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netted radars based on Markov decision
process during target tracking in clutter
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Abstract

In order to improve the radio frequency stealth ability of phased array radars, a novel resource scheduling method of
the radar network for target tracking in clutter is presented. Firstly, the relationship model between radar resource and
tracking accuracy is built, and the sampling interval, power, and waveform will influence predicted error covariance
matrix through transition matrix and measurement noise. Then, radar resource scheduling algorithm based on Markov
decision process which is converted to be a binary optimization problem is proposed, and an improved binary
wind-driven optimization method is presented to solve that problem. The radar and its radiation parameters will
be selected for better radio frequency stealth performance and tracking accuracy. Simulation results show that the
proposed algorithm not only has excellent tracking accuracy in clutter but also has better radio frequency stealth
ability comparing with other methods.
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1 Introduction
Low probability intercept (LPI) is one of the important
features of modern radars. In order to improve the LPI
performance, we need to reduce not only the radar cross
section (RCS) but also the radiation of the radars which
is also called radio frequency stealth (RFS) [1]. In order
to achieve the important tactical requirement of RFS, it
is necessary to dynamically manage the radar resource,
such as sampling interval, power, and waveform. As we
know, larger sampling interval will lead to less radiation
times, and lower power and waveform agility will bring
better performance of RFS. The research of [2] considers
an advanced pulse compression noise radar waveform
possessing salient features and noise waveforms and
demonstrates the RFS characteristic of the waveform
with different κ values. The work in [3] evaluated the
mutual interference and low probability of interception
capabilities of noise waveforms. The research in [2, 3] fo-
cuses on the waveform feature without the consideration
of radar efficiency. A novel adaptive sampling interval

algorithm is presented in [4], which optimizes the sam-
pling interval based on particle swarm optimization in
order to obtain excellent performance for phased array
radar. For better tracking performance instead of RFS
ability in [4], an adaptive maneuvering target tracking al-
gorithm for Doppler radar is proposed in [5], where both
the sampling interval and transmitting waveform can be
adjusted according to the predicted error covariance
output adaptively. Both the works in [4, 5] design the ra-
diation parameters only for the single radar. For multiple
networked radars, the efficient dynamic power control
and management algorithms are presented in [6], and
optimal sensor management algorithms are developed
for controlling the active sensor emission to minimize
the threat posed to all the platforms. Another LPI
optimization strategy is proposed for target tracking in
radar network architectures in [7, 8], where Schleher
intercept factor is minimized by optimizing transmission
power allocation among netted phased array radars in
the network. However, almost all of those works do not
consider the scheduling and control method of com-
bined parameters, such as radar power, sampling inter-
val, and waveform parameters. Moreover, it is impossible
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for phased array radars to schedule such parameters in
an infinite scope.
For the resource allocation of phased array radars

in the network, this paper will present a novel sched-
uling method of sampling interval, power, and wave-
form parameters in a limited library during tracking
in clutter. The remainder of this paper is organized
as follows. Section 2 introduces the interacting mul-
tiple model probability data association algorithm.
Section 3 presents the relationship model between
radar resource and tracking accuracy. The proposed
radar resource scheduling algorithm based on Markov
decision process is explained in Section 4. Simulations
of the proposed algorithms and comparison results
with other methods are provided in Section 5. The
conclusions are presented in Section 6.

2 Interacting multiple model probability data
association
The proposed resource scheduling method will be used
during the tracking process in clutter. As we know, the
interacting multiple model (IMM) algorithm has demon-
strated its ability to catch up the unknown maneuver,
while the probability data association (PDA) approach
has shown its relative easy-implementation and good
performance properties in the target tracking commu-
nity [9, 10]. The paper prefers to combine them together
and use IMMPDA for the target tracking in clutter.
Let xk and zk represent the state vector and the obser-

vation vector, respectively; the state equation and trans-
fer equation at time k are:

xkþ1 ¼ Fxk þ wk ð1Þ
zkþ1 ¼ Hxk þ vk ð2Þ

The process noise wk and the measurement noise
vk are mutually uncorrelated zero-mean white Gauss-
ian processes with covariance matrices Q and Bk, F
is the transition matrix, and H is the observation
matrix. The IMMPDA algorithm includes the follow-
ing steps.

