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1 Introduction

Over the last decades, there has been increasing interest in R-violating supersymmetry, as a

plausible alternative to the Minimal Supersymmetric Standard Model (MSSM). Supersym-

metrizing the Standard Model (SM) does allow for additional terms in the superpotential

over and above those corresponding to the Higgs potential or the Yukawa terms within the

SM. The supersymmetric versions of the latter read

µ H1 H2 + meLiĒjH1 + mdQiD̄jH1 + muQiĒjH2, (1.1)

where H1,2 are the Higgs superfields, L (Q) the left-handed lepton (quark) doublet super-

fields, and Ē (D̄, Ū) the corresponding left-handed singlet fields. Gauge symmetry as well

as supersymmetry do allow for additional bilinear terms of the form

µi Li H2 (1.2)

as well as trilinear ones, namely

λijkLiLjĒk + λ′
ijkLiQjD̄k + λ′′

ijkŪiD̄jD̄k. (1.3)

Each of the terms in eqs. (1.2) & (1.3) violate R-parity. In particular, the existence of

any of µi, λijk, λ
′
ijk implies lepton number violation while a non-zero λ′′

ijk violates baryon

number. SU(2) and SU(3) invariance imply that there are 48 R-violating couplings in all

(3 µi’s, 27 λ′
ijks and 9 each of λijk and λ′′

ijk).

The strictest bounds on lepton and baryon-number violating operators come from

proton stability. The assumption of a conserved R-parity automatically rules out all of

the terms of eqs. (1.2) & (1.3), rendering the proton stable [1, 2], modulo higher dimen-

sional terms endemic to the MSSM. However, alternative symmetries, namely baryon or

lepton parities [3–5] can also exclude the simultaneous presence of dangerous LQD̄ and

ŪD̄D̄ couplings [6]. Experimental constraints from the non-observation of modifications to

Standard Model rates, or from possible exotic processes [7–14, 18]1 also impose additional

limits. Overall, the phenomenology to be expected out of such theories is very rich, since

the LSP (Lightest Supersymmetric Particle) is no longer stable and the missing-energy

signatures of the MSSM2 are substituted by multi-lepton or multi-jet events [25, 26];3 4

single superparticle productions [28–31] are also possible.

In addition to the consequences for collider searches, R-violation implies that graviti-

nos (which may have been thermally produced after a period of inflation) are also unstable.

However, gravitino dark matter in the framework of R-violating supersymmetry is plausi-

ble [32–34], provided that the gravitino decays slowly enough for its lifetime to be larger

than the age of the universe [35, 36]. This is an exciting possibility that allows for super-

symmetric dark matter, even if the R-violating couplings are sufficiently large to lead to ob-

servable signatures at colliders [33, 34]. Moreover, it was found that the branching ratios for

gravitino decays are very sensitive to the flavour structure of R-violating operators [33, 34].

1For a review of experimental constraints on R-violating operators, see refs. [15–17].
2For an introduction to the phenomenology of the MSSM, see refs. [19, 20].
3For some of the earliest references on the phenomenology of R-violating supersymmetry, see refs. [21–24].
4For a review on R-violating supersymmetry, see [27].
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In general, the flavour structure of R-violating couplings is of particular relevance in

defining the nature of the signals to be expected and any information on it would be crucial

for understanding the flavour structure of the fundamental theory. Indeed, one may try to

relate hierarchies amongst R-violating couplings to those in fermion masses [37–42], using

models with family symmetries. For example, a large class of such models allow only the

third generation fermions to be massive, while the remaining masses are generated by the

spontaneous breaking of the family symmetry. In such a scheme, if R parity is violated,

couplings with different family charges are likely to appear with different powers of the

family symmetry-breaking parameter, and thus with different magnitudes.

Testing the above models against observations is very hard, since by allowing the most

general family structure of couplings one ends up with a large number of possibilities. Single

superparticle productions can lead to spectacular signatures, but they are very dependent

on the flavour structure and one must ensure that the initial scattering states couple to

the operators of interest in a specific model. If this is not the case, the respective single

superparticle production mechanisms will be invisible.

From this point of view, pair production of superpartners and their subsequent cascade

decays via an unstable neutralino LSP have a great advantage, since the latter (by coupling

to all quarks and leptons) could decay via any of the 45 trilinear operators, thereby allow-

ing a comparative study. Through a detailed, correlated study of these decay chains, one

may also investigate whether more than one R-violating couplings are of substantial size,

“map” their magnitudes and hierarchies, and compare against theoretical models. This is

the aim of the present paper, which is structured as follows: in section 2, we summarise

the generic framework of the analysis. In section 3, we study energy and invariant mass

distributions, for LLĒ operators, as well as leptonic R-violating branching fractions. In

sections 4 and 5 we discuss energy and invariant mass distributions for LQD̄ and ŪD̄D̄ op-

erators, respectively. In section 6 we focus on the correlations between different couplings

and possible mappings between the kinematic distributions and operator flavour hierar-

chies. In section 7 we present our conclusions. Finally, in appendices A and B we present

spectra from three-body decays and theoretical invariant mass distributions, respectively,

integrating over the unobserved neutrino energy.

