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Abstract An enterprise database contains a global, inte-
grated, and consistent representation of a company’s data.
Multi-level modeling facilitates the definition and main-
tenance of such an integrated conceptual data model in
a dynamic environment of changing data requirements of
diverse applications. Multi-level models transcend the tra-
ditional separation of class and object with clabjects as the
central modeling primitive, which allows for a more flexi-
ble and natural representation of many real-world use cases.
In deep instantiation, the number of instantiation levels of
a clabject or property is indicated by a single potency. Dual
deepmodeling (DDM)differentiates between source potency
and target potency of a property or association and supports
the flexible instantiation and refinement of the property by
statements connecting clabjects at different modeling lev-
els. DDM comes with multiple generalization of clabjects,
subsetting/specialization of properties, andmulti-level cardi-
nality constraints. Examples are presentedusing aUML-style
notation for DDM together with UML class and object dia-
grams for the representation of two-level user views derived
from the multi-level model. Syntax and semantics of DDM
are formalized and implemented in F-Logic, supporting the
modeler with integrity checks and rich query facilities.

Communicated by Prof. Colin Atkinson, Thomas Kühne, and Juan de
Lara.

B Bernd Neumayr
bernd.neumayr@jku.at

Manfred A. Jeusfeld
manfred.jeusfeld@his.se

1 Johannes Kepler University Linz, Linz, Austria

2 University of Skövde, Skövde, Sweden

Keywords Database modeling · Deep instantiation ·
Clabject · UML · Deep modeling notation

1 Introduction

According to the widely accepted ANSI/SPARC architec-
ture [21], an enterprise database serves data to different
applications through different user views defined on top of
the conceptual data model which abstracts from the inter-
nal representation of data. In this setting, the conceptual data
model is a global, integrated, redundancy-free, and consis-
tent representation of a company’s data. The user views are
application-specific extracts from the conceptual datamodel.

Object orientation is arguably the most popular paradigm
for conceptual data modeling. In this paradigm, class and
object are the two central model elements. In real-world set-
tings, however, the boundaries between what is represented
as class and what is represented as object are rather fluid.
What acts as object in one application may act as class in
another application. For example, in an application for man-
aging a catalog of cars, theCar class is instantiated by objects
representing particular car models, such as Porsche911. In
an application for managing an inventory of serviced cars,
the same car model may be represented by the Porsche911
class, which is instantiated by objects representing individual
cars, such as MarysCar.

The multi-level approach to conceptual data modeling
transcends the separation of class and object from traditional
two-level object-oriented modeling. A multi-level concep-
tual model employs the notion of clabject, which may act as
class and object alike. In a multi-level conceptual model, a
single model element, e.g., the Porsche911 clabject, may
represent both an individual object, e.g., thePorsche911 car
model, and a class of objects, e.g., the ensemble of individual
Porsche911 cars.
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Fig. 1 Multi-level modeling with dual potencies in the ANSI/SPARC
architecture

Multi-level modeling facilitates the definition andmainte-
nance of a conceptual data model. First, clabjects accurately
reflect the dual nature of many real-world entities repre-
sented as class in one application and as object in another
application, which facilitates consideration of different data
demands from various applications in a single conceptual
data model. Furthermore, in a dynamic business environ-
ment, companies are confronted with constantly changing
market demands, which must be reflected accordingly in the
applications and the data used by these applications. Related
work [33] demonstrates that the dynamic introduction and
manipulation of types aremore easily accomplished inmulti-
level models.

In accordance with the ANSI/SPARC architecture, appli-
cations may use traditional two-level views for accessing the
data represented by themulti-level conceptualmodel (Fig. 1).
Dual Deep Models, i.e., multi-level models with dual poten-
cies, may serve as integrated conceptual data models at the
conceptual level of the ANSI/SPARC architecture, whereas
traditional UML class and object diagrams, i.e., two-level
models, may serve as the representation of user views at the
external level.

In this paper, we introduce dual deep modeling (DDM) as
a general purpose approach to multi-level modeling geared
especially toward conceptual data modeling. We concentrate
on the conceptual level of the ANSI/SPARC architecture
(Fig. 1). We abstract from the internal database level and
only sketch the definition of two-level views on top of a
DDM-based conceptual model.

Conceptual data models present certain particularities
when compared to models in software engineering. First, a
database may contain incomplete data, e.g., NULL values in
relational databases. Second, a conceptual data model typ-
ically does not prescribe the navigability of a relationship.
Rather, relationships can be queried and constrained in both
directions. Third, a conceptual database model requires rich
constructs for cardinality constraints, which in turn require
clear principles of how to count clabjects. Finally, a data-
base always comes with rich query facilities. The definition
of DDM takes into account these particularities.

The structure and semantics of DDM constructs are for-
malized in the Flora-2 [46] variant of F-Logic [25], a mature
modeling language with concise syntax as well as meta-
modeling capabilities. The F-Logic formalization of the
DDM approach, referred to as DDM-FL, together with the
Flora-2 system, provides a proof-of-concept implementa-
tion which automates (i) structural integrity checks, (ii)
derivation of range and values of a property which takes
into account higher-level statements, multiple clabject gen-
eralization, property specialization, and inverse properties.
The proof-of-concept implementation supports the model-
ing process and provides the query facilities required in a
database setting.

DDM as presented in this paper considerably extends
our previous work on dual deep instantiation (DDI [36]).
The underlying axioms allow for more expressive models
featuring multiple inheritance, the possibility of concur-
rent use of instantiation and specialization, deep cardinality
constraints, and property specialization. DDM incorporates
ideas, namely the abstract super-clabject rule and deep
mandatory constraints, which were first presented and for-
malized in the setting of a simplified variant [37] of DDI
only supporting unidirectional and single-valued properties.
Furthermore, DDM introduces query facilities for range,
value, and active range. The formalization in F-Logic pro-
vides a more elegant means for working with DDM models.
The embedding of DDM in an ANSI/SPARC setting, with
the possibility of traditional two-level user views from a
multi-level integrated conceptual data model, ensures inter-
operability with legacy applications.

The remainder of this paper is organized as follows: In
Sect. 2, we present DDM in a nutshell. In Sect. 3, we intro-
duce clabject hierarchies and properties with dual potencies.
In Sect. 4, we discuss the instance-level and schema-level
facet of statements, i.e., value and range, respectively. In
Sect. 5, we discuss the generalization of clabjects. In Sect. 6,
we discuss the specialization of properties. In Sect. 7, we
discuss cardinality constraints. In Sect. 8, we review related
work. Section 9 concludes the paperwith an outlook on future
work.

2 Overview

In this section, we sketch the essence of DDM, using the
DDMmodel in Fig. 2 for illustration. In the remainder of this
paper, we then provide a detailed presentation of the DDM
modeling constructs in a stepwise manner accompanied by
a discussion of the background from two-level modeling,
examples with a graphical notation as well as a formalization
and implementation in F-Logic. Table 1 gives an overview of
the main elements of the graphical notation and contains ref-
erences to positions in the remainder of this paperwith amore
detailed presentation of the corresponding model elements.
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Fig. 2 A fragment of the enterprise database of the fictional ACME corporation. Dual deep modeling is used at the conceptual level. Users and
applications interact with the database through two-level user views

The conceptual layer of the ANSI/SPARC architecture
may contain a DDM model as integrated conceptual data
model, whereas the external level may contain two-level rep-
resentations derived from the DDM model as user views.
The integrated conceptual data model in Fig. 2 consists of
hierarchical representations of persons, products, and prod-
uct components. Each white box represents a clabject. The
clabjects of the different hierarchies are related by deep prop-
erties. The different user views then emphasize different
levels of the clabject hierarchies from the integrated con-
ceptual model, limiting the multi-level model to a traditional
two-level model with class and objects. For example, the
conceptual model contains information about product cate-
gories, models in these categories, and individual products,
i.e., physical entities. The car catalog view then focuses on
the Model level of the product hierarchy. The serviced cars
view, on the other hand, focuses on the Individual level of
the product hierarchy.

In contrast to strict metamodeling [7], DDM allows to
specify different clabject hierarchies with a different num-
ber of instantiation levels. For example, Product is specified
with three instantiation levels, namely product categories,
e.g., Car, which are instantiated by product models, e.g.,

Porsche911, which are in turn instantiated by product
individuals, e.g.,MarysCar.Persononly has a single instan-
tiation level, with individual person Mary as an instance.

Dual potencies extend deep instantiation with the possi-
bility to indicate the depth of characterization separately for
the source and the target of a property. For example, property
owns with source clabject Person and target clabject Prod-
uct has source potency 1 and target potency 3, which means
that this property is instantiated by statements relating indi-
vidual persons and individual products, e.g., ‘Mary owns
MarysCar’. On the other hand, property managesCate-
gory has target potency 1, which means that this property
is instantiated by statements relating individual persons and
product categories, e.g., ‘Mary managesCategory Car’.
We further discuss how dual potencies are used to model
self-describing objects, thereby generalizing the notion of
singleton class to multi-level modeling.

A statement at a higher level acts as property value at
that level and as property range at lower levels. For example,
the higher-level statement ‘Porsche911 engine A2200i’ is
first regarded as property value (represented in user view Car
Catalog as link between objects Porsche911 and A2200i)
and second as range refinement at lower modeling levels
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Table 1 The DDM notation—with references to the main concepts and their formalization in F-Logic
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(represented in user view Serviced Cars as an association
between classes Porsche911 and A2200i that redefines
association end engine). We further discuss the handling
of incomplete data (missing statements, NULL values) and
multi-valued properties (M:N relationships) and their inter-
pretation regarding range refinement at lower levels.

We introduce inverse properties as ameans to extend prop-
erties to bidirectional relationships as required for conceptual
datamodeling. Every property implicitly has an inverse prop-
erty that can be addressed in queries and in statements. For
example, the inverse of property owns is represented in user
view Serviced Cars by attribute owner. In the paper, we dis-
cuss the interplay between statements in different directions
(i.e., on a property and on its inverse property). We will show
how to derive bidirectional links (values of property and of
its inverse property) and associations (range of a property
and of its inverse property) from unidirectional statements.

Clabjects may generalize a set of other clabjects. The
strict separation between concrete clabjects and abstract
super-clabjects [37] provides a clear principle for counting
clabjects. Multiple generalization as well as the interplay
between instantiation and generalization are other aspects
addressed in this paper.

The specialization of properties—also referred to as sub-
setting of properties—allows for the definition of hierarchies
of properties as well as the separate instantiation and refine-
ment of different sub-properties. For example, property
part between clabjectsProduct andProductComponent is
specialized by property engine. The interplay between sub-
properties and super-properties regarding range refinement
and querying is also addressed in this paper.

Modelers may specify cardinality constraints at differ-
ent modeling levels. More specifically, properties may be
marked functional and/or mandatory. Dual deep cardinal-
ity constraints allow modelers to constrain the number of
property targets, either regarding property range or prop-
erty values, between instances of a given source clabject and
instances of a given target clabject for a given target potency
and source potency. In the paper, we also discuss the differ-
ent kinds of cardinality constraintsmade possible by different
combinations of these parameters.

The linguistic metamodel of DDM (Fig. 3) gives a concise
overview of the structure of dual deep models. Clabjects are
organized in clabject hierarchies with a single root clabject
and a root potency. The instantiation relationship between
clabjects determines the hierarchical order of the clabjects.
A clabject may also specialize several other clabjects, which
are referred to as the generalizations of the specializing clab-
ject. A property links a source clabject with a target clabject,
and therefore, it also links a source hierarchy with a target
hierarchy and has a specific source and target potency. A
property may specialize several other properties. Each prop-
erty has an inverse property. A triple of source clabject, target

Fig. 3 Linguistic metamodel of the DDM approach

clabject, and property constitutes a statement with a derived
source potency and a derived target potency.

3 Clabjects and dual deep properties

Dual deepmodeling (DDM) is an object-orientedmulti-level
modeling approach. As a background, we first clarify our
understanding of some basic notions of two-level object-
oriented modeling, where classes are instantiated by objects,
and properties are instantiated by statements.We then extend
these basic notions to DDM, where clabjects are organized
in multi-level instantiation hierarchies and characterized
and connected by deep properties. All DDM constructs
are formalized in F-Logic with example dual deep mod-
els depicted in an UML-like graphical notation and in
F-Logic.

3.1 Background: classes, objects, properties, and
statements

We first explain the two-level modeling constructs that we
extend in the following to multi-level modeling constructs.

A class has a dual role, and it defines, first, the common
structure or schema of its instances (structural facet), and,
second, it is a container for the set of its instances (extensional
facet). The set of instances of a class is referred to as the class’
extension. An object is instance of exactly one class, i.e., it
instantiates the structure introduced with the class, and it is
member of the class (more exactly, it is a member of the
class’ extension).

Classes are characterized by their properties (attributes
and association ends). The structure of objects in terms of
properties is introduced with the classes. A property asso-
ciates two classes, one acting as source (or domain) and the
other as target (or range) of the property. The schema of
a class is given by the set of properties that have the class
as domain. A property is instantiated by statements. A state-
ment links two objects, and we refer to them as the owner (or
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source) and the value (or target) of the statement. The source
of a statement must be taken from the domain of the prop-
erty, given by the extension of the source class. The target
of a statement must be taken from the range of the prop-
erty, given by the extension of the target class. An object is
characterized by the set of statements it owns.

A property may have an inverse property, also referred to
as opposite, which is used to navigate statements from tar-
get to source. A property together with its inverse property
makes up a binary, bidirectional association, or relationship
type. The inverse property may be explicitly specified in the
model, e.g., by specifying role names for both ends of an
association, or be given implicitly. For example, an associ-
ation ownership has two association ends represented by
properties owner and owns.

For simplicity and conciseness, we represent a binary
association by one named property, e.g., owner, and do not
explicitly represent association names or names of inverse
properties (they instead get a derived name, e.g., inv(owner)
instead of owns).

In his seminal work on the entity-relationship model,
Chen [10] avoids modeling with primitive data types, such as
Integer, but instead promotes value sets, e.g., NrOfYears,
as a semantically richer alternative. We follow this approach
and use the notion of semantic data type synonymously
with value set. Semantic data types, e.g., NrOfYears and
LengthInKm, are instantiated by semantic data values, e.g.,
17years and 23km. For simplicity and conciseness, we
do not distinguish between semantic data values/types and
proper objects/classes but uniformly treat them as objects
and classes. We further do not distinguish between attributes
and associations but uniformly represent them as a property
with an inverse property.

A self-describing object is an object that defines its own
schema by introducing its own properties. For example, in
the programming language Ruby, one may introduce prop-
erties not only with a class but also with an object, thereby
defining or extending the schema of the object. In Ruby, this
is accomplished by implicitly introducing with an object a
singleton class, a so-called eigenclass.

Amember property of a class is propagated to itsmembers
of which it is an own property. An own property of a class is
a property that is not propagated to its instances but instan-
tiated by the class itself. An own property of a class, unlike
a member property, describes the class and not its instances.
A class that has own properties can be considered as an
object.

3.2 Modeling clabject hierarchies

In this subsection, we discuss the basic intuition underlying
clabject hierarchies, the structure of clabject hierarchies, and
discuss some special kinds of clabject hierarchies.

3.2.1 Identifying kinds of objects and their instantiation
levels

The first step in creating a multi-level model in DDM is to
identify the kinds of objects, such as persons, products, and
product components, to be represented and to identify the
instantiation levels separately for each kind of objects (such
as instantiation levels product category, product model, and
product individual for products).

