ξ ∈ {m2
Hu
,m2

Hd
, µ,Bµ, g̃} that determine the Higgs

potential eq. (2.2). We are mainly interested in the connection between naturalness and

Higgs couplings which are in turn determined by the Higgs-sector parameters at low scales.

Thus we choose these parameters to be evaluated at some low scale, like the electroweak

scale.1 Our definition of the fine-tuning measure therefore does not take any loop effects

from the RG running above the electroweak scale, e.g. due to heavy stops, into account.

We will comment on the effect of the RG running on the fine-tuning in section 2.2.2.

In order to evaluate the fine-tuning measure (2.9), we need to calculate the logarithmic

derivatives of the Higgs vev v with respect to the input parameters ξ. These steps are given

in appendix C. We find

Σ =

√√√√∑
ξ

(
2ξ

v

dv

dξ

)2

=
2

v detM2

√∑
ξ

(
ξ
[
m2
hH`

′
H −m2

H`
′
h

])2
, (2.10)

where detM2 = m2
hm

2
H − m4

hH , `h ≡ ∂V/∂h|min and similarly for `H (see eq. (C.2) for

the explicit expressions) and `′h,H ≡ ∂`h,H/∂ξ. The minimisation conditions for the Higgs

potential are given by `h,H = 0. This expression for the fine-tuning measure is general and

loop corrections can be easily included by using the loop-corrected masses and derivatives

of the loop-corrected potential.

Notice that part of the expression in eq. (2.10) is given in terms of the mass matrix

elements. If we manage to also express the remaining pieces, namely `′h,H and ξ, in terms

of these masses, we can make a connection to the Higgs couplings via eq. (2.8). The

Higgs potential (2.2) is determined by the parameters {m2
Hu
,m2

Hd
, µ,Bµ, g̃}. In order to

express the fine-tuning measure in terms of the mass matrix elements, we shall transform

from this set of input parameters to a new set of input parameters. First, we can use the

minimisation conditions for the potential (see eq. (C.2)) to express m2
Hu

and m2
Hd

in terms

of v and tanβ (and µ,Bµ, g̃). We can thus consider {v, tanβ, µ,Bµ, g̃} as a basis of input

parameters. In terms of these parameters, the elements of the mass matrix are given by

m2
h = 2 g̃2v2 cos2 2β (2.11a)

m2
H = 2 g̃2v2 sin22β + 2Bµ csc 2β (2.11b)

m2
hH = g̃2v2 sin 4β . (2.11c)

It will be convenient to express the coupling g̃ in terms of the mass matrix element

m2
h associated with the CP -even state h (which becomes the Higgs mass in the limit of

vanishing mixing, see eq. (2.6)). Solving eq. (2.11a) for g̃, we find

g̃ =
mh√

2 v| cos 2β|
. (2.12)

1An analogous definition for the fine-tuning measure, where all quantities are evaluated at the electroweak

scale, has recently been considered in [21]. We emphasise, however, that the effects from RG running can

increase the fine-tuning significantly (e.g. the factor in eq. (2.26) can be large).
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Similarly we can use eq. (2.11b) to fix the soft mass parameter Bµ in terms of the mass

matrix element m2
H associated with the CP -even state H:

Bµ =
m2
H −m2

h tan22β

2 csc 2β
. (2.13)

With the help of these two relations, we can express all quantities in terms of the parameters

{v, tanβ, µ,mh,mH}. In particular we find

m2
hH = m2

h tan 2β =
2 tanβ

1− tan2β
m2
h. (2.14)

Applying eqs. (2.12) and (2.13) to `′h,H and ξ in eq. (2.10), we obtain an analytic

expression for the fine-tuning measure as a function of these new input parameters. This

expression is given in eq. (C.4) in appendix C. We are interested in the limit of a SM Higgs,

corresponding to m2
H � |m2

hH | according to eq. (2.8). Let us first consider the case where

tanβ = O(1). From eq. (2.14), we see that then |m2
hH | ∼ m2

h and the decoupling limit thus

requires that mH � mh. Expanding the fine-tuning measure for large mH , the leading

term in mH is given by

Σ ≈
√

3

2
sin22β

m2
H

m2
h

+O(m0
H) . (2.15)

We see that the fine-tuning grows like m2
H . This can be understood from the fact that, for

tanβ = O(1), mH � mh in turn requires that Bµ � m2
h (see eq. (2.11b)). This large soft

mass parameter results in a large fine-tuning.

In the opposite case tanβ � 1, the contribution (2.15) to the fine-tuning measure

is suppressed with sin22β ≈ 4/ tan2β. This is related to the fact that m2
H ≈ Bµ tanβ for

large tanβ. A given mH in this case thus corresponds to a smaller Bµ compared to the case

tanβ = O(1). Accordingly the fine-tuning is smaller. Note that this argument assumes,

however, that large tanβ does not itself increase the fine-tuning. It is straightforward to

see from the Higgs potential that it indeed does not: the relevant part of the potential

involving the field that obtains a vev, h, can be written as V ⊃ m2h2 + σh4. In the limit

tanβ � 1, we find at leading order that m2 ≈ (m2
Hu

+µ2)/2 and σ ≈ g̃2/4. Any fine-tuning

that is necessary in order to obtain the correct Higgs vev arises between the two terms in

the expression for m2. The fact that neither of these terms is enhanced with tanβ shows

that the fine-tuning does not grow with tanβ either. Expanding the fine-tuning measure

for large tanβ (instead of for large mH), we find

Σ ≈

√
20µ4

m4
h

+
4µ2

m2
h

+ 5 +O
(

1

tan2β

)
. (2.16)

In this limit, the fine-tuning is thus dominated by the µ-term which is unrelated to the

Higgs couplings.

In addition, the mixing mass m2
hH is suppressed for large tanβ since m2

hH ≈
−2m2

h/ tanβ. The decoupling limit m2
H � |m2

hH | can thus be achieved even for mH ∼ mh if

tanβ is large. This is an alternative direction in the parameter space {v, tanβ, µ,mh,mH}
along which the Higgs couplings become more SM-like (but the fine-tuning is not increased).

– 7 –
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Let us finally combine the approximation (2.15) for the fine-tuning measure with the

approximations (2.8) for the coupling ratios. To this end, note that we can neglect the

terms of order m−4H in (2.8a) and (2.8b) even for large tanβ because they are suppressed

by at least an additional factor of m2
h/m

2
H compared to the term of order m−2H . Solving

the resulting simpler relations for m2
H , we can express the fine-tuning measure in terms of

either ru, rd or rV :2

Σ ≈


4
√
6

(1−ru) tan4β

4
√
6

(rd−1) tan2β

4
√
3√

1−rV tan3β
.

(2.17)

We have only kept the leading tanβ-dependence in the leading terms in ru,d,V − 1 (coming

from eq. (2.15)). For very large tanβ, eventually (2.16) will dominate the fine-tuning

measure. Note that for mH � v, the coupling ratios satisfy ru,V < 1 and rd > 1 as

follows from eq. (2.8). This ensures that (2.17) is positive. We now see explicitly that

for fixed tanβ, the fine-tuning grows in the SM limit, ru,d,V → 1. As we have discussed,

however, large tanβ is an alternative direction in the parameter space {v, tanβ, µ,mh,mH}
along which the Higgs becomes more SM-like but the fine-tuning does not increase. In

eq. (2.17), this is manifest in the tanβ-dependent suppression. We thus conclude that

SM-like couplings do not necessarily imply larger fine-tuning in the MSSM.

In section 3, we shall investigate the NMSSM, where large tanβ is typically in conflict

with electroweak precision tests when the Higgs-singlet coupling λ is used to raise the Higgs

mass to the required value.

2.2 Using stop-loop corrections to raise the quartic coupling

2.2.1 The fine-tuning measure

We shall now consider the case in which the quartic coupling in the Higgs potential is

raised via loop corrections from the stop sector (instead of additional D-terms). The Higgs

potential at tree-level is given by (2.2) with g̃2 = (g21 + g22)/8. We will only consider

the dominant loop corrections coming from the top/stop sector. At one-loop order, the

correction to the tree-level potential is given by the Coleman-Weinberg potential

VCW =
∑
i=1,2

3m4
t̃i

32π2

(
log

m2
t̃i

µ2r
− 3

2

)
− 6m4

t

32π2

(
log

m2
t

µ2r
− 3

2

)
, (2.18)

where mt̃1,2
denote the two stop masses and mt is the top mass. The Coleman-Weinberg

potential depends on the Higgs vev via these masses. The stop masses are also determined

by the soft parameters of the stop sector, m2
Q3

, m2
u3 and At. All parameters in the potential

are evaluated at the renormalization scale µr in the DR-scheme. In order to minimise the

logarithms, we will choose µr =
√
mQ3mu3 .

The Higgs potential is now determined by {m2
Hu
,m2

Hd
, µ,Bµ, g̃,m

2
Q3
,m2

u3 , At}. These

parameters constitute the set ξ over which we sum when evaluating the fine-tuning mea-

sure (2.9). The expression for the derivatives dv/dξ that we derive in appendix C remains

2We thus make another transformation from m2
H to ru and thus to the basis {v, tanβ, µ,mh, ru} of input

parameters and similarly for rd and rV .
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applicable when we include the Coleman-Weinberg potential. We can thus use eq. (2.10)

to evaluate the fine-tuning measure also for this case. There are two differences compared

to the tree-level case: the mass matrix elements that appear in (2.10) now include the loop

corrections from the Coleman-Weinberg potential. In addition the expressions for `h,H are

modified to `h = `treeh + ∂VCW/∂h and similarly for H, where `treeh,H are the corresponding

tree-level expressions given in eq. (C.2). Let us emphasise that this works more generally:

taking the aforementioned changes into account, eq. (2.10) allows us to find an analytical

expression for the fine-tuning measure for any effective potential (not just that in eq. (2.18);

see e.g. [21, 22] for earlier, related work).

In order to make a connection with the Higgs couplings, we want to also express `′h,H
and ξ (which appear in eq. (2.10)) in terms of Higgs sector masses. To this end, we will again

transform to a new basis of input parameters. Using the minimisation conditions `h,H = 0,

we first trade m2
Hu

and m2
Hd

for v and tanβ. Expressions in this basis for the mass matrix

elements including the loop corrections from the top/stop sector can be found in [23]. In

order to maximise the tree-level contribution to the Higgs mass (cf. eq. (2.11a)), we will

assume that tanβ � 1. For simplicity we will only report terms up to order (1/ tanβ)0:

m2
h ' 2g̃2v2 +

3

8π2
y2t (y

2
t − 2g̃2)v2 log

µ2r
m2
t

+
3

16π2
y4t v

2Xt (2.19a)

m2
H ' Bµ tanβ − y4t v

2A2
tµ

2

32π2µ4r
(2.19b)

m2
hH '

y4t v
2µAt(A

2
t − 6µ2r)

32π2µ4r
, (2.19c)

where

Xt ≡
2A2

t

µ2r

(
1− A2

t

12µ2r

)
. (2.20)

We next invert the relations for mh and mH in order to trade g̃ and Bµ for these masses.