2 Framework for the analysis

We study possible effects of R-parity violation (RPV) in the end stages of cascade decays

of supersymmetric particles. In other words, we assume that the RPV-couplings are small

enough not to materially change either the production processes (which continue to be

gauge-interaction driven), nor in the cascade decays down to the neutralino LSP. The LSP,

though, decays, within the detector, on account of a non-zero RPV-coupling. A neutralino

LSP is motivated even in the case of R-violating supersymmetry, since, due to the lack

of electromagnetic or colour interactions, its mass after renormalisation group runs tends

to be smaller than those of other sparticles for a very broad region of the supersymmetric

parameter space. A sneutrino or a stau LSP (due to the large Yukawa coupling, staus can
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Figure 1. Feynman diagram describing one important supersymmetric decay chain followed by an

R-parity violating neutralino decay.

be anomalously light) is still plausible, especially if m0 is sufficiently small compared to

m1/2. Those scenarios are beyond the scope of this work.

Depending on the scenario, a variety of supersymmetric particles could be produced

in proton-proton collisions, mostly squarks and gluinos,

qq → q̃q̃, qg → q̃g̃, gg → g̃g̃, gg → q̃ ˜̄q, qq̄ → q̃ ˜̄q, (2.1)

but also charginos and neutralinos. The squarks and gluinos will typically decay to quarks

and leptons, one important channel being

q̃ → qχ̃0
2 → qℓ+ℓ̃− → qℓ+ℓ−χ̃0

1,

g̃ → q̄q̃ → q̄qχ̃0
2 → q̄qℓ+ℓ̃− → q̄qℓ+ℓ−χ̃0

1. (2.2)

The importance of this is due to the presence of leptons, which allows easier extraction

from the background. However, when confronted with leptonic or semi-leptonic R-violating

neutralino decay, such leptons will constitute a background for our signals.

We shall, in turn, allow the LSP to decay via LLĒ, LQD̄ and ŪD̄D̄ couplings, as

depicted in figure 1.

Our analysis has been performed for some of the SPS points [43]. These points have

been identified so as to satisfy the WMAP constraint on dark matter [44–46]. While we

do not require stable dark matter, these benchmark points are, nevertheless, convenient

reference points in the multidimensional parameter space and allow for direct comparisons

between the MSSM results in the literature and the expectations in the presence of R-

violating operators. Several of the results we obtain are similar for all these points and

therefore, for many of the distributions to be discussed, we focus on the SPS1a case.

However, for those predictions that are more sensitive to the SUSY parameter space, we

present more global results, elaborating on the differences to be expected in each case.

In the above cascade decay, the actual strength of the R-violating coupling does not

lead to qualitative differences in the predictions, as long as:
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(i) it is strong enough for the neutralino decays to be inside the detector (≥ 10−6 for

100 GeV sparticles and scaled accordingly for higher masses [47], in the case that we

do not have any additional effects from phase space suppressions);

(ii) it is not sufficiently large for sparticles to decay directly via the R-violating operator

instead of reaching the end of the chain and then decaying via neutralinos.

For couplings closer to 10−6 there might be displaced vertices that can improve the extrac-

tion of the signal [48, 49]. This, however, has not been studied in this work.

The numerical value of the upper limit of couplings does depend on the SUSY param-

eter space and the flavour of the R-violating operator under consideration. In section 2.1,

we show that the cascade decay actually dominates for a large part of parameter-space

as long as the R-violating coupling is kept within experimental bounds. Especially when

more than one coupling is large, the strong bounds imposed on products of couplings from

flavour violating processes [50–53] will assure cascade dominance.

To analyse the above scenario, we simulate proton-proton collisions at a center of mass

energy of 14 TeV using the PYTHIA 8.1 [54] Monte Carlo event generator. In order to

correctly describe the kinematical distributions, we have modified PYTHIA to use the

energy distributions of appendix A for the neutralino decay. For the SUSY input we use

the SUSY Les Houches Accord (SLHA) [55] spectra from SoftSUSY [56], together with

SLHA decay tables calculated in PYTHIA 6.4 [57].

The jet analysis is done using FastJet 2.4 [58] with a kt-algorithm [59, 60] where the pa-

rameter Rjet, denoting the upper limit on ∆R ≡
√

(∆η)2 + (∆φ)2 for a merge to be allowed,

is set to 0.4 unless stated otherwise. Included in the analysis are all detectable particles,

i.e. all particles except neutrinos (and stable neutralinos and gravitinos if applicable).

For analyses including taus and b-quarks, the definition of tau (b-) jets is that at least

60% of the pT of the jet should come from decay products of the tau (b-quark). This

fraction is known in the Monte Carlo but for a more realistic study one would need to

resort to proper tau and b tagging. For the rest of the paper we shall denote the tau-jets,

τjet and the b-jets, bjet, except in figures where we use τ and b in order to save space.

A lepton is considered isolated if there is no jet with pT > 10 GeV within a cone of

∆R < 0.4 and the total additional energy within ∆R < 0.2 is less than 10 GeV. Note

that leptons are included in the jet clustering, but jets that, after the clustering, contain

essentially nothing but a lepton, are not included in the further calculations involving jets.

We also impose acceptance cuts, requiring pT > 5GeV for leptons and pT > 10 GeV

for τjet’s and bjet’s. Where light quark jets are used, they are required to have pT > 20 GeV.

The reason for the harder cut on light jets as compared to τjet’s and bjet’s, is to remove

some background jets from beam remnants, bremsstrahlung etc.

All data presented is based on simulations of one million events for each operator/SPS

point combination. The backgrounds, tt̄, W,Z and QCD (with total pT > 300 GeV) are

studied simulating 10 million events for each in order to account for their larger cross-

sections.

