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1 Introduction

A plausible solution to the electroweak (EW) hierarchy problem is provided in the so-

called composite Higgs (CH) scenario [1–6], where the Higgs particle arises as a pseudo

Nambu-Goldstone Boson (GB) of a global symmetry breaking present at high energy. In

this setup, the global symmetry group, denoted here G, is spontaneously broken by some

strong dynamics mechanism to a subgroup, H, at a certain scale Λs that for definiteness

we assume around the TeV. Among the GBs arising from the breaking, three have to be

identified with the would-be-longitudinal components of the Standard Model (SM) gauge

bosons and one can be associated to a scalar field, playing the role of the Higgs field, ϕ. The

characteristic scale of this global symmetry breaking, dubbed f , is related with the strong

scale Λs by the relation Λs ≤ 4πf [7]. Due to the GBs shift symmetry, the Higgs develops

a mass only at one-loop level due to an induced Coleman-Weinberg scalar potential: an

elegant solution to the SM hierarchy problem is thus provided (for recent reviews see for

example refs. [8, 9]).

Smoking guns of specific CH models [10–13] are exotic resonances with masses smaller

than 1.5 TeV [14–21], that however have not been discovered at colliders yet. On the other

hand, indirect studies on deviations from the SM predictions are viable strategies to test
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the presence of New Physics (NP). The most suitable tool in this case is the effective field

theory approach, that model-independently provides a description of non-SM signals that

could be seen at colliders.

When considering only the bosonic sector, the effective Lagrangian at the EW scale v

(defined by the W mass mW = g v/2) can be written in terms of the SM gauge bosons —

the longitudinal components, represented by the GB matrix

U(x) = eiσaπ
a(x)/v , (1.1)

and the transverse ones Wµν and Bµν — and of an isosinglet CP-even scalar h representing

the resonance discovered at LHC [22, 23]. In the most general case, the couplings with h

can be described by a generic smooth function F(h) [24]. The complete effective basis of

pure-gauge and gauge-Higgs interactions1 has been presented, respectively for the CP-even

and CP-odd case, in refs. [24, 29], based on the Appelquist-Longhitano-Feruglio (ALF)

basis [30–34], and following the spirit of refs. [35–37]. This low-energy effective Lagrangian

represents a fundamental tool for Higgs studies at collider as shown in refs. [29, 38, 39],

where the main focus was in disentangling an elementary Higgs from a composite one, by

the analysis of its couplings. In the former case, the SM GBs are described together with

the physical Higgs by the electroweak Higgs doublet, and this leads to correlations between

certain observables and to the suppressions of the so-called anomalous couplings. On the

other hand, in the composite case, the adimensionality of the GBs matrix U(x), and the

treatment of U(x) and the Higgs field h as independent objects translate into an additional

decorrelations of observables and into the appearance of unsuppressed anomalous couplings.

The low-energy effective chiral Lagrangian described in refs. [24, 29] can be useful to

describe an extended class of BSM “Higgs” models, from more extreme technicolor-like

ansatzs to intermediate situations such as CH models or dilaton-like scalar frameworks.

The distinct limits can be reached for different values of the GB scale f and by fixing the

value of the coefficient and choosing the specific F(h) function associated to each effective

operator. On the other hand, it is often interesting to acquire a top-bottom perspective

and connect the low-energy effective chiral Lagrangian with specific classes of CH mod-

els. This has been worked out in detail in ref. [40], where the CP conserving high-energy

effective chiral Lagrangian for a generic symmetric coset G/H has been constructed, up

to four momenta. Three representative examples have been then analysed: the original

SU(5)/SO(5) Georgi-Kaplan model, the minimal custodial-preserving SO(5)/SO(4) model

and the minimal SU(3)/(SU(2) × U(1)) model, which intrinsically breaks custodial sym-

metry. The projection at low-energy of the effective Lagrangian for each of the aforemen-

tioned CH models is shown to match the chiral effective Lagrangian for a dynamical Higgs

of refs. [24], uncovering strong relations between the operator coefficients.

The aim of this paper is to complete the study performed in ref. [40] by introducing the

CP-odd effective chiral Lagrangian, up to four derivatives for a generic symmetric coset.

The analysis is then detailed for the same three representative CH models as in ref. [40].

This completes the tool necessary to study exotic gauge-Higgs couplings at colliders and at

1Fermionic operators have been discussed at different levels and with different aims in refs. [25–28].
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low-energy experiments, and to investigate the nature of the Higgs particle and the origin

of the EWSB mechanism.

The paper is organised as follows. Section 2 is devoted to recalling the low-energy

effective chiral Lagrangian introduced in refs. [24, 29], focusing on the CP-odd couplings.

Section 3 contains the high-energy effective chiral Lagrangian, describing the CP-odd inter-

actions among SM gauge bosons and the GBs associated to the symmetric coset G/H. Only

operators with at most four derivatives are retained in the Lagrangian. Furthermore, no

source of custodial breaking besides the (gauge) SM one is considered. In sections 4.1, 4.2

and 4.3, the low-energy effective EW chiral Lagrangian is then derived from the high-energy

one for the SU(5)/SO(5), SO(5)/SO(4) and SU(3)/(SU(2)×U(1)) composite Higgs models.