The resulting relations up to terms of order 1/ tanβ are:

g̃2 ' 1(
1− 3

8π2 y
2
t log µ2r

m2
t

) [m2
h

2v2
− 3y4t

16π2

(
Xt

2
+ log

µ2r
m2
t

)
− y4t µAt(A

2
t − 6µ2r)

16π2µ4r tanβ

]
(2.21a)

Bµ '
1

tanβ

[
m2
H +

y4t µ
2v2A2

t

32π2µ4r

]
. (2.21b)

Using the relations for g̃ and Bµ (before expanding in tanβ) in eq. (2.10),

we obtain the fine-tuning measure expressed in terms of the parameters

{v, tanβ, µ,mh,mH ,m
2
Q3
,m2

u3 , At}. For simplicity, let us focus on the contribution

of the soft mass m2
Hu

to the fine-tuning measure. As we discuss in the next section, this

contribution is enhanced when we take the loop corrections from stops during the RG

running into account. Expanding in both m2
H and tanβ and keeping only the leading

terms in either m2
H or tanβ, we find

Σm2
Hu
≡

∣∣∣∣∣ d log v2

d logm2
Hu

∣∣∣∣∣ ≈
∣∣∣∣ 2m2

H

m2
h tan2β

− 2µ̃2

m2
h

∣∣∣∣ , (2.22)
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where

µ̃2 ≡ µ2 +
3 v2y4t
16π2

2 + 2 log
µ2r
m2
t

−
∑
i=1,2

m2
t̃i

m2
t

(
1− log

m2
t̃i

µ2r

)1 + (−1)i
A2
t√

(m2
Q3
−m2

u3)2 + 4A2
t v

2y2t

 . (2.23)

Comparing with eqs. (2.15) and (2.16), we see that we recover a similar behaviour of the

fine-tuning measure as in the last section. In particular the leading dependence on both

mH and µ remains unchanged. At leading order, the Coleman-Weinberg potential only

affects the ‘effective µ-term’ µ̃ which is relevant for the fine-tuning measure.

An important difference compared to the case of negligible loop corrections, however,

is the mixing mass m2
hH . As we see from eq. (2.19c), it no longer vanishes in the limit

of large tanβ if stop loops are important. Accordingly the limit of SM Higgs couplings

necessarily requires large mH . When we combine the loop-corrected fine-tuning measure

(i.e. (2.22) and the other derivatives) with the relations for the coupling ratios (2.8), this

leads to a similar relation as (2.17) but with one power of tanβ less in the denominators.

Nevertheless, even in this case we can compensate the increase in fine-tuning for ru,d,V → 1

with large tanβ.

2.2.2 The effect of the RG running on the fine-tuning measure

As we have discussed below eq. (2.9), we evaluate the fine-tuning measure using derivatives

with respect to parameters defined at some low scale (like the electroweak scale or, in this

section, µr). We thus do not include the effect on the fine-tuning of the RG running from

some high scale (like the messenger scale) to that low scale. Since these corrections are of

course important in the case of heavy stops, we will now discuss how they affect our estimate

of the fine-tuning. To this end, let us use a different (‘more standard’) definition of the

fine-tuning measure, where the derivatives are taken with respect to parameters ξ̂ defined

at the messenger scale Λmess. We thus replace d log v/d log ξ in (2.9) by d log v/d log ξ̂. In

the following, a hat shall denote soft mass parameters defined at Λmess, whereas un-hatted

parameters are defined at µr.

The stops affect the Higgs sector during the RG running dominantly via the soft mass

m2
Hu

. Neglecting loop contributions from other particles, we find at leading-log order that

m2
Hu ' m̂

2
Hu −∆t̃ where ∆t̃ ≡

3y2t
8π2

(
m̂2
Q3

+ m̂2
u3 + Â2

t

)
log

Λmess

µr
. (2.24)

This correction contributes to the fine-tuning measure via the derivative with respect to

the soft mass m̂2
Hu

.3 We find

Σmess
m2
Hu

≡

∣∣∣∣∣ d log v2

d log m̂2
Hu

∣∣∣∣∣ ≈
∣∣∣∣∣m̂2

Hu

m2
Hu

d log v2

d logm2
Hu

dm2
Hu

d m̂2
Hu

∣∣∣∣∣ , (2.25)

3The derivatives with respect to the soft mass parameters m̂2
Q3

, m̂2
u3

and Ât of the stop sector give a

contribution of a similar size.
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where we have neglected additional, small terms arising according to the chain rule.4 To-

gether with the definition of Σm2
Hu

in (2.22), this gives

Σmess
m2
Hu

≈

∣∣∣∣∣1 +
∆t̃

m2
Hu

∣∣∣∣∣ Σm2
Hu
∼
∣∣∣∣1 +

∆t̃ tan2β

m2
H

∣∣∣∣ Σm2
Hu
. (2.26)

We see that the RG running increases the fine-tuning compared to our measure (2.9)

if ∆t̃ � m2
Hu

. In the last step, we have expressed m2
Hu

in terms of the basis

{v, tanβ, µ,mh,mH ,m
2
Q3
,m2

u3 , At} and expanded for large mH and tanβ. We see that

for m2
H � ∆t̃ tan2β, on the other hand, the effect of the RG running on the fine-tuning

becomes negligible. This can be understood as follows: we can, roughly, distinguish two

types of tuning that lead to the correct electroweak scale. In the first case, parameters at

µr are much larger than the electroweak scale. In order to obtain the correct Higgs vev,

the various parameters that enter the minimisation conditions for the Higgs potential need

then to be tuned against each other. This happens e.g. in the decoupling limit mH � mh

for small tanβ since then also Bµ � m2
h (cf. eq. (2.13)). In the second case, on the other

hand, parameters at µr are of order the electroweak scale and no tuning in the minimisa-

tion conditions is required. If loop corrections to these parameters are large, however, a

tuning among the various contributions that affect the RG evolution is necessary in order

to make them small at µr. Such large loop corrections arise e.g. from heavy stops. Our

fine-tuning measure (2.9) captures only the first type of tuning whereas the additional fac-

tor in (2.26) accounts for the second type. However, we see that when the soft parameters,

e.g. Bµ, are large at µr, the RG running has less of an effect on the tuning. This explains

the suppression of the correction to the factor in eq. (2.26) for large mH . Alternatively, if

the corrections from RG running are important and this factor is large, our measure (2.9)

provides a lower bound on the fine-tuning.

3 The NMSSM

3.1 The NMSSM with superpotential mass terms

The NMSSM has a singlet superfield S in addition to the particle content of the MSSM.

This allows for several new terms in the superpotential. In this section, we shall consider

a superpotential with an explicit µ-term and a singlet mass term:

W ⊃ λSHuHd + µHuHd +
1

2
M S2 . (3.1)

This superpotential was studied in the context of large coupling λ in [10]. Including soft

terms and the D-term contributions, the potential for the electromagnetically neutral Higgs

scalars H0
u and H0

d and the singlet scalar S is given by

V = (m2
Hu + |µ+ λS|2)|H0

u|2 + (m2
Hd

+ |µ+ λS|2)|H0
d |2 + |MS − λH0

uH
0
d |2 +m2

S |S|2

+
[
−aλ SH0

uH
0
d −BµH0

uH
0
d + h.c.

]
+ g̃2 (|H0

u|2 − |H0
d |2)2 . (3.2)

4These terms are given by (d log v2/d log ξ)(d log ξ/d log m̂2
Hu

) with ξ ∈ {m2
Hd
, Bµ, µ, g̃,m

2
Q3
,m2

u3
, At}.

For all these terms, either the first or the second derivative is small.
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To ensure CP -conserving vevs, we shall assume that the Higgs potential is CP -invariant.

Using redefinitions, we can then choose λ and the vevs 〈H0
u,d〉 real and positive. All other

parameters in the Higgs potential are also real but can have both signs.

As we will see explicitly below (cf. eqs. (3.6a) and (3.5)), the Higgs-singlet coupling λ

gives a welcome contribution to the Higgs mass which allows to raise it to 126 GeV already

at tree-level. This requires that λ ∼ 1 [1, 10] which we assume in the following.5 Since

finite loop corrections from the stop sector are no longer required to raise the Higgs mass,

we expect them to be small and neglect them. We similarly neglect finite loop corrections

to the potential from the Higgs-singlet sector which can become important for large λ

and m2
Hu
,m2

Hd
,m2

S . A proper treatment of these corrections is, however, quite involved

and beyond the scope of this paper. Finally, we again use (2.9) as the definition for our

fine-tuning measure. Accordingly, we do not account for loop corrections during the RG

running. But similar to what we have discussed in section 2.2.2, the effect of top/stop loops

on the fine-tuning becomes less important, the larger the masses of the heavy Higgses are.

Since this is ultimately the limit that we are interested in, we expect that these corrections

will not significantly affect our fine-tuning estimates. Alternatively, if these corrections

are important, the fine-tuning is larger than what we calculate using our measure (2.9)

(cf. eq. (2.26)). In this case, our measure provides a lower bound on the fine-tuning. Loop

corrections from the RG running of, for example, m2
Hu

and m2
Hd

proportional to λ2m2
S

may not be suppressed for large heavy Higgs masses. However, as long as the messenger

scale is well below the energy scale where λ develops a Landau pole, these corrections are

suppressed by a loop factor with respect to the tree-level result.