(1) Input interaction

The initial state for prediction of each model is a mix-
ture of the states from the last cycle of all models with
the mixing probabilities:

μsjtk−1jk−1 ¼
θsjtμsk−1XN

s¼1

θsjtμsk−1

ð3Þ

where μsk−1 is the model probability of the model s in the
last cycle, θs|t is the probability for the transition from

model s to model t, and
XN
s¼1

θsjt ¼ 1 , N is the model

numbers. The initial state x̂0tk−1jk−1 and covariance

P0tk−1jk−1 of the model t are:

x̂0tk−1jk−1 ¼
XN
s¼1

x̂sk−1jk−1μ
sjt
k−1jk−1 ð4Þ

P0tk−1jk−1 ¼
XN
s¼1

μsjtk−1jk−1 x̂sk−1jk−1−x̂
ot
k−1jk−1

h i
x̂sk−1jk−1−x̂

ot
k−1jk−1

h iT

þ
XN
s¼1

μsjtk−1jk−1P
s
k−1jk−1

ð5Þ
where x̂sk−1jk−1 and Psk−1jk−1 are the state and covariance

of the model s of the last cycle, respectively.

(2) Measurement validation

The validated measurement zk at time should meet the
condition as:

zk−ẑkjk−1
� �

Skð Þ−1 zk−ẑkjk−1
� �T

< γ ð6Þ

where ẑkjk−1 ¼
XN
t¼1

XN
s¼1

θsjtμsk−1HFt x̂sk−1jk−1, Sk is the asso-

ciated covariance matrix, and γ is the validation gate
which represents a threshold that is associated with the
acceptability of the measurements.

(3) Model filtering

At the prediction step, the state and covariance are
predicted using the estimate of the previous step. The
predicted state and covariance of model t at time k can
be represented as:

x̂tkjk−1 ¼ Ft x̂0tk−1jk−1 ð7Þ

Ptkjk−1 ¼ FtP0t
k−1jk−1 Ftð ÞT þ Q ð8Þ

The updated state and covariance with the ith meas-
urement can be represented as:

x̂ti;kjk ¼ x̂tkjk−1 þ Gt
kr

t
i;k ð9Þ

Pt
i;kjk ¼ Pt

i;kjk−1 þ Gt
kHPt

i;kjk−1 ð10Þ

The innovation covariance Stk and Kalman gain Gt
k of

model t at time k is represented as:

Stk ¼ HPt
kjk−1H

T þ Bk ð11Þ
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Gt
k ¼ Pt

kjk−1H
T Stk
� �−1 ð12Þ

where rti;k ¼ zi;k−ẑ tkjk−1 and zi,k is the ith measurement.

(4) Measurement probability computing

βti;k is the probability of event during which zi,k is the

correct measurement from the target. βt0;k is the prob-
ability of event during which none of the validated mea-
surements is corrected. The association probabilities of
βti;k and βt0;k are

βti;k ¼
exp −rti;k Stk

� �−1
rti;k=2

� �

bk þ
XWk

i¼1

exp −rti;k Stk
� �−1

rti;k=2
� � ð13Þ

βt0;k ¼
bk

bk þ
XWk

i¼1

exp −rti;k Stk
� �−1

rti;k=2
� � ð14Þ

where Wk is the number of validated measurements at
time k, bk =Wk(1 − PD,k|k − 1)(PD,k|k − 1Vk)

− 1, PD,k|k − 1 is
the detection probability, and Vk represents the valid-
ation region.

(5) Update of the model probability

The likelihood function Λt
k corresponding to the model

t is

Λt
k ¼

Pt
D;kjk−1

WkPt
D;kjk−1 þ 1−Pt

D;kjk−1
� �

Vk

V −Wkþ1
k

bk

2πStk
�� ��1=2 þ

XWk

i¼1

ρ rti;k ; 0; S
t
k

h i" #

ð15Þ

where ρ rti;k ; 0; S
t
k

h i
¼ 1

2πStkj j1=2 exp − 1
2 rti;k−0
� �0

Stk rti;k−0
� �� �

.

The updated model probability is

μtk ¼
1
�c
Λt
k

XN
s¼1

θsjtμsk−1 ð16Þ

where �c ¼
XN
t¼1

μtk is the normalizing constant.