Finally in section 5, the connection with the low-energy chiral Lagrangian describing the

linearly realised EW symmetry scenario (dubbed “linear Lagrangian” from now on), writ-

ten in terms of the SM SU(2)L-doublet Higgs, is also discussed. Conclusions are presented

in section 6.

2 ���CP effective chiral Lagrangian at the EW scale

The Higgsless EW effective chiral Lagrangian described in refs. [30–34] can be written

in terms of the SM gauge bosons W a
µ (x) and Bµ(x), the SM GBs matrix U(x) and its

covariant derivative:

DµU(x) ≡ ∂µU(x) + igWµ(x)U(x)− ig′

2
Bµ(x)U(x)σ3 , (2.1)

where Wµ(x) ≡ W a
µ (x)σa/2. To write the effective chiral operators it is convenient to

introduce the following (pseudo-)scalar and vector chiral fields:

T(x) ≡ U(x)σ3U
†(x) , Vµ(x) ≡ (DµU(x)) U†(x) . (2.2)

Recalling the transformation property of U(x) under a (global) SU(2)L,R transformation:

U(x)→ LU(x)R† (2.3)

it follows that both T(x) and V(x) transform in the adjoint of SU(2)L,

T(x)→ LT(x)L† , Vµ(x)→ LVµ(x)L† . (2.4)

These chiral fields (and their derivatives) together with the EW gauge bosons are the

necessary building blocks to construct the (Higgsless) ALF basis.

After the discovery of the new light scalar degree of freedom (aka Higgs particle) one

is forced to extend the previous basis, including all possible couplings between the Higgs,

taken in all generalities as a CP-even scalar singlet field h, the SM gauge bosons and the

(pseudo-)scalar and vector chiral fields. The effective chiral Lagrangian at the EW scale,

describing the gauge and gauge-Higgs interactions, up to four derivatives, has been derived

in ref. [24, 29], for the CP-even and CP-odd sectors respectively. In the following, we will

focus only on the CP-odd sector, and we list here the full set of operators [29] necessary to

describe the CP-odd bosonic interactions, organising them by their number of derivatives

and their custodial character:
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CP-odd operators with two derivatives

Custodial preserving Custodial breaking

− S2D = i
v2

4
Tr (TDµVµ) (2.5)

CP-odd operators with four derivatives

Custodial preserving Custodial breaking

SBB∗ = −g
′2

4
B∗µνB

µν S4 = gTr (WµνVµ) Tr (T Vν)

SWW ∗ = −g
2

2
Tr(W∗

µνW
µν) S5 = iTr (Vµ Vν) Tr (T Vµ) ∂ν(h/v)

S6 = iTr (Vµ Vµ) Tr (T Vν) ∂ν(h/v)

S1 = 2g g′B∗µνTr (TWµν) S7 = gTr (T [Wµν ,Vµ]) ∂ν(h/v)

S2 = 2 i g′B∗µν Tr (T Vµ) ∂ν(h/v) S8 = 2 g2Tr
(
T W∗

µν

)
Tr (T Wµν)

S3 = 2 i gTr
(
W∗

µν Vµ

)
∂ν(h/v) S9 = 2 i gTr

(
W∗

µν T
)

Tr (T Vµ) ∂ν(h/v)

S10 = iTr (VµDνVν) Tr (T Vµ)

S11 = iTr (TDµVµ) Tr (Vν Vν)

S12 = iTr ([Vµ,T]DνVν) ∂µ(h/v)

S13 = iTr (TDµVµ) ∂ν∂ν(h/v)

S14 = iTr (TDµVµ) ∂ν(h/v) ∂ν(h/v)

S15 = iTr (T Vµ) (Tr (T Vν))2 ∂µ(h/v)

S16 = iTr (TDµVµ) (Tr (T Vν))2

(2.6)

where X∗µν ≡ εµνρσX
ρσ for X ≡ {B, W} and Dµ denotes the covariant derivative in the

adjoint representation of SU(2)L, i.e.

DµVν ≡ ∂µVν + i g [Wµ,Vν ] . (2.7)

The operators on the left column are custodial preserving, meaning that they do not

introduce custodial breaking contributions distinct from the SM ones; instead, the operators

on the right column encode tree-level custodial breaking sources beyond the SM (gauge)

one. A common aspect of the operator in the last class is the presence of the scalar

chiral field T(x) not in association with the Bµν field strength. Notice, however, that the

presence of T(x) inside an operator does automatically implies that it violates the custodial

symmetry. For example, it is straightforward to verify that

εµνρσTr (T Vµ Vν) Tr (T Vρ) ∂σh =
2

3
εµνρσTr (Vµ VνVρ) ∂σh (2.8)

which shows that the presence of T(x) on the l.h.s. does not imply a custodial breaking

nature of the operator, as it can be rewritten as an obviously custodial preserving one.
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This happens only for the operator on the l.h.s. of eq. (2.8), due to the presence of two

T(x) in that specific combination.

The CP-odd (Higgless) ALF basis can be obtained from eqs. (2.5) and (2.6), disregard-

ing all the operators containing one or more derivatives of h. Specifically the ALF CP-odd

basis consists of one operator with two derivatives, S2D, plus one custodial preserving and

five custodial breaking operators with four-derivatives, besides the topological ones.