Similar to our discussion for the MSSM, we rotate the fields into the basis
h+ihI√

2
H+iHI√

2
s+isI√

2

 =

 sinβ cosβ 0

− cosβ sinβ 0

0 0 1


H0

u

H0
d

S

 , (3.3)

where H does not obtain a vev. The CP -even state h thus couples at tree-level precisely

like the SM Higgs, whereas an admixture with H and s drives the couplings away from the

SM limit. We shall denote the vev of the singlet scalar as vs ≡ 〈s〉 =
√

2〈S〉.
We parameterize the mass matrix for the CP -even Higgs states by

M2 =

 m2
h m2

hH m2
hs

m2
hH m2

H m2
Hs

m2
hs m2

Hs m2
s

 . (3.4)

Expressions for the mass matrix elements are given in eq. (A.4) in appendix A. We are

again interested in the limit of a Higgs with SM couplings or, correspondingly, the limit

of vanishing mixing of h with H and s. Fixing m2
h, this limit is approached either by

raising the diagonal matrix elements m2
H and m2

s or by lowering the off-diagonal elements

5Note, however, that for such a large value at the electroweak scale, the coupling λ hits a Landau pole

before the GUT scale. Some UV completion has to kick in before this Landau pole. Possible UV completions

where discussed e.g. in [24, 25].
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m2
hH and m2

hs. In the limit of small mixing, the Higgs mass is well approximated by (see

appendix A)

m2
Higgs ' m2

h −
m4
hH

m2
H

−
m4
hs

m2
s

. (3.5)

The Higgs potential eq. (3.2) is determined by the parameters {m2
Hu
,m2

Hd
,m2

S , λ, aλ,

µ,Bµ,M, g̃}. These parameters constitute the set ξ over which we sum when calculating

the fine-tuning measure (2.9). In order to evaluate the fine-tuning measure, we need to

determine the derivatives dv/dξ. This is described in appendix C. The resulting expression

for dv/dξ (see eq. (C.5)) is again partially given in terms of the mass matrix elements. In

order to make the connection to the Higgs couplings, we want to express also the remaining

pieces in terms of these masses. To this end, we shall again transform to a new set of input

parameters. Using the minimisation conditions `h,H,s = 0 for the potential (see eq. (C.6) for

the explicit expressions), we first obtain {v, tanβ, vs, λ, aλ, µ,Bµ,M, g̃} as an alternative

parameter set. Expressed in terms of these parameters, the elements of the Higgs mass

matrix read

m2
h = 2 g̃2v2 cos22β +

1

2
λ2v2 sin22β (3.6a)

m2
H =

1

2
csc 2β

(
2
√

2 vs (aλ + λM) + 4Bµ − v2 sin32β
(
λ2 − 4g̃2

))
(3.6b)

m2
s =

v2√
2 vs

(
sinβ cosβ (aλ + λM)− λµ

)
(3.6c)

m2
hs = v

(
λ2vs +

√
2λµ−

√
2 sinβ cosβ (aλ + λM)

)
(3.6d)

m2
hH =

v2

4
sin 4β

(
4g̃2 − λ2

)
(3.6e)

m2
Hs =

v√
2

cos 2β (aλ + λM) . (3.6f)

We shall again invert these relations in order to express some of the input parameters

in terms of Higgs-sector masses. Notice that aλ and M always appear in the combination

aλ + λM . We can therefore solve for only one of these two parameters which we choose to

be aλ. Using the relations for m2
H , m2

s, m
2
hs and m2

Hs, we can in addition solve for vs, µ

and Bµ. This gives

vs =
m2
hsv

λ2v2 − 2m2
s

(3.7a)

µ =
2m2

sm
2
hs +m2

Hs tan 2β
(
2m2

s − λ2v2
)

√
2λv (2m2

s − λ2v2)
(3.7b)

Bµ =
m2
hsm

2
Hs

2m2
s − λ2v2

sec 2β − 1

4
sin 2β

(
v2
(
4g̃2 − λ2

)
sin22β − 2m2

H

)
(3.7c)

aλ =
√

2
m2
Hs

v
sec 2β − λM . (3.7d)

With the help of these relations, we can express all quantities in terms of the new basis of

input parameters {v, tanβ, λ, g̃,M,mH ,ms,m
2
hs,m

2
Hs}.
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The expression for the fine-tuning measure in this basis is rather lengthy and will

therefore not be reported here. We can approach the decoupling limit for H and s,

m2
H ,m

2
s � |m2

hH |, |m2
hs|, either with large diagonal matrix elements m2

H and m2
s or with

small off-diagonal matrix elements |m2
hH | and |m2

hs|. Let us first consider the former case.

Assuming that also m2
H ,m

2
s �M2, we can expand the fine-tuning measure in m2

H and m2
s

and find

Σ ≈
√

3

2
sin22β

m2
H

m2
h

+O
(m2

H

m2
s

,m0
H

)
. (3.8)

Notice that the leading term is independent of ms. An explicit dependence on this mass

only arises at order m2
H/m

2
s. This can be understood as follows: from eq. (A.4), we see that

we can raise the mass ms while keeping the other mass matrix elements fixed by raising the

soft mass m2
S . In the limit of very large m2

S , the singlet can be integrated out. One finds

that the resulting potential is just the MSSM potential plus a λ-dependent contribution

to the quartic coupling. This shows that even in the limit ms →∞, the fine-tuning stays

finite at tree-level.6 The dependence of our fine-tuning measure at tree-level on ms can

accordingly only enter at order m
−|x|
s .

Furthermore, notice that the leading contribution to the fine-tuning measure, eq. (3.8),

has the same form as in the MSSM, eq. (2.15). The only difference arises from the different

expressions for mh and mH (eqs. (2.11a) and (3.6a) and eqs. (2.11b) and (3.6b), respec-

tively). This can be understood in the limit m2
S →∞: since the NMSSM potential differs

from the MSSM potential then only in the quartic coupling, we expect differences in the

fine-tuning expressions to also arise only in the dependence on this coupling. From the

minimisation conditions for the potential, we find that vs → 0 for m2
S →∞. Setting vs = 0

in the NMSSM expressions for mh and mH , we see that they differ from the correspond-

ing MSSM expressions by λ-dependent terms. These terms arise from the λ-dependent

contribution to the quartic coupling in the NMSSM potential.

Let us finally comment on the case where the decoupling of h from H and s is achieved

by making the mixing mass terms m2
hH and m2

hs small while keeping the diagonal matrix

elements m2
H and m2

s at moderate values. We see from eq. (3.6e) that m2
hH vanishes if

we choose λ = 2g̃ (see [26, 27]). However, this gives λ ∼ 0.5, meaning that λ is not large

enough to lift the Higgs mass to 126 GeV (which requires λ ∼ 1) without significant loop

contributions from the stop sector (which in turn increases the fine-tuning). In addition,

in absence of a UV completion which justifies the relation λ ' 2g̃, such a choice for λ

should be considered another type of tuning. Alternatively, we could consider large tanβ

since then m2
hH ≈ v2(λ2 − 4g̃2)/ tanβ as follows from eq. (3.6e). However, for λ ∼ 1,

electroweak precision tests restrict tanβ . 4 [1, 10, 11]. Large tanβ is thus not an option.

This is an important difference compared to the MSSM. The dimensionful parameters vs,

aλ, µ and M that determine the mixing mass m2
hs according to eq. (3.6d), on the other

hand, can not become arbitrarily small due to experimental and stability constraints. For

example, the combination µ + λvs/
√

2 that appears in eq. (3.6d) is the effective µ-term

and therefore needs to be sufficiently large to satisfy collider constraints on charginos. In

6Note, however, that a large soft mass m2
S feeds into m2

Hu
and m2

Hd
during the RG running and thereby

increases the fine-tuning (see e.g. [12]).
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addition, the soft mass aλ must be relatively large to ensure the stability of the poten-

tial. The limit of vanishing m2
hs would therefore require an accidental cancellation among

the various contributions in eq. (3.6d). Both of these types of tuning in the off-diagonal

mass-mixing entries can be accounted for as tunings of the Higgs coupling ratios to SM-

like values and can be studied with a measure analogous to the usual fine-tuning measure,

Σu,d,V ≡
√∑

ξ (∂ log(ru,d,V − 1)/∂ log ξ)2, where ξ are the input parameters. This must be

taken into account when assessing the naturalness of the model and would again increase

the overall fine-tuning. It is not clear that this alternative way of obtaining SM-likeness

once the overall fine-tuning is accounted for would provide any advantage from the view-

point of naturalness compared to the decoupling via large masses for the heavy CP -even

states. We thus do not consider this alternative way of obtaining SM-like couplings in our

following analysis.

Finally it is possible to express the fine-tuning measure Σ in terms of the deviations

of Higgs couplings from SM values in analogy to the expressions in (2.17) and to derive

bounds on the minimal fine-tuning from studying the experimental constraints on the Higgs

couplings. We will not present results for the NMSSM with superpotential mass terms

but instead will give detailed results for the NMSSM with a scale-invariant superpotential

(with large λ), an appealing extension of the MSSM allowing 5% fine-tuning [1], in the next

section. This is because the relations for the fermionic and bosonic coupling ratios are the

same for both realizations of the NMSSM, and the results we obtain for the scale-invariant

NMSSM will also hold for the NMSSM with superpotential mass terms.

3.2 The scale-invariant NMSSM

3.2.1 The fine-tuning measure

We shall now investigate the NMSSM with a scale-invariant superpotential

W ⊃ λSHuHd + κS3 . (3.9)

It has the advantage that it allows for the dynamical generation of the µ-term and thereby

solves the µ-problem. Including soft terms and the D-term contribution, the potential

for the electromagnetically neutral Higgs scalars H0
u and H0

d and the singlet scalar S is

given by

V = (m2
Hu + λ2|S|2)|H0

u|2 + (m2
Hd

+ λ2|S|2)|H0
d |2 + λ2|H0

uH
0
d |2 +m2

S |S|2 + κ2|S|4

+
[aκ

3
S3 − (aλS + λκS2)H0

uH
0
d + h.c.

]
+ g̃2 (|H0

u|2 − |H0
d |2)2 . (3.10)

Assuming CP -conservation, redefinitions can be used to make λ and the vevs vs =
√

2〈S〉
and 〈H0

u,d〉 real and positive. All other parameters in the Higgs potential are also real

but can have both signs. We shall again focus on the case λ ∼ 1 so that the Higgs mass

becomes 126 GeV already at tree-level. We will neglect any loop corrections as discussed

in section 3.1.

The mass matrix elements for the CP -even states in the basis (h,H, s) are reported

in eq. (A.5) in appendix A. The Higgs potential (3.10) is determined by the parameters
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{m2
Hu
,m2

Hd
,m2

S , aλ, aκ, λ, κ, g̃} . These parameters constitute the set ξ over which we sum

when calculating the fine-tuning measure (2.9). Using the expression for dv/dξ from ap-

pendix C (see eq. (C.5)), we again obtain a formula for the fine-tuning measure which is

partly given in terms of the Higgs-sector masses. In order to express the remaining pieces

in terms of these masses, we first use the minimisation conditions `h,H,s = 0 for the poten-

tial (see eq. (C.7) for the explicit expressions) to trade m2
Hu
,m2

Hd
,m2

S for v, tanβ, vs. This

allows us to express all quantities in terms of {v, tanβ, vs, aλ, aκ, λ, κ, g̃} . In terms of these

parameters, the elements of the Higgs mass matrix read

m2
h = 2 g̃2v2 cos22β +

1

2
λ2v2 sin22β (3.11a)

m2
H = csc 2β

(√
2vsaλ + κλv2s −

v2

2
sin32β

(
λ2 − 4g̃2

))
(3.11b)

m2
s =

aκvs√
2

+ 2κ2v2s +
aλv

2 sin 2β√
8 vs

(3.11c)

m2
hs = v

(
λ2vs − sinβ cosβ(

√
2aλ + 2κλvs)

)
(3.11d)

m2
hH =

v2

4
sin 4β

(
4g̃2 − λ2

)
(3.11e)

m2
Hs =

v

2
cos 2β (

√
2aλ + 2κλvs) . (3.11f)

By inverting eqs. (3.11b) to (3.11d), we can next trade vs, aλ, aκ for the

masses m2
H ,m

2
s,m

2
hs. To this end, we solve eqs. (3.11b) and (3.11d) for aλ.