(6) PDA filtering of every model

The state and covariance estimate of model t can be
written as:

x̂tkjk ¼
XWk

i¼1

βti;k x̂
t
i;kjkþβt0;k x̂

t
kjk−1 ð17Þ

Pt
kjk ¼ Pt

k− 1−βt0;k
� �

I−Pt
D;kjk−1G

t
kH

� �
Pt
kjk−1

þ βt0;kP
t
kjk−1

ð18Þ

where Pt
k ¼ Gt

k

XWk

i¼1

βti;kr
t
i;k rti;k
� �T

−rtk rtk
� �T Þ Gt

k

� �T 
, kt

r ¼
XWk

i¼1

rti;k .

(7) Estimate and covariance combination

The final estimate x̂kjk of the state and covariance Pk|k
can be represented as:

x̂kjk ¼
XN
t¼1

x̂tkjkμ
t
k ð19Þ

Pkjk ¼
XN
t¼1

μtk Ptkjk þ x̂tkjk−x̂kjk
h i

x̂tkjk−x̂kjk
h iT	 


ð20Þ

The radar and its radiation parameters will be selected
during target tracking. So IMMPDA in this section is
used to tracking the target in clutter. And the proposed
radar resource scheduling method is proposed based on
IMMPDA.

3 Relationship model between radar resource and
tracking accuracy
In this paper, the radar resource includes the sampling
interval, radiated power, the pulse width, and carrier fre-
quency of the transmitted waveform. All of these param-
eters have an impact on the tracking accuracy, which
can be seen in Fig. 1. The sampling interval has an effect
on the computing of the transition matrix. The detection

Radar resource

Sampling
interval

Power
Pulse
width

Carrier
frequency

Transition
matrix

Signal to
noise ratio

Measurement
noise covariance

Detection
probability

IMMPDA algorithm

Tracking accuracy

Fig. 1 Relationship model between radar resource and
tracking accuracy

Zhang and Tian EURASIP Journal on Advances in Signal Processing  (2016) 2016:16 Page 3 of 9



probability and measurement noise are under the influ-
ence of power, pulse width, and carrier frequency of the
transmitted signal. In addition, the transition matrix and
measurement noise covariance will decide the tracking
accuracy of IMMPDA algorithm in section 2.

3.1 Transition matrix
In the IMMPDA algorithm, the motion model includes
constant velocity model and coordinated turn rate
model, and transmission matrix can be represented as
Eqs. (21) and (22), respectively.

FCV ¼
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

2
664

3
775 ð21Þ

FCT ¼

1
sinωT
ω

0
1− cosωT

ω

0 cosωT 0
sinωT
ω

0
1− cosωT

ω
1

sinωT
ω

0 sin ωTð Þ 0 cosωT

2
66666666664

3
77777777775

ð22Þ

where T is the sampling interval and ω is the turn factor.

3.2 Signal to noise ratio
The overall netted radar sensitivity can be calculated by
summing up the partial signal to noise ratio (SNR) [11]
of each transmitter-receiver pair (assuming all signals
can be separately distinguished at each receiver), which
is given by

SNRnetted ¼
Xm
i¼1

Xn
j¼1

PtiGtiGrjσ ijλ
2
i Tdw

4πð Þ3kBTsijR2
tiR

2
rjNFjLij

ð23Þ

where the thermal noise at each receiver is assumed to
be statistically independent, Pti is the ith peak transmit-
ted power, Gti and Grj are the ith transmitter gain and
jth receiver gain, σij of the target means the ith transmit-
ter and jth receiver which is assumed to be known in
our library, λi is the ith transmitted wave-length, Tdw

and kB are target integration time and Boltzmann’s con-
stant, respectively, Tsij is the receiving system noise
temperature (at a particular receiver), NFj represents the
noise figure at each receiver, Lij is the system loss for ith
transmitter and jth receiver, and Rti and Rrj are the dis-
tance from ith transmitter to the target and distance
from target to jth receiver.
Then, the detection probability can be represented as:

Pd ¼ exp
lnPfa

1þ SNRnetted

� �
ð24Þ

where Pfa is false-alarm probability. The detection prob-
ability Pd has an important impact on the tracking per-
formance in the clutter, which is the function of
radiated power and target RCS and range.