The low-energy electroweak chiral Lagrangian describing the CP-odd gauge, gauge-

Goldstone and the gauge-Higgs interactions can instead be written as:

Llow,��CP = L p2

low,��CP
+ L p4

low,��CP
, (2.9)

where L p2

low,��CP
and L p4

low,��CP
contain two and four-derivative operators, respectively,

L p2

low,��CP
= c2DS2DF2D(h) ,

L p4

low,��CP
= SBB∗FBB∗(h) + SWW ∗FWW ∗(h) +

16∑
i=1

ci SiFi(h) ,
(2.10)

with the functions Fi(h) encoding a generic dependence on h.2 The careful reader should

be warned about the slightly different notation used here with respect to that used in

refs. [24, 29] for the definition of the Fi(h) functions. Here, the operators Pi do not contain

the Fi(h) functions, which are instead left outside as multiplicative terms, and the only

dependence on h kept inside the operators Pi is ∂h. Furthermore, in refs. [24, 29], it was

made explicit the dependence on a parameter that qualifies the degree of non-linearity of

the theory: this parameter is usually labelled ξ and defined as

ξ ≡ (v/f)2 . (2.11)

This parameter is meaningful only when the high-energy theory that leads to the low-

energy effective chiral Lagrangian is specified. Here, to keep the discussion as general as

possible, the ξ weights are reabsorbed in the coefficients ci and in the functions Fi(h). The

role of ξ will become clear in the following sections, once specific dynamical Higgs models

will be considered.

3 ���CP effective chiral Lagrangian for symmetric cosets

In this section, the high-energy CP-odd effective Lagrangian will be constructed for a

generic CH setup. The discussion will closely follow ref. [40], to which the reader is referred

to for further details. Only few definitions will be recalled here and the notation will

be fixed.

Consider a generic CH framework and denote with G the global symmetry group,

spontaneously broken by some strong dynamics mechanism at the scale Λs, to a subgroup

H. The coset G/H is assumed to be symmetric (see [41]): this does not restrict the

2Be aware that no derivatives of h are included in Fi(h).
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applicability of the results of this analysis as all the known existing CH models satisfy this

condition. The minimum requisite on the choice of specific G and H is that dim(G/H) ≥ 4,

i.e. at least four GBs arise from the global symmetry breaking, such that three of them

would be then identified with the longitudinal components of the SM gauge bosons and one

with the light scalar resonance observed at LHC. No fermionic operators will be considered

here, and only CP-odd ones will be retained among the set of bosonic operators, up to four

derivatives. Moreover, we assume that the only sources of custodial breaking are the ones

of the SM.

The GBs arising from the global spontaneous symmetry breaking G → H can be

described by a field Ω(x) defined as [42, 43]

Ω(x) ≡ eiΞ(x)/2f , (3.1)

transforming under the global groups G and H as

Ω(x)→ gΩ(x) h−1(Ξ, g) . (3.2)

This expression defines the non-linear transformation of Ξ(x): g represents a (global)

element of G, while h(Ξ, g) a (local) element of H, which depends explicitly on g and on

the Goldstone boson field Ξ(x). Notice that, for sake of brevity, h(Ξ, g) will be simply

denoted as h in the following.

The GB field matrix Ξ(x) can be explicitly written in terms of the generators of the

coset G/H, Xâ (with â = 1, . . . , dim(G/H)), as

Ξ(x) = Ξâ(x)Xâ . (3.3)

The Xâ generators together with the generators of the preserved subgroup H, Ta (with

a = 1, . . . , dim(H)), form an orthonormal basis of G.

The peculiarity of symmetric cosets is to admit an automorphism (usually dubbed

“grading”) that acts on the generators of G as

R :

{
Ta → +Ta

Xâ → −Xâ

(3.4)

In a generic symmetric coset it is then possible to define a “squared” non-linear field Σ(x):

Σ(x) ≡ Ω(x)2 , (3.5)

transforming under G as,

Σ(x)→ gΣ(x) g−1
R . (3.6)

From eq. (3.4) one immediately recovers that the GB field matrices Ω(x) and Σ(x) trans-

form, under the discrete grading R automorphism, respectively, as:

Ω(x)→ Ω(x)−1 , Σ(x)→ Σ(x)−1 . (3.7)

– 6 –
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This shows the equivalence in using Ω(x) or Σ(x) in the description of GBs degrees of free-

dom and its interactions, in frameworks with a symmetric coset G/H. Here, we will follow

ref. [40] and adopt the description of the CP-odd operators using the Σ-representation.

To introduce gauge interactions it is convenient to formally gauge the full group G. In

the symmetric coset case, it is possible to define both the G gauge fields S̃µ, and the graded

siblings S̃Rµ ≡ R(S̃µ), transforming under G, respectively, as:

S̃µ → g S̃µ g
−1 − i

gS
g
(
∂µ g

−1
)
, S̃Rµ → gR S̃Rµ g−1

R −
i

gS
gR
(
∂µ g

−1
R
)
, (3.8)

with gS denoting the associated gauge coupling constant. The covariant derivative of the

non-linear field Σ(x) and the chiral vector field can then be defined as:

DµΣ = ∂µΣ + i gS

(
S̃µΣ−Σ S̃Rµ

)
, (3.9)

Ṽµ = (DµΣ) Σ−1 , (3.10)

The following three G-covariant objects can thus be used as building blocks for the (gauged)

effective chiral Lagrangian:

Ṽµ , S̃µν and Σ S̃Rµν Σ−1 . (3.11)

The introduction of the graded vector chiral field ṼRµ does not add any further independent

structure, as indeed

ṼRµ ≡ R(Ṽµ) = (DµΣ)−1 Σ with Σ ṼRµ Σ−1 = −Ṽµ . (3.12)

Under the hypothesis of absence of any custodial symmetry breaking source besides

the SM ones, any operator containing the high-energy sibling of the scalar chiral field T(x),

T̃ ≡ ΣQY Σ−1, (3.13)

with QY being the embedding in G of the hypercharge generator, should not enter in the

basis, except in one specific case, discussed later on, where the presence of two T̃ gives rise

to a custodial preserving operator.