– 5 –



J
H
E
P
0
7
(
2
0
1
1
)
0
7
0

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000
0

200

400

600
 =M

~
      600 GeV  =βtan         1 ’  =λ      0.04

 [GeV]µ

 [GeV]2M

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000
0

200

400

600
 =M

~
      600 GeV  =βtan         1 ’  =λ       0.1

 [GeV]µ

 [GeV]2M

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000
0

200

400

600
 =M

~
      300 GeV  =βtan         1 ’  =λ      0.04

 [GeV]µ

 [GeV]2M

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000
0

200

400

600
 =M

~
      300 GeV  =βtan         1 ’  =λ       0.1

 [GeV]µ

 [GeV]2M

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000
0

200

400

600
 =M

~
      300 GeV  =βtan        10 ’  =λ      0.04

 [GeV]µ

 [GeV]2M

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000
0

200

400

600
 =M

~
      300 GeV  =βtan        10 ’  =λ       0.1

 [GeV]µ

 [GeV]2M

Figure 2. Dominance of MSSM decay of squark vs its R-parity-violating decay, shown for two

squark masses, and two values each of tan β and λ′.

2.1 Cascade dominance

In order for the cascade to proceed to the end, giving an (unstable) LSP, the competing R-

violating decay of the squark cannot be too strong. The decay of the squark to a quark and

a neutralino (or chargino) proceeds via a combination of gauge and Yukawa couplings, in

competition with an R-violating decay to a quark and a lepton with a strength proportional

to some λ′ squared.5 The relative rates of these channels will depend on the squark mass,

as well as on the neutralino and chargino spectrum, and the coupling λ′. In order to

illustrate this competition, we determine neutralino and chargino spectra in terms of M2,

µ and tan β (holding M1 = (5/3) tan2 θW M2) and plot, in figure 2, the ratio

ξ ≡
∑

Γ(q̃ → qχ̃0
i ) +

∑

Γ(q̃ → q′χ̃±
i )

Γ(q̃ → all)
. (2.3)

5Analogous statements hold for decays through λ
′′, and in case of slepton/sneutrino decays for λ-

couplings.
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Where this ratio is high (represented in red and yellow), the decay of the squark will proceed

via a cascade to the lightest neutralino, which then will decay via the R-parity-violating

interaction. Note that we do not need any assumption here about where in the decay chain

the studied squark is produced and hence a high ξ for all sparticles present in the coupling,

will ensure that the cascade continues down to the lightest neutralino.

The white regions in these panels are excluded by the lightest chargino mass being in

conflict with the LEP bound, Mχ̃±

1
≥ 94 GeV [61].

For some representative combinations of the squark mass M̃ , tan β and λ′, we see in

figure 2 that even for rather substantial R-violating couplings, the cascade decay dominates

for large regions of parameter space. One should also remember that typical decay chains

may involve particles other than those present in the dominant R-violating coupling and

thus have no open channels for direct R-violating decay. Since these cascades will always

proceed to the lightest neutralino, the probability of interrupting the cascade with a direct

decay, is further reduced compared to the above discussion.

3 LLĒ couplings

We shall first consider the couplings LiLjĒk, which, typically, lead to decays of the LSP

to two charged leptons and a neutrino, for example

χ̃0
1 −→

L1L2Ē1

e+µ−νe, e−µ+ν̄e, e+e−νµ, e+e−ν̄µ. (3.1)

While isolated leptons in the final state would also arise in R-conserving scenarios from

decays higher up in the cascade chain, we will see that differences in kinematic distributions

allow us to statistically disentangle the composition of the final state.

We assume that only one LLĒ operator is non-vanishing and set the corresponding

coupling to be

λijk = 10−4. (3.2)

It should be noted that, even if two (or more) couplings of such a size are introduced, the

constraints from FCNC [50–53] are satisfied almost trivially. There do exist a few combi-

nations for which even such sizes can be of concern, but these we take care of specifically.

Note also that many such constraints actually apply in combinations like
∑

i λijkλ
∗
iℓn/m2

i ,

and given that the couplings λ can assume either sign (and, in principle, any phase), larger

couplings could, in principle, be accommodated if one were to admit cancellations. Collider

signals, on the other hand, would be insensitive to such cancellations. We, however, desist

from considering such possibilities. Identical observations would hold for λ′ couplings as

well, while, for λ′′ couplings, the bounds are, in general, even weaker. However, we will

return to the issue of a comparative study of the magnitude of the operators, if several of

them are large — a main aim of the paper — in a subsequent section.

For the analysis of the LLĒ operators, the following selection cuts have been used [62,

63]:

• at least three isolated leptons with pT > 20 GeV;
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ijk ee µµ ττ eµ eτ µτ

121 X X

122 X X

123 X X

131 X X

132 X X

133 X X

231 X X

232 X X

233 X X

Table 1. Possible final states for LLĒ couplings.

• the leading lepton has pT > 70 GeV;

• pmiss
T > 100 GeV.

These cuts are sufficient to reduce tt̄ events by a factor ≈ 3 ·10−6 and W and Z0 events

(including all production of weak bosons) by a factor ≈ 6 · 10−5. The RPV events, on the

other hand, are reduced to approximately 1− 40% of the total, with the suppression factor

depending on the point in the SUSY parameter space as well as the nature of the RPV

interaction. For operators with a lot of tau flavour, the reduction is significantly stronger

than for operators involving only light flavours.