Equating both results, we obtain an equation for vs which schematically reads

(2λ− κ sin 2β) v2s + const.vs + const. = 0, where we have explicitly given the prefactor of

the v2s -term. Solving this for vs, we find

vs =
±
√
C + 2m2

hs csc 2β

2vλ csc 2β (2λ− κ sin 2β)
(3.12a)

aλ =
±
√
C (λ− κ sin 2β)− 2λm2

hs csc 2β√
2v (2λ− κ sin 2β)

, (3.12b)

where

C ≡ 4m4
hs csc22β + 2λv2(2λ− κ sin 2β)

(
2m2

H − v2 sin22β
(
4g̃2 − λ2

))
. (3.13)

The two signs correspond to the two solutions from the quadratic equation for vs. In

the limit 2λ → κ sin 2β, the prefactor of the v2s -term in that equation vanishes. Corre-

spondingly, only one solution remains at this point (which appears as a pole in the above

relations) for which we find

vs =
v sin22β

(
v2 sin22β

(
4g̃2 − λ2

)
− 2m2

H

)
4m2

hs

(3.14a)

aλ =
λ2v2 sin 2β

(
2m2

H − v2 sin22β
(
4g̃2 − λ2

))
− 2m4

hs cscβ secβ

2
√

2m2
hsv

. (3.14b)
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The expression for aκ can be obtained from eq. (3.11c) using the above relations for vs and

aλ. Note that vs and aλ do not depend on m2
s, whereas aκ does. This reflects the fact that

aκ only enters in the expression for m2
s.

Using eq. (3.12) and the relation for aκ, we can express all quantities in terms of the

parameters {v, tanβ, λ, κ, g̃,mH ,ms,m
2
hs}. In particular we find

m2
Hs =

(
±λ
√
C/2−m2

hs (λ csc 2β − κ)
)

cos 2β

2λ− κ sin 2β
. (3.15)

The two signs in the above relations are necessary in order to cover the entire param-

eter space when using the new basis {v, tanβ, λ, κ, g̃,mH ,ms,m
2
hs}. There are thus two

possible values for vs and aλ according to eq. (3.12) (and the same applies to aκ) for each

combination of parameters in the new basis. On the other hand, there are restrictions on

these parameters. To see this, recall that we can choose vs (together with λ and 〈H0
u,d〉)

real and positive, whereas the other parameters in the Higgs potential can just be chosen

real. This means that it is sufficient to only consider those combinations of parameters in

the new basis that give a positive vs in (3.12a). In addition the fact that vs and aλ are real

means that C has to be positive. This puts additional restrictions on these parameters. For

example, for 2λ < κ sin 2β, this implies that m2
H can not become arbitrarily large compared

to |m2
hs|.7 That C is positive is straightforward to see in the old basis: using eqs. (3.11b)

and (3.11d) in the definition for C, we find that

C = 2v2
(
aλ +

√
2λ2vs csc 2β

)2
. (3.16)

Using eq. (3.12) and the relation for aκ, we obtain an expression for the fine-tuning

measure as a function of the new parameters. It is again too lengthy to be reported in

this paper. We are interested in the limit of SM Higgs couplings, m2
H ,m

2
s � |m2

hH |, |m2
hs|.

Similar to what we have discussed at the end of section 3.1, if we want to approach this limit

by decreasingm2
hH andm2

hs (while keepingm2
H andm2

s at moderate values), we have to tune

the parameters that determine these mixing masses. We will not consider this possibility

further. Instead, we will focus on the case of large diagonal masses m2
H ,m

2
s � v2, |m2

hs|.
Expanding in m2

H and m2
s, the expression simplifies considerably. We can distinguish two

7In order to see how this arises in the old basis, let us for simplicity consider the case m2
hs = 0. The

condition C > 0 then simplifies to

m2
H ≷ v2 sin22β (4g̃ − λ2)/2 ,

where the two cases are for 2λ ≷ κ sin 2β. Let us reproduce this condition in the old basis. To this end,

we solve m2
hs = 0 in eq. (3.11d) for aλ and use the result in eq. (3.11b) for m2

H . This gives the following

relation for m2
H in the old basis:

m2
H = λv2s csc22β (2λ− κ sin 2β) + v2 sin22β (4g̃2 − λ2)/2 .

Depending on the sign of 2λ− κ sin 2β, the first term is positive or negative. This relation thus reproduces

the condition on m2
H that follows from the positivity of C.
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cases. For m2
s v � mH |m2

hs|, the fine-tuning measure is dominated by the term

Σ ≈ f(λ, κ, tanβ, g̃)
m2
H

v2
,

where f(λ, κ, tanβ, g̃) ≡

√
cos 4β (λ2 − 13κ2)− 52κλ sin 2β + 13κ2 + 35λ2

(λ2 + 4g̃2 cot22β)2 (2λ− κ sin 2β)2
. (3.17)

For the opposite case mH |m2
hs| � m2

s v, the dominant term instead is

Σ ≈ g(λ, κ, tanβ, g̃)
m3
H

v3
|m2

hs|
m2
s

,

where g(λ, κ, tanβ, g̃) ≡ 12κ2

√
sin22β

λ3(λ2 + 4g̃2 cot22β)2 (2λ− κ sin 2β)3
. (3.18)

We see that the fine-tuning measure does not increase but is suppressed for ms � mH . This

is in analogy to what we have found in the last section. Again it can be understood from

the fact that, in the limit m2
S ,m

2
s → ∞, the Higgs potential is just the MSSM potential

plus an additional contribution to the quartic coupling.

Note that eqs. (3.17) and (3.18) are suppressed like 1/ tan2 β for tanβ � 1. Further-

more, we have checked that any term in the full expression for Σ which is not suppressed

by powers of tanβ is suppressed by inverse powers of m2
H . This shows that, similar to the

MSSM, the increase in fine-tuning in the limit of SM Higgs couplings can be compensated

by large tanβ. We emphasise, however, that tanβ is restricted to the range tanβ . 4

due to electroweak precision tests for λ ∼ 1 (so that the correct Higgs mass is obtained at

tree-level). But this observation can be relevant for implementations of the NMSSM with

smaller values of λ in which large values of tanβ are less constrained. Note, however, that

the fine-tuning would in turn increase due to stop corrections that are then necessary to

raise the Higgs mass.

Notice that eqs. (3.17) and (3.18) seemingly diverge for 2λ → κ sin 2β. This is an

artefact of the expansion which breaks down near the pole. Using the relations in eq. (3.14)

and the corresponding relation for aκ, we find that the fine-tuning measure stays finite in

this limit. Interestingly, however, its behaviour changes: near the pole, the leading term is

of order m4
H .8 Finally, recall that only when the combination 2λ− κ sin 2β is positive can

m2
H become arbitrarily large compared to |m2

hs| (as follows from the positivity of C). This

ensures that the radicant in eq. (3.18) is always positive in the domain where the expansion

is valid.

3.2.2 A numerical scan of the parameter space

It is useful to have an idea of the typical ranges for the parameters which determine the

fine-tuning measure. We see from eqs. (3.11) that, in the limit of either large vs, aλ or aκ,

8This can can be understood as follows: first, recall that λ〈S〉 = λvs/
√

2 is the effective µ-term in the

scale-invariant NMSSM. Next, notice from eqs. (3.12a) and (3.14a) that in the limit of large mH , one

has vs ∝ mH away from the pole whereas vs ∝ m2
H at the pole. Let us assume that the NMSSM has

the same µ-dependence of the fine-tuning measure as the MSSM, eq. (2.16). This then reproduces the

mH -dependence of the fine-tuning measure (and its change) both away from and at the pole.
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the mass matrix elements go like

m2
H ∝ v2s or aλ m2

hs ∝ vs or aλ (3.19)

m2
s ∝ v2s , aλ or aκ m2

Hs ∝ vs or aλ ,

whereas m2
hH does not depend on vs, aλ and aκ and is always of order the electroweak

scale. The requirement that the theory has no tachyonic states limits the size of aκ. Large

aλ, on the other hand, does not lead to decoupling of the singlet as m2
s and m2

hs grow

similarly with it. For that reason, we expect that decoupling both H and s requires large

vs. Keeping only the dependence on dimensionful parameters, we find in the limit of large

vs that

mH |m2
hs| ∼ v v2s ∼ vm2

s . (3.20)

We should emphasise that, in practice, also aλ and aκ contribute to these quantities and

make them either larger or smaller than the above estimate. A priori, either of the two

contributions (3.17) and (3.18) to the fine-tuning measure can therefore dominate.

In order to explore the viable parameter space and to verify our analytical findings,

we have performed a numerical scan using the program NMHDECAY [28–30] contained in

the package NMSSMTools 4.2.1. This also allows us to include the relevant experimental

constraints and the dominant loop corrections from the effective potential. Concerning the

latter, we are mainly interested in loop corrections from the Higgs sector to itself as these are

connected to the Higgs couplings. In order to minimise loop corrections from other particles,

we have therefore fixed the soft masses of gluinos and third-generation squarks to relatively

small values which are still consistent with experiment (mQ̃3
= mũ3 = md̃3

= 750 GeV,

At = 0, M3 = 1.5 TeV). First- and second-generation squarks, sleptons and electroweak

gauginos, on the other hand, give smaller loop corrections due to their small couplings.

We have fixed their soft masses to the relatively large value of 5 TeV. In the Higgs sector,

we have fixed the dimensionless parameters to λ = 0.85, κ = 0.8 and tanβ = 3 (we have

also performed scans for different values of λ, κ and tanβ and found similar results). Note

that eq. (3.17) only depends on mH for fixed dimensionless parameters. We have then

randomly varied the dimensionful parameters vs, aκ and aλ within the following ranges:

100 GeV < λvs/
√

2 < 8 TeV, |aκ/κ| < 1 TeV, and |aλ/λ| < 10 TeV.

In order to verify our analytical approximation for the fine-tuning measure, we want

to compare this approximation with the fine-tuning measure before expanding in mH and

ms for the points found in the scan. In this context, we should point out that (3.17)

and (3.18) correspond to two different terms in an expansion of Σ2. A third term in that

expansion becomes important in the region where (3.17) and (3.18) are of comparable size.

In the following, we take the square-root of these three terms arising in the expansion of

Σ2 as the approximation for Σ. In figure 1a, we show the ratio of this approximation over

the fine-tuning measure before expanding in mH and ms plotted against mH . We find in

the scan that generically ms ≈ mH within a factor of 3. Accordingly, we expect that the

approximation becomes better for larger mH . The scatter plot confirms this: light blue

points have no constraints imposed except for the absence of tachyonic states in the Higgs

sector. For these points, the approximation agrees with the exact fine-tuning measure up to
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(a) (b)

Figure 1. (a) The ratio of the analytic approximation given by (3.17) and (3.18) plus the third

term mentioned in the text over the fine-tuning measure without approximation and (b) the fine-

tuning measure without approximation, plotted against mH . In both plots, the only constraint

imposed on the light blue points is the absence of tachyonic states in the Higgs sector. Dark blue

points in addition satisfy |m2
hs| < (300 GeV)2. Black points have no tachyonic states and satisfy

all experimental constraints implemented in NMSSMTools 4.2.1 with the exception of (g− 2)µ and

constraints related to dark matter.

an O(1)-factor for the upper range of mH found in the scan. Dark blue points in addition

satisfy |m2
hs| < (300 GeV)2. For these points, the approximation works even better, the

ratio being close to 1 for a large range of mH found in the scan. This improvement is

related to the fact that the expansion leading to the approximation requires small |m2
hs|.