3.1 Basis of independent operators

Performing an expansion in momenta and keeping operators with at most four derivatives,

one can write the following independent structures:

4-momenta CP-odd operators with gauge field strength S̃µν

Tr
(
S̃∗µνS̃

µν
)
, Tr

(
S̃∗µν Σ S̃µν,R Σ−1

)
, (3.14)

The first operator resembles the usual θ term operator for QCD. The other contains

gauge-GB and pure-gauge interactions.
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4-momenta CP-odd operators without gauge field strength S̃µν

εµνρσTr
(
T̃
[
Ṽµ , Ṽν

])
Tr
(
T̃
[
Ṽρ , Ṽσ

])
, εµνρσTr

(
Ṽµ ṼνṼρ Ṽσ

)
, (3.15)

Other operators with traces of two Ṽ’s are clearly vanishing due to antisymmetry.

The operators listed in eqs. (3.14)–(3.15) represent the set of independent CP-odd struc-

tures that can be introduced in a generic symmetric coset. Other operators could be easily

introduced, apparently giving rise to new independent structures, most notably:

Tr
(
S̃∗µν

[
Ṽµ, Ṽν

])
, εµνρσTr

((
DµṼν

) (
DρṼσ

))
, εµνρσTr

((
DµṼν

)
Ṽρ Ṽσ

)
,

where the adjoint covariant derivative acting on Ṽµ is defined as

DµṼν = ∂µṼν + i gS

[
S̃µ, Ṽν

]
.

However, making use of the Bianchi identity and of the well known properties of the

commutator of the covariant derivatives, it is possible to show that all these operators do

not introduce any independent structure besides the one listed in eqs. (3.14)–(3.15). It is

also worth noticing that in specific G/H realizations, some of the operators listed may not

be independent. For example the operator with traces of four Ṽµ appearing on the right

hand side of eq. (3.15) is redundant in all the considered CH models even if it was not the

case for its CP-even counterpart. Moreover, other operators containing even powers of T̃

could be considered in the list above, but it is straightforward to show that they introduce

custodial breaking sources beyond the SM ones, and therefore are not considered.3

3.2 General EW effective Lagrangian for a symmetric G/H coset

The operators listed in eqs. (3.14)–(3.15) have been obtained under the hypothesis of

gauging the full group G. In most of the CH realisations, however, only the SM gauge

group is gauged, while the group G is global. In these cases, the generic gauge field S̃µ
should contain only the components corresponding to the EW symmetry.

Specifying the dependence on the EW gauge bosons does not lead to new operator

structures in the sector made out exclusively of Ṽµ fields (see eq. (3.15)), while all operators

where the gauge field strength appears explicitly, such as those in eq. (3.14), should be

“doubled” by substituting S̃µ either with W̃µ or B̃µ, defined by

W̃µ ≡W a
µ Q

a
L and B̃µ ≡ BµQY , (3.16)

where QaL and QY denote the embedding in G of the SU(2)L×U(1)Y generators. It follows

that a larger number of independent invariants can be written in this case. In consequence,

the CP-odd EW high-energy chiral Lagrangian describing bosonic interactions, up to four

derivatives, contains in total six operators:

Lhigh,��CP = c̃WW ∗B̃WW ∗ + c̃BΣ∗B̃BΣ∗ + c̃WΣ∗B̃WΣ∗ + c̃1 B̃1 + c̃2 B̃2 + c̃3 B̃3 , (3.17)

3We thank A. Wulzer for the discussions that led to include the operator on the right hand side of

eq. (3.15) in the list of independent operators.
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with

B̃WW ∗ = −g
2

4
Tr
(
W̃∗

µνW̃
µν
)

B̃1 = g g′Tr
(
W̃∗

µνΣB̃µνΣ−1
)

B̃BΣ∗ = g′2Tr
(
B̃∗µνΣB̃µνΣ−1

)
B̃2 = εµνρσTr

(
T̃
[
Ṽµ , Ṽν

])
Tr
(
T̃
[
Ṽρ , Ṽσ

])
B̃WΣ∗ = g2Tr

(
W̃∗

µνΣW̃µνΣ−1
)

B̃3 = εµνρσTr
(
Ṽµ ṼνṼρ Ṽσ

)
. (3.18)

According to the effective field theory approach, all the coefficients c̃i are expected to be

of the same order of magnitude.

Notice that the first operator listed in eq. (3.18), B̃WW ∗ , is a topological structure,

analogous to the QCD θ-term. Even if this coupling is usually not considered in the SM

context, it is included here in the basis for sake of completeness as it could give rise to

non-vanishing effects when considering the incorporation of fermions. On the other side, a

similar term for the U(1)Y is identically vanishing.