This means that in the case of a SUSY parameter point with low cross section and

low lepton production in combination with a tau-rich LLĒ operator, we might get some

W and Z0 events in the sample, but detailed simulations show that this contamination in

the studied distributions is not a significant problem.

Overall, in the presence of R-violation via LLĒ operators, we can see spectacular

signatures (final-state flavours, like-sign leptons, etc.);4 these become more pronounced for

the L2L3Ē1 and L1L3Ē2 couplings, which mix all flavours.

3.1 Final-state flavour correlations

Since we cannot detect the neutrinos or their flavours, the characteristics of various decay

channels have to be described in terms of the charged leptons in the decay. From each

neutralino we get one pair of charged leptons and their identities are correlated with the

flavours in the operator.

It is important to remember that every operator gives rise to two distinct channels, a

consequence of the fact that one of the charged leptons is associated with the Ē superfield

and the other with the L superfield. Since SU(2) invariance requires the L-type fields to

have different flavours, this leads to exactly two different channels, modulo charge conju-

gation. The operator L1L2Ē1, for example, will give both e+e− and eµ pairs with equal

frequency.

– 8 –
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Figure 3. Electron, muon and τjet spectra for L1L2Ē1 (left panel) and L2L3Ē2 (right panel) at

SPS1a. Notice the dips in the spectra at 20 GeV; this comes from the fact that a lepton with

pT < 20 GeV can only pass the cuts if there are at least 3 other high pT leptons in the event. One

can also see features at 70GeV due to the cut.

A further complication arises when tau fields are involved, then light-lepton pairs may

arise from leptonic tau decays. And since our final states require isolated light leptons, the

leptonic tau decays will be favoured over hadronic ones. Similarly, decay channels wherein

the superparticles decay directly into light leptons would have a higher detection efficiency

compared to those involving intermediate tau states. Thus, the composition of final states

measured is not the same as given directly by the branching fractions but depends non-

trivially on the supersymmetric spectrum as well as the flavour structure of the coupling.

The open channels for each coupling are given in table 1.

3.2 pT distributions

We first look at the pT spectra of the electrons (henceforth, “electrons” will refer collec-

tively to both electrons and positrons) and muons as well as hadronic taus. We shall

assume that hadronic taus (τjet) can be identified (with some efficiency). Note that in the

τjets the neutrino is not included.

The electron, muon and τjet spectra for L1L2Ē1 and L2L3Ē2 at SPS1a are shown in

figure 3. The two panels look the same apart from different relative normalizations of indi-

vidual curves. These different normalizations can give insight into the flavour composition

of the operator. However, since we do not know how much the R-conserving decay chain

contributes and also since the overall number of leptons is more or less dictated by the cuts,

the most interesting information here might be the difference in normalization between the

electron and the muon spectra. Since the R-conserving chain is not expected to give any

difference here, it might give some hint on the dominant flavour in the coupling.

3.3 Invariant mass distributions

One of the best tools for studying leptonic decays of the neutralino are invariant mass dis-

tributions. The charged leptons from the decay will give rise to invariant mass distributions

as calculated in appendix B. Since the flavours of the involved leptons are determined by

– 9 –
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the flavours in the coupling, the channels in which these distributions are to be expected,

can be deduced from table 1.

Let us illustrate how this works: L2L3Ē1 gives rise to e±µ∓ and e±τ∓ final states

(see table 1). Therefore, we expect a prompt contribution of the type (B.2) in the eµ

invariant mass distribution as well as contributions of the type (B.11) (from leptonic tau

decays) in the eµ as well as ee distributions. In addition, the e±τ∓ final state should give

a contribution of type (B.12) to the eτjet distribution.

Since our goal is to determine the flavours of the coupling, we want to study all dilepton

distributions available, as well as distributions including τjet’s. We then want to use the

presence of the various signals together with table 1 to determine the operator flavours.

Since we cannot tell which leptons come from the same vertex, we will have a problem

with unrelated lepton pairs, i.e., pairs of leptons from different parts of the event. This

combinatorial background will, in some cases, make it difficult to see the signal. However,

since these pairs are not related, they will equally often have the same charge as the

opposite, and since we do not expect any signals in the same-sign distributions, subtracting

those distributions turns out to be a very effective way of removing these backgrounds.

The effect of the same-sign subtraction can be seen in figure 4 where we show the di-

lepton distributions for L2L3Ē1 at SPS1a both without and with same-sign (SS) subtrac-

tion. From this we can see that the same-sign subtraction is especially important in order to

extract the smaller signals where leptonically decaying taus are involved. Also for the distri-

butions involving τjet’s it is crucial to apply same-sign subtraction in order to see the signals.

3.4 Backgrounds and uncertainties

The interpretation of any detected excess as a signal is possible only if we understand well

the (backgrounds from) R-conserving decay chains and also the effect of the cuts on the

shapes of the distributions. The latter issue is expected to affect the accuracy of the fit of the

theoretical distributions to the data, which makes, e.g., a reconstruction of the neutralino

mass more challenging. The first issue, on the other hand, depends on the SUSY model

and is especially important for the distributions including τjet’s where the contributions

from the R-conserving chains look very similar to the contributions from the neutralino

decay. This can be seen in figure 4 where both the µτjet and the τjetτjet distributions

show unexpected features, closely resembling the expected signals. On the other hand, the

corresponding triangular distributions in the ee and µµ distributions are more distinct and

can therefore be removed from the analysis (practically invisible in figure 4).