3.3 Covariance of measurement noise
The covariance matrix Bk of measurement noise is con-
trolled by the radiated power and waveform parameters
of the radar during tracking. We assume all the radars in
the network transmit the same type of waveform. Range
and range-rate measurements are obtained using the
type of linear frequency modulated (LFM) Gaussian
pulses. The measurement noise covariance is given by:

Bk ¼

c2pu
2

2SNR
k
netted

−
c2bpu

2

w0SNR
k
netted

−
c2bpu

2

w0SNR
k
netted

c2bpu
2

w0SNR
k
netted

1
2pu2

þ 2b2pu
2

0
@

1
A

2
666664

3
777775

ð25Þ

Here, c denotes the wave speed (m/s), w0 denotes the
carrier frequency (kHz), pu denotes the pulse width (ms),
and b denotes the sweep rate (Hz/s). b can be positive
(LFM upsweep), negative (LFM downsweep), or zero. In
this paper, all the waveform parameters are assumed to
be constant except the signal to noise ratio, carrier fre-
quency, and pulse length at time k.
From Eqs. (23) and (25), we can see that different signal

to noise ratio SNRnetted in the radar network can lead to dif-
ferent measurement noise covariance. However, during
the tracking process, Rti and Rrj are unknown before radar
detection in Eq. (23). So Rti and Rrj at time k are predicted
according to target’s velocity, the distance from ith trans-
mitter to the target and distance from target to jth receiver
at the last sampling time k – 1. So Rti and Rrj are replaced
by Rpre

ti and Rpre
rj which are, respectively, presented as

Rpre
ti kð Þ ¼ Rti k−1ð Þ þ Tvei k−1ð Þ ð26Þ

Rpre
rj kð Þ ¼ Rrj k−1ð Þ þ Tvej k−1ð Þ ð27Þ

where T is the tracking interval, vei(k − 1) and vej(k − 1)
are estimated by the ith and jth radar using the tracking
algorithm at time k – 1.

3.4 Predicted error covariance
Using the state vector xk and transfer Eq. (2), the observa-
tion vector zprek + 1 at time k+ 1will be predicted. Then, the
predicted error covariance matrix Pprek + 1 will be obtained by
Eq. (20) under the clutter environment of the time k. The
smaller the trace of Pprek + 1 is, the better the tracking accuracy
will become at time k+ 1. So the predicted error covariance
will be one of the awards in Markov decision process
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(MDP) which is employed to manage the radar resource in
the next section.

4 Radar resource scheduling model based on
Markov decision process
4.1 Markov decision process theory
As its name suggests, MDP processed the Markov prop-
erty in the sense that system evolution beyond a decision
point depends only on the system state and action
chosen at that point [12]. The theory of MDP indicates
that it is sufficient to locate a stationary policy to achieve
optimality, meaning that there is no need to consider
the past history when making a decision about which ac-
tion to perform in a given state.
Under the Markovian and stationary assumptions, a

discrete-time MDP [13, 14] is defined by a tuple {S, A,
Tm, r}.

(1) A finite state space S = {si}, i = 1,…,n
(2) A finite and non-empty set of available control ac-

tions A(si) = {ak} k = 1,…,|A(si)| associated to each
state si∈ S

(3) A real-valued one-step reward function r : S ×A→

ℝ, where r = r(si, ak) is the reward gained by taking
action ak in state si.

(4) p(si, sj, ak) means the probability that the system will
be state sj∈ S when action ak∈A(si) in sate si∈ S
is chosen. The set of these transition probabilities
constitute the transition matrix Tm.

In the following, we will denote with s(t), a(t), and r(t)
the state, the action, and the reward of the system at
time t, respectively. A stationary policy is a function π:
S→A, which maps every state si ∈ S to a unique control
action ak ∈ A(si). When the system operates under policy
π, the MDP reduces to a discrete-time Markov chain.

4.2 Radar resource scheduling model based on MDP
In this paper, the state space is composed of n trace
value of tracking error covariance matrix, which repre-
sents the tracking accuracy of IMMPDA in Section 2. si
denotes the ith tracking accuracy. As it is shown in Sec-
tion 3, the action ak should denote the kth radiation of
radar j with its power pk, carrier frequency w0k, pulse
width puk, and sampling interval sak, which have an im-
pact on the tracking performance.

ak ¼ pikj;w
i
0kj; p

i
ukj; s

i
akj

n o
ð28Þ

The reward function in our algorithm is designed as:

r si; akð Þ ¼ Nor trace Pkjkþ1 akð Þ� �� �þNor resource akð Þð Þ
ð29Þ

where Nor() is the normalization function, Pk|k + 1(ak) is

the predicted tracking error covariance after the action
ak is taken, and trace() is the function of trace operation.
resource(ak) means the power and time cost of the ac-
tion ak, resource akð Þ ¼ pik=s

i
ak , as we know, larger sam-

pling interval means less radiation times during the
tracking.
As the predicted tracking error covariance can be pre-

dicted through the relationship between radar resource
and tracking performance, the transition probability is
supposed to be 1. The expected award in the algorithm
can be represented as:

V ið Þ ¼ min
a

r si; akð Þf g ð30Þ

The MDP problem is the determination of the optimal
policy a�k minimizing cost V. In this paper, it is difficult
for the radar to control the power, carrier frequency,
pulse width, and sampling interval freely, so the award
design is converted to an optimization problem. Four
kinds of radar radiation parameters are designed in this
paper, as it is shown in Table 1. During the scheduling,
the action ak is represented as an eight binary sequence
{a1a2a3a4a5a6a7a8}, which implies the radiation parame-
ters of radar resource. The optimization variable in this
study is a binary variable that corresponds to the status
of the radar resource.

4.3 Improved WDO method for solution of MDP
As it is shown in Section 4.2, finding an optimal solu-
tion of an MDP means finding a policy that minimizes
V. In order to solve the MDP problem, a binary wind-
driven optimization (WDO) method is proposed in this
section, which can select the binary sequence for the
excellent tracking accuracy and low probability of inter-
cept. This optimization problem is mathematically for-
mulated as (30).
The WDO presented in [15] is not for the

optimization of binary solution. In order to solve the
binary optimization problem of MDP, the original WDO
method is modified with the binary character. The major
difference between binary WDO with continuous ver-
sion is that the amount of position displacement per it-
eration is rather defined in terms of probabilities that a
bit will change to one. In continuous WDO, the coordi-
nates of the air parcel as the parcel positions are repre-
sented in continuous values; meanwhile, in binary

Table 1 Binary sequence of the radar resource

a1a2 a3a4 a5a6 a7a8

00 p1 00 w0
1 00 pu

1 00 sa
1

01 p2 01 w0
2 01 pu

2 01 sa
2

10 p3 10 w0
3 10 pu

3 10 sa
3

11 p4 11 w0
4 11 pu

4 11 sa
4
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WDO, the parcel’s coordinates are shown in discrete
values. Velocity updating in binary WDO is similar to
WDO, but it has velocity clamping to balance the ex-
ploration and exploitation in the search space. Plus, in
binary WDO, the position updating is based on a sig-
moid function as shown in Eqs. (30) and (31). The sig-
moid function is used to force the real values between 0
and 1.

S unewð Þ ¼ 1= 1þ exp −unewð Þð Þ ð31Þ

xnew ¼ 0if S unewð Þ≤rand
1if S unewð Þ > rand

	
ð32Þ

where S() is a sigmoid function which can scale the posi-
tions between 0 and 1, rand is a quasi random number
uniformly distributed within the range of (0, 1), and unew
and xnew are the velocity and position in the next iter-
ation, respectively.

5 Simulations
In this section, Monte Carlo simulations are performed
to analyze the performance of the proposed resource
scheduling method.

5.1 Design of target trajectory and radar resource
We assume that there are two radars for tracking one
target in clutter. In the transition matrix Eqs. (21) and
(22), T = 1 s and ω = 0.1. Figure 2 shows the target trajec-
tory with its measurement results in 100 s. The clutter
for the target is produced randomly during the trajec-
tory. Both the positions of the radars are (0 km, 0 km)
and (20 km, 100 km), respectively.
The simple library of the radar resource is designed as

Table 2. The sampling interval, power, pulse width, and
carrier frequency have four types of value.

5.2 Comparison of tracking performance
The proposed adaptive resource scheduling method and
the resource scheduling with constant parameters for
the tacking fusion in the radar network, which are la-
beled as “Adaptive fusion” and “Constant fusion,” re-
spectively, are realized in the simulation. The simulation
also compares the performance with the single working
radars which are, respectively, labeled as “Radar1” and
“Radar2,” both of which use the proposed resource
scheduling method-based MDP. The methods of “Con-
stant fusion” is assumed to track the target with max-
imum power, minimum sampling interval, and constant
waveform parameters in order to get the highest detec-
tion probability which is nearly equal to 1. In addition,
the radar receives the signals reflected from the target
when the other radar works. The fusion center tracks
the target according to the data received from all the ra-
dars in the network.
The root-mean-square error (RMSE) of time k can be

formulated as Eq. (32):