Notwithstanding θ-terms, Lhigh,��CP contains five independent operators, and thus at

most five arbitrary coefficients c̃i need to be introduced. They will govern the projection

of Lhigh,��CP into Llow,��CP , in addition to ξ. Of course these considerations hold only at

tree-level. As the gauging of the SM symmetry breaks explicitly the custodial and the

grading symmetries, custodial and/or grading symmetry breaking operators will arise once

quantum corrections induced by SM interactions are going to be considered. But this is

beyond the scope of this paper.

In the next sections, three exemplifying CH models will be considered.

4 Specific composite Higgs models

In this section, we “decompose” the high-energy CP-odd operators of Lhigh,��CP described

in the previous section in terms of the low-energy operators of the EW effective chiral La-

grangian Llow,��CP, recalled in section 2. In particular we consider the following three rep-

resentative CH models: the SU(5)/SO(5) Georgi and Kaplan model [5], the SO(5)/SO(4)

Minimal (custodial preserving) Composite Higgs Model [11] and the Minimal (custodial

breaking) SU(3)/(SU(2)×U(1)) one.

The following procedure consists in “decomposing” the high-energy GB field Σ(x)

defined in eq. (3.5) in terms of its SM and BSM scalar components (if present), and then

projecting into the SM d.o.f. (the three would be GBs and the Higgs particle), assuming

that the extra d.o.f. can be safely decoupled from the observed low-energy spectrum.

4.1 The SU(5)/SO(5) composite Higgs model

The first CH model was proposed by Georgi and Kaplan [5] more than 30 years ago and

encodes the spontaneous symmetry breaking SU(5) → SO(5). It is a non-minimal model

in terms of d.o.f. as fourteen GBs arise in the breaking: three of them can be identified

with the SM GBs, a fourth one with the physical Higgs particle, while the remaining ten

represent new scalar states. In ref. [6], it was shown that strong dynamical effects can induce

large (i.e. O(f)) masses for all the extra GBs, that therefore can be safely disregarded at
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low-energies, while still having a light (i.e. O(v)) Higgs particle The discussion of this

mechanism is beyond the scope of this letter. Moreover, in what follows, all the extra GBs

are assumed heavy and removed from the low-energy spectrum, that contains only the four

SM degrees of freedom.

For a comprehensive review of the notation used one can refer to ref. [40]. Here we

only briefly recall the form of the Σ(x) field. We denote by X (x) the SU(5) embedding of

the SM GBs:

X (x) =
1√
2

 0 0 U(x)e1

0 0 U(x)e2

(U(x)e1)† (U(x)e2)† 0

 , (4.1)

with U(x) defined as in eq. (1.1) and eT1 = (1, 0), eT2 = (0, 1). Once the extra GBs are

integrated out, at energies below f the GB chiral field Σ(x) can be approximated by:

Σ(x) ≈ ei
ϕ(x)
f
X (x)

. (4.2)

with ϕ(x) identified as the field driving the EW symmetry breaking and acquiring a non-

vanishing vev,

ϕ(x)

f
≡ h(x) + 〈ϕ〉

f
=

(
h(x) + 〈ϕ〉

v

)√
ξ (4.3)

and h(x) referring to the physical Higgs particle. Thanks to the special form of the X (x),

one can easily obtain the following expression for Σ(x):

Σ(x) = 1 + i sin

(
ϕ(x)

f

)
X (x) +

(
cos

(
ϕ(x)

f

)
− 1

)
X 2(x) . (4.4)

The last ingredient that needs to be specified is the embedding of the SU(2)L×U(1)Y
generators in SU(5):

QaL =
1

2

 σa
σa

0

 , QY =
1

2

−12

12

0

 , (4.5)

where σa denote the Pauli matrices and the normalisation of the generators has been chosen

such that Tr(QaQa) = 1.

The global SU(2)L × SU(2)R symmetry can be embedded in the residual SO(5) group

and this implies an approximate custodial symmetry conservation.

4.1.1 The low-energy effective EW chiral Lagrangian

Having the explicit expressions for Σ(x), Ṽµ, W̃µ and B̃µ and substituting them in the

operators of the high-energy basis of eq. (3.18) one derives the low-energy effective La-

grangian, Llow,��CP for the Georgi-Kaplan model as a function of the SM would-be GBs, the

light scalar field ϕ(x) and the SM gauge bosons.
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The low-energy projection of the four-derivative effective operators of eq. (3.18) gives:

B̃WW ∗ = SWW ∗ ,

B̃BΣ∗ = −4SBB∗ + 4 sin2

[
ϕ

2f

]
SBB∗ ,

B̃WΣ∗ = −4SWW ∗ + 4 sin2

[
ϕ

2f

]
SWW ∗ ,

B̃1 =
1

2
sin2

[
ϕ

2f

]
S1 ,

B̃2 = 4 sin4

[
ϕ

2f

]
(SBB∗ − SWW ∗) + 2

√
ξ cos

[
ϕ

2f

]
sin3

[
ϕ

2f

]
(S2 + 2S3) ,

B̃3 = 0 .