There are, of course, backgrounds from standard-model processes too, but these are

well handled by the event selection criteria. Other experimental issues include photon

conversion as well as photon and lepton misidentification. The necessity of same-sign sub-

traction also implies a sensitivity to the ability to correctly measure the sign of the leptons,

especially the corresponding charge of τjet’s.

For some choices of SUSY parameters, a real Z0 may be produced in the decay chain

and this would show up in the same-flavour (opposite-sign) dilepton invariant mass distri-

butions. However, since this only gives a peak at the Z0 mass, this effect can be easily

accounted for.
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Figure 4. Di-lepton invariant masses for L2L3Ē1 at SPS1a, where the neutralino mass is 97.0GeV.

Thin curves: without same-sign subtraction. Heavy curves: M(ℓℓ′) distributions after same-sign

subtraction. Here, “τ” refers to a hadronic tau.

3.5 Comparison of Monte Carlo results with theory

We now compare Monte Carlo simulations with the theoretical distributions derived in

appendix B. In what follows, the neutralino mass and the normalizations of the spectra

are fitted to the Monte Carlo distributions, thereby allowing for a determination of the

neutralino mass.

As can be seen in e.g. figure 20 in appendix B, most of the expected distributions

look very similar, the main differences being different kinematical cutoffs. This means we

have to be careful with the fitting procedure to avoid too large degeneracies in the fitted

parameters; e.g. a distribution of type (B.2) may look very similar to a distribution of

type (B.11) with a larger neutralino mass.

To avoid problems with this, each distribution has only been fitted using the distribu-

tions that are relevant due to the assumed operator flavours. For the relevant distributions

we also include a triangular distribution where the cutoff is assumed known (only for SUSY

models where such a contribution from the chain exists), and a peak at the Z0 mass. The

parameters to be fitted are then the neutralino mass as well as the normalizations of the

various components.

In a realistic scenario where the operator is not known but to be determined, the

relevant distributions can be determined by a comparison with Monte Carlo data. In cases

where this is difficult one can exploit the expected correlations between the distributions;

if one distribution has a clear cutoff, the others cannot have neutralino masses significantly

lower than that cutoff. Note that at least one of the distributions will always have a cutoff

close to the neutralino mass.

Assuming L2L3Ē1 to be the dominant R-violating term, various dilepton mass dis-

tributions corresponding to the benchmark points SPS1a, SPS1b and SPS6 are shown in

figure 5. The left panels show the pure dilepton invariant mass distributions while the right

panels show the distributions involving τjet’s. As one can see, the fits are in all cases quite

good, but there are some deviations at the lower end, especially in the τjet distributions.
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model Mχ0
1

ee µµ eµ eτ µτ ττ

L2L3Ē1, SPS1a 97.0 116 ± 0.3 — 96.8 ± 0.1 106 ± 0.5 — —

L2L3Ē1, SPS1b 162.2 167 ± 0.5 — 171 ± 0.1 171 ± 0.4 — —

L2L3Ē1, SPS6 189.8 195 ± 1 — 187 ± 0.1 200 ± 0.5 — —

L1L3Ē3, SPS6 189.8 205 ± 0.2 295 ± 6 195 ± 1 198 ± 0.8 227 ± 2 224 ± 3

L1L3Ē3, SPS1b 162.2 172 ± 2 272 ± 13 176 ± 0.4 172 ± 0.7 204 ± 3 187 ± 3

L1L2Ē3, SPS1b 162.2 173 ± 1 172 ± 1 172 ± 0.5 172 ± 0.4 172 ± 0.4 —

Table 2. Fitted neutralino mass (all values are in GeV) from the various distributions.

This is due to the cuts imposed and the consequent deterioration of the signal profile. Es-

pecially in the case of SPS6 we find that the inclusion of the triangular contribution from

the chain into the fit is crucial for a correct fit to the smaller signals.

The situation changes somewhat when the operators give large numbers of taus in the

decay. However, as figure 6 shows, the fit is still rather good. Of special interest might

be the case of L1L3Ē3 at SPS6 where there is no tau from the cascade decay chain and

we can therefore see all the distributions expected, including the softer µτjet signal where

the µ comes from a decaying tau. When comparing the various couplings at SPS1b it is

clear that one cannot tell whether a signal in the τjetτjet distribution is from the neutralino

decay or the decay chain, the expected distributions are much too similar.

Table 2 shows the neutralino masses estimated from the fits shown in figures 5 and 6.

Included are also statistical errors on the fitted neutralino masses. In addition we expect

systematic uncertainties from the theory, especially concerning the inclusion of the event

selection. Therefore, the uncertainties given in table 2 should not be taken too seriously

but rather as lower bounds on the uncertainty.

It seems that the measurement of the neutralino mass from the eτjet mass always gives

an overestimate. The same is true for the di-lepton mass distributions when one of the

leptons comes from a decaying tau, although, in the latter case, the overestimate is less

severe. In the relevant cases, the distribution when both leptons come from decaying taus

are included but the impact on the resulting fit is not very large; we see from the µµ

distribution for the L1L3Ē3 operator, where both muons have to come from decaying taus,

that the signal is too small to get a good fit and the resulting neutralino mass estimate is

completely useless. This is reflected in the very large statistical uncertainty. In general the

possible improvement by including this last distribution is smaller than the uncertainties

from e.g. the effects of the event selection.