Every instantiation level comes with its principle of iden-
tity, i.e., a principle that allows to decide whether two objects
at this level are different or the same, and thus facilitates
the counting of objects at this level, which is a prerequisite
for cardinality constraints. Every combination of clabject at
some level and instantiation level below can be regarded as
a class. Instantiation levels are also referred to in this paper
as modeling levels, levels of identity, or classification lev-
els. Instantiation levels are by design (up to the modeler) or
represent a (possibly already long lasting and organization-
ally implemented) shared conceptualization of the domain of
interest.

Example 1 (Different levels for different kinds of objects—
Fig. 4) Objects in the domain of interest of the information
system of the fictional ACME corporation include persons,
products, and product components. Persons are modeled at
a single level of identity containing individual persons like
Mary and MsBlack. As typical for artificial and designed
objects, products and product components have multiple
levels of identity. The instantiation levels of products are
individual, model, and category. Individual products (phys-
ical entities such as Mary’s Car) are instances of product
models (such as car model AcmeS22i) which are in turn
members of product categories (such as Car). This multi-
level product hierarchy is visualized at the left of Fig. 4.
The objects at higher levels (such as car model AcmeS22i or
product category Car) are not mere collections of objects
at lower levels but have their own properties and can be
counted. The instantiation levels of product components are
similar, with an additional level product component group
above category, reflecting the organizational structure of the
ACME corporation which is organized along these prod-
uct component groups with one development group and one
head of development for each group of product components.
A product component group like special equipment con-
tains product component categories such as alarm and cruise
control.

3.2.2 Structure of clabject hierarchies

InDDM, a kind of objectswith all its abstraction levels is rep-
resented by a clabject hierarchy. The number of instantiation
levels is represented by the hierarchy’s root potencywhich is
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Fig. 4 LeftVisualization of a product hierarchy with four instantiation
levels. Each level can be addressed by a number indicating the potency
of the clabjects that reside at that level, or alternatively by an intuitive
level name (shown in italics). Right UML representation of the object
facet and the different class facets of clabject Car with potency 2 and

its class Product at level 3 and its members AcmeS22i at level 1 and
MarysCar at level 0. Class Car-2 is the singleton class of object Car.
Alternative class names such asCarModel andCarIndividual are shown
in italics

also the potency of its single root clabject. A clabject hierar-
chy with potency n has n + 1 levels (including its top level).
The instantiation levels of a hierarchy are numbered from top
(starting with the root potency) to bottom (with potency 0).
These level numbers indicate the potency of the clabjects at
these levels.

Example 2 (Multi-level clabject hierarchies—Fig. 5) Prod-
ucts and product components are represented by clabject
hierarchies with root clabject Product with potency 3, and
ProductComponent with potency 4, respectively.

A clabject in a multi-level clabject hierarchy may have
members at multiple levels and be member of multiple
classes, one for each higher level. A clabject c with potency
n in (i.e., at level n of) a clabject hierarchy with root potency
m (i.e., a clabject hierarchy with m + 1 levels), with n ≤ m,
has members at the levels beneath itself, from level 0 to level
n (regarding the clabject itself as a member of its singleton
class facet), and we refer to these different sets of clabjects
as the multi-level extension of c. We may also say, a clabject
has a class facet per level of its multi-level extension. That is,
a clabject with potency n has n+1 class facets (including its
singleton class facet). In the opposite direction, the clabject
is member of m − n clabjects, one class for each level above
itself, plus itself as a singleton class. We refer to this as the
multi-level classification of c.

Example 3 (Multi-level extension and multi-level classifi-
cation of a clabject—Figs. 4, 5) Clabject Car has members
at level 0, such as MarysCar, members at level 1, such as

AcmeS22i, and itself as member at level 2. Clabjects Bike
and Accessories may also have members at levels 1 and
0, but they are not (yet) modeled. Clabject Car has itself as
class at level 2 andProduct as class at level 3. Figure 4 shows
an UML diagram of the different class and objects facets of
Product, Car, AcmeS22i, and MarysCar. With regard to
these different class and object facets, we also say, the object
facet of clabject Car (represented by object Car in Fig. 4) is
instance of the level-2 class facet of clabject Car (singleton
class Car-2) which is a specialization of the level-2 class
facet of clabject Product (class Product-2); the object facet
of clabject AcmeS22i (object AcmeS22i) is instance of the
level-1 class facet of clabject Car (class Car-1); the object
facet of clabject MarysCar (object MarysCar) is instance
of the level-0 class facet of clabject Car (class Car-0). The
instantiation relationship between clabject Car and Product
has multiple facets, which are represented in Fig. 3 by three
specialization relationships (Car-0, Car-1, and Car-2 are
specializations of Product-0, Product-1, and Product-2,
respectively).

Sometimes one is interested in the number of instantiation
steps that are between a clabject and its class at some higher
level, which is the difference of their potencies. Given a clab-
ject c at level m that has clabject d as class at level m + n,
we say c is memberˆn of d, or d is the classˆn of c. Every
clabject is its own memberˆ0 and its own classˆ0.

Example 4 (Memberˆn and classˆn—Figs. 4, 5) MarysCar
at level 0 is a memberˆ2 ofCar at level 2, which is its classˆ2.
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Fig. 5 A fragment of the conceptual model of the ACME enterprise
database. Clabject hierarchies and deep properties are shown in an
UML-style notation. For presentation purposes (without semantic dif-

ferences), some of the property declarations and statements are depicted
as attributes and some as associations/links

3.2.3 Level names

The levels of a clabject hierarchy may be given intuitive
names. These level names should be read together with the
name of the root clabject to get full names for the different
levels of the hierarchy.

Example 5 (Level names—Figs. 4, 5) The levels of the prod-
uct hierarchy are labeled Category, Model, and Individual.
Combining the name of the root clabject, Product, with
names of the levels, gives full names for the levels of the hier-
archy, namelyProductCategory, ProductModel, andProduct
Individual (also see Fig. 4).

Combining the name of a clabject with the names of
instantiations levels below the clabject gives intuitive names
for the clabject’s class facets.

Example 6 (Names of class facets—Figs. 4, 5) Combining
the name of clabject Car with level names gives intuitive
names for Car’s class facets. Car’s level 0 class facet is
named Car Individual and its level-1 class facet is named
Car Model.

3.2.4 Special kinds of clabject hierarchies

A singleton clabject hierarchy with a root clabject with
potency 0 represents a self-describing object. Such a clab-
ject is an object and its own singleton class. In this regard,
we say a clabject is its own classˆ0 and its own memberˆ0.

Example 7 (Singleton clabject hierarchy—Fig. 5) The clab-
ject ACMECorporation with potency 0 represents a self-
describing object and holds properties that are relevant for
the ACME information system and are only instantiated once
for thewhole system, such as the CEOof theACME corpora-
tion or the products it currently offers. The clabject introduces
these properties and instantiates them.

A two-level clabject hierarchy typically represents what
is traditionally modeled by a single class and its instances.
The differences with traditional approaches are that the class
itself is also treated as an object with its own identity and
description and that an instance may introduce additional
properties which it does not share with the other members
of the class. Two-level clabject hierarchies typically do not
need level names for an intuitive understanding.
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Example 8 (Two-level clabject hierarchy—Fig. 5) The clab-
ject hierarchy rooted in clabject Person is a two-level
clabject hierarchy with a class Person and its instances
MrWhite, MsBlack, Mary, Peter. The class clabject Per-
son is itself treated as an object with own property DPO
(explained later). The individual person clabjects specify the
age of the individual persons and, clabject Mary, in its role
as a singleton class, adds a property marysSpouse, which
it instantiates with Peter.

3.3 Modeling properties with dual potencies

Clabjects are characterized by their properties. We introduce
deep properties with dual potencies to generalize the two-
level notions of member properties and own properties, to
cope with inverse properties, and with clabject hierarchies
with different numbers of instantiation levels.

In this section, we discuss different cases of deep property
declarations together with flat statements. Deep statements
(i.e., statements that do not only describe their source and
target but also the members of their source and target) are
discussed in Sect. 4.

3.3.1 Structure of deep properties

In DDM, a deep property (or dual deep property or sim-
ply property) is introduced between a source clabject s and
a target clabject t and indirectly between a source hierar-
chy and a target hierarchy, i.e., the clabject hierarchies of
source and target, respectively. As domain and range, it has
not only the direct members of these two clabjects; the deep
property additionally comes with a source potency i and a
target potency j to separately indicate the number of lev-
els beneath the source clabject that fall in the multi-level
domain of the property and the number of levels beneath
the target clabject that fall in the multi-level range of the
property.

Source potency i and target potency j of a property are
specified relative to the clabject hierarchy level k of the source
clabject and the clabject hierarchy level l of the target clab-
ject, respectively, with i ≤ k and j ≤ l. The numbering of
the levels of the property’s domain is from bottom (0) to top
(i), and it contains the source clabject s at the top level i and
its descendants down to its membersˆi at bottom level 0. The
multi-level range has the target clabject t of the property at
its top level j and contains the descendants of t down to the
membersˆj of t .

Example 9 (Multi-level domain and multi-level range—
Figs. 5, 6) Clabject Car resides at level 2 of the product
hierarchy, but with regard to different properties, it resides at
different levels of multi-level domains and ranges of prop-
erties (this is illustrated in Fig. 6). It is first at level 2 of the

Fig. 6 Some examples of dual deep properties, showing their multi-
level domain and multi-level range and their multiple simple-property
facets in between. Each simple-property facet can be identified by its
dual potency which identifies the level of the domain and the level of
the range it connects. Typically only a selection of the simple-property
facets is instantiated explicitly by statements in a dual deep model

domain of property specEquip. It is at the bottom level 0 of
the domain of property categoryMgr. It is at level 1 of the
range of property offers, and it is at level 2 of the domain of
property madeIn.

Aflat statement connects amemberˆi of the source clabject
of the property with a memberˆj of the target clabject of the
property. Flat statements have 0 as source potency and 0 as
target potency (i.e., they cannot be further instantiated and
are not propagated further down the clabject hierarchies).
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Higher-level statements (deep statements) are discussed in
Sect. 4.

3.3.2 Own, member, and memberˆn properties

Adeep property that resembles a traditionalmember property
is declared with source potency 1 and target potency 1. It is
instantiated by flat statements connecting members of the
source clabject with members of the target clabject.

Example 10 (Member property—Fig. 5) ClabjectPerson as
source introduces property age with target clabject Years
with source potency 1 and target potency 1. It is instantiated
between members of Person and Integer such as by the flat
statement MrWhite age 47 Years.

A deep property that resembles a traditional own property
is declared with source potency 0 and target potency 1. It
is not propagated to members of the source clabject but is
instead instantiated by the source clabject itself taking a value
from the members of the target clabject.

Example 11 (Own property—Fig. 5) Clabject Person as
source introduces property DPO (data protection officer)
with source potency 0 and target clabject Person with target
potency 1. Clabject Person does not propagate this property
to its instances but instantiates it itself with flat value Peter,
an instance of Person. In this regard, Person acts as its own
class (its 0-class).

A memberˆn property generalizes own properties and
member properties to multiple levels. It is a property with
source potency n and target potency 1 and is propagated
down to the membersˆn of the source clabject where it is
finally instantiated.

Example 12 (Memberˆn property—Fig. 5) Clabject Prod-
uct introduces property owner with source potency 3 and
target Person with target potency 1. A flat owner-statement
connects clabject MarysCar, a memberˆ3 of Product, with
Mary, a memberˆ1 of Person.

3.3.3 Flat and deep range

The range of a property is traditionally given by the class of
the objects that may be used as values of the property, we
also refer to this as a flat range. In DDM, this is modeled by
a property with target potency 1.

Example 13 (Flat range—Fig. 5) Clabject Product intro-
duces property owner with target clabject Person and target
potency 1.

In DDM, the modeler may additionally specify properties
with a deep range. A target potency above 1 indicates a deep
range.

Example 14 (Deep range—Fig. 5) Clabject Car introduces
property specEquip with target clabject SpecEquip and
target potency 3. The range of specEquip has depth 3
which means that the targets of flat statements on prop-
erty specEquip are three instantiation levels below clabject
SpecEquip.

With dual potencies, the modeler is able to flexibly com-
bine the principles of own/member/memberˆn properties and
of flat/deep range.

3.3.4 Inverse properties

Every property implicitly introduces an inverse property.
Inverse properties are used to read and write statements from
the opposite directions. For the inverse property, the source
clabject and potency become the target clabject and potency,
respectively, and vice versa.

Inverse properties are a means to implement bidirectional
relationships as required in our database setting. Bidirec-
tional relationships at the conceptual level simplify the
definition of the different user views at the external level.
This comes with trade-offs at the conceptual level and the
internal level. At the conceptual level, inverse properties
pose challenges by introducing possible conflicts by con-
current statements on a property and on its inverse property.
We tackle these challenges in Sect. 4. Efficient storage and
querying of inverse properties have to be dealt with at the
internal level by efficient index structures and similar.

Example 15 (Inverse property—Fig. 5) Property owner has
property inv(owner) as inverse property. The latter has Per-
son and 1 as source clabject and potency, and Product and
3 as target clabject and potency. The statement ‘MarysCar
owner Mary’ can then be read and written from the oppo-
site direction as ‘Mary inv(owner) MarysCar’ (to-be read
as ‘Mary is-owner-of MarysCar’) .

3.3.5 Semantic data types

Clabject hierarchies can be used to represent semantic data
values, types, and metatypes. Details will be given together
with the formalization in F-Logic at the end of this section.

Example 16 (Semantic data types—Fig. 5) Clabject Car
introduces property mileage with semantic data metatype
LengthMeasure as target clabject and 2 as target potency.
Semantic data types, such as km and mile, are instances
of LengthMeasure. Clabject MarysCar has semantic data
value 27,000 km, which is an instance of km, as value of
propertymileage. Note, the clabject hierarchy defining clab-
jects LengthMeasure, km, and 13,000 km is not depicted
in Fig. 5.
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3.4 DDM-FL: formalization and implementation of the
dual deep modeling approach in F-Logic

In this subsection, we will first give a very brief introduction
to Flora-2, a variant of F-Logic, and then introduce the for-
malization and implementation of the core DDM constructs
using the Flora-2 language and system. The resulting for-
malization and implementation of DDM are referred to as
DDM-FL. DDM-FL will be extended in subsequent sections
to cover all the different modeling constructs of DDM.

3.4.1 Basics of Flora-2

Flora-21 is, first, a language based onF-Logic [25]withmeta-
modeling features based onHiLog [11] and, second, a system
implementing this language on top of Prolog system XSB.2

Flora-2/F-Logic is related to the Object Constraint Language
(OCL) but comeswith amore compact syntax andmore pow-
erful and flexible metamodeling capabilities. Flora-2 can be
regarded as an object-oriented and metamodeling-enabled
variant of Datalog. Disregarding any technical and logical
details, a Datalog program consists of rules and facts, the
rules are executed repeatedly on the facts to derive addi-
tional facts until no more facts can be derived. Table 2 gives
an informal overview of syntactic elements of Flora-2 used
in this paper. For an in-depth introduction to Flora-2, we refer
the interested reader to the User’s Manual for Flora-2.3

3.4.2 Linguistic metaclasses in DDM-FL

The F-Logic formalization of clabject hierarchies and deep
properties is shown in Listing 1. The linguistic meta-
classes ClabjectHierarchy, Clabject, and deep Property
(see Fig. 3) are represented in F-Logic by classes H, C, and P,
respectively. The set of possible potency numbers is repre-
sented by class N. In the following, we discuss in detail the
definition of the structure of dual deep models in terms of the
signatures of these linguistic metaclasses and their semantics
in terms of derivation rules as well as global integrity con-
straints specified as so-called latent queries. The usage of
DDM-FL is exemplified in Listing 2, which are discussed at
the end of this subsection.