(4.6)

The Higgs-independent part of the operator B̃BΣ∗ can be safely neglected at low-

energy being equivalent to a total derivative and vanishing. On the other side, the Higgs-

independent part of the operators B̃WW ∗ and B̃WΣ∗ does not vanish as it provides CP-odd

non-perturbative contributions. The last operator in the list, B̃3 automatically vanishes in

SU(5)/SO(5) model due to the specific properties of the coset generators. Consequently at

low-energy only four independent CP-odd perturbative couplings are relevant: the Higgs-

dependent parts contained in B̃BΣ∗ , B̃WΣ∗ , B̃1 and B̃2.

4.2 The minimal SO(5)/SO(4) composite Higgs model

A very well know CH model is based on the coset SO(5)/SO(4) [11], with only four GBs

arising from the global symmetry breaking, that can be identified to the SM GBs and the

Higgs field. Moreover as the preserved group SO(4) contains SU(2)L × SU(2)R, custodial

violating effects can arise only through SM-like sources, i.e. proportional to the hypercharge

(or fermion couplings when introduced).

Due to the minimality of the GB content Σ(x) exactly reduces to

Σ(x) = e
i
ϕ(x)
f
X (x)

. (4.7)

with the GB non-linear field given by

X (x) = − i√
2

Tr (Uσâ)Xâ , â = 1, . . . , 4 , (4.8)

where σâ ≡ {σ1, σ2, σ3, i12} and the SO(5)/SO(4) generators can be written in a compact

form as:

(Xâ)ij =
i√
2

(δi5δjâ − δj5δiâ) , â = 1, . . . , 4 , (4.9)

Alike to the case of the Georgi-Kaplan model, the field Σ(x) takes the simple form in terms

of linear and quadratic powers of X (x) shown in eq. (4.4).
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Finally, the embedding of the SU(2)L ×U(1)Y generators in SO(5) reads:

Q1
L =

1

2

 −iσ1

iσ1

0

 , Q2
L =

1

2

 iσ3

−iσ3

0

 ,

Q3
L =

1

2

 σ2

σ2

0

 , QY =
1

2

 σ2

−σ2

0

 .

(4.10)

4.2.1 The low-energy effective EW chiral Lagrangian

The Llow,��CP Lagrangian originated from the projection of the basis in eq. (3.18) at low

energies for the SO(5)/SO(4) minimal CH setup turns out to be the same as that for the

SU(5)/SO(5) model. Indeed, on one side, the extra GBs present only in the SU(5)/SO(5)

model are heavy and therefore the spectrum content is the same for both models; on the

other side, the gauging of only the SM group washes out the differences between the two

preserved subgroups: a unitary transformation can be found linking the GB matrices of the

two setups, showing that they are equivalent at low-energy. As already discussed in ref. [40]

for the CP-even case, this suggests that the low-energy effective chiral Lagrangian for a

minimal number of GBs, that can be arranged in a doublet of SU(2)L, and approximate

custodial symmetry, is the same regardless of the specific ultraviolet completion.

4.3 The SU(3)/(SU(2)×U(1)) composite Higgs model

The last setup considered is the SU(3)/(SU(2)×U(1)) CH model. This setup is minimal, as

it contains only four GBs, but contrary to the models previously considered, the custodial

SO(4) is not contained in the preserved group H, and therefore there is no (approximate)

custodial symmetry. One should be aware that this leads to a large tree-level contribution

to the T parameter, that therefore requires some level of fine-tuning on the parameter ξ,

making this setup somehow less attractive. Nevertheless, the study of the low-energy pro-

jection is instructive: although in the initial high-energy SU(3)/(SU(2)×U(1)) Lagrangian

no extra sources of custodial breaking besides the SM (gauge) one are present, through

the decomposition procedure, custodial breaking effects are generated in the low-energy

effective Lagrangian.

Due to the minimality of the GB content the Σ(x) exactly reduces to

Σ(x) = e
i
ϕ(x)
f
X (x)

, (4.11)

with the GB non-linear field given by

X (x) =

(
0 U(x)e2

(U(x)e2)† 0

)
. (4.12)

As for the two models previously analysed, the GB field matrix Σ(x) can be expressed

in terms of X (x) as in eq. (4.4). Finally the SU(3)-embedding of the SU(2)L × U(1)Y
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generators are given by

QaL =
1

2

(
σa

0

)
, QY =

1

6

(
12

−2

)
, (4.13)

with4 Tr(QaLQ
a
L) = 1/2 and Tr(QYQY ) = 1/6.

4.3.1 The low-energy effective EW chiral Lagrangian

The low-energy Lagrangian Llow,��CP is obtained by substituting the explicit expressions for

Σ(x), Ṽµ, W̃µ and B̃µ in the operators of the high-energy basis in eq. (3.18). The low-

energy projection of the four-derivative operators listed in eq. (3.18) results in the following

decomposition for the SU(3)/(SU(2)×U(1)) model:5

B̃WW ∗ =
1

2
SWW ∗ ,

B̃BΣ∗ = − 1

6

(
1 + 3 cos

[
2ϕ

f

])
SBB∗ ,

B̃WΣ∗ = − 2 cos

[
ϕ

f

]
SWW ∗ +

1

2
sin4

[
ϕ

2f

]
S8 ,

B̃1 =
1

8
sin2

[
ϕ

f

]
S1 ,

B̃2 =
1

4
sin4

[
ϕ

f

]
(SBB∗ − SWW ∗) +

1

4

√
ξ cos

[
ϕ

f

]
sin3

[
ϕ

f

]
(S2 + 2S3) ,

B̃3 = 0 .