When interpreting these neutralino mass estimates, one has to keep in mind the large

uncertainty associated with the effects of the event selection on the distribution. In the

theoretical curves, these effects are included through the lower limit on the mass ratio

entering in eq. (B.11). The value of this limit has great impact on the resulting distri-

bution and therefore on the estimated neutralino mass. It is therefore clear that a better

understanding of the effect of the cuts is very important in order to get the best possible

neutralino mass estimate.
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Figure 5. Comparison between fitted theoretical distributions (thin curves in violet) and Monte

Carlo results (heavy curves). The results for L2L3Ē1 are shown for three different SPS points.

In order to improve these fits one could make use of various expected correlations; e.g.

as mentioned before, the neutralino mass of course has to be the same for all distributions

and one could use the most suitable distribution, presumably the one with a cutoff at the

neutralino mass, to constrain the fits to the smaller distributions with cutoffs significantly

below the neutralino mass. Ideally one would want to use the fitted parameters to de-

termine the decay channels for the neutralino, but due to the aforementioned degeneracy

problems it is hard to achieve the required accuracy in the parameters, this could be im-

proved if one uses the fact that e.g. an eτ decay channel for the neutralino gives correlated

– 13 –



J
H
E
P
0
7
(
2
0
1
1
)
0
7
0

0 50 100 150 200

0

0.005

0.01

0.015

0.02

M[GeV]

ee

µµ

µe

3E3L1L
SPS6

0
1

χ

0 50 100 150 200

0

0.005

0.01

M[GeV]

ττ

 eτ

µτ

3E3L1L
SPS6

0
1

χ

0 50 100 150 200

0

0.005

0.01

0.015

0.02

M[GeV]

ee

µµ

µe

3E3L1L
SPS1b

0
1

χ

0 50 100 150 200

0

0.005

0.01

M[GeV]

ττ

 eτ

µτ

3E3L1L
SPS1b

0
1

χ

0 50 100 150 200

0

0.005

0.01

0.015

0.02

M[GeV]

ee

µµ

µe

3E2L1L
SPS1b

0
1

χ

0 50 100 150 200

0

0.005

0.01

M[GeV]

ττ

 eτ

µτ

3E2L1L
SPS1b

0
1

χ

Figure 6. The same as figure 5 for some tau-rich operators at SPS1b and SPS6.

signals in both the eτjet, ee and eµ distributions, where the relative sizes of the signals are

basically given by the branching fractions of the tau (together with tau tagging efficiency

and detector acceptances).

3.6 Some counting observables

We now consider observables that can bring additional insight into the operator structure.

One obvious candidate is the determination of the branching fractions of the neutralino into

various channels. This can be achieved by studying the leptonic structure of the final states.

– 14 –



J
H
E
P
0
7
(
2
0
1
1
)
0
7
0

To get a clean sample to work with, we look at the subset of all events where we have

exactly four leptons of which two are positively charged and two are negatively charged.

This restriction increases the probability that the leptons have all come from decaying

neutralinos.

Let P2e−2e+ denote the fraction of these events that have exactly two electrons and

two positrons:

P2e−2e+ =
N [(2e−)&(2e+)]

N4ℓ
(3.3)

(and similarly for P2µ−2µ+), with

N4ℓ = N [(4e)] + N [(3e)&(1µ)] + N [(2e)&(2µ)] + N [(1e)&(3µ)] + N [(4µ)], (3.4)

subject to the constraint that the charges should sum to zero. Further, let P2e2µ denote the

fraction that has two same-sign electrons and two same-sign muons, i.e., 2e−2µ+ or 2e+2µ−:

P2e2µ =
N [(2e−)&(2µ+)] + N [(2e+)&(2µ−)]

N4ℓ
. (3.5)

In the event that all four leptons come from decaying neutralinos, Pe−e+ is the proba-

bility that a neutralino decays to an electron-positron pair. Since under these assumptions,

the only possibility to achieve 2e−2e+ in one event is to have two neutralinos that both

decay to electron-positron pairs, we get

P2e−2e+ = P 2
e−e+. (3.6)

Note that Pe−e+ is a probability6 referring to one neutralino, whereas P2e−2e+ refers to the

whole event.

Similarly, P2µ−2µ+ = P 2
µ−µ+ and P2e2µ = 1

2P 2
eµ where Peµ = Pe−µ+ + Pe+µ− and

Pµ−µ+ , Pe−µ+ and Pe+µ− are defined in accordance with Pe−e+. The factor 1
2 in the second

of these equations comes from the requirement that the same-flavour pairs also have the

same charge. From this we can calculate the values Pe−e+ , Pµ−µ+ and Peµ.

A problem with the above calculation is that it does not tell us anything about channels

including taus. Since we require exactly four leptons, events with taus are only included

when the taus decay leptonically. This also means that decay channels with light leptons

are favoured by the cuts over those with taus and therefore care has to be taken when

interpreting the numbers. However, keeping this in mind, the probabilities Pe−e+, Pµ−µ+

and Peµ do tell us which decay channels are important.

In order to get some information about decay channels involving taus, we need to

also study events with three rather than four leptons. Let us study events with one pair

of same-sign, same-flavour leptons (ℓ±ℓ±) and one extra lepton of opposite charge and

different flavour (ℓ
′∓). Such events must all contain one different-flavour, opposite-sign

lepton pair (ℓ±ℓ
′∓) and one extra lepton (ℓ±), the extra lepton stemming from a neutralino

6This is the probability that a randomly picked neutralino in an event with exactly four leptons, is

decaying through a certain channel. In other words; it is a branching fraction, but depends strongly on the

cuts used to calculate it and it should not be confused with a “true” branching fraction.
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that decayed either to a τ plus a lepton where the τ decayed hadronically, or to a lepton

pair where one of the leptons was lost to the detector.