3.4.3 Clabject hierarchies in DDM-FL

Clabjects are organized in multi-level clabject hierarchies
(see signature of class H at line 1:1, that is line 1 in List-
ing 1). Every clabject hierarchy has a single root clabject

1 http://flora.sourceforge.net/.
2 http://xsb.sourceforge.net/.
3 http://flora.sourceforge.net/docs/floraManual.pdf.

(attribute root at line 1:1) with a root potency (attribute
rootPty at line 1:2). The root potencyof a hierarchy specifies
the number of instantiation levels of the clabject hierar-
chy. Clabjects at the same instantiation level have the same
potency.

The modeler may give an intuitive name to each instan-
tiation level of a clabject hierarchy. Since these names do
not affect the formalization of the approach, the naming of
instantiation levels is left to the frontend.

A clabject may be instance of one clabject, which acts as
its class. In F-Logic, this is represented by the signature of
attribute in (see line 1:3) which has minimal cardinality 0

and maximal cardinality 1 and a type constraint to class C.
Every clabject has one potency, which is a nonnegative

integer value. In F-Logic, this is represented by the signature
of attribute pty of class C (line 1:5) which has cardinality
1:1 and a type constraints to class N which has the set of
potential potency numbers as members.

The modeler creates a clabject (see signature of class C at
lines 1:3 et seq) either as root of a hierarchy (see above) or
as an instance of another clabject which acts as class of the
clabject (attribute in at line 1:3).

Derivedmethods of the clabjectmetaclassC (see lines 1:5–
1:8) are its potency (attribute pty), its hierarchy (attribute
h), its classesˆn (attribute cls(N)). Disregarding the num-
ber of instantiation steps, its classesˆ* are also referred to
as its ancestors (attribute anc). We also say a clabject is a
memberˆn of its classˆn, and a clabject is a descendant of its
ancestors.

When specifying a hierarchy, the potency of the root
clabject is set to the root potency of the hierarchy and the
hierarchy attribute of the root clabject is set to the hierarchy
(see derivation rule at line 1:20).

A clabject belongs to the same hierarchy as its class. The
clabject’s potency is its class’s potency decremented by 1
(see derivation rule at line 1:22).

The ancestor relation is reflexive (line 1:25) and connects
a clabject to its class clabjects at the various levels (the deriva-
tion rule at line 1:25 propagates the set of ancestors of the
class to the instance). The classˆn relation (attribute cls) is
the same as the ancestor relation but additionally has the num-
ber of instantiation steps as an argument (line 1:27) which is
the difference between the potency of the ancestor clabject
and the clabject at hand (line 1:28).

The possible potency numbers are explicitly declared as
members of class N (line 1:18) to avoid the need of using
simple data types in signatures. Their order is represented by
binary predicates leN (potency number at the first position is
lower than or equal to the potency number at the second posi-
tion) and ltN (potency number at the first position is lower
than the potency number at the second position) (lines 1:37
and 1:38) to avoid numerical comparisons in rules.
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Table 2 Flora-2 syntax elements, as used in this paper

Object identifiers, specialization, and instantiation

o:C. C:M. o is instance of C which is instance of M

v:C. v:D. v is instance of C and of D

C::D C is subclass of D

f(a,b):C Object f(a,b) is instance of C

Signatures, schema specification

C[p{i : j}∗ => D] Property or method p at class C with a minimal cardinality i and a maximal
cardinality j has range D

C[m(E)*=>D] Method m at class C with an argument of class E has range D

Frames and predicates

o[p->v] o has v as value of p (o may also be a class))

o[m(e)->v] Method m with argument e applied on object o returns v

p(a,b). A fact of predicate p with arguments a and b

Syntactic sugar

o.p[s->?x] Dot notation: shorthand for o[p->?y], ?y[s->?x].

o[p->{v,w}] Set notation, equivalent to o[p->v]. o[p->w].

o[{p,s}->v] Set notation, equivalent to o[p->v]. o[s->v].

Rules, queries, and constraints

?- ?x:C Query: Variable ?x is bound to instances of C

a(?x) :- b(?x) A rule, in first-order logic: ∀x : b(x) → a(x)

?x:C :- ?x:D and naf ?x:E Rule with negation as failure: if ?x is instance of D and not instance of E, then it is
an instance of C

f(?a):C :- ?a:D A rule that constructs for every object ?a with class D an object f(?a) with class C

@!{Q(?x)}!- ?x:{C,D}. Latent query labeled Q with result variable ?x, expressing the integrity constraint
that an object ?x should not be instance both of C and D

3.4.4 Deep properties in DDM-FL

A property (class P) is declared between a source clabject
(attribute src at line 1:9) and a target clabject (attribute
tgt at line 1:10) and is introduced with dual potencies, the
source potency (attribute srcPty at line 1:11) and the target
potency (attribute tgtPty at line 1:12). Every property has
one derived inverse property (attribute inv at line 1:17). By
connecting a source clabject to a target clabject, a property
also connects a source clabject hierarchy (attribute srcH at
line 1:13) with a target clabject hierarchy (attribute tgtH at
line 1:14). The source potency of a property must not be
higher than the potency of its source clabject (latent query

Error_srcPtyToHigh at line 1:46)—due to the rules for
inverse properties (see below) this also constrains the target
potency not to be higher than the potency of the target clab-
ject. Source clabject hierarchy and target clabject hierarchy
of a property may be the same, and also source clabject and
target clabject of a property may be the same.

The static multi-level domain of a property (attribute
domain(N) at line 1:15) is the multi-level hierarchy of clab-
jects which may have a statement for that property. The
static multi-level domain of a property is always a part of its
source clabject hierarchy. The multi-level domain of a prop-
erty is specified by the property’s source clabject and source
potency. A clabject is in the i th level of the domain of a prop-

123



Dual deep modeling: multi-level modeling with dual...

1 H [ root {1:1} *=> C,
2 rootPty {1:1} *=> N ].
3 C [ in {0:1} *=> C,
4 p(P) {0:*} *=> C,
5 pty {1:1} *=> N,
6 h {1:1} *=> H,
7 cls(N) {0:*} *=> C,
8 anc {0:*} *=> C ].
9 P [ src {1:1} *=> C,

10 tgt {1:1} *=> C,
11 srcPty {1:1} *=> N,
12 tgtPty {1:1} *=> N,
13 srcH {1:1} *=> H,
14 tgtH {1:1} *=> H,
15 domain(N) {0:*} *=> C,
16 range(N) {0:*} *=> C,
17 inv {1:1} *=> P ].
18 {0,1,2,3,4,5,6,7,8,9,10}:N.
19

20 ?c:C[pty ->?i, h->?h:H] :-
21 ?h[root ->?c, rootPty ->?i].
22 ?c:C[pty ->?i, h->?h] :-
23 ?c.in[h->?h, pty ->?j] and
24 ?i:N and ?i =:= (?j-1).
25 ?x[anc ->?x] :- ?x:C.
26 ?x[anc ->?y] :- ?x.in[anc ->?y].
27 ?x[cls(?i) -> ?y] :- ?x[anc ->?y] and
28 ?i:N and ?i =:= (?y.pty - ?x.pty).
29 ?p[srcH ->?srcH , tgtH ->?tgtH] :-
30 ?p.src[h->?srcH] and ?p.tgt[h->?tgtH].
31 ?p[domain (?i) ->?c] :-
32 ?c[cls(?j) ->?p.src] and
33 ?i:N and ?i =:= (?p.srcPty -?j).
34 ?p[range (?i) ->?c] :-
35 ?c[cls(?j) ->?p.tgt] and
36 ?i:N and ?i =:= (?p.tgtPty -?j).
37 leN(?i,?j) :- ?i:N and ?j:N and ?i =< ?j.
38 ltN(?i,?j) :- ?i:N and ?j:N and ?i < ?j.
39 inverse (?p):InvP[src ->?p.tgt , tgt ->?p.src ,
40 srcPty ->?p.tgtPty , tgtPty ->?p.srcPty ,

inv ->?p]
41 and ?p[inv ->inverse (?p)] :-
42 ?p:P and naf ?p:InvP.
43

44 InvP::P.
45

46 @!{ Error_srcPtyToHigh (?p)}
47 !- ?p.srcPty > ?p.src.pty.
48

49 @!{ Error_stmtNotInRange (?o,?p,?v)}
50 !- ?o[p(?p) ->?v] and
51 naf exists (?i)^(?p:P[range (?i) ->?v]).
52

53 @!{ Error_stmtNotInDomain (?o,?p,?v)}
54 !- ?o[p(?p) ->?v] and
55 naf exists (?i)^(?p:P[domain (?i) ->?o]).

Listing 1 F-logic signatures (schemata), derivation rules, and integrity
checks for the representation of clabject hierarchies and dual deep
properties in F-Logic (DDM-FL)

erty, if it is a memberˆj of the source clabject and i is greater
equal 0 and is the difference between the source potency of
the property and j (see derivation rule at lines 1:31–1:33).
The staticmulti-level range of a property (attribute range(N)
at line 1:16) is derived analogously (see lines 1:34–1:36).

When the modeler creates a property p, the system
automatically creates an inverse property inverse(p) (see
lines 1:39–1:42). The inverse property is an instance of meta-
class InvP which is a specialization of metaclass P (see
line 1:44): everything that applies to properties also applies to
inverse properties, with this property-creating rule as the only

1 categoryMgr:P [ src ->Product , tgt ->Person ,
2 srcPty ->1, tgtPty ->1 ].
3 owner:P [ src ->Product , tgt ->Person ,
4 srcPty ->3, tgtPty ->1 ].
5 mileage:P [ src ->Car , tgt ->LengthMeasure ,
6 srcPty ->2, tgtPty ->2 ].
7

8 ProductHierarchy:H [ root ->Product ,
rootPty ->3].

9 Product:C [].
10 Car:C [ in ->Product ,
11 p(categoryMgr)->MsBlack ].
12 AcmeS22i [ in ->Car ].
13 MsBlacksCar [ in ->AcmeS22i ,
14 p(owner)->MsBlack ,
15 p(mileage)->m(13000 ,Km):C ].
16

17 Persons:H [ root ->Person , rootPty ->1 ].
18 Person:C [ ].
19 MsBlack:C [ in->Person ].
20

21 MeasureHierarchy:H [ root ->Measure ,
rootPty ->3 ].

22 Measure:C [].
23 LengthMeasure:C [in ->Measure ].
24 Km:C [in ->LengthMeasure ].
25

26 m(?v,?unit)[in ->?unit , literalValue ->?v]
:-

27 m(?v,?unit):C.

Listing 2 Representation in DDM-FL (DDM in F-Logic) of a self-
contained fragment of the example shown in Fig. 5

exception (see line 1:42). The source clabject and potency of
p become the target clabject and potency of its inverse prop-
erty, and the target clabject and potency become the source
clabject and potency of its inverse. Finally, property p is the
inverse of its inverse property.

A statement links two clabjects, one acting as source and
the other as target. In F-Logic, this is represented by method
p with the property as an argument and the target clabject as
value (line 1:4). The source clabject and the target clabject of
a statement must be from the static multi-level domain and
range, respectively, of the property. This integrity constraint
of the linguistic metamodel is expressed in F-Logic as the
latent queries at lines 1:50–1:55. Latent queries in Flora-2
are similar to views in an SQL database, and they are used
for expressing integrity constraints of a linguistic metamodel
that cannot be expressed as signatures of some class. Integrity
constraint violations can be queried by executing the latent
queries expressing the integrity constraints, and, in an inte-
grated modeling environment, the results of these queries
can be shown to the modeler as warnings and modeling
errors.

3.4.5 Examples

The usage of DDM-FL is exemplified in Listing 2, which
represents parts of the example shown in Fig. 5. Proper-
ties categoryMgr (line 2:1), owner (line 2:3), and mileage

(line 2:5) are introduced together with their source and
target clabjects and potencies. Clabject hierarchy Product

123



B. Neumayr et al.

Hierarchy (line 2:8) is introducedwith one clabject for each
of its instantiation levels, exemplifying the representation of
instantiation hierarchies and statements in DDM-FL.

Semantic data types and values are organized in a three-
level clabject hierarchy MeasureHierarchy (line 2:21),
representing semantic data types (or measure units), such as
km, and semantic data metatypes, such as LengthMeasure.
Semantic data values, such as ‘13000 km’, are repre-
sented as clabjects identified by compound terms, such
as m(13000 km) (line 2:15). A derivation rule (line 2:26)
extracts from the compound term its literal value, e.g., 13000,
and the semantic data type, e.g., Km, which is used as class
of the clabject.

4 Deep statements

In this section, we discuss deep statements (also referred to as
higher-level statements) connecting clabjects at arbitrary lev-
els of the multi-level domain with clabjects at arbitrary levels
of the multi-level range. We discuss the two facets of prop-
erties, namely their schema facet (domain and range) and
their instance facet (property values). Property statements
at higher levels are, first, regarded as higher-level property
values and, second, as refinement of the property’s range,
i.e., a restriction of the set of possible values. Concurrent
statements for one property at different levels and/or on the
property and on the inverse property may introduce conflicts
that render some property values inconsistent.We define aux-
iliary methods in the F-Logic formalization/implementation
for querying the schema facet as well as the instance facet of
deep properties. This provides the foundation for tools sup-
porting modelers in the flexible refinement and instantiation
of multi-level models.

Dual deep modeling generalizes the principle of associ-
ation end refinement (property redefinition) to multi-level
modeling. DDM allows to query the range, the values, and
the active range of a property separately for each simple-
property facet of the property.

4.1 Background from two-level modeling: property
redefinition, value, range, and active range

In two-level modeling with class generalization, property
refinement refers to the case when a subclass specifies amore
specific class as range of a property then its superclass. In the
UML, property refinement is possible through the redefini-
tion of association ends [13] or attributes. The UML class
diagram at the top left of Fig. 7 shows an example in which
both ends of a binary association are redefined by associ-
ations at subclasses. These redefinitions interact in a way
that the range of a property is affected by redefinitions of its
inverse property.

Fig. 7 Top left An example of association end refinement in the UML
using property redefinition showing the interactions between redefini-
tions of both ends of the association.Top rightAcompact representation
of the range of property engine at each concrete subclass of abstract
class Vehicle in terms of concrete subclasses of Engine (indicated by
‘+’), and vice versa, taking into account the redefinitions of property
engine and its inverse engineOf. For example, class Car has class
PetrolEngine and class DieselEngine as range of engine, and, in the
other direction,PetrolEngine hasCar andBus in the range of property
engineOf. Bottom left An UML object diagram in line with the above
class diagram. Bottom right A compact representation of the property
values (or links), and of the active range (possible values/links), of the
objects in the object diagram on the left. For example, object MyCar
has PetrolE-1 as value of property engine, and, vice versa, PetrolE-
1 has MyCar as value of property engineOf. Based on the objects
modeled in the object diagram and the class diagram, object MyCar
has objects PetrolE-1, PetrolE-2, and DieselE-1 as active range of
property engine

The range of a property p at a class c is the set of classes
from which a member of c may take its values for property
p, taking into account property definitions and redefinitions.
If a class d is in the range of property p at class c, then c is
in the range of the inverse of p at d. The ranges of a property
at different classes that have this property can be concisely
represented by a table (see top right of Fig. 7).