In particular, note that our expansion in mH of C (which enters the fine-tuning measure

via the relations for vs, aλ and aκ; see (3.13) for the explicit expression) requires that

|m2
hs| � vmH . Black points have no tachyonic states and fulfil all experimental constraints

implemented in NMSSMTools 4.2.1 with the exception of (g − 2)µ and constraints related

to dark matter. In particular, the Higgs mass is within the range measured by ATLAS and

CMS. We see that, for fixed mH , the approximation works generically better for points

satisfying the experimental constraints than for those that do not (though the range of mH

found in the scan is smaller than for points not satisfying the experimental constraints).

We show the fine-tuning measure (without an expansion in mH and ms) plotted against

mH in figure 1b. The color code is the same as in figure 1a. The straight line corresponds to

our approximation (3.17). We see that, for points satisfying the experimental constraints,

the fine-tuning measure grows like m2
H . This shows that for these points, (3.17) dominates

the fine-tuning measure. We will use this fact in the next section.

3.2.3 A lower bound on the fine-tuning measure

We shall now connect the fine-tuning measure to the Higgs couplings in the scale-invariant

NMSSM. Similar to our discussion for the MSSM, we approximately diagonalize the mass

matrix for large mH and ms and find for the coupling ratios in the limit of small mixing
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(see appendix B):

ru ' 1−
m4
hH

2m4
H

−
m4
hs

2m4
s

+ cotβ

(
m2
hH

m2
H

−
m2
hsm

2
Hs

m2
Hm

2
s

+
m2
hm

2
hH

m4
H

)
(3.21a)

rd ' 1−
m4
hH

2m4
H

−
m4
hs

2m4
s

− tanβ

(
m2
hH

m2
H

−
m2
hsm

2
Hs

m2
Hm

2
s

+
m2
hm

2
hH

m4
H

)
(3.21b)

rV ' 1−
m4
hH

2m4
H

−
m4
hs

2m4
s

. (3.21c)

Let us assume that the LHC and possibly the ILC do not observe any deviations in

the Higgs couplings from the SM. Given a certain precision in the measurement of the

coupling ratios ru,d,V , we can use our results to estimate the fine-tuning which is necessary

in order to achieve this level of SM-likeness in the scale-invariant NMSSM. Recall from

eqs. (3.17) and (3.18) that the fine-tuning measure grows with mH but not with ms. In

order to estimate the fine-tuning for given limits on the coupling ratios, we thus need an

expression for mH in terms of the latter. Note that the terms of order m−4H in the relations

for ru,d are negligible since tanβ is not large. Using the resulting simpler relations for

ru,d,V and solving for mH , we find

m2
H '

m2
hH cotβ

|ru − 1|
(1 + Ωu) (3.22a)

m2
H '

m2
hH tanβ

|rd − 1|
(1 + Ωd) (3.22b)

m2
H '

|m2
hH |√

2(1− rV )− m4
hs
m4
s

, (3.22c)

where

Ωu ≡
|ru − 1|

ru − 1 +
m4
hs

2m4
s

(
1−

m2
hsm

2
Hs

m2
sm

2
hH

)
− 1 (3.23a)

Ωd ≡
|rd − 1|

1− rd −
m4
hs

2m4
s

(
1−

m2
hsm

2
Hs

m2
sm

2
hH

)
− 1 . (3.23b)

These relations can be used to determine the value of mH which is necessary in order to

satisfy given limits on ru,d,V . This applies to the scale-invariant NMSSM as well as the

NMSSM with superpotential mass terms. Note, however, their dependence in particular

on ms and m2
hs which results from the singlet admixture to the Higgs. These masses are

input parameters in the basis {v, tanβ, λ, κ, g̃,mH ,ms,m
2
hs} and undetermined (m2

hH and

m2
Hs, on the other hand, are determined via eqs. (3.11e) and (3.15)). For the rV -dependent

expression (3.22c), the admixture always increases mH and thus the fine-tuning. In the

limit of vanishing mixing, m2
hs/m

2
s → 0, we therefore obtain the smallest viable mH for a

given bound on rV . Since (3.18) also vanishes in this limit, (3.17) yields a lower bound on

the fine-tuning measure,

Σ &
1

4
(4g̃2 − λ2) f(λ, κ, tanβ, g̃)

sin 4β√
2(1− rV )

, (3.24)
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(a) (b)

Figure 2. The fine-tuning measure plotted against (a) 1/
√

1− rV and (b) 1/|rd − 1| for the points

from our scan that have no tachyonic states and satisfy the experimental constraints. In (b), purple

points have Ωd > 0, whereas this quantity is negative for orange points. The straight lines are the

corresponding bounds from (3.24) and (3.25). If we plot the combined fine-tuning Σ · Σd instead

of Σ, all orange points pile up at the red line. This shows that (3.25) is a lower bound on the

combined fine-tuning.

where the function f is defined in (3.17). We see that the fine-tuning diverges in the SM

limit rV → 1 as expected. This can not be compensated with large tanβ since electroweak

precision tests limit tanβ . 4 for λ ∼ 1 (so that the correct Higgs mass is obtained at

tree-level). This is an important difference compared to the MSSM. Even though smaller

λ allows for larger tanβ, the then necessary stop corrections to raise the Higgs mass would

in turn increase the fine-tuning. Note that the undetermined quantities λ, κ, tanβ in (3.24)

are numbers of order 1. Even if we do not know their values, (3.24) therefore still gives

an order-of-magnitude estimate for the fine-tuning. As a caveat, we point out that (3.24)

is applicable only for sufficiently small rV (since only then the corresponding mH is large

enough to justify the expansion in mH). We show a scatter plot of Σ versus 1/
√

1− rV for

the points from our scan in figure 2a. The straight line corresponds to (3.24), confirming

that it is a lower bound on the fine-tuning measure.9

The admixture with the singlet affects the required value of mH from (3.22a)

and (3.22b) via the quantities Ωu,d. It again increases mH and thereby the fine-tuning

if these quantities are positive. To see this, note that m2
hH is positive for the parameter

range of interest to us and that m2
H needs to be positive. Among points in parameter space

with positive Ωu or Ωd, those for which this quantity vanishes therefore require the smallest

mH and have the smallest fine-tuning. Note that Ωu,d → 0 in the limit of vanishing mixing,

m2
hs/m

2
s → 0. Since (3.18) also vanishes in this limit, (3.17) yields a lower bound on the

9Note that there are points which are slightly below the straight line. This is due to the fact that (3.24)
was derived using only the leading contribution (3.17) to the fine-tuning measure. However, the fine-

tuning for the points was calculated using the exact expression for the fine-tuning measure which differs

from (3.17) by small corrections.
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fine-tuning measure for these points:

Σ &
1

4
(4g̃2 − λ2) f(λ, κ, tanβ, g̃) ·


cotβ sin 4β
|ru−1|

tanβ sin 4β
|rd−1| .

(3.25)

The admixture lowers the required value of mH from (3.22a) and (3.22b), on the other

hand, for negative Ωu,d. Accordingly, (3.25) becomes an upper bound on the fine-tuning

for points in parameter space for which these quantities are negative. This is confirmed in

figure 2b, where we show a scatter plot of Σ versus 1/|rd − 1|. Orange points have negative

Ωd, whereas for purple points this quantity is positive. The straight line corresponds to

the rd-dependent bound from (3.25), separating orange and purple points as expected.

For Ωu,d close to −1 (the smallest value consistent with the positivity of m2
H), the

required value of m2
H from (3.22a) and (3.22b) can become arbitrarily small. This is due to

an accidental cancellation in the relations for the coupling ratios which allows the |ru,d−1|-
limits to be already satisfied with small mH . However, the tuning corresponding to this

cancellation should be taken into account when assessing the naturalness of the model. Let

us estimate the amount of tuning. Without any accidental cancellation, the required value

of mH for a given limit on ru would instead be m2
H,nat. ∼ cotβ m2

hH/|ru − 1| and similarly

for rd. We can take Σu,d ∼ m2
H,nat./m

2
H as an estimate for the corresponding amount of

tuning for points with negative Ωu,d (whereas for positive Ωu,d we set Σu,d = 1, since

there is no corresponding tuning) and define the product Σ · Σu,d to measure the combined

fine-tuning. Now recall that, for the points in our scan which satisfy the experimental

constraints, the fine-tuning measure is well described by (3.17) with a quadratic dependence

on mH . Furthermore, note that (3.22a) and (3.22b) reduce to m2
H,nat. in the limit Ωu,d → 0

in which (3.25) was derived. If we replace the fine-tuning measure Σ by a combined measure

Σ · Σu,d, (3.25) therefore gives a lower bound also for negative Ωu,d. We will accordingly

use (3.25) as a lower bound also for points in parameter space with negative Ωu,d.

Note that (3.25) is in fact quite conservative as a lower bound: in our scan, we find that

ms ≈ mH to within a factor of 3. This means that the limit m2
hs/m

2
s → 0 requires m2

hs → 0.

As discussed at the end of section 3.2.1, this in turn requires an accidental cancellation

among the various soft masses that determine m2
hs. Again this additional tuning should

be taken into account. Since (3.25) is saturated for points with m2
hs/m

2
s = 0, the resulting

combined fine-tuning would satisfy an even more stringent lower bound.

3.2.4 Implications of future Higgs coupling measurements for naturalness

The precision with which the Higgs coupling can be measured at the LHC at 14 TeV

was estimated in [13]. We will focus on their ‘scenario 1’ which makes the conservative

assumption of no improvement over time in theoretical and systematic errors compared to

current values. We use the 1σ-estimates from their fit for 300 fb−1 integrated luminosity

and allowing for invisible decay modes of the Higgs (see the 9-parameter fit for ‘scenario 1’

and 300 fb−1 in table 3 of ref. [13]). Note that this fit allows for different coupling ratios

to tops and charms, to bottoms and tauons and to W - and Z-bosons. In supersymmetry

at tree-level, on the other hand, all up-type fermions have the same coupling ratio and
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similarly for down-type fermions and vectors (see appendix B). Redoing the fit with these

additional constraints would likely lead to somewhat higher estimates for the achievable

precisions. Note that the said fit from [13] imposes the condition rV < 1 (which is satisfied

in our case, see eq. (3.21c)).

Since the achievable precision at the LHC is not sufficient to justify an expansion in

large mH (see the caveat below eq. (3.24)), we will use the full expression for the fine-tuning

measure in the basis {v, tanβ, λ, κ, g̃,mH ,ms,m
2
hs} which we derive using Mathematica.