RMSE kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Mc

XMc

m¼1

xk−x̂mk
� �2

vuut ð33Þ

where Mc is the number of the Monte Carlo simulation,
xk is the true state of the system, and x̂mk is the estimated
vector at the mth simulation, Mc = 200.
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Adaptive method
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True trajectory
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Fig. 2 Target trajectory

Table 2 Binary sequence of the radar resource

Power (kw) Carrier frequency
(kHz)

Pulse width (ms) Sampling
interval (s)

p1 10 w0
1 10 pu

1 0.1 sa
1 1

p2 20 w0
2 20 pu

2 0.2 sa
2 2

p3 30 w0
3 30 pu

3 0.3 sa
3 3

p4 40 w0
4 40 pu

4 0.4 sa
4 4
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Fig. 3 Range RMSE comparison
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Figure 3 shows the range RMSE using the four
methods. We can see that the proposed method “Adap-
tive fusion” presents almost the same excellent tracking
accuracy with other methods. As the fusion method
takes the advantage of the superior decision ability of
MDP and optimization performance of binary WDO, it
can obtain excellent tracking performance using the
more effective tracking data selected from Radar1 and
Radar2 in turn.

5.3 Comparison of RFS performance
The transmitted signal feature is shown in Fig. 4, and
the pulse width and carrier frequency are shown in
Fig. 4a, b, respectively. The results show the waveform
agility during the tracking, which will bring low prob-
ability of intercept ability of the radars. The radiation

label of the two radars is shown in Fig. 5. We can see
that the radars work in turn.
The radiated power and sampling interval are illus-

trated in Fig. 6 and Fig. 7, respectively. Compared with
the other three methods, we can see that the proposed
method presents excellent tracking accuracy, but also ra-
diates least power with largest sampling interval. The ex-
perimental results indicate that binary wind-driven
optimization method has a better global optimization
capability, as the method could select a proper set of
radar resource according to the decision superiority of
MDP and accurate predicted tracking error covariance
in IMMPDA, after building the relationship model be-
tween the radar resources and tracking performance.
A detailed account of the complexity requirements of

the proposed algorithm of “Adaptive fusion,” “‘Constant
fusion,” “Radar1,” and “Radar2” is performed and
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illustrated in Table 3. Npmax and Nimax are the maximum
numbers of air parcels and iterations in WDO process.
Wk and N are the numbers of validated measurements
and the motion models, respectively, in the IMMPDA
algorithm. Nra represents the radar numbers in the net-
work, and Nra is supposed to be 2 in our simulation.
It is seen that the proposed “Adaptive fusion” method

has a comparable computation complexity. As the num-
ber of radars increases, the computation time is in-
creased as well. The proposed binary WOD is a suitable
search technique for radar resource scheduling in this
paper, it has to spend more time on the optimization
process than the other methods. It also has been seen
that the “constant fusion” method present least com-
plexity with largest waste of radar resource.
As we know, the theory [12] of MDP indicates that

it is sufficient to locate a stationary policy to achieve
optimality. The proposed method uses MDP to find
optimal policy in radar resource scheduling, which can
achieve an optimal trade-off between the radar RFS
ability and tracking accuracy. In addition, the proposed
binary WDO used for solving MDP problem can pro-
vide advantages over other optimization methods [15],
as it can prevent air parcels from remaining trapped at
the boundary for long periods of time and pull them
back into the search space. And the Coriolis force in
WDO introduces a stochastic effect from other dimen-
sions, providing robustness to the motion of the par-
cel. In addition, the WDO method proves higher
efficiency than the other optimization methods [15],
such as particle swarm optimization (PSO) and genetic
algorithm (GA).
As a result, the proposed method based MDP and bin-

ary WDO can present excellent performance for radar
resource scheduling.

6 Conclusions
In this paper, we have presented a new resource schedul-
ing method for the radar network based on MDP. Dur-
ing the target tracking in the clutter, the relation model
is built between the radar resource and tracking per-
formance. Then, the selection of radar and its resource
can be optimized by an improved WDO method, in
order to obtain the maximum reward in the MDP. The
simulation results show that the proposed algorithm re-
duces much more radar resource with excellent tracking
performance in clutter. Future research will focus on the

reduction of computational complexity for resource
scheduling in the radar network.
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