At the instance level, the set of objects that may act as
value of property p for an object o in accordance with the
schema is referred to as the active range of p at o. If an object
x is a value, or is in the active range, respectively, of property
p of object o, then object o is a value, or is in the active range,
respectively, of the inverse of property p of object x . In an
object diagram that is consistent with its schema, property
values are taken from the active range of the property. Values
and active ranges of a property (and its inverse property) at
the different objects can be concisely represented by a table
(bottom right of Fig. 7).

Dual deep modeling generalizes property redefinitions, as
well as these bidirectional notions of property value, active
range, and range, to multi-level modeling.

4.2 Modeling with deep statements

A deep statement (or simply statement) on property p con-
nects a clabject from p’s multi-level domain with a clabject
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from p’s multi-level range, the former in the role of source
or owner of the statement and the latter in the role of target
or value.

Source potency and target potency of a statement are not
asserted but derived. The source potency of a statement is
calculated from the source potency of the property decla-
ration minus the number of instantiation steps between the
source clabject of the statement and the source clabject of the
property declaration. The target potency is calculated analo-
gously.

A deep property has multiple simple-property facets (also
referred to as levels of a deep property), one for each combi-
nation of source and target potencies (see Fig. 6). A statement
on property p with derived source potency i and derived tar-
get potency j instantiates p’s level-i- j simple-property facet.

A deep statement has multiple roles with regard to the
instance facet and the schema facet of these simple-property
facets. First, a deep statement represents a property value
(instance facet) for the simple-property facet it instanti-
ates. Second, deep statements represent range refinements
(schema facet) for all lower-level simple-property facets: A
statement for a property between a source clabject and a tar-
get clabject and a derived source potency i and a derived
target potency j affects the set of allowed values for the
property at membersˆ(0…i) of the source clabject, not only
concerning values at target potency j but also at lower target
potencies. In this regard, the derived source and target poten-
cies of a statement indicate how many instantiation levels of
the source and of the target are affected by the statement.

4.2.1 Two-level user views

Different two-level user views may be defined on top of a
multi-level model and emphasize different levels of clabject
hierarchies and properties. A two-level user view projects
the multi-level model to a traditional two-level model with
schema and instance level.

Two-level user views not only make multi-level mod-
els accessible for two-level front-end applications; they also
allow to illustrate the semantics of DDM in the more familiar
terms of the UML. A two-level user view is defined on top
of a multi-level conceptual model by a set of class facets of
clabjects (each specified by a clabject and a potency) and a
set of simple-property facets of deep properties (each spec-
ified by a deep property and a source potency and a target
potency).

The schema of a two-level view consists of classes
and properties (attributes and associations) that reflect the
selected class facets and simple-property facets and their spe-
cializations and redefinitions which are taken from different
levels of the multi-level model.

The instance level of a two-level view consists of themem-
bers of the selected class facet and the values (attribute values

or links) of the selected simple-property facets. More details
on the correspondence between two-level views and multi-
level model are given in the following. A full formalization,
however, of two-level user views and their derivation from
and interactions with the multi-level enterprise database is
beyond the scope of this paper.

Example 17 (Two-level user views—Fig. 8) Application-
specific user views such as Car Catalog and Serviced Cars
(depicted by UML class and object diagrams at the right of
Fig. 8) at the external level of the ACME enterprise data-
base are defined as a collection of single-level facets of
clabject hierarchies and simple-property facets of proper-
ties and are derived from the multi-level database (at the
left of Fig. 8). User view Car Catalog in the top right part
of Fig. 8 is defined by the level-1 class facet of clabject
Car, the level-1 class facet of clabject Engine, and the level-
1-1 simple-property facet of property engine. The classes
of user view Car Catalog are taken from level 2 of the
product hierachy (labeled Product Category) and level 2 of
the product component hierarchy (labeled Product Compo-
nent Category); the objects of user view Car Catalog are
taken from level 1 of the product hierachy (labeled Prod-
uct Model) and level 1 of the product component hierarchy
(labeled Product Component Model). User view Serviced
Cars in the bottom right part of Fig. 8 is defined by the
level-0 class facets of clabjects Car and Engine and the
level 0–0 simple-property facet of property engine. The
classes in the class diagram of user view Serviced Cars
represent class facets of different levels of clabjects at dif-
ferent levels of the multi-level model (namely levels Product
Model, Product Individual and Product Category from the
product hierarchy; and levels Product Component Model,
Product Component Category from the product component
hierarchy). Further explanations are given in the following
examples.

A deep property may be instantiated at all its levels, but
typically only a smaller set of simple-property facets is actu-
ally instantiated. It is also possible that some simple-property
facets are frequently instantiated and others are only instanti-
ated rarely. Typically, user views are defined only at the levels
that are instantiated frequently. An intermediate statement is
a statement at a level that is instantiated infrequently and is
thus represented in user views only at the schema level of
lower-level user views.

Example 18 (Intermediate statements—Fig. 8) The particu-
lar engine of clabjectMarysCar is not known, but it is known
that the engine is an instance of engine model A1300d.
This is represented in the multi-level model by statement
‘MarysCar engine A1300d’ with source potency 0 and tar-
get potency 1. At the instance level, this statement is a value
of the level 0–1 simple-property facet of engine, which is,
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in our example, not part of a user view. At the schema level
of user view Serviced Cars, the statement is reflected by a
singleton classMarysCarSingleton that refines the range of
(the level 0–0 simple-property facet of) property engine to
class A1300d.

4.2.2 Missing statements, single statements, and statement
ensembles

For agiven target potency, a clabject in themulti-level domain
of the property may have no statement, a single statement,
or multiple statements (called a statement ensemble ) instan-
tiating the property. We now discuss these three basic cases
and their interpretation regarding the schema facet (range)
and instance facet (value) of the property.

We talk of a single statement when a source clabject has
only one statement for a property and a given target potency.
At the instance level, a single statement is interpreted by a
property value connecting the object facet of the source clab-
ject with the object facet of the target clabject. At the schema
level, a single statement is interpreted by property range
refinements connecting the class facets of the source clabject
with the class facets of the target clabject, one refinement for
each simple-property facet beneath the single statement.

Example 19 (Instance and schema facet of a single
statement—Fig. 8) Clabject AcmeB13d at level 1 of the
product hierarchy in the multi-level model shown in the

left part of Fig. 8 is source of a single statement with tar-
get potency 1 for property engine with clabject A1300d
as target. At the instance level, this is a property value (or
link) connecting object AcmeB13d with object A1300d.
This is represented, for example, at the instance level of user
view Car Catalog (top right of Fig. 8) by a link between
objects AcmeB13d and A1300d. At the schema level of all
lower-level simple-property facets, the statement refines the
range for the class facets of AcmeB13d to the class facets
of A1300d. This is represented, for example, in the schema
part of user view Serviced Cars (bottom right of Fig. 8), by
an association between classAcmeB13d and classA1300d.

A statement ensemble is a non-empty set of statements
with the same source clabject, the same property, and the
same target potency. A statement ensemble may consist of a
single statement. At the instance level, every statement rep-
resents a property value. At the schema level, a statement
ensemble is interpreted by the union of targets, that is, at
this range level and at all lower levels the range is refined to
the union of the respective class facets of the target clabjects.
The assumption behind this is that a statement ensemble fully
describes the source clabject with regard to the given prop-
erty and target potency, or, in other words, if a clabject comes
with data for a target level of a property, then we assume
these data to be complete. In UML, such a multi-target range
refinement is expressed by a redefinition of the association
endwith an additional ‘union class’ as type—the introduction

Fig. 8 A fragment of the ACME enterprise database with deep statements including statements on inverse properties. Introduced conflicts (depicted
by a bolt symbol) are detected and resolved. The user views (right) represent two-level excerpts from the integrated multi-level model

123



Dual deep modeling: multi-level modeling with dual...

of such additional union classes may lead to a combinatorial
explosion which is avoided by statement ensembles.

Example 20 (Instance and schema facet of a statement
ensemble—Fig. 8) Clabject AcmeS28i in the left part of
Fig. 8 is source of two statements with target potency 1 for
property engine with clabjects A2800i and A2200i as tar-
gets. These two statements constitute a statement ensemble.
At the instance level, this is reflected by two property val-
ues connecting object AcmeS28i with objects A2800i and
A2200i (see object diagram of user view Car Catalog).
At the schema level of this and all lower-level simple-
property facets, the statements refine the range for the class
facets of AcmeS28i to the union of the class facets of
A2800i and A2200i. This is represented, for example, at
the schema level of user view Serviced Cars by an associ-
ation that redefines property engine at class AcmeS28i to
classA2800i_A2200i, which represents the union of classes
A2800i and A2200i.

When a clabject in the domain of a property does not own
a statement for the property, we talk of a missing statement.
Similar to NULL values in relational databases, missing
statements have various reasons. Disregarding other more
specific cases, we interpret a missing statement simply as
‘no information’ with no effects on the schema and instance
level.

Example 21 (Instance and schema facet of missing
statements—Fig. 8) Clabject AcmeS22i has no statements
for property engine. Consequently, the object AcmeS22i
(shown with user view Car Catalog) has no property values
and the class AcmeS22i (shown with user view Serviced
Cars) does not redefine property engine.

4.2.3 Deep statements and inverse properties

As introduced before, every property comes with an inverse
property. While the direction of a statement is of no inter-
est at the bottom level (with 0 as source and target potency)
of a property, it is of interest at higher levels, where state-
ments also refine the range of the property at lower levels.
Statements on a property’s inverse refine the domain of a
property with regard to a clabject in the multi-level range
of the property. The interplay between refinement of a prop-
erty and refinement of the property’s inverse may lead to
inconsistencies. Adequate tool support will catch such incon-
sistencies according to the semantics defined by our F-Logic
formalization.

Example 22 (Statements on a property’s inverse—Fig. 8)
The links from Car to Austria and Poland express state-
ments made with clabject Car that cars are only made
in Austria and Poland. The statement from China to

Car on madeIn’s inverse as well as the statement from
MsBlacksCar to Mexiko are inconsistent with the above.
The DDM system detects these inconsistencies and gives
warnings to the modeler. Further, when querying the range
or the values of propertymadeIn and its inverse, these incon-
sistent statements are disregarded.

4.2.4 Active range

Higher-level statements act as range for lower-level state-
ments, and this is reflected in the active range of properties.
The active range of a property is the set of all possible links
that canbe inserted into thedatabasewithout violating a range
refinement on the property or the inverse property, introduced
by a higher-level statement.

Example 23 (Active range—Fig. 8) The active range of
propertymadeIn at clabjectAcmeS22i consists of clabjects
Austria and Poland, reflecting the higher-level statements
made at clabject Car. The statement ‘AcmeS22i madeIn
Austria’ is in this active range and sets Austria as range and
value of property madeIn at clabject AcmeS22i. See Fig. 9
for the active range of property madeIn at the different clab-
jects in the product hierarchy.

4.2.5 Flexibility

Statements in DDM support a very flexible refinement of the
property’s range.

– Source and target instantiation levels may be freely
skipped.

– If a clabject inherits a refined range for target potency j , it
may freely make additional statements at target potency
j or above or beneath.

– Range refinements are single-valued (a single statement)
or multi-valued (a statement ensemble).

– A range refinement for target potency j also affects the
range and active range for all lower target potencies (the
range at a lower level only contains descendants of the
clabjects specified for target potency j). The derivation of
the range and active range has to consider these different
sources of range refinements.

– Clabject hierarchies may be only partially specified; due
to incomplete clabject hierarchies, lower levels of the
range of a property may be empty, and this should not
affect higher levels of the range or active range.

4.3 Extending DDM-FL with deep statements

In this section, theF-Logic formalizationofDDMis extended
(see Listing 3) for dealing with higher-level statements and
for querying property values, range, and active range derived
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Fig. 9 Compact representation of the results of querying the multi-
level model in Listing 4 for the values (val), the range (rng), and the
active range (actRng) of property madeIn. Since value, range, and
active range are bidirectional, this matrix also gives values, range, and
active range for property madeIn.inv. ‘+’ indicates the existence of a
property instance (either val, rng or actRng), ‘X’ indicates an inconsis-
tent statement (i.e., one that was not in the active range) that has been
discarded from the result

from statements, taking into account also statements on
inverse properties. This should provide the foundation for
frontend tools (like code completion, and drop down lists)
that support modelers in the stepwise refinement and instan-
tiation of multi-level models. The usage of the language
constructs is exemplified in Listing 4 which are discussed
at the end of this subsection.

4.3.1 Additional methods

The additional methods for querying the values (see signa-
ture of method val at line 3:6), the range (method rng at
line 3:7), and the active range (method actRng at line 3:4)
of a property are defined as methods of class C with the
property (a member of P) and the target level (a member
of N) as arguments. To this end, we define auxiliary methods
for querying statements together with their target potency
(method p2 at line 3:1), for querying the inherited unidirec-
tional range (method inhRng at line 3:2), the unidirectional
range (method rngD at line 3:3), and the consistent unidirec-
tional values (method valD at line 3:5).

Having the target potency of statements as additional argu-
ment helps identify statement ensembles. The rule at line 3:9
derives the target potency of a statement from the level in the
multi-level range at which the target clabject resides.

4.3.2 Deriving a property’s range

The next and most intricate step is to calculate the unidi-
rectional inherited range (rule at lines 3:12–3:20), which is
basically the intersection of all range refinements introduced
by higher-level statements. A target clabject v is in the inher-

1 C [ p2(P,N) {0:*} *=> C,
2 inhRng(P,N) {0:*} *=> C,
3 rngD(P,N) {0:*} *=> C,
4 actRng(P,N) {0:*} *=> C,
5 valD(P,N) {0:*} *=> C,
6 val(P,N) {0:*} *=> C,
7 rng(P,N) {0:*} *=> C ].
8

9 ?o[p2(?p,?i)->?v] :-
10 ?o[p(?p)->?v] and ?p[range (?i)->?v].
11

12 ?o[inhRng(?p,?i) ->?v] :-
13 ?p[domain (?_) ->?o] and ?p[range (?i)->?v]

and
14 forall(?c,?j)^(
15 (exists(?w)^(?c[p2(?p,?j) ->?w]) and
16 (( ?o[anc ->?c] and ?o != ?c and

leN(?i,?j)) or
17 ( ?o = ?c and ltN(?i,?j) ) ))
18 ~~>
19 exists(?x)^(?c[p2(?p,?j) ->?x] and

?v[anc ->?x])
20 ).
21

22 ?o[rngD(?p,?i)->?v] :-
23 ?o[inhRng (?p,?i) ->?v] and
24 ( exists(?w)^(?o[p2(?p,?i) ->?w])
25 ~~> ?o[p2(?p,?i)->?v.cls(0)] ).
26

27 ?o[actRng(?p,?i) ->?v] :-
28 ?o[inhRng (?p,?i) ->?v] and
29 ?v[inhRng (?p.inv , ?_)->?o].
30

31 ?o[rng(?p,?i)->?v] :-
32 ?o[rngD(?p,?i) ->?v] and
33 ?v[rngD(?p.inv , ?_)->?o].
34

35 ?o[valD(?p,?i)->?v] :-
36 ?o.cls(0)[p2(?p,?i)->?v.cls(0)] and
37 ?o[rng(?p,?i) ->?v].
38

39 ?o[val(?p,?i)->?v] :-
40 ?o[valD(?p,?i) ->?v].
41

42 ?o[val(?p,?i)->?v] :-
43 ?p[range (?i)->?v] and
44 ?v[val(?p.inv ,?_) ->?o].
45

46 @!{ WARN_stmtNotInVal (?o,?p,?v)}
47 !- ?o[p2(?p,?i) ->?v] and
48 naf exists (?x,?w)^(
49 ?x[cls(0) ->?o] and ?w[cls(0) ->?v] and
50 ?x[val(?p,?i) ->?w]
51 ).