In order to obtain a conservative estimate of the fine-tuning, we again focus on the limit

of vanishing mixing with the singlet, m2
hs/m

2
s → 0. Since the fine-tuning measure depends

on ms and m2
hs separately, we need to fix one of these masses in addition to the ratio

m2
hs/m

2
s. Since in our scanms always lies in the rangemH/3 . ms . mH if all experimental

constraints are satisfied, we choose ms = mH/2 and accordingly set m2
hs = 0. Taking the

corresponding tuning in m2
hs into account would increase our estimate for the fine-tuning.

Nevertheless, the estimate that we present here remains conservative in the sense of being

a lower bound.

We will assume that loop corrections to the Higgs couplings from superpartners are

small compared to the tree-level effect from the Higgs admixture. We calculate mH from

eq. (3.22) with m2
hs/m

2
s = 0 and take the smallest value which ensures that all three

coupling ratios are within the ranges given in [13]. Comparing the achievable precisions

in the three coupling ratios, we find that the most stringent requirement on mH comes

from down-type couplings. We fix λ by the requirement that eq. (3.5) gives the correct

Higgs mass. In figure 3a, we plot contours of the fine-tuning measure as a function of the

remaining two free parameters κ and tanβ. The range of κ is motivated by the range found

in the scan in [1]. The range of tanβ, on the other hand, is limited by electroweak precision

tests, since the neutralino contribution to the T -parameter increases with growing λ and

tanβ away from the custodial symmetry limit, tanβ = 1. We take the range of λ and

tanβ found in the scan in [1] to estimate the resulting limit on tanβ vs. λ. In addition, we

have to ensure that λ does not hit a Landau pole at too low scales. The coupling grows

from λ ≈ 1 at tanβ = 1 to λ ≈ 1.7 at tanβ = 3. For these values, the Landau pole occurs

well above 20 TeV. The growth of λ with tanβ is necessary in order to obtain the correct

Higgs mass at tree-level (cf. eq. (3.11a)). Even though the fine-tuning decreases with tanβ

(see the discussion below eq. (3.18)), the growth in λ counteracts this so that overall the

fine-tuning increases with tanβ in the plots and eventually flattens out.

In table 3 in [13], achievable precisions are also presented for the high-luminosity LHC

with 3000 fb−1. Using these potential limits on the coupling ratios, the increase in fine-

tuning compared to 300 fb−1 amounts to only about 50%. The reason is that the precision

for down-type couplings improves by only about 30%. In addition, table 3 in [13] gives

the achievable precisions for the more optimistic ‘scenario 2’, where theoretical errors are

assumed to be halved and systematic errors are assumed to decrease as the square root of

the integrated luminosity. Using the precisions for ‘scenario 2’ with 3000 fb−1, we find that

the fine-tuning increases by more than a factor 3 compared to ‘scenario 1’ with 300 fb−1.

We see that, based on coupling measurements alone, the LHC can probe the naturalness

of the NMSSM down to the few-percent level or better for a large range in the κ-tanβ plane.
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(a) (b)

Figure 3. Contours of the fine-tuning measure Σ in the κ-tanβ plane for (a) the LHC at 14 TeV

with integrated luminosity of 300 fb−1 and (b) the ILC at 1 TeV with integrated luminosity of

2500 fb−1. We have used the projected Higgs coupling uncertainties for the LHC from the 9-

parameter fit of ‘scenario-1’ which are given in table 3 of ref. [13] as well as the projected Higgs

coupling uncertainties for the ILC given in table 6 of ref. [13].

This should be compared with the level of fine-tuning that is driven by collider constraints

on stops and gluinos. In [1], we have found that under certain assumptions made to optimise

the naturalness of the model — a large coupling λ, a low messenger scale and a split sparticle

spectrum (see [1] for more details) — stops and gluinos as heavy as, respectively, 1.2 TeV

and 3 TeV can still be consistent with fine-tuning at the 5%-level.10 The exclusion reach

for stops and gluinos at the 14 TeV LHC with the ATLAS detector was estimated in [32].

Even with 3000 fb−1 integrated luminosity (though assuming a simplified model for stop

and gluino decays), the exclusion reach remains below 1.1 TeV for stops and 2.7 TeV for

gluinos. This means that searches for coloured sparticles and measurements of the Higgs

couplings at the LHC may probe the naturalness of the NMSSM at a comparable level.11

This would change with the advent of the ILC. No improvements over the projected

LHC limits on stops and gluinos will be possible with this collider. The precision in the

Higgs coupling measurements, on the other hand, will be significantly improved over the

LHC. We again use the precision estimates from [13]. Note that their fit for the ILC

imposes neither the constraint rV < 1 nor that there are universal coupling ratios for

up-type fermions, down-type fermions and vectors. Redoing the fit with these constraints

would likely lead to higher precision estimates. We assume that the ILC uses information

10Note, however, that the fine-tuning can be reduced up to a factor of 2-3 by a further doubling of the

superpartner content [31].
11The model-building assumptions made in [1], however, may potentially require a relatively baroque

model to be realised. Simpler models will likely require a larger amount of fine-tuning once they satisfy the

collider constraints [33].
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on the ratio of branching fractions BR(h→ γγ)/BR(h→ ZZ∗) from the LHC as discussed

in [13]. The resulting achievable Higgs coupling uncertainties are given in table 6 in [13].

The most stringent constraint on mH again arises from down-type couplings. Different

configurations of the ILC are considered in [13], the initial configuration being at 250 GeV

collision energy with 250 fb−1 integrated luminosity. The improvement in the precision for

down-type couplings for this configuration compared to the LHC at 14 TeV with 300 fb−1

amounts to about 40 %. Since the fine-tuning grows inversely linear with |1−rd| according

to eq. (3.25), the required fine-tuning to satisfy the limits on the coupling ratios increases

by only about 60 % compared to the LHC at 14 TeV with 300 fb−1. We therefore show

a plot only for the final configuration at 1 TeV with 2500 fb−1. We again fix λ via the

Higgs mass and plot contours of the fine-tuning measure as a function of the remaining

free parameters κ and tanβ in figure 3b. The coupling λ grows from λ ≈ 1 at tanβ = 1

to λ ≈ 1.6 at tanβ = 3. We see that at 1 TeV and with 2500 fb−1, the ILC could probe

the fine-tuning down to the per-mille level. Precision measurements of the Higgs couplings

can accordingly become an important tool to constrain the naturalness of the NMSSM.

4 Conclusion

The SM-like values of the Higgs couplings to fermions and gauge bosons measured at the

LHC introduce a new source of fine-tuning in supersymmetric models. In the MSSM, the

particle identified with the 126 GeV Higgs boson is a mixture of a CP -even state with

SM Higgs couplings and an additional, heavier CP -even state. Increasing the mass of

this heavy CP -even state gives rise to more SM-like couplings, but also causes a further

increase in the tuning of the electroweak vev. However this tuning can be offset by large

tanβ so that the overall tuning is not necessarily increased beyond that which arises from

the usual contributions of stops, gluinos and Higgsinos (or any other contribution from the

D-term sector).

For the NMSSM, with an additional singlet field, this is no longer the case. An order-

one Higgs-singlet coupling is sufficient to obtain the 126 GeV Higgs mass at tree-level. This

large coupling, however, enhances the violation of custodial symmetry so that constraints

from the T -parameter restrict tanβ to small values. This means that the increase in fine-

tuning from decoupling of the heavy CP -even states cannot be offset with large tanβ.

Thus the NMSSM has a new source of tuning from Higgs coupling measurements. Even

though the SM Higgs can now mix with two CP -even states the fine-tuning measure does

not grow with the singlet mass, but at leading order grows quadratically with the mass of

the CP -even state already present in the MSSM.

We derive a relation between the mass of this state and deviations in the Higgs cou-

plings from SM values. In combination with our expression for the fine-tuning measure

this relation can be used to see what future collider measurements will teach us about

the naturalness of supersymmetric models. In particular, we consider the scale-invariant

NMSSM with an order one Higgs-singlet coupling and derive a lower bound on the tuning.

At Run-II of the LHC with 300 fb−1 the measurement of the Higgs couplings will probe

the naturalness of this model at the few-percent level, roughly comparable with the tun-
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ing from current direct limits on the superpartner masses (assuming a model with a low

messenger scale (20 TeV) and split families). Instead at a 1 TeV ILC with 2500 fb−1, more

precise measurements of the Higgs couplings will probe naturalness at the per-mille level,

corresponding to an approximately factor of 30 increase in the tuning. This is beyond any

tuning derived from direct superpartner limits, so that the naturalness of supersymmetric

models will be definitively tested at a future ILC.
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A The CP -even Higgs mass matrix

A.1 MSSM

In the MSSM and its D-term extension discussed in section 2.1, the mass matrix for the

CP -even states h and H is given by

M2 =

(
m2
h m2

hH

m2
hH m2

H

)
, (A.1)

where

m2
h = m2

Hd
cos2β +m2

Hu sin2β + 3g̃2v2 cos22β + µ2 −Bµ sin 2β (A.2a)

m2
H = m2

Hd
sin2β +m2

Hu cos2β + 3g̃2v2 sin22β − g̃2v2 + µ2 +Bµ sin 2β (A.2b)

m2
hH =

1

2

(
(m2

Hd
−m2

Hu) sin 2β + 3g̃2v2 sin 4β + 2Bµ cos 2β
)
. (A.2c)

If loop corrections from the stop sector are important (in particular if they are used to raise

the quartic coupling instead of additional D-terms), these matrix elements have sizeable

corrections arising from the Coleman-Weinberg potential (cf. eqs. (2.19a) to (2.19c)).