(4.14)

Notice, in particular, the presence of the custodial violating operator S8 in the decompo-

sition of the B̃WΣ∗ operator, that corresponds to a tree-level source of custodial symmetry

breaking. Notice however that it does not contribute to the T parameter and therefore no

constraint can be put on its coefficient.

5 Matching the high- and the low-energy Lagrangians

The functions, appearing in the low-energy basis in each of the CH models considered,

encode the dependence on the h field: they turn out to be trigonometric due to the GB

nature of the Higgs field in these setups. In the general Llow,��CP basis, this dependence

is encoded into the generic functions Fi(h) in eq. (2.10) and into some operators which

contain derivatives of h. It is then possible to identify the products ciFi(h) in terms of the

high-energy parameters, by comparing the low-energy EW chiral Lagrangian of the specific

CH models and the general Llow,��CP. This is useful to point out specific correlations between

couplings that could help investigating the nature of the EWSB mechanism [29, 38, 39].

Table 1 reports the expression of the products ciFi(h) for the three distinct CH setups

considered before, only for the operators of the low-energy basis that indeed receive con-

tributions.
4A typo is present in ref. [40] after eq. (6.6): Tr(Qa

LQ
a
L) = 1/2 has been adopted also there.

5This projection is consistent with the one in ref. [40] in eq. (6.8), where a typo is present on the first

two operators: the correct values are ÃB = PB/6, and ÃW = PW /2.
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ciFi(h)
SU(5)/SO(5)

SO(5)/SO(4)
SU(3)/(SU(2)×U(1))

FBB∗(h) 4 c̃BΣ∗ sin2 ϕ
2f + 4 c̃2 sin4 ϕ

2f 4 c̃BΣ∗ sin2 ϕ
2f cos2 ϕ

2f + 4 c̃2 sin4 ϕ
2f cos4 ϕ

2f

FWW ∗(h) c̃WW∗ − 4 c̃WΣ∗ cos2 ϕ
2f − 4 c̃2 sin4 ϕ

2f
c̃WW∗

2 − 2c̃WΣ∗(1 + 2 cos2 ϕ
2f )− 4 c̃2 sin4 ϕ

2f cos4 ϕ
2f

c1F1(h)
c̃1

2
sin2 ϕ

2f

c̃1

2
sin2 ϕ

2f cos2 ϕ
2f

c2F2(h) 2 c̃2
√
ξ cos ϕ

2f sin3 ϕ
2f 2 c̃2

√
ξ cos3 ϕ

2f sin3 ϕ
2f

(
2 cos2 ϕ

2f − 1
)

c3F3(h) 4 c̃2
√
ξ cos ϕ

2f sin3 ϕ
2f 4 c̃2

√
ξ cos3 ϕ

2f sin3 ϕ
2f

(
2 cos2 ϕ

2f − 1
)

c8F8(h) − c̃WΣ∗

2
sin4 ϕ

2f

Table 1. Expressions for the products ci Fi(h) for SU(5)/SO(5) (SO(5)/SO(4)) and SU(3)/(SU(2)×
U(1) respectively. The “−” entry indicates no leading order contributions at low-energy to the

corresponding operator.

Some interesting comments can be inferred from table 1.

SU(5)/SO(5) and SO(5)/SO(4). All the custodial preserving operators entering the

low-energy Lagrangian Llow,��CP result from the projection. As expected, no tree-level

custodial breaking operator arises from the low-energy projection of SU(5)/SO(5) and

SO(5)/SO(4) models, as they are naturally custodial preserving. Moreover, notice that

c2F2(h) and c3F3(h) are functions of the same high-energy parameter c̃2, implying a cor-

relation between the couplings described by S2 and S3.

SU(3)/(SU(2) × U(1)). Besides the custodial preserving operators, only one custo-

dial breaking operator of the low-energy basis, S8, receives contributions from the projec-

tion. As for the previous CH models, the interactions described by S2 and S3 turn out

to be correlated.

Furthermore, notice that the arbitrary functions Fi(h) of the generic low-energy effec-

tive chiral Lagrangian become now a constrained set, as a consequence of having chosen a

specific CH model.

5.1 The small ξ limit

It is particularly interesting to consider the f � v, or equivalently ξ � 1, limit. In fact

in this limit the non-linear CH model should overlap with the case in which the EWSB is

linearly realised and the Lagrangian written in terms of the Higgs as an SU(2)L doublet.

For example, taking the operators in eq. (4.6) for the SU(5)/SO(5) setup and expanding

them in Taylor series in 1/f as defined in eq. (4.3), one concludes that at first order in ξ,

B̃BΣ∗ ≈ ξ (1 + h/v)2SBB∗ − 4SBB∗

B̃WΣ∗ ≈ ξ (1 + h/v)2SWW ∗ − 4SWW ∗

B̃1 ≈
1

8
ξ (1 + h/v)2S1

B̃2 ≈ 0

(5.1)
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ciFi(h)
SU(5)/SO(5)

SO(5)/SO(4)
SU(3)/(SU(2)×U(1))

FBB∗(h) c̃BΣ∗ ξ

(
1 +

h

v

)2

+O(ξ2) c̃BΣ∗ ξ

(
1 +

h

v

)2

+O(ξ2)