Listing 3 Extending DDM-FL with signatures, rules and integrity
checks for deep statements

ited range of property p at target level i for source clabject o,
if o is in the static domain of p, and v is at level i of the static
range of p and for all superordinate clabjects c and target
potencies j (superordinate here means that c is an ancestor
of o and i is below or equal to j and either o �= c or i is
below j) with a statement ensemble for property p, target
clabject v is ancestor of a target clabject x of this statement
ensemble.

The unidirectional range (rule at lines 3:22–3:25) of
source clabject o, property p and target potency i also con-
siders ‘coordinate’ statements. A coordinate statement here
is a statement made at source clabject o, with property p
and target potency i . If such coordinate statements exist, the
intersection between inherited range and coordinate state-
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ments gives the unidirectional range, otherwise the inherited
range becomes the unidirectional range. This means that a
clabject can refine its own range.

The active range (rule at lines 3:27–3:29) is the bidirec-
tional variant of the unidirectional inherited range. It is given
by the intersection of the inherited range of the property
(line 3:28) and the inverse of the inherited range of the inverse
property (line 3:29). This means that the active range gives
the set of possible links which already exist in or may be
added to the multi-level model without violating any range
refinements introduced by superordinate statements.

The formalization and implementation in F-Logic provide
for very flexible querying of such derived schema informa-
tion. For example, an integrated modeling environment may
support themodeler by, given two clabjects, provide all prop-
erties which can be used to consistently link the two clabjects
as source and target of a property.

The range (rule at lines 3:31–3:33) is the bidirectional
variant of the unidirectional range. It is given by the unidirec-
tional range of the property (line 3:32) and the inverse of the
unidirectional range of the inverse property (line 3:33). The
set of tuples in the range of a property can be understood as a
set of associations that all derive from onemost-general asso-
ciation (which is represented by the property and its inverse)
and thus constitute the schema facet of the property.

4.3.3 Deriving property values

The consistent unidirectional values (rule at lines 3:35–3:37)
of a property p at clabject o for target potency i are given by
statements that are consistent with the bidirectional range of
the property. The rule also takes into account clabject gen-
eralization (see line 3:36), we come back to this in the next
section.

The property values (rules at lines 3:39–3:44) are given
by the union of the consistent unidirectional values of prop-
erty p and its inverse. Every property value has an inverse
property value, which together constitute a link. The set of
property values (together with their inverse property values)
at the different source and target levels constitutes the multi-
level extension (instance facet) of the multi-level association
expressed by the property and its inverse property.

4.3.4 Covariant refinement

The definitions of the schema facet (range) and instance facet
(value) introduced in this section follow a covariant refine-
ment approach. Range and value are derived—basically—by
the intersection of all relevant statement ensembles. This can
lead to situations where a statement made by the modeler is
fully discarded from value and range. Obviously, themodeler
should be warned in such situations, so she can decide her-
self if the conflict resolution applied by DDM-FL by default

1 madeIn:P [src ->Product , tgt ->Country ,
2 srcPty ->3, tgtPty ->1].
3 ProductHierarchy:H [ root ->Product ,

rootPty ->3 ].
4 Product:C [].
5 Bike:C [ in ->Product ].
6 Accessories:C [ in ->Product ].
7 Car:C [ in ->Product ,
8 p(madeIn)->{Austria ,Poland }].
9 AcmeS28i:C [ in->Car ].
10 AcmeS22i:C [ in->Car ,
11 p(madeIn)->Austria ].
12 AcmeB13d:C [ in->Car ].
13 AcmeRace2:C [ in ->Bike ].
14 MarysCar:C [ in->AcmeS22i ].
15 PetersCar:C [ in ->AcmeB13d ,
16 p(madeIn)->Poland ].
17 MsBlacksCar:C [in ->AcmeS28i ,
18 p(madeIn)->Mexiko ].
19 MarysBike:C [in->AcmeRace2 ].
20

21 Countries:H [root ->Country , rootPty ->1].
22 Country:C [].
23 China:C [in ->Country ,
24 p(madeIn.inv) -> {Bike ,Car} ].
25 Austria:C [in ->Country ].
26 Poland:C [in ->Country ].
27 Mexiko:C [in ->Country ].
28

29 // Queries:
30 ?- ?src[val(madeIn ,?i)->?val].
31 ?- ?src[rng(madeIn ,?i)->?rng].
32 ?- ?src[actRng(madeIn ,?i)->?rng].

Listing 4 Self-contained fragment of the example in Fig. 8 expressed
in DDM-FL with statements on property madeIn and on its inverse
property

is adequate or if she wants to resolve the conflict herself.
This is the purpose of latent query WARN_stmtNotInVal at
line 3:46: For every statement that is not reflected as a prop-
erty value, the system gives a warning to the modeler (the
definition also takes into account clabject generalization, we
come back to this in the next section).

4.3.5 Examples

Theusage ofDDM-FL for expressing deep statements in both
directions of a property is exemplified in Listing 4, which
represents property madeIn (line 4:1) together with clabject
hierarchies Countries (line 4:21) and ProductHierarchy

(line 4:3) from the example shown in Fig. 5. Property madeIn

is introduced between Product and Country with source
potency 3 and target potency 1. Statements at different lev-
els give information about the country of origin of different
products. All ACME cars are made in Austria or Poland

(line 4:8). AcmeS22i cars are made in Austria (line 4:11).
PetersCar wasmade in Poland (line 4:16) and MsBlacksCar

inMexiko (line 4:18). In the other direction, using the inverse
of property madeIn, it is specified with clabject China that
bikes and cars are made in China (line 4:24). The latter is
inconsistent with the statements made with clabject Car that
cars are produced in Austria and Poland. DDM-FL detects
this inconsistency and gives a warning to the modeler. The
modeler can repair this inconsistency by deleting statement
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‘China madeIn.inv Car’ or by adding statement ‘Car madeIn
China’. As a default, when querying the range and values of
a property, inconsistent links are discarded from the result.

Figure 9 shows the results of queries on the value (see
line 4:30), on the range (line 4:31), and on the active range
(line 4:32) of property madeIn.

5 Clabject generalization in dual deep modeling

Generalization is an ubiquitous construct for abstraction in
object-oriented modeling. In this section, we extend DDM
with clabject generalization at all levels of identity. When
modeling at multiple levels of identity, the challenge with
clabject generalization is to maintain, at eachmodeling level,
a clear principle of identity (in order to be able to count the
number of clabjects at some level of identity that act as value
or range of some property). When generalizing two clab-
jects to a super-clabject, then the super-clabject should not
be counted as an individual at the same level of identity as
its sub-clabjects. We cope with this ontological problem by
making a hard distinction between abstract and concrete clab-
jects and consider all super-clabjects as abstract. An abstract
super-clabject does not come with its own identity. Its main
purpose is to act as handle for the set of concrete clabjects
it generalizes and factor out their common property values
and ranges. Abstract super-clabjects help reduce the size of
a multi-level model by reducing the number of statements
and thus improve the manageability and understandability
of multi-level models. Statements with abstract clabjects are
interpreted by their effects on concrete clabjects in terms of
concrete property values and ranges.Anabstract clabjectmay
further be used to introduce a new property simultaneously
for a set of clabjects as source and/or target.

5.1 Background: object and class generalization in
two-level models

A set of classes (in the role of subclasses) may be general-
ized to a class (in the role of the superclass). We also say,
the subclasses are specializations of the superclass. A set of
superclasses may be further generalized to another super-
class, which is then an indirect generalization of the (direct
and indirect) subclasses of its subclasses. Generalizationmay
also be applied to objects [27].

Generalization has many facets

– with regard to the extensional facet of a class, general-
ization is interpreted as subsetting: The extension of the
subclass is a subset of the extension of the superclass.We
refer to this facet of generalization as set generalization.

– with regard to the structural facet of a class, the com-
mon properties of a set of classes (subclasses) are moved

from the subclasses to the superclass. (we refer to this as
structural generalization).

– with regard to own property values of objects, common
property values of a set of objects aremoved to an abstract
super-object. We refer to this as value generalization.

The distinction between abstract and concrete class is
described as: ‘A class that has the ability to create instances is
referred to as instantiable or concrete, otherwise it is called
abstract.’ [19] The distinction between abstract objects and
concrete objects is heavily discussed in Philosophy [41],
and there are many different ways to explain it. We fol-
low ‘the way of abstraction’ as mentioned by Kühne [27]
as: ‘An abstract object represents all instances that are con-
sidered to be equivalent to each other for a certain purpose
[…] An abstract object captures what is universal about a
set of instances but resides at the same logical level as the
instances.’

In the literature, it has been discussed whether only
abstract classes may be specialized. Hürsch [19] postulated
the abstract superclass rule, stating that all superclasses are
abstract in that they have no direct instances, and discussed
its advantages and drawbacks. Obeying this rule improves
the clarity of object-oriented models, especially when the
extension (set of instances) of classes is of interest, with the
trade-off of additional classes to be modeled andmaintained.

Generalization of objects is used for value generalization,
and, in the case of self-describing objects also for structural
generalization. In our understanding, an abstract object does
not represent a proper domain object, it rather only provides a
handle to define commonalities of concrete domain objects.
The property values of an abstract object do not describe
the abstract object itself but rather its concrete specializa-
tions. When counting the number of objects in the extension
of a class, only concrete objects are counted. For example,
when counting the number of persons represented in a data-
base, only the concrete person objects are counted, factoring
out of commonalities between persons into abstract person
objects does not affect the number of persons represented in
the database. We assume that super-objects are abstract.

Single generalization is when a class or object has at most
one direct generalization, it may still have multiple indirect
generalizations. Multiple generalization is when a class or
object has more than one direct generalizations and inherits
properties, range refinements, and/or property values from
these multiple generalizations. With regard to the different
facets of generalization, multiple generalization has the fol-
lowing facets:

– The extension of the subclass is subset of the extension
of every superclass, or, formulated differently, the exten-
sion of the subclass is subset of the intersection of the
extensions of its superclasses.

123



Dual deep modeling: multi-level modeling with dual...

– A subclass inherits properties frommultiple superclasses.
The set of properties of a subclass is the union of the sets
of properties of its superclasses

– With regard to value generalization, a subclass inherits
values from multiple superclasses. The set of inherited
property values is the intersection of the property values
of its superclasses.

Multiple generalization potentially introduces conflicts,
especially with regard to property range refinements (dis-
cussed in Sect. 4), conflicting range refinements in super-
classes may lead to properties that have an empty range
(cannot be instantiated with regard to the range refinements).
Furthermore, an object or class may inherit multiple property
values for the same property. This may be in conflict with
cardinality constraints (discussed in Sect. 7). The possible
problems associated with multiple generalization strengthen
the need for proper modeling tools with basic reasoning ser-
vices that help detect and resolve such conflicts.

5.2 Clabject generalization

We first provide a high-level picture of extending DDMwith
generalization, discussing the role of super-clabjects inmulti-
level clabject hierarchies. We clarify the distinction between
abstract and concrete clabject. We adapt the abstract super-
class rule to the setting of multi-level modeling with abstract
and concrete clabjects.

5.2.1 The abstract super-clabject rule

In DDM, a clabject is either concrete or abstract. A con-
crete clabject combines concrete class and concrete object
(see above). An abstract clabject combines abstract class
and abstract object (see above), that is, an abstract clabject
only has an abstract object facet, meaning that the property
values of an abstract clabject do not describe the abstract
clabject itself but its concrete specializations. Technically, it
means that property values of an abstract clabject are always
propagated to its specializations.

We argue that obeying the abstract superclass rule (see
above) in multi-level modeling is beneficial because of the
increased clarity and helps to maintain a principle of identity
for each level of a clabject hierarchy,which is in turn a prereq-
uisite for cardinality constraints with a clear semantics. That
is why in the Dual Deep Instantiation (DDI) approach [36], a
precursor of DDM, only concrete clabjects could be instan-
tiated. In [37], we relaxed this restriction as follows:

Abstract Super-clabject Rule: All super-clabjects are
abstract in that they have no direct concrete instances (but
they may have abstract instances).

TheDDMapproach obeys the abstract super-clabject rule.

5.2.2 Kinds of instantiation relationships

The meaning of the allowed kinds of instantiation relation-
ships depends on the abstract/concreteness of the related
clabjects. An instantiation relationship between a clabject
x in the role of the instance and a clabject c in the role of the
class can be classified as immediate concrete, shared con-
crete, and shared abstract.

An immediate concrete instantiation relationship is
between a concrete clabject in the instance role and a concrete
clabject in the class role.

Example 24 (Immediate concrete instantiation—Fig. 10)
Clabject Accessories has class Product. This represents an
immediate concrete instantiation relationship, meaning that
Accessories is an instance ofProduct, or,more exactly, that
the object facet of Accessories is an instance of the class
facet ofProduct for level 2. Taking into account the intuitive
names of instantiation levels, one can say, Accessories is an
instance of class Product Category.

A shared concrete instantiation relationship is between an
abstract clabject x in the instance role and a concrete class c
in the class role. It means that all concrete specializations of
x are instances of a class facet of c.

Example 25 (Shared concrete instantiation—Fig. 10)
Abstract clabject Vehicle has concrete clabject Product as
class. This represents a shared concrete instantiation relation-
ship and means that all concrete specializations of Vehicle,
such as Bike and Car, are instances of Product.

A shared abstract instantiation relationship is between an
abstract clabject x in the instance role and an abstract clabject
c in the class role. It means that each concrete specialization
of x is instance of some concrete specialization of c.

Example 26 (Shared abstract instantiation—Fig. 10)
Abstract clabject LuxuryVehicle has abstract clabject Vehi-
cle as class. This represents a shared abstract instantiation
relationship, meaning that all concrete specializations of
LuxuryVehicle are instances of a concrete specialization of
Vehicle, e.g., AcmeS28i is an instance of Car.

An immediate abstract instantiation (a concrete clabject
with an abstract clabject as direct class) is not allowed under
the abstract super-clabject rule.

5.2.3 Kinds of statements

A shared or abstract statement is a statementwith an abstract
clabject as source or target, respectively. Abstract state-
ments are interpreted with regard to the concrete statements
(i.e., statements between concrete clabjects) they imply.
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Fig. 10 Extending the ACME product knowledge base with abstract super-clabjects and multiple generalization. Abstract clabjects as well as
abstract statements are shown in italics

In this regard, there are four different cases of statements
depending on the abstractness/concreteness of the connected
clabjects:

A concrete statement is a statement relating a concrete
clabject as source and a concrete clabject as target.

Example 27 (Concrete statement—Fig. 10) Concrete clab-
ject AcmeS28i has concrete clabject A2800i as target of
property engine.

A shared concrete statement is a statement relating an
abstract source with a concrete target. The concrete target
is propagated to the concrete specializations of the abstract
source. With regard to a fixed set of concrete specializations
of the source, the shared statement is equivalent to multiple
concrete statements, one for each concrete specialization of
the source.

Example 28 (Shared concrete statement—Fig. 10) Abstract
clabject Vehicle has concrete clabject MsBlack as target of
property categoryMgr, meaning that product categoriesCar
and Bike have MsBlack as category manager. More tech-
nically, the shared statement implies concrete instances of
property categoryMgr between concrete clabjects Bike and
Car as source clabjects and MsBlack as target clabject.