Since counting observables depend not only on production rate and detector efficien-

cies, but also on a priori unknown factors such as selection efficiencies, it is useful to study,

instead, ratios such as

P2eµ

P2µe
≡ N2e−µ+ + N2e+µ−

N2µ−e+ + N2µ+e−
=

N2e−µ+

N2µ−e+

, (3.7)

where the numbers N refer to the number of events with the specified number of leptons.

The last equality above is based on the assumption that both charges are produced with

the same probability and detected with the same efficiency.

Let us now consider a particular case wherein we start with four leptons (e, µ) stemming

directly from the decays of two neutralinos with one of the four (randomly picked) getting

lost (absorbed in a jet, too little pT , too large a rapidity etc.). The flavour distribution of

the four-lepton state is then given by the probabilities Pµ−µ+ , Peµ and Pe−e+ . Assuming

that the efficiencies for muons are the same as for electrons,7 we have

P2eµ

P2µe
=

Peµ(2Pe−e+ + Peµ)

Peµ(2Pµ−µ+ + Peµ)
=

2Pe−e+ + Peµ

2Pµ−µ+ + Peµ
, (3.8)

where the factor 2 is a combinatorial factor arising from the fact that the individual leptons

could have arisen from the two different neutralinos.

Since the prediction of eq. (3.8) does not take into account the possibility of the fourth

missing particle being a hadronically decaying tau, it will, occasionally, give an inaccurate

answer. This apparent lacuna could, however, be used to our advantage: a comparison

of the prediction of (3.8) with a direct measurement of the ratio (3.7) would give us a

quantitative measure of the tau decay channel. If the decay channel χ0
1 → e + τ + ν is a

significant one, the measured fraction will be much larger than the prediction (3.8), while

if the channel χ0
1 → µ + τ + ν is present, eq. (3.8) will give an overestimate.

Independent measures of the branching fractions to various final states are given by

the integrals over invariant mass, namely

∫

Nll′ ≡
∫ ∞

0

dNll′(Mll′)

dMll′
dMll′ , (3.9)

where l, l′ ∈ {e, µ} and the distributions are evaluated after same-sign subtraction. Whereas

the P ’s above refer to the four-lepton events where the charges sum to zero, these integrals

refer to all events that pass the cuts.

Both the integrals over the invariant mass distributions and the probabilities

Pe−e+, Pµ−µ+ and Peµ must be interpreted with the used cuts in mind; in both cases leptons

are favoured over taus. The resulting branching fractions include leptonically decaying taus

in addition to prompt leptons but the former contribution is strongly dependent on the

cuts and therefore hard to estimate analytically. Due to the requirement of exactly four

7While this is not exactly true, the differences are marginal, and, at the level of sophistication of this

study, can be ignored.
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model Pe−e+ Peµ Pµ−µ+ (3.7) (3.8)
∫

Nee

∫

Neµ

∫

Nµµ

L1L2Ē1, SPS1a 0.48 0.51 0.02 2.5 2.69 0.48 0.51 0.01

L1L2Ē2, SPS1a 0.02 0.49 0.50 0.37 0.35 0.01 0.49 0.50

L1L2Ē3, SPS1a 0.26 0.48 0.27 0.93 0.98 0.27 0.47 0.26

L1L3Ē1, SPS1a 0.81 0.16 0.01 19.3 10.1 0.86 0.12 0.03

L1L3Ē2, SPS1a 0.02 0.81 0.17 0.26 0.75 0.02 0.87 0.11

L1L3Ē3, SPS1a 0.45 0.45 0.09 3.77 2.15 0.43 0.44 0.13

L2L3Ē1, SPS1a 0.17 0.81 0.03 3.26 1.33 0.11 0.87 0.02

L2L3Ē2, SPS1a 0.01 0.16 0.82 0.05 0.10 0.02 0.11 0.86

L2L3Ē3, SPS1a 0.09 0.45 0.45 0.27 0.47 0.12 0.44 0.44

Table 3. The three first columns give calculated values of Pe−e+ , Pµ−µ+ and Peµ for all the

different operators at SPS1a. We also give the Monte Carlo value of the fraction (3.7) as well as

the prediction from eq. (3.8). Finally, we tabulate the integrals of the invariant mass distributions,

normalized so that the sum is one. This should provide an independent estimate of the branching

fractions of the first three columns.

model Pe−e+ Peµ Pµ−µ+ (3.7) (3.8)
∫

Nee

∫

Neµ

∫

Nµµ

L2L3Ē1, SPS1a 0.17 0.81 0.03 3.26 1.33 0.11 0.87 0.02

L2L3Ē1, SPS1b 0.18 0.80 0.02 3.72 1.38 0.12 0.87 0.01

L2L3Ē1, SPS6 0.17 0.81 0.03 3.54 1.33 0.12 0.85 0.03

L1L2Ē3, SPS1a 0.26 0.48 0.27 0.93 0.98 0.27 0.47 0.26

L1L2Ē3, SPS1b 0.25 0.50 0.25 1.00 0.99 0.25 0.50 0.26

L1L3Ē3, SPS1a 0.45 0.45 0.09 3.77 2.15 0.43 0.44 0.13

L1L3Ē3, SPS1b 0.43 0.49 0.08 3.37 2.08 0.41 0.50 0.08

Table 4. Similar to table 3 for L2L3Ē1 at SPS1a, SPS1b and SPS6, as well as L1L2Ē3 and L1L3Ē3

at SPS1a and SPS1b.