A.2 NMSSM

In the NMSSM, the mass matrix for the CP -even states h, H and s is given by

M2 ≡

 m2
h m2

hH m2
hs

m2
hH m2

H m2
Hs

m2
hs m2

Hs m2
s

 . (A.3)
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The expressions for the matrix elements depend on the choice of the superpotential. For

the superpotential with mass terms (3.1) (parameterised by µ,M, λ), the matrix elements

are given by

m2
h =

1

8

(
24g̃2v2 cos22β + 6λ2v2 sin22β + 8µ2 + 8m2

Hd
cos2β + 8m2

Hu sin2β

−4 sin 2β
(√

2vs(aλ + λM) + 2Bµ

)
+ +4λ2v2s + 8

√
2λµvs

)
(A.4a)

m2
H =

1

8

(
4
(

sin 2β
(√

2aλvs + 2Bµ

)
+ g̃2v2 + 2µ2

)
+ 3v2 cos 4β

(
λ2 − 4g̃2

)
+8
√

2λvs(µ+M sinβ cosβ) + 8m2
Hu cos2β + 8m2

Hd
sin2β+λ2

(
v2+4v2s

))
(A.4b)

m2
s = m2

S +M2 +
1

2
λ2v2 (A.4c)

m2
hs = v (

√
2λµ+ λ2vs −

√
2 sinβ cosβ (aλ + λM)) (A.4d)

m2
Hs =

v√
2

cos 2β(aλ + λM) . (A.4e)

m2
hH =

1

8

(
4 cos 2β

(√
2vs(aλ + λM) + 2Bµ

)
− 3v2 sin 4β

(
λ2 − 4g̃2

)
+ 4 sin 2β(m2

Hd
−m2

Hu)
)
. (A.4f)

For the scale-invariant NMSSM with superpotential (3.9) (parameterised by the dimen-

sionless couplings λ, κ), the matrix elements become

m2
h =

1

8

(
24g̃2v2 cos22β + 6λ2v2 sin22β + 8m2

Hd
cos2β + 8m2

Hu sin2β − 4
√

2aλvs sin 2β

− 4κλv2s sin 2β + 4λ2v2s

)
(A.5a)

m2
H =

1

8

(
4
√

2aλvs sin 2β − 3v2 cos 4β
(
4g̃2 − λ2

)
+ 4g̃2v2 + 8m2

Hd
sin2β + 8m2

Hu cos2β

+ λ2v2 + 4κλv2s sin 2β + 4λ2v2s

)
(A.5b)

m2
s =
√

2aκvs +m2
S − κλv2 sinβ cosβ +

1

2
λ2v2 + 3κ2v2s (A.5c)

m2
hH =

1

4

(
cos 2β

(
2vs

(√
2aλ + κλvs

)
+ 3v2 sin 2β

(
4g̃2 − λ2

))
+ 2 sin 2β(m2

Hd
−m2

Hu)
)

(A.5d)

m2
hs = v

(
λ2vs − sinβ cosβ

(√
2aλ + 2κλvs

))
(A.5e)

m2
Hs =

v

2
cos 2β

(√
2aλ + 2κλvs

)
. (A.5f)

B Approximate mass and couplings of the Higgs

In this appendix, we will derive approximate expressions for the mass and couplings of the

Higgs. We will present the derivation for the case of two Higgs doublets and one singlet

as in the NMSSM. However, it applies to any type-II two-Higgs-doublet model and can

be straightforwardly extended to an arbitrary number of additional Higgs singlets. The

corresponding expressions for the MSSM can be obtained by decoupling the singlet. We
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rotate into the basis (h,H, s) using eq. (3.3). The couplings to SM fermions f and SM

vectors V µ in this basis are given by

L ⊃ −f̄f (Y h
f h+ Y H

f H)− ghV VµV µ h . (B.1)

Note that the state H does not couple to vectors (and the singlet s of course couples to

neither fermions nor vectors). Furthermore the state h couples precisely like the SM Higgs.

Accordingly Y h
f are just the SM Yukawa couplings and similarly ghV are the SM Higgs

couplings to vectors. For the Yukawa couplings Y H
fu

and Y H
fd

to respectively up-type and

down-type fermions, on the other hand, we find (see e.g. [18])

Y H
fu = − cotβ Y h

fu , Y H
fd

= tanβ Y h
fd
. (B.2)

We identify the Higgs (i.e. the particle which was observed at the LHC) with the

lightest CP -even state in the Higgs sector. In order to determine its mass and couplings,

we need to diagonalize the mass matrix. In terms of the resulting mass eigenstates h1,2,3,

the (gauge eigenstates) h,H, s are given by

h =
3∑

n=1

Vhnhn , H =
3∑

n=1

VHnhn , s =
3∑

n=1

Vsnhn , (B.3)

where V is the unitary matrix such that V †M2V is diagonal. Using these relations in

eq. (B.1), the coupling ratios for the lightest CP -even state h1 defined in eq. (2.7) are

given by

rf = Vh1 +
Y H
f

Y h
f

VH1 , rV = Vh1 . (B.4)

Note that the Higgs coupling to vectors is always suppressed compared to the SM as

Vh1 ≤ 1. This can be understood from the effect of the admixed states H and s on the

wavefunction renormalization of the Higgs.

We are interested in the limit of weak mixing where the diagonal elements m2
H and

m2
s of the mass matrix are much larger than all other matrix elements. We can thus

approximately diagonalize the mass matrix in the limit of large m2
H and m2

s. In particular,

this gives eq. (3.5) for the mass of the lightest CP -even state h1 (and eq. (2.6) after

decoupling the singlet). For the mixing matrix elements Vi1 of the eigenstate h1, we find

Vh1 ' 1−
m4
hH

2m4
H

−
m4
hs

2m4
s

(B.5a)

VH1 ' −
m2
hH

m2
H

+
m2
hsm

2
Hs

m2
Hm

2
s

−
m2
hm

2
hH

m4
H

(B.5b)

Vs1 ' −
m2
hs

m2
s

+
m2
hHm

2
Hs

m2
Hm

2
s

−
m2
hm

2
hs

m4
s

. (B.5c)

Plugging these relations into eq. (B.4), we obtain eq. (3.21) (and eq. (2.8) after decoupling

the singlet).
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We can express tanβ in terms of the Higgs couplings. Combining eqs. (B.4), we find

ru − rV ' − cotβ VH1 , rd − rV ' tanβ VH1 . (B.6)

If the Higgs has a non-vanishing admixture of H (VH1 6= 0), we then obtain the simple

relation

tan2β ' rd − rV
rV − ru

. (B.7)

This result is general for any type-II two-Higgs-doublet model including an arbitrary num-

ber of singlets. However, it is difficult to use this relation to measure tanβ because of the

large experimental uncertainty in ru.

C Expressions used in the evaluation of the fine-tuning measure

In order to evaluate the fine-tuning measure (2.9), we need to calculate the logarithmic

derivatives of the Higgs vev v with respect to the input parameters ξ. For completeness,

we present the expressions used in this calculation for both the MSSM and NMSSM.

C.1 MSSM

In a general basis (h1, h2) for the CP -even Higgs fields, the minimisation conditions for

the potential read

`i ≡
∂V

∂hi

∣∣∣∣
min

= 0 . (C.1)

In particular for the basis (h,H) and using the fact that the minimum in this basis is by

construction at 〈h〉 = v and 〈H〉 = 0, we find

`h = v
(
m2
Hd

cos2β +m2
Hu sin2β + g̃2v2 cos22β + µ2 −Bµ sin 2β

)
= 0 (C.2a)

`H =
v

2

(
(m2

Hd
−m2

Hu + 2g̃2v2 cos 2β) sin 2β + 2Bµ cos 2β
)

= 0 . (C.2b)

These equations can be used to solve for v and tanβ for given parameters

{m2
Hu
,m2

Hd
, µ,Bµ, g̃} or, alternatively, to fix the soft masses m2

Hu
and m2

Hd
for given

{v, tanβ, µ,Bµ, g̃}. Taking the total derivative of the minimisation conditions with respect

to the input parameters ξ, we find

0 =
d`i
dξ

=
∂`i
∂〈hj〉

d〈hj〉
dξ

+
∂`i
∂ξ

=
∂2V

∂hi∂hj

∣∣∣∣
min

d〈hj〉
dξ

+
∂`i
∂ξ

=
(
M2

)
ij

d〈hj〉
dξ

+
∂`i
∂ξ

. (C.3)

This can be solved for the d〈hj〉/dξ. In the field basis (h,H), this gives an expres-

sion for dv/dξ which in combination with the definition (2.9) of the fine-tuning measure

yields (2.10).
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In the basis {v, tanβ, µ,mh,mH} of input parameters, the resulting expression for the
fine-tuning measure reads

Σ =
1

4

((
cos4β sec62β

(
m2
h − cos 2β

(
m2
h +m2

H

))2 (
4µ2 +m2

h cos 6β − 2 cos 4β
(
−2µ2 +m2

h +m2
H

)
+ 3 cos 2β

(
m2
h +m2

H

)
+ 2m2

h +m2
H cos 6β − 2m2

H

)2
+ sin4β sec62β

(
cos 2β

(
m2
h +m2

H

)
+m2

h

)2(
−4µ2 +m2

h cos 6β + 2 cos 4β
(
−2µ2 +m2

h +m2
H

)
+ 3 cos 2β

(
m2
h +m2

H

)
− 2m2

h +m2
H cos 6β

+ 2m2
H

)2
+ 4 tan42β

(
m2
h +m2

H

)2 (
cos 4β

(
m2
h +m2

H

)
−m2

h +m2
H

)2
+ 16m4

h sec42β(
cos 4β

(
m2
h +mH2

)
−m2

h +m2
H

)2
+ 256µ4m4

H

)
/
(
m2
hm

2
H −m4

h tan22β
)2)1/2

. (C.4)

In appropriate limits, this simplifies to the expressions in eqs. (2.15) and (2.16).

C.2 NMSSM

We first extend eq. (C.3) to the case of three fields. Solving for the derivatives dv/dξ, we

then find

dv

dξ
=
`′hm

4
Hs − `′hm2

Hm
2
s + `′Hm

2
hHm

2
s − `′Hm2

hsm
2
Hs + `′sm

2
Hm

2
hs − `′sm2

hHm
2
Hs

detM2
, (C.5)

where `′s ≡ d`s/dξ etc. The `h,H,s are defined as in eq. (C.1). For the NMSSM with mass

terms in the superpotential (given in (3.1)), this gives

`h =
v

8

(
v2 cos 4β

(
4g̃2−λ2

)
−4 sin 2β(

√
2vs(aλ+λM)+2Bµ)+4g̃2v2+4 cos 2β(m2

Hd
−m2

Hu)

+4m2
Hd

+ 4m2
Hu + λ2v2 + 4v2sλ

2 + 8µ2 + 8
√

2vsλµ
)

(C.6a)

`H =
v

8

(
4 cos 2β (2Bµ +

√
2vs(aλ + λM))− v2 sin 4β

(
λ2 − 4g̃2

)
+ 4 sin 2β(m2

Hd
−m2

Hu)
)

(C.6b)

`s =
1

2

(
2M2vs + 2m2

Svs + λv2(
√

2µ+ λvs)−
√

2v2 sinβ cosβ(aλ + λM)
)
. (C.6c)

For the NMSSM with a scale-invariant superpotential (given in eq. (3.9)), on the other

hand, we find

`h =
v

8

(
v2 cos 4β

(
4g̃2 − λ2

)
− 4
√

2aλvs sin 2β + 4g̃2v2 + 4 cos 2β(m2
Hd
−m2

Hu) + 4m2
Hu

+ 4m2
Hd

+ λ2v2 − 4κλv2s sin 2β + 4λ2v2s

)
(C.7a)

`H =
v

8

(
cos 2β

(
4vs

(√
2aλ + κλvs

)
+ 2v2 sin 2β

(
4g̃2 − λ2

))
+ 4 sin 2β(m2

Hd
−m2

Hu)
)

(C.7b)

`s =
vs
2

(√
2aκvs + 2m2

S + λ2v2 + 2κ2v2s

)
− 1

4
v2 sin 2β

(√
2aλ + 2κλvs

)
. (C.7c)
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[7] B. Bellazzini, C. Csáki, A. Delgado and A. Weiler, SUSY without the Little Hierarchy, Phys.