An abstract statement is a statement relating a concrete
source o with an abstract target v. An abstract statement
restricts the range to descendants of v. At the instance level,
an abstract statement is interpreted by a set of property val-
ues, one for each concrete descendant of v.

Example 29 (Abstract statement—Fig. 10) Concrete clab-
jectAcmeS22ihas abstract clabjectFuelEfficientEngine as
target of property engine. With regard to the given concrete
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specialization of FuelEfficientEngine, this can be inter-
preted as two concrete statements with A1300d and A2200i
as targets.

A shared abstract statements is between an abstract source
and an abstract target. It is propagated as an abstract statement
to the concrete specializations of the abstract source clabject.

Example 30 (Shared abstract statement—Fig. 10) Abstract
clabject SportsCar has abstract clabject PowerfulEngine
as target of property engine, meaning that every SportsCar
model, namely AcmeS22i and AcmeS28i, take its engine
from the set of powerful engine models, namely A2200i and
A2800i.

5.2.4 Resolving multiple inheritance

Multiple generalization may lead to situations where a clab-
ject c inherits different property targets for the same property.
The derived range of a property p at c is the set of clabjects
that fulfill all the different range refinements introduced by
c or one of its ancestors. If this set is empty, the property
cannot be instantiated. Such a situation may be intended by
the modeler or may also be the result of over-constraining
the model. Mandatory range constraints (to-be introduced in
Sect. 7) provide a flexible means to monitor such situations.

Example 31 (Resolution of multiple inheritance—Fig. 10)
Abstract clabject SportsCar asserts abstract clabject Pow-
erfulEngine (representing concrete clabjects A2200i and
A2800i) as target of property engine. Its specialization
AcmeS22i inherits these targets and asserts itself FuelEffi-
cientEngine (representing concrete clabjects A1300d and
A2200i) as target. The active range of AcmeS22i for prop-
erty engine at level model is thus A2200i, the only engine
model that is both fuel efficient and powerful.

5.3 Extending DDM-FL for clabject generalization

In this section, DDM-FL is extended with signatures, rules,
and integrity checks for clabject generalizations. Some of
the rules extend attributes, namely h, pty, anc, and cls,
introduced in Listing 1 in Sect. 3.4. We also revisit some of
the auxiliary methods and consistency checks introduced in
Listing 3 in Sect. 4.3 The usage of clabject generalization in
DDM-FL is exemplified in Listing 6 and discussed at the end
of this section.

A clabject may have multiple clabjects as generalizations
(denoted by method sp for ‘specialization-of’ at line 5:1).
Clabjects may be specified as abstract (line 5:2) with all
other clabjects considered as concrete (lines 5:3, 5:7). Con-
crete clabjects must not be specialized, i.e., must not act as
generalizations (line 5:10).

1 C [ sp {0:*} *=> C,
2 *=> abstract ,
3 *=> concrete ].
4
5 ?c:C[pty ->?i, h->?h] :- ?c.sp[h->?h,

pty ->?i].
6 ?x[anc ->?y] :- ?x.sp[anc ->?y].
7 ?o[concrete] :- ?o:C and naf(?o[abstract ]).
8
9 @!{ Error_ConcreteClabjectIsSpecialized (?x,?y)}
10 !- ?x[concrete] and ?y[sp ->?x].
11
12 @!{ Error_MultipleConcreteClasses (?x,?c,?d)}
13 !- ?x[cls(1) ->{?c,?d}[ concrete ]] and ?c !=

?d.
14
15 @!{ Error_MissingConcreteClass (?x)}
16 !- ?x[concrete ,cls(1) ->?c] and naf

exists (?d)^(
17 ?d[concrete] and ?x[cls(1) ->?d]).
18
19 @!{ WARN_TargetsNotOrthogonal (?o,?p,?v,?w)}
20 !- ?o[p(?p) ->{?v,?w}] and ?v != ?w and
21 ?v[cls(0) ->?w].

Listing 5 Extending DDM-FL with additional signatures, derivation
rules and integrity checks for multiple clabject generalization (the
derivation of higher-level values and active range are revisited in the
next section)

A clabject inherits from its generalizations the potency as
well as the hierarchy it belongs to (line 5:5). This expresses,
together with the cardinality (1:1) of pty and h (see lines 1:5
and 1:6), that the clabject and all its generalizations belong
to the same level of the same hierarchy. We assume that a
clabject that has neither a class nor a generalization is the
root of a clabject hierarchy.

Every clabject is instance of at most one concrete clab-
ject at the next higher level (line 5:13), and every concrete
clabject is instance of a concrete clabject at the next higher
instantiation level if there is a next higher instantiation level
in that hierarchy (line 5:16).

A clabject may have multiple ancestors at the same level
(that is, with the same number of instantiation steps between
them). The anc method previously introduced (see line 1:8)
is extended in order to also consider generalizations as ances-
tors (line 5:6). This also affects method cls (previously
introduced, see line 1:7). The set of super-clabjects, i.e.,
direct and indirect generalizations, of a clabject including
the clabject itself is also referred to as the classesˆ0 of the
clabject.

The rule for deriving the unidirectional value of a property
(previously introduced, see line 3:36) also takes into account
statements between abstract clabjects (classesˆ0) and prop-
agates them to their specializations, formalizing the notions
of shared concrete statement and shared abstract statement.
Note, the value facet of a statement is shared by the spe-
cializations of source and target clabjects but not by their
instantiations (at lower modeling levels). Sharing of val-
ues across modeling levels is subject to ongoing and future
work.

A statement of property p connecting a source clabject o
with a target clabject v that is not in the range of p typically
reflects an unintended modeling situation. When the source
or target of such a statement is an abstract clabject, then such
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1 engine:P [src ->Car , tgt ->Engine ,
2 srcPty ->2, tgtPty ->2].
3

4 ProductHierarchy:H [ root ->Product ,
rootPty ->3 ].

5 Product:C [].
6 Accessories:C [ in ->Product ].
7 Vehicle:C [ abstract , in ->Product ].
8 Bike:C [ sp ->Vehicle ].
9 Car:C [ sp->Vehicle ].

10 LuxuryVehicle:C [ abstract , in ->Vehicle ].
11 LuxuryCar:C [ abstract , sp ->LuxuryVehicle

].
12 SportsCar:C [ abstract , in ->Car ,
13 p(engine)->PowerfulEngine ].
14 AcmeS22i:C [ sp ->SportsCar ,
15 p(engine)->FuelEfficientEngine ].
16 AcmeS28i:C [ sp ->{LuxuryCar , SportsCar},
17 p(engine)->A2800i ].
18 AcmeB13d:C [ in ->Car ,
19 p(engine)->A1300d ].
20 AcmeB15d:C [ in ->Car ].
21 AcmeS25i:C [ sp ->SportsCar ].
22 PetersCar:C [ in ->AcmeB13d ].
23 SportsCarFromMexiko :C [ abstract ,

in ->SportsCar ].
24 MsBlacksCar:C [ in ->AcmeS22i ,
25 sp ->SportsCarFromMexiko ].
26 MarysCar:C [ in ->AcmeS22i ,
27 p(engine)->A2200i_2 ].
28 PetersCar:C [ in ->AcmeB13d ,
29 p(engine)->A1300d_1 ].
30

31

32 ProductComponentHierarchy :H [
33 root ->ProductComponent , rootPty ->4 ].
34 ProductComponent:C [].
35 CarPart:C [ in ->ProductComponent ].
36 Engine:C [ in ->CarPart ].
37 PowerfulEngine:C [ abstract , in ->Engine ].
38 FuelEfficientEngine :C [ abstract ,

in ->Engine ].
39 A2800i:C [ sp ->PowerfulEngine ].
40 A2200i:C [
41 sp ->{PowerfulEngine ,

FuelEfficientEngine} ].
42 A1300d:C [ sp ->FuelEfficientEngine ].
43 A1700d:C [ in ->Engine ].
44 A2800i_1:C [ in ->A2800i ].
45 A2200i_1:C [ in ->A2200i ].
46 A2200i_2:C [ in ->A2200i ,
47 p(engine.inv)->MarysCar ].
48 A1300d_1:C [ in ->A1300d ,
49 p(engine.inv)->PetersCar ].
50

51 // Queries:
52 ?- ?src[concrete ,

val(engine ,?i)->?val[concrete ]].
53 ?- ?src[concrete ,

rng(engine ,?i)->?rng[concrete ]].

Listing 6 DDM-FL representation of a self-contained fragment of
the product and product component hierarchies of Fig. 10 including
examples of clabject generalization and concrete and abstract statements
on property engine

a situation may be intended by the modeler as long as there
is a specialization of the abstract clabject that gives a consis-
tent property value. The previously introduced latent query
WARN_stmtNotInVal (see line 3:44) covers this situation and
issues a warning only in situations that are not in line with the
following assumptions about the intentions of a modeler: If a
statement of property p connects a (possible abstract) source
clabject o with a (possible abstract) target clabject v, then v

may not be in the range of property p of o as long as there

is a clabject x (which is o or a specialization of o) that has a
clabjectw (which is v or a specialization of v) in the range of
property pwhichmakesw a consistent value of property p of
clabject x . An example of such intended modeling situation
is the statement ‘AcmeS22i engine FuelEfficientEngine’ of
Fig. 10 which is not in the range of property engine due to
statement ‘SportsCar engine PowerfulEngine’ but both state-
ments have an overlap, with ‘AcmeS22i engine A2200i’
being a property value consistent with both statements.

If a statement ensemble contains a target clabject v and
another target clabject w that is a direct or indirect super-
clabject of v, then the statement with target clabject v is
meaningless (can be deleted without effect). To avoid such
situations, statements obey an additional integrity constraint:
Target clabjects in a statement ensemble are orthogonal, that
is, they are not in a direct or indirect generalization relation-
ship (line 5:21). A violation of this integrity check should
not be regarded as a model inconsistency but rather issued to
the modeler as a warning.

5.3.1 Examples

The usage of DDM-FL for expressing clabject generaliza-
tion with abstract super-clabjects and abstract statements is
exemplified in Listing 6, which represents property engine

(line 6:1) together with relevant parts of clabject hierarchies
ProductHierarchy (line 6:5) and ProductComponent

Hierarchy (line 6:32) from the example shown in Fig. 10.
Vehicle (line 6:7) is an abstract instance of Product. Car
(line 6:9) is a concrete specialization of Vehicle; the indirect
instantiation relationship to Product is not explicitly repre-
sented but derived. AcmeS28i at line 6:16 comes with an
example ofmultiple generalization, it specializes LuxuryCar
and SportsCar. A SportsCar has a PowerfulEngine as
engine (line 6:13). An AcmeS22i car, a specialization of
SportsCar, has a FuelEfficientEngine as engine 6:15.

A query on the range or value of property engine

with AcmeS22i (or one of its instances) as source will
only retrieve A2200i (or one of its instances) as consistent
target, since it is the only engine that is both a specializa-
tion of PowerfulEngine and FuelEfficientEngine (see
line 6:41).

Figure 11 shows the results of queries on the range (see
line 6:53) and the value (line 6:52) of property engine,
restricted to concrete clabjects.

6 Specialization hierarchies of deep properties

In this section, we extend DDM with deep property special-
ization. For this purpose,we adapt the principles of subsetting
of association ends and specialization of associations (as
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Fig. 11 Compact representation of the results of querying the multi-
level model in Listing 6 for the value and the range of property engine,
restricted to concrete clabjects. Since range and value are bidirectional,
this matrix also gives the range and value for property engine.inv

known from theUML) and of property hierarchies (as known
from OWL) for multi-level modeling.

6.1 Background: property specialization in two-level
models

Properties mainly come in two forms, namely as attributes
(aka: data properties) and as association ends (aka: object
properties). As discussed before, in this paper we do not
distinguish between attributes and association ends.

Property specialization, as understood here, is similar to
subsetting of association ends and specialization of associa-
tions in the UML. We do not distinguish between subsetting
and specialization because they are semantically equivalent,
as pointed out by Costal et al. [13].

A structural difference between subsetting and specializa-
tion is that the former is specified for an association end and
the latter is specified for an association. This difference is
of no interest in our setting, because an association is rep-
resented by a property and its implicitly introduced inverse
property, and a specialization of a property implicitly intro-
duces a specialization of the inverse property.

Subsetting of association ends and specialization of asso-
ciations are arguably not used very frequently by UMLmod-
elers. This is in stark contrast to knowledge representation
and ontology engineering, with specialization hierarchies
of properties being one of the core modeling constructs of
OWL.

Property specialization is a relationship between twoprop-
erties, one in the role of the sub-property and the other in the
role of the super-property, and has the following meaning:
The domain of the sub-property must be the same or a subset
of the domain of the super-property; the range of the sub-
property must be the same or a subset of the range of the
super-property. A value of the sub-property is always also a
value of the super-property. The values of the sub-property

Fig. 12 Specialization of multi-level properties. The declaration of
sub-properties is shown by the name of the sub-property followed by
a slash followed by the name of the super-property. The specialization
is additionally highlighted by shaded arcs from sub-property to super-
property. Introduced conflicts (depicted by a bolt symbol) are detected
and resolved

must thus also be in the active range of the super-property. A
range refinement on the super-property thus also affects the
active range of the sub-property.

6.2 Specialization of dual deep properties

The meaning of property specialization in two-level model-
ing should in principle also apply to specialization of dual
deep properties. At the schema level, the domain and range
refinements introduced with a deep property also apply to
its specializations. At the instance level, values of the sub-
property are also values of the super-property.

A specialization relationship connects a deep property in
the role of sub-property with another deep property in the
role of super-property. The sub-property’s source and target
must be in the super-property’s domain and range, respec-
tively. The sub-property does not specify its source potency
and target potency but derives it from the super-property. A
property may have multiple super-properties.

Specialization hierarchies of deep properties are orthog-
onal to the range refinement and instantiation down the
multi-level domain and multi-level range of a property. They
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provide an additional abstraction dimension and span all the
different levels of a property.

Example 32 (Deep property specialization—Fig. 12) Prop-
erty part is introduced between Product and ProductCom-
ponent with source potency 3 and target potency 4. The
previously introduced properties specEquip and engine
are now declared as specializations of part. A further sub-
property of part is the wheels property which is introduced
at product category Car with category Wheel as target.
Source potency 2 and target potency 2 of propertywheels are
derived from the source potency (3) and the target potency
(4) of property part and the number of instantiation steps
between Car and Product (1) and between Wheel and Pro-
ductComponent (2). Propertywheels is further specialized
by properties frontwheels and rearwheels. Sub-properties
frontwheels and rearwheels are, like property wheels,
introduced between clabjects Car and Wheel and allow to
make separate statements concerning rear wheels and front
wheels at the different levels. The specialization hierarchies
of properties provide an additional abstraction dimension
in that one can separately read and write, e.g., for clabject
AcmeS22i, value and range of the properties frontwheels
and rearwheels or their super-property wheels or, in turn,
the super-property part.

One aspect of property specialization hierarchies is that
they allow to refine the range for a sub-property without
affecting the range of the super-property. This is of partic-
ular importance when dealing with incomplete knowledge,
especially when dealing with knowledge that is available at
different levels of detail.