FWW ∗(h) c̃WW∗ + c̃WΣ∗

(
−4 + ξ

(
1 +

h

v

)2
)

+O(ξ2)
c̃WW∗

2
+ c̃WΣ∗

(
−6 + ξ

(
1 +

h

v

)2
)

+O(ξ2)

c1F1(h)
c̃1

8
ξ

(
1 +

h

v

)2

+O(ξ2)
c̃1

8
ξ

(
1 +

h

v

)2

+O(ξ2)

c2F2(h) O(ξ2) O(ξ2)

c3F3(h) O(ξ2) O(ξ2)

c8F8(h) − O(ξ2)

Table 2. Expressions for the products ci Fi(h) for SU(5)/SO(5) (SO(5)/SO(4)) and SU(3)/(SU(2)×
U(1)) in the ξ � 1 limit.

with B̃2 giving contribution only at order O(ξ2). This procedure can be repeated with

all the terms appearing in table 1 and the results can be read in table 2. This should be

compared with the effective d = 6 CP-odd Lagrangian in the linear regime [44, 45]: only

three operators form the EW bosonic basis:

Q
ϕB̃

= B∗µνB
µνΦ†Φ

Q
ϕW̃

= Φ†W∗
µνW

µνΦ

Q
ϕB̃W

= B∗µνΦ†WµνΦ ,

(5.2)

and own physical interactions with perturbative effects. There is one-to-one correspondence

between these two classes of operators: Q
ϕB̃
↔ B̃BΣ∗ , Q

ϕW̃
↔ B̃WΣ∗ and Q

ϕB̃W
↔ B̃1.

Conversely, B̃2 contributes at low-energy to S2 and S3, but only at ξ2, i.e. its linear sibling6

should have d = 8: indeed, by using integration by parts and the Bianchi identities, it

is straightforward to verify that the interactions of S2 and S3 are described at the lowest

order in the linear expansion by the operators

B∗µν

(
Φ†

↔
DµΦ

)
Dν
(

Φ†Φ
)
,

(
Φ†

↔
DµW∗

µνΦ
)

Dν
(

Φ†Φ
)

(5.3)

with DµΦ ≡
(
∂µ + i

2g
′Bµ + i

2gσiW
i
µ

)
Φ and Φ†

↔
DµΦ ≡ Φ†DµΦ−DµΦ†Φ.

The products ciFi(h) corresponding to custodial-breaking operators are suppressed

by ξ2 and therefore they are also described in the linear expansion by d = 8 operators.

However, a complete comparison is not possible in this case, as no d = 8 basis has been

defined yet, to our knowledge.

6This is in contrast with eq. (A.1) in ref. [29], where two d = 6 linear operators have been indicated as

siblings of S2 and S3. Those operators do contain the interactions of S2 and S3, but they are not the lowest

dimensional ones.
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6 Conclusions

The CP-odd Lagrangian for a generic G/H symmetric coset has been constructed, focusing

on the bosonic sector: only four operators constitute a basis. Once considering the gauging

of the hypercharge as the only source of custodial symmetry breaking, the number of

operators increases up to six, including the topological term. These operators are written

in terms of the SM gauge bosons, embedded in G representations, and of the matrix for the

Goldstone Bosons, which in these contexts also includes the physical Higgs fields. Once a

specific coset is considered, however, some of these operators could vanish or be redundant.

The projection of this Lagrangian at low-energy for three different CH models has

allowed to confirm the subset of custodial preserving couplings of the general low-energy

CP-odd Lagrangian for a dynamical Higgs developed in ref. [29] and leads to the identifica-

tion of correlations among the effective low-energy operators and allows a comparison with

the linear effective Lagrangian for an elementary Higgs. The results presented here are

consistent with ref. [40], where only the CP-even sector has been considered. In particular,

the low-energy projection of the SU(5)/SO(5) and SO(5)/SO(4) models turns out to be

the same, due to the fact that neglecting the effects of the extra GBs of the first model

and gauging only the SM group force the preserved subgroups in the two models to be

isomorphic. On the other hand, some differences appear with the low-energy projection of

SU(3)/(SU(2)×U(1)), that is not intrinsically custodial preserving.

The results also confirm the powers of ξ predicted in ref. [29] as weights for each

operator of the low-energy effective chiral Lagrangian, allowing an immediate comparison

with linear expansions for an elementary Higgs. One can point out that the differences

stem from the h dependence: functions of sin [(〈ϕ〉+ h)/2f ] for the CH models and powers

of (v + h) /2 for the linear realisation. When ξ � 1, the trigonometric dependence on h

reduces exactly to the linear one, as sin2(ϕ/f) = ξ(1+h/v)2 +O(ξ2), neglecting the higher

order terms in ξ. This result suggests that the use of the linear expansion to construct

CH model Lagrangians can be justified in this limit. On the other hand, if ξ is not so

small, the deviations from the linear structure (1 + h/v) could be significant and therefore

comparing observables with different Higgs legs could disentangle an elementary from a

composite Higgs scenario.

Finally, to distinguish between the doublet or non-doublet nature of the Higgs, it is

then necessary to compare pure-gauge and gauge-Higgs couplings [29, 38, 39], whose precise

form we have determined here for the specific CH models considered. The strength of these

observables depends on ξ and therefore the larger ξ the easier it will be to detect a signal

that may be able to shed light on the Higgs representation.
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