Rev. D 79 (2009) 095003 [arXiv:0902.0015] [INSPIRE].

[8] A.D. Medina, N.R. Shah and C.E.M. Wagner, A Heavy Higgs and a Light Sneutrino NLSP

in the MSSM with Enhanced SU(2) D-terms, Phys. Rev. D 80 (2009) 015001

[arXiv:0904.1625] [INSPIRE].

[9] A. Bharucha, A. Goudelis and M. McGarrie, En-gauging Naturalness, arXiv:1310.4500

[INSPIRE].

[10] R. Barbieri, L.J. Hall, Y. Nomura and V.S. Rychkov, Supersymmetry without a Light Higgs

Boson, Phys. Rev. D 75 (2007) 035007 [hep-ph/0607332] [INSPIRE].

[11] R. Franceschini and S. Gori, Solving the µ problem with a heavy Higgs boson, JHEP 05

(2011) 084 [arXiv:1005.1070] [INSPIRE].

[12] L.J. Hall, D. Pinner and J.T. Ruderman, A Natural SUSY Higgs Near 126 GeV, JHEP 04

(2012) 131 [arXiv:1112.2703] [INSPIRE].

[13] M.E. Peskin, Estimation of LHC and ILC Capabilities for Precision Higgs Boson Coupling

Measurements, arXiv:1312.4974 [INSPIRE].

[14] M. Farina, M. Perelstein and B. Shakya, Higgs Couplings and Naturalness in λ-SUSY,

arXiv:1310.0459 [INSPIRE].

[15] R.S. Gupta, H. Rzehak and J.D. Wells, How well do we need to measure Higgs boson

couplings?, Phys. Rev. D 86 (2012) 095001 [arXiv:1206.3560] [INSPIRE].

[16] K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY Predicts: Higgs Couplings, JHEP 01

(2013) 057 [arXiv:1206.5303] [INSPIRE].

[17] R.T. D’Agnolo, E. Kuflik and M. Zanetti, Fitting the Higgs to Natural SUSY, JHEP 03

(2013) 043 [arXiv:1212.1165] [INSPIRE].

[18] R.S. Gupta, M. Montull and F. Riva, SUSY Faces its Higgs Couplings, JHEP 04 (2013) 132

[arXiv:1212.5240] [INSPIRE].

[19] R. Barbieri, D. Buttazzo, K. Kannike, F. Sala and A. Tesi, Exploring the Higgs sector of a

most natural NMSSM, Phys. Rev. D 87 (2013) 115018 [arXiv:1304.3670] [INSPIRE].

– 32 –

http://dx.doi.org/10.1007/JHEP02(2013)032
http://arxiv.org/abs/1212.5243
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5243
http://dx.doi.org/10.1007/JHEP02(2012)144
http://arxiv.org/abs/1112.4835
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4835
http://dx.doi.org/10.1103/PhysRevLett.111.121803
http://dx.doi.org/10.1103/PhysRevLett.111.121803
http://arxiv.org/abs/1305.5251
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.5251
http://arxiv.org/abs/1305.6068
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6068
http://arxiv.org/abs/1401.7671
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.7671
http://dx.doi.org/10.1088/1126-6708/2004/02/043
http://arxiv.org/abs/hep-ph/0309149
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0309149
http://dx.doi.org/10.1103/PhysRevD.79.095003
http://dx.doi.org/10.1103/PhysRevD.79.095003
http://arxiv.org/abs/0902.0015
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.0015
http://dx.doi.org/10.1103/PhysRevD.80.015001
http://arxiv.org/abs/0904.1625
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1625
http://arxiv.org/abs/1310.4500
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.4500
http://dx.doi.org/10.1103/PhysRevD.75.035007
http://arxiv.org/abs/hep-ph/0607332
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0607332
http://dx.doi.org/10.1007/JHEP05(2011)084
http://dx.doi.org/10.1007/JHEP05(2011)084
http://arxiv.org/abs/1005.1070
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.1070
http://dx.doi.org/10.1007/JHEP04(2012)131
http://dx.doi.org/10.1007/JHEP04(2012)131
http://arxiv.org/abs/1112.2703
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.2703
http://arxiv.org/abs/1312.4974
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.4974
http://arxiv.org/abs/1310.0459
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.0459
http://dx.doi.org/10.1103/PhysRevD.86.095001
http://arxiv.org/abs/1206.3560
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3560
http://dx.doi.org/10.1007/JHEP01(2013)057
http://dx.doi.org/10.1007/JHEP01(2013)057
http://arxiv.org/abs/1206.5303
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5303
http://dx.doi.org/10.1007/JHEP03(2013)043
http://dx.doi.org/10.1007/JHEP03(2013)043
http://arxiv.org/abs/1212.1165
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1165
http://dx.doi.org/10.1007/JHEP04(2013)132
http://arxiv.org/abs/1212.5240
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5240
http://dx.doi.org/10.1103/PhysRevD.87.115018
http://arxiv.org/abs/1304.3670
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.3670


J
H
E
P
0
4
(
2
0
1
4
)
1
8
0

[20] R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl.

Phys. B 306 (1988) 63 [INSPIRE].

[21] H. Baer, V. Barger, P. Huang, A. Mustafayev and X. Tata, Radiative natural SUSY with a

125 GeV Higgs boson, Phys. Rev. Lett. 109 (2012) 161802 [arXiv:1207.3343] [INSPIRE].

[22] S. Cassel, D.M. Ghilencea and G.G. Ross, Testing SUSY at the LHC: Electroweak and Dark

matter fine tuning at two-loop order, Nucl. Phys. B 835 (2010) 110 [arXiv:1001.3884]

[INSPIRE].

[23] M.S. Carena, J.R. Espinosa, M. Quirós and C.E.M. Wagner, Analytical expressions for

radiatively corrected Higgs masses and couplings in the MSSM, Phys. Lett. B 355 (1995) 209

[hep-ph/9504316] [INSPIRE].

[24] R. Harnik, G.D. Kribs, D.T. Larson and H. Murayama, The minimal supersymmetric fat

Higgs model, Phys. Rev. D 70 (2004) 015002 [hep-ph/0311349] [INSPIRE].

[25] T. Gherghetta, B. von Harling and N. Setzer, A natural little hierarchy for RS from

accidental SUSY, JHEP 07 (2011) 011 [arXiv:1104.3171] [INSPIRE].

[26] A. Delgado, G. Nardini and M. Quirós, A Light Supersymmetric Higgs Sector Hidden by a

Standard Model-like Higgs, JHEP 07 (2013) 054 [arXiv:1303.0800] [INSPIRE].

[27] M. Carena, I. Low, N.R. Shah and C.E.M. Wagner, Impersonating the Standard Model Higgs

Boson: Alignment without Decoupling, JHEP 04 (2014) 015 [arXiv:1310.2248] [INSPIRE].

[28] U. Ellwanger, J.F. Gunion and C. Hugonie, NMHDECAY: A Fortran code for the Higgs

masses, couplings and decay widths in the NMSSM, JHEP 02 (2005) 066 [hep-ph/0406215]

[INSPIRE].

[29] U. Ellwanger and C. Hugonie, NMHDECAY 2.0: An Updated program for sparticle masses,

Higgs masses, couplings and decay widths in the NMSSM, Comput. Phys. Commun. 175

(2006) 290 [hep-ph/0508022] [INSPIRE].

[30] G. Bélanger, F. Boudjema, C. Hugonie, A. Pukhov and A. Semenov, Relic density of dark

matter in the NMSSM, JCAP 09 (2005) 001 [hep-ph/0505142] [INSPIRE].

[31] N. Craig and K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs,

JHEP 03 (2014) 140 [arXiv:1312.1341] [INSPIRE].

[32] ATLAS collaboration, Searches for Supersymmetry at the high luminosity LHC with the

ATLAS Detector, ATL-PHYS-PUB-2013-002, (2013).

[33] A. Arvanitaki, M. Baryakhtar, X. Huang, K. van Tilburg and G. Villadoro, The Last

Vestiges of Naturalness, JHEP 03 (2014) 022 [arXiv:1309.3568] [INSPIRE].

[34] J.D. Hunter, Matplotlib: A 2D Graphics Environment, Comput. Sci. Eng. 9 (2007) 90.

[35] F. Pérez and B.E. Granger, IPython: A System for Interactive Scientific Computing,

Comput. Sci. Eng. 9 (2007) 21.

– 33 –

http://dx.doi.org/10.1016/0550-3213(88)90171-X
http://dx.doi.org/10.1016/0550-3213(88)90171-X
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B306,63
http://dx.doi.org/10.1103/PhysRevLett.109.161802
http://arxiv.org/abs/1207.3343
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3343
http://dx.doi.org/10.1016/j.nuclphysb.2010.03.031
http://arxiv.org/abs/1001.3884
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.3884
http://dx.doi.org/10.1016/0370-2693(95)00694-G
http://arxiv.org/abs/hep-ph/9504316
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9504316
http://dx.doi.org/10.1103/PhysRevD.70.015002
http://arxiv.org/abs/hep-ph/0311349
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0311349
http://dx.doi.org/10.1007/JHEP07(2011)011
http://arxiv.org/abs/1104.3171
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.3171
http://dx.doi.org/10.1007/JHEP07(2013)054
http://arxiv.org/abs/1303.0800
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.0800
http://dx.doi.org/10.1007/JHEP04(2014)015
http://arxiv.org/abs/1310.2248
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.2248
http://dx.doi.org/10.1088/1126-6708/2005/02/066
http://arxiv.org/abs/hep-ph/0406215
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0406215
http://dx.doi.org/10.1016/j.cpc.2006.04.004
http://dx.doi.org/10.1016/j.cpc.2006.04.004
http://arxiv.org/abs/hep-ph/0508022
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508022
http://dx.doi.org/10.1088/1475-7516/2005/09/001
http://arxiv.org/abs/hep-ph/0505142
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0505142
http://dx.doi.org/10.1007/JHEP03(2014)140
http://arxiv.org/abs/1312.1341
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.1341
https://cds.cern.ch/record/1512933
http://dx.doi.org/10.1007/JHEP03(2014)022
http://arxiv.org/abs/1309.3568
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.3568
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.53

	Introduction
	The MSSM
	Using D-terms to raise the quartic coupling
	The Higgs sector
	The fine-tuning measure

	Using stop-loop corrections to raise the quartic coupling
	The fine-tuning measure
	The effect of the RG running on the fine-tuning measure


	The NMSSM
	The NMSSM with superpotential mass terms
	The scale-invariant NMSSM
	The fine-tuning measure
	A numerical scan of the parameter space
	A lower bound on the fine-tuning measure
	Implications of future Higgs coupling measurements for naturalness


	Conclusion
	The CP-even Higgs mass matrix
	MSSM
	NMSSM

	Approximate mass and couplings of the Higgs
	Expressions used in the evaluation of the fine-tuning measure
	MSSM
	NMSSM