Example 33 (Parallel refinement and instantiation of super-
and sub-properties—Fig. 12) TheACMEproduct knowledge
base contains rather strict range restrictions for the allowed
wheel types of particular car models, while other aspects,
such as the allowed types of special equipment are rather
under-constrained. DDM with property hierarchies supports
such multi-granular specification of models. Abstract class
SportsCar refines the range of propertywheels toHighPer-
fWheel. This range refinement affects front wheels and rear
wheels of sports cars. From the different high-performance
wheel models, sports car model AcmeS22i may use only
wheel models AcmeW15-5 and AcmeW17-5 as front
wheels and is restricted to wheel model Acme17-5 as rear
wheels. The statement with AcmeW13-5 as target is in con-
flict with the above statement that SportsCars only have
HighPerformanceWheels and is disregarded when query-
ing range or values of property rearwheels.

6.3 Extending DDM-FL with property specialization

Listing 7 extends the F-Logic formalization/implementa-
tion with property specialization. A property (class P)

1 P [ super {0:*} *=> P,
2 superT {0:*} *=> P,
3 superTR {1:*} *=> P ].
4

5 ?p[srcPty ->?i, tgtPty ->?j] :-
6 ?p.super[domain (?i)->?p.src ,

range (?j)->?p.tgt].
7

8 ?p.inv[super ->?s.inv] :-
9 ?p[super ->?s].
10

11 ?p[superT ->?ps] :- ?p[super ->?ps].
12 ?p[superT ->?ps] :- ?p.superT[super ->?ps].
13 ?p[superTR ->?ps] :- ?p[superT ->?ps].
14 ?p[superTR ->?p] :- ?p:P.
15

16 ?o[inhRng(?p,?i) ->?v] :-
17 ?p[domain (?_) ->?o] and ?p[range (?i)->?v]

and
18 forall(?c,?j,?s)^(
19 (exists (?w)^(?c[p2(?s,?j) ->?w]) and
20 (( (?o[anc ->?c] and ?o != ?c ) and
21 ?p[superTR ->?s] and leN(?i,?j)
22 ) or
23 (?o = ?c and ?p[superTR ->?s] and
24 (ltN(?i,?j) ) or
25 (?o = ?c and ?p[superT ->?s] and

leN(?i,?j)))))
26 ~~>
27 exists(?x)^(?c[p2(?s,?j) ->?x] and

?v[anc ->?x])
28 ).
29

30 ?o[val(?p,?i)->?v] :-
31 ?o[valD(?s,?i) ->?v] and
32 ?s[superTR ->?p].

Listing 7 Extending DDM-FL with signatures, rules, and integrity
checks for the specialization of dual deep properties

may additionally have multiple super-properties, and this is
expressed bymethod superwith unrestricted cardinality (see
line 7:1).

In derivation rules, one sometimes needs the transitive
and the transitive reflexive closure of the super-properties of
a property which are provided by derived methods superT

and superTR (which are declared at lines 7:2–7:3 and defined
at lines 7:11–7:14).

When a property p has a super-property s, then the inverse
of p has the inverse of s as a super-property (see rule at
line 7:8).

The potencies of a sub-property need not be asserted, and
they are inherited from the super-property. The source/tar-
get potency of a sub-property is the number of the level
of the domain/range of the super-property at which the
source/target clabject of the sub-property resides (see rule at
line 7:5).

At the schema level, a range refinement imposed on a
property also applies to its sub-properties. This is reflected
in DDM-FL by a redefinition of method inhRng (supersed-
ing the definition in Listing 3) by the rule at lines 7:16–7:28.
The general idea that the inherited range is the intersection
of all range refinements introduced by superordinate state-
ments remains unchanged with the addition that statements
on super-properties are also considered as superordinate
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1 part:P [ src ->Product ,
tgt ->ProductComponent ,

2 srcPty ->3, tgtPty ->4 ].
3 engine:P [ super ->part ,
4 src ->Car , tgt ->Engine ].
5 specEquip:P [ super ->part ,
6 src ->Car , tgt ->SpecEquip ].
7 wheels:P [ super ->part ,
8 src ->Car , tgt ->Wheel ].
9 frontwheels:P [ super ->wheels ,

10 src ->Car , tgt ->Wheel ].
11 rearwheels:P [ super ->wheels ,
12 src ->Car , tgt ->Wheel ].
13

14 ProductComponentHierarchy :H [
15 root ->ProductComponent , rootPty ->4 ].
16 ProductComponent:C [ ].
17 CarPart:C [ in ->ProductComponent ].
18 SpecEquip:C [ in ->ProductComponent ].
19 Wheel:C [in ->CarPart ].
20 Engine:C [ in ->CarPart ].
21 Alarm:C [ in ->SpecEquip ].
22 A2200i:C [ in->Engine ].A1300d:C [ in->Engine ].
23 BurglarScare:C [ in ->Alarm ].
24 HighPerfWheel:C [ abstract , in ->Wheel ].
25 AcmeW13_5:C [in ->Wheel ].
26 AcmeW15_5:C [sp ->HighPerfWheel ].
27 AcmeW17_5:C [sp ->HighPerfWheel ].
28 AcmeW19_7:C [sp ->HighPerfWheel ].
29

30 ProductHierarchy:H [ root ->Product ,
rootPty ->3 ].

31 Product:C [].
32 Car:C [ in->Product ].
33 SportsCar:C [ abstract , in ->Car ,
34 p(wheels) -> HighPerfWheel ].
35 AcmeS22i:C [ sp ->SportsCar ,
36 p(frontwheels)-> { AcmeW15_5 , AcmeW17_5

},
37 p(rearwheels) -> { AcmeW17_5 , AcmeW13_5

} ].
38 AcmeS28i:C [ sp ->SportsCar ].
39 AcmeB13d:C [ in ->Car ].
40 // Queries:
41 ?- ?src[cls(1) ->Car , concrete ,
42 val(?property ,1) ->?val] and
43 ?property[superTR ->part] and

?val[concrete ].
44 ?- ?src[cls(1) ->Car , concrete ,
45 rng(?property ,1) ->?rng] and
46 ?property[superTR ->part] and

?rng[concrete ].

Listing 8 DDM-FL representation of the property specialization
hierarchy shown in Fig. 10

statements. The redefinition of inhRng also affects other
methods introduced in Listing 3, namely rngD, actRng,
valD, and val, which now all produce results that are
consistent with range refinements introduced with super-
properties.

At the instance level, a value of a property is also a
value of its super-properties. This is expressed by the rule
at line 7:30 which extends the definition of the previously
introduced method val (see Listing 3) to also include con-
sistent values of the sub-property as consistent values of the
super-property.

Fig. 13 Compact representation of the results of querying the multi-
level model in Listing 8 for the value and the range of property part and
its sub-properties for concrete car models. ‘+’ indicates the existence
of a property instance (either rng or val), ‘×’ indicates an inconsistent
target that has been discarded from the result

6.3.1 Examples

The representation of property specialization in DDM-FL is
exemplified in Listing 8 together with queries on the value
(line 8:41) and the range (line 8:44) of sub-properties of part,
only considering concrete clabjects at level 1 of the multi-
level range. Figure 13 gives a compact representation of the
results of these queries.

7 Dual deep cardinality constraints

In this section, we extend DDM with deep cardinality con-
straints both regarding the schema facet (range) and the
instance facet (values) of properties. Value cardinality con-
straints restrict the number of property values; they are
evaluated over the instance facet of a property. Range car-
dinality constraints are quite different, and they restrict the
number of clabjects in the range of a property; thus, they are
evaluated over the schema facet of a property.

7.1 Modeling with dual deep cardinality constraints

Cardinality constraints in DDM only consider concrete clab-
jects. Abstract clabjects are regarded as mere abstractions of
concrete clabjects without an own identity,

A deep cardinality constraint is specified for the instance
facet (value) or the schema facet (range) of a deep property, a
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source clabject (within the domain of the property), a target
clabject (within the range of the property), a source potency
specifying the to-be restricted level of themulti-level domain
and a target potency specifying the to-be restricted level of
themulti-level range. Cardinality constraints can be specified
for both ends of an association, for a property as well as for
its inverse.

In the UML-like notation (see example in Fig. 14), cardi-
nality constraints are shown at either end of the association:
constraints shown at the same end as the property name (e.g.,
constraints labeled (c), (f), (g), (h)) restrict the cardinality of
the property, and constraints shown at the opposite end (e.g.,
constraints labeled (a), (b), (d) and (e)) restrict the cardinality
of the inverse property.

A deep functional value constraint specifies that clabjects
at the given domain level have at most one property value
at the given range level. A deep mandatory value constraint
likewise specifies the existence of at least one property value
at the given range level.

Example 34 (Deep functional and mandatory value
constraints—Fig. 14) The deep model fragment shown in
Fig. 14 contains three deep functional value constraints.
The cardinality constraint labeled (c) expresses that between
cars and alarm systems at the individual-to-individual level
(expressed by dual potency (0,0)), for one car, there may only
be one concrete special equipment value. This means that
every individual car represented in the multi-level model
may only have one individual alarm as special equipment.
Constraint (g) is a mandatory and functional value constraint
at the model-to-model level(1,1) of property engine, which
restricts carmodels to have exactly one enginemodel as value
of property engine. Constraint (h) is a functional value con-

Fig. 14 Example multi-level cardinality constraints over property
range and property values. The different constraints, labeledwith letters
(a)–(h), are explained below

straint at the individual-to-individual level(0,0) of property
engine and expresses that every individual car has at most
one individual engine as engine.

Deep cardinality constraints may also be expressed on
inverse properties and be evaluated—with the same seman-
tics as cardinality constraints on non-inverse properties—
over value and range of the inverse property.

Example 35 (Deep functional and mandatory value con-
straints on inverse properties—Fig. 14) The mandatory
constraint (d) between Engine and Car at the model-to-
model level(1,1) of the inverse property of engine expresses
that every car enginemodel is engineof at least one carmodel.
Themandatory and functional constraint (e) betweenEngine
and Car at the individual-to-individual level(0,0) expresses
that every individual car engine is engine of exactly one car
individual. In the context of the ACME product knowledge
base, engines are of interest only as part of cars and should
be discarded if not part of a car.

A qualified cardinality constraint is a deep cardinality
constraint, where the target clabject is not the root of the
property’s range. This allows to express multiplicities that
only affect a sub-hierarchy of the properties range.

Example 36 (Qualified cardinality constraints—Fig. 14)The
functional constraint (c) on property specEquip between
Car andAlarm is a qualified cardinality constraint. It restricts
individual cars to have at most one individual alarm system
as special equipment (but an individual car may have a lot of
other special equipment individuals, as long as they are no
alarm systems).

A refined cardinality constraint is a cardinality constraint,
where the source clabject is not the root of the property’s
domain. It is checked only for clabjects that are descendants
of the source clabject of the constraint. Refined cardinality
constraints can be qualified or unqualified.

A cardinality constraint over a sub-property only restricts
the cardinality of the sub-property but not the cardinality of its
super-property. In the opposite direction, since every value
of a sub-property is also a value of its super-properties, a
cardinality constraint over a super-property also indirectly
affects its sub-properties.

Example 37 (Deep cardinality constraints and property
specialization—Fig. 14) Properties specEquip and engine
are sub-properties of part. The functional and mandatory
value constraint (g) at the model-to-model level(1,1) only
affects property engine but not its super-property part, a
car model must not have more than one engine model as
engine, but it can have more than one engine model as value
of part (note, the given example is under-constrained, an
additional functional value constraint at the model-to-model
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level(1,1) between Product and Engine would disallow
such situations). The functional value constraint (b) at the
individual-to-individual level(0,0) on the inverse of part
affects specEquip and engine insofar that an individual
product component already used as part of one product indi-
vidual may not be used as engine or special equipment of
another product individual.

A mandatory range constraint specifies for clabjects at a
specific level of the domain that theyhave at least onepossible
target at the specified level of the range (i.e., at least one
clabject at that level must be in the range). The enforcement
ofmandatory range constraints should avoid situationswhere
the refinement of the range at various source clabjects (for
example atmultiple superclasses of the clabject at hand) leads
to an empty range. A functional range constraint specifies
for clabjects at a specific level of the domain that they have at
most one target clabject at the specified level of the range. A
functional range constraint can be regarded as representing
an obligation of the modeler to model range refinements at a
specific granularity.

Example 38 (Mandatory and functional range constraints—
Fig. 14) The constraint labeled (f) represents a mandatory
range constraint and a functional range constraint for level 1
of the domain and level 1 of the rangeof propertyengine. The
mandatory constraint specifies that each carmodel must have
at least one car engine model as range of property engine.
The functional range constraint specifies that each car model
must have at most one car engine model in its range. That
is, the modeler is obliged to refine, for each car model, the
range of property engine to a single engine model.

Using inverse properties, range constraints can likewise
be defined in the opposite direction.

Example 39 (Range cardinality constraints on inverse
properties—Fig. 14) The constraint labeled (a) between
Product and ProductComponent on the inverse of prop-
erty part at the model-to-model level(1,1) specifies that each
product component model (i.e., each clabject with potency 1
in the product component hierarchy) is in the range of prop-
erty part of at least one product model. The rationale behind
this constraint is that the primary purpose of the representa-
tion of product components in the ACME enterprise database
is the detailed description of products, and if a clabject is rep-
resenting a product component model that cannot be used as
part of a product in the system, then this clabject is not needed
and should be discarded from the knowledge base.

7.2 Specifying and checking cardinality constraints in
DDM-FL

Deep functional and mandatory constraints over the schema
facet (rng) or the instance facet (val) of a deep property

1 C [ functional(N,_symbol(P,N)) {0:*} *=> C,

2 mandatory(N,_symbol(P,N)) {0:*} *=> C ].

3

4 @!{ MandatoryViolation (?meth ,?c,?i,?p,?j,?d,?o)}

5 !- ?c[mandatory (?i, ?meth(?p,?j) ) ->?d] and

6 ?o[concrete , anc ->?c] and

7 ?p[domain(?i)->?o] and

8 naf exists(?v)^(

9 ?v[concrete , anc ->?d] and

10 ?o[?meth(?p,?j) ->?v] ).

11

12 @!{ FunctionalViolation (?meth ,?c,?i,?p,?j,?d,?o)}

13 !- ?c[functional (?i, ?meth(?p,?j) )->?d] and

14 ?p[domain(?i) ->?o] and

15 ?o[concrete , anc ->?c,

16 ?meth(?p,?j) ->{?v,?w}] and

17 {?v,?w}[concrete , anc ->?d] and ?v != ?w.

Listing 9 Extending DDM-FLwith signatures for the representation of
dual deep cardinality constraints

1 ProductComponent[

2 mandatory(1, rng(part.inv ,1) )->Product ,

3 functional (0, val(part.inv ,0) )->Product ].

4

5 Car[

6 functional (0, val(specEquip ,0) )->Alarm ,

7 {mandatory ,functional }(1,rng(engine ,1))->Engine ,

8 {mandatory ,functional }(1,val(engine ,1))->Engine ,

9 functional (0, val(engine ,0) )->Engine ].

10

11 Engine[

12 mandatory(1, val(engine.inv ,1) )->Car ,

13 {mandatory ,functional }(0,val(engine.inv ,0))->Car

14 ].

Listing 10 DDM-FL representation of the dual deep cardinality
constraints shown in Fig. 14

or its inverse are specified using methods functional and
mandatory of class C (see signatures at lines 9:1–9:2). A
cardinality constraint is specified between a source clabject c
and a target clabject d with arguments specifying the property
p together with the level i of the domain and the level j of
the range of the property and the property facet (val or rng)
that should be restricted by the constraint. It constrains the
number of links with source potency i and target potency j
between descendants of c and descendants of d.

Example 40 (Deep cardinality constraints in F-Logic) List-
ing 10 shows how the example cardinality constraints intro-
duced in the previous subsection are expressed in F-Logic.
For example, line 10:7 represents the mandatory and func-
tional range constraint on the model-to-model level(1,1) of
property engine between Car and Engine (labeled (f) in
Fig. 14). Figure 15 exemplifies the evaluation of these cardi-
nality constraints.

Note that the property facet (val or rng) together with
property p and target potency j is combined into a function-
valued argument, e.g., val(engine,0). The generic defi-
nition of functional and mandatory in DDM-FL would
allow to specify cardinality constraints not only on val or
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Fig. 15 Evaluation of cardinality constraints of Fig. 14 (also repre-
sented in Listing 10) over value and range of property engine based
on the statements modeled in Fig. 10 (also represented in Listing 6).
Cardinality constraint violations are indicated by a thunderbolt symbol
together with a letter identifying the cardinality constraint in Fig. 14

rng but also on other methods with a similar signature, such
as actRng.

A violation of amandatory constraint (lines 9:4–9:10) for
value or range (?meth) of property p between source clabject
c and target clabject d for source potency i and target potency
j (line 9:5) occurs, if a concrete ancestor o of c (line 9:6) at
level i of p’s domain (line 9:7) has no concrete descendant
v of d (line 9:9) as value or range, respectively, with target
potency j for property p (line 9:10).

A violation of a functional constraint (lines 9:12–9:17) for
value or range (?meth) of property p between source clabject
c and target clabject d for source potency i and target potency
j (line 9:13) occurs, if a concrete descendant o of c (line 9:15)
at level i of the domain of p (line 9:14) has two targets v and
w for property p at target potency j (line 9:16) which are
both concrete descendants of v (line 9:17).

8 Related work

Multi-level modeling offers more elegant solutions to many
practicalmodeling situations than traditional, two-levelmod-
eling. Multi-level modeling approaches liberate modelers
from the confinements of traditional metamodeling with
model and metamodel, class and metaclass. The clabject [2],
with its class and object facets, becomes the central notion.
The number of metalevels is arbitrary and unconstrained,
with each clabject possibly serving as the class for clabjects
at a lower (meta-)level while, at the same time, instantiat-
ing a clabject from a higher metalevel. Common modeling
patterns that typically benefit from a multi-level approach
include the type-object pattern, the dynamic addition of fea-
tures, and the configuration of relationships (see [33]). The
type-object pattern refers to the dynamic creation of types
at run time. Besides the type-object pattern, the need for
dynamic addition of features to types frequently arises. Fur-

thermore, certain use cases require the dynamic definition of
relationships. In the DDM approach, self-describing objects
provide the support for dynamic addition of features and con-
figuration of relationships.

Telos [34] and its implementation ConceptBase [22,23]
allow for arbitrary-depth metamodeling. An attribute propo-
sition may be instantiated recursively many times, thereby
acting as referential integrity constraint for all its direct
and indirect instances. The Telos axiomatization, however,
does not specify a mechanism for the definition of the
depth of property characterization. Furthermore, as opposed
to DDM, Telos does not support the modeling of self-
describing objects nor the flexible instantiation of properties.
The instantiation of an attribute proposition always comes
in conjunction with an instantiation of source and target.
Likewise, Telos lacks a mechanism for the definition of
deep cardinality constraints as well as a mechanism akin
to property specialization, which is orthogonal to property
instantiation by statements at different levels. On the other
hand, Telos, just like DDM, does not distinguish between
associations and attributes.

Unlike DDM, Telos does not distinguish properties from
statements. Rather, in Telos, every property is also a state-
ment. Furthermore, Telos treats explicit instantiations as
regular statements, i.e., as attributes of objects; DDM differs
in this respect. The lack of potencies in Telos do not prevent
the definition of statements that cross-abstraction levels, e.g.,
from ametaclass to an individual. Such a statement, however,
may only be instance of another statement if that other state-
ment’s source and target are both one metalevel above the
instantiating statement’s source and target. Finally, DDM’s
generalization of properties is comparable to Telos property
generalization. But, since Telos is ignorant of the concept of
potency, generalization has no impact on potency in Telos,
as opposed to the generalization of properties in DDM.

VODAK [26] was among the first systems that intro-
duced what was later called deep instantiation/characteriza-
tion [17,29]. The VODAK system realizes deep instantiation
through the organization of objects into types and, in par-
allel, into classes and metaclasses. Metaclasses define own
types, instance types and instance-instances types, similar in
essence to the power type design pattern [17]. In VODAK,
type instantiation occurs between an object and its class’
instance type; type instantiation is inferred from the func-
tional association of an object to a class in order to provide
for a lossless and redundancy-free representation of func-
tional data dependencies according to database design theory.
As opposed to DDM, VODAK captures the semantics of
relationships between objects at different metalevels in a
behavioral manner, using methods attached to types rather
than implicit constraints.

Potency-based metamodeling allows for a class at one
(meta-)level to define features of instances several levels
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below. To each feature, the class assigns a potency which
indicates the metalevel that the feature characterizes, with
instances at the respective level providing the actual values
for the feature [5]. The traditional potency-basedmetamodel-
ing approach [6] assumes strictness. In a strict metamodeling
framework, instantiation is the only relationship to cross-
level boundaries. Any other relationship occurs between
objects at the same metalevel [7]. Following a data modeling
agenda, the DDM approach relaxes the strictness condition
by distinguishing between source and target potencies.

Model-driven engineering (MDE), which typically relies
on two metalevels, namely model and metamodel, may
benefit from the introduction of an arbitrary number of
metalevels. Several MDE frameworks support multi-level
modeling. DeepJava [28] extends the Java programming
language with multiple metalevels and potencies, effec-
tively abandoning two-level programming with class and
object. Melanee [3,4,24] provides support for the design
of domain-specific languages. Nivel [1] defines a potency-
based metamodeling language with a formal specification of
the language semantics. MetaDepth [30] presents a multi-
level modeling framework with support for the definition of
constraints and derived attributes.

The MetaDepth multi-level metamodeling framework
employs richer semantics for potencies than previous
approaches toward potency-based metamodeling, thereby
extending multi-level modeling for more practical applica-
tions [31,32]. In MetaDepth, several models exist which
represent different viewpoints on a system. Each model
belongs to some metalevel as indicated by the model’s
potency. A clabject may refer to another clabject within the
samemodel.Deep references relate clabjects at differentmet-
alevels, thereby realizing a cross-level relationship other than
instantiation, loosening the strictness of metamodeling. Ref-
erences and deep references in theMetaDepth framework are
akin to properties in DDM.

The DDM approach incorporates many traits of
MetaDepth geared toward increased modeling flexibility. In
particular, DDM allows for property relationships between
clabjects at different metalevels. MetaDepth realizes cross-
level references via the definition of different models,
whereas DDM introduces a target potency for deep proper-
ties. DDM also adopts a kind of leap semantics for property
instantiation. In DDM, properties are not mediated, that
is, not mandatorily instantiated at every metalevel. Rather,
DDM allows for the refinement of range and the instantia-
tion of values at every metalevel without forcing modelers to
do so.

Rossini et al. [42] provide a formalization of deep
metamodeling based on graph transformation using the
Diagram Predicate Framework (DPF). The formalization
receives an implementation in MetaDepth. The formaliza-
tion distinguishes between single-potency andmulti-potency

semantics. Deep attributes with multi-potency semantics are
instantiated at multiple metalevels. As in MetaDepth, deep
instantiation with multi-potency semantics is usually medi-
ated, as opposed to DDM which is more flexible in this
regard.

Unlike MetaDepth and other related multi-level modeling
approaches, which place the focus on software engineering,
DDM aims primarily at data engineering. The main con-
cerns of DDM are thus the modeling of domain and range
of object properties, the querying of data objects, and the
representation of asserted values as opposed to derived val-
ues. In particular, range, active range and (derived) values are
important DDM concepts for data modeling not present in
MetaDepth and other multi-level modeling approaches that
focus on software engineering.

The data modeling focus of DDM suggests employing the
abstract superclass rule which presents considerable advan-
tages for object-oriented datamodeling (see [19]). In particu-
lar, the abstract superclass rule alleviates the issues associated
with multiple inheritance. Furthermore, the abstract super-
class rule facilitates querying since each class also represents
a set of objects.

Materialization [14,40] realizes a multi-level conceptual
modeling approach with a relationship that blurs the bound-
aries between aggregation and instantiation. Data objects
may have a class facet and an object facet. Different types of
attribute propagation in the course ofmaterialization emulate
the deep characterization pattern.

The powertype-based approach toward metamodeling
also relies on the notion of clabject [17]. The instances of
a powertype are sub-types of another object type, thereby
providing metamodeling capabilities [38, p. 28]. The pow-
ertype, which is also part of the UML standard [39, p. 54],
traces its origins to powersets in set theory [8]. The pow-
ertype pattern consists of “a pair of classes in which one
of them (the powertype) partitions the other (the partitioned
type) by having the instances of the former be sub-types of
the latter” [17, p. 83]. A more recent approach [16] adopts a
viewpoint on modeling and metamodeling based on the use
of language rather than originating in set theory.

The multi-level object (m-object) combines the charac-
teristics of deep instantiation, materialization, and power-
types [35]. An m-object defines a class for various, hierar-
chically ordered levels of abstraction while instantiating the
top-level class. In DDM, each clabject has a class facet for
each metalevel and an object facet for the top metalevel. In
this respect, a clabject in DDM is similar to an m-object.
In contrast to DDM and other potency-based deep modeling
approaches, the m-object approach uses level names instead
of potency numbers to refer to instantiation levels and sup-
ports the injection of intermediate levels for some part of a
hierarchy. The m-object modeling approach, however, has
no equivalents to clabject generalization, property special-
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ization, and deep cardinality constraints, and also lacks the
powerful query facilities of DDM.

Demuth et al. [15] identify consistency checking as an
important aspect of multi-level modeling. The thus iden-
tified types of consistency checking in multi-level models
include checking conformance of model elements with the
linguistic metamodel, checking conformance of instances
with ontological types, checking consistency of inheritance
relationships between ontological types, and semantic con-
straint checking for objects at a specificmetalevel. TheDDM
formalization in F-Logic contains rules for consistent spe-
cialization and type conformance as well as a mechanism for
the definition of multiplicity, domain, and range constraints
for relationships. This paper does not explicitly investigate
the definition of additional semantic constraints for DDM
models, e.g., that the list price of car models of a specific
category must exceed a minimum amount of money. Mod-
elers, however, may define additional semantic constraints
over classes by using F-Logic and the DDM predicates.
Demuth et al. [15] introduce a formalization of multi-level
modeling based on the DesignSpace Core metamodel in
order to support automated consistency checking. The DDM
formalization in F-Logic allows modelers to employ the
Flora-2 system in order to check consistency of a model.
Demuth et al. [15] further stress the importance of consis-
tency checking for multi-level model evolution. Again, for
DDM models, modelers may employ the Flora-2 system in
order to determine consistency of an intended change in the
model.

The MLT multi-level theory [9] establishes ontological
foundations for multi-level modeling. MLT applies the Uni-
fied Foundational Ontology (UFO), a reference ontology the
main application area of which is conceptual modeling, to
multi-level modeling. In particular, unlike UFO, MLT dis-
tinguishes not only between types and individuals but also
considers types with types as instances. This extension of
UFO for multi-level modeling improves semantic clarity of
multi-level models.

The visual and precise metamodeling (VPM) frame-
work [45] aims at a mathematical definition of visual
metamodeling and follows a multi-level approach. The VPM
framework has a model-driven architecture focus where the
quality of the metamodels is of critical importance for model
transformation. In VPM, the boundaries between model and
metamodel are fluid. What is model may be metamodel in
another context, type–instance relationships between mod-
els are handled dynamically, which presents advantages for
model transformation. The VPM framework employs multi-
level modeling in order to allow for the specialization of
classes between models without being confined by the strict
division of metalevels in MOF. Importantly, in VPM, model
elements may be, at the same time, instance and specializa-
tion of a particular model element. VPM, however, has no

equivalent to potency-based instantiation. DDM has a focus
on data modeling and knowledge representation, the concept
of potency-based deep instantiation being a central aspect.

The SKIF framework [18] introduces a definition of the
semantics of the Knowledge Interchange Format (KIF). The
SKIF framework employs the notion of term as the central
concept, bearing similarities to the clabject-centric view of
multi-level approaches. Although SKIF refers to individuals
and relations, an individual is structurally indistinguishable
from a relation, defined as a relationwith an empty extension.
The SKIF framework shows that first-order logic is sufficient
to express such multi-level models.

F-Logic and the Flora-2 system provide the formal frame-
work and modeling environment for DDM. The Flora-2
system has already proven its suitability for formalizing
multi-level modeling [20]. A different approach [12] aims at
providing a modeling kernel as a foundation for multi-level
modeling, suitable for the representation of deep instan-
tiation and powertype-based models. Unlike this previous
formalization ofmulti-level modeling in F-Logic, DDMcon-
siders cross-level property relationships a core concern of the
approach. Thus, in this paper, we present an extensive inves-
tigation of such properties.

9 Conclusions

In this paper, we introducedDDMas a general purposemulti-
level modeling approach with a focus on the requirements of
conceptual data modeling. The DDM language constructs
generalize core object-oriented modeling constructs—class,
object, property, property value, association, link, association
end refinement, multiple class/object generalization, prop-
erty/association specialization, cardinality constraints—for
multi-level modeling. In contrast to strict multi-level mod-
eling approaches, different clabject hierarchies in the same
model may come with varying numbers of instantiation lev-
els. Properties and their statements may flexibly connect
clabjects at different levels.

We introduced DDM along examples from a multi-level
enterprise database. Similar use cases and settings can be
found in manufacturing enterprises that organize multiple
product models in so-called product life-cycle manage-
ment (PLM) systems. These systems describe in detail the
properties of products, their parts, the machinery for their
production, and the production steps. Such systems need to
be integrated with the companies’ operational systems, e.g.,
ERP systems thatmanage the actual resources, the orders, the
customer base, and so forth.Whereas ERP systems and oper-
ational systems focus on instance data, PLM systems focus
on models, which act as classes in the operational systems.
Both must be integrated to create a consistent view of the
enterprise, i.e., the integrated conceptual data model of the
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ANSI/SPARC architecture. A flexible multi-level modeling
approach like DDM allows to make associations between the
two types of systems independently of their modeling levels,
and this is necessary since neither is just the schema for the
other. Experience from industry projects [44] suggests par-
ticular adequacy of multi-level modeling for IT ecosystem
integration.

The formalization of DDM in F-Logic/Flora-2 (DDM-
FL) constitutes a proof-of-concept implementation of the
approach. The DDM-FL system provides consistency check-
ing and flexible query facilities to the modeler, especially for
queryingproperty values (instance facet) and rangeof proper-
ties (schema facet), derived from themulti-faceted statements
at the various levels of the multi-level model/database.

The list of ongoing and future work based on the DDM
approach includes:

– Multi-level modeling of n-ary associations and associa-
tion classes.

– Modeling of derived properties, e.g., avgAge, of clab-
jects.

– Modeling and specification of operations (methods) of
clabjects along with life-cycle models in the spirit of
multi-level business processes [43].

– Adapting and interfacingDDM to standardmodeling and
data representation techniques and tools.
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Appendix: Complete formalization of DDM in
F-Logic

The formalization of DDM in F-Logic, which was devel-
oped and tested with version 0.99.5 of Flora-2, together
with examples, is available at http://multilevelmodeling.net/.
The Flora-2 system is available at http://flora.sourceforge.
net/. The following code listing contains the complete for-
malization/implementation of DDM-FL, merging the code
fragments introduced in this paper.
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