leptons, the probabilities Pe−e+ , Pµ−µ+ and Peµ essentially include only events where there

are no taus in the decay or all taus decay leptonically. The invariant mass distributions, on

the other hand, are expected to contain a larger amount of lepton pairs from sources other

than neutralino decay. This can, however, be handled by the same-sign subtraction as

well as by comparing the distributions with the theoretical expectations. The probabilities

Pe−e+, Pµ−µ+ and Peµ are more sensitive to contamination by single leptons from other

sources and are therefore more dependent on a clean event sample.

All the observables discussed in this section for all LLĒ couplings at SPS1a are shown

in table 3. When comparing the probabilities Pe−e+, Pµ−µ+ and Peµ and the integrals over

invariant mass distributions, we see that they show similar structures, implying that they

both are good indications for the relevant decay channels.
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In table 4, we compare these observables for the same operator (L2L3Ē1) but at three

different parameter points: SPS1a, SPS1b and SPS6. As the values are similar at all three

points, we may conclude that they are largely independent of the underlying SUSY model.

However, also shown in table 4 are L1L2Ē3 and L1L3Ē3 at SPS1a and SPS1b and here

some noticeable differences arise. First of all, for L1L2Ē3 we naively expect to get 0.25,

0.5 and 0.25 for the branching fractions to e+e−, eµ and µ+µ− respectively, a consequence

of the fact that the tau will go as often to a µ as an e. As can be seen in table 4 this is

what we get at SPS1b while SPS1a gives slightly larger values for the same-flavour (ee and

µµ) channels. This difference is consistent with contamination by lepton pairs from the

cascade decay chain, which is important for SPS1a but not for SPS1b.

Since this kind of contamination will be most important for tau-rich operators where

there are fewer leptons from the neutralino decay, we also expect to see it in L1L3Ē3, which,

in fact, we do. For a L1L3Ē3 coupling, we expect the same amount of e+e− and eµ from

the eτ channel and from the ττ channel we expect contributions to e+e−, eµ and µ+µ−

in the ratios 1 : 2 : 1 (again due to the two possibilities for eµ). The result should be that

the branching fraction to eµ is larger than the fraction to e+e− by about the same amount

as the total branching fraction to µ+µ− and this is rather close to what we see for SPS1b,

but at SPS1a the e+e− and eµ values are of the same size, indicating some contamination

in the e+e− (and µ+µ−) channel from the cascade chain.

Four out of the nine LLĒ operators are such that they allow one channel with prompt

light leptons and one channel with a light lepton and a tau. These operators are L1L3Ē1,

L1L3Ē2, L2L3Ē1 and L2L3Ē2. Let us look at L2L3Ē1 as an example (the same logic

applies to all of them). In this case, the prompt lepton channel is eµ and, in addition, we

get decays to eτ . Since the tau will decay equally often to electrons and muons, we expect

a large signal in the eµ channel both from the prompt leptons and the eτ channel. In

addition we expect some contribution to the e+e− channel from the eτ decays, while µ+µ−

should give nothing. As can be seen from tables 3 and 4 this is, to a good approximation,

indeed the case. We also notice that the dominance of the largest channel is quite similar

for all the SPS points considered and all the four couplings. However, there is a clear

difference between the two ways of measuring the branching fractions; for L2L3Ē1 we have

Peµ ≈ 0.81 while
∫

Neµ ≈ 0.87 and this difference is nearly independent of the choices for

the SPS point and the R-violating coupling as well.

The estimate of the branching fraction of the dominant channel will depend strongly

on which cuts are used as well as how many leptons not originating from neutralino decay

we have. Therefore it is very difficult to make any precise predictions, but the difference

seen between the two measures is expected due to the differences in the cuts used.

If we now compare the predictions from eq. (3.8) with the direct measurement of the

fraction (3.7), we see that operators with an eτ channel give a measured fraction about

twice as large as the prediction (3.8) (see L1L3Ē1, L1L3Ē3 and L2L3Ē1 in table 3), while

for operators with a µτ channel the prediction (3.8) overestimates the fraction by about a

factor two (see L1L3Ē2, L2L3Ē2 and L2L3Ē3 in table 3). This is in accordance with our

expectation and illustrates that we can infer the presence of tau in the operator without

having to rely on tau tagging.
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model Pe−e+ Pµ−µ+ Pτ−

jet
τ+
jet

Peµ Peτjet Pµτjet

L1L2Ē1, SPS1a 0.38 0.02 0.004 0.41 0.08 0.03

L1L2Ē2, SPS1a 0.02 0.40 0.004 0.40 0.03 0.07

L1L2Ē3, SPS1a 0.08 0.09 0.06 0.16 0.30 0.31

L1L3Ē1, SPS1a 0.44 0.003 0.03 0.10 0.36 0.02

L1L3Ē2, SPS1a 0.02 0.09 0.03 0.44 0.04 0.33

L1L3Ē3, SPS1a 0.09 0.02 0.26 0.10 0.40 0.13

L2L3Ē1, SPS1a 0.09 0.02 0.03 0.44 0.32 0.05

L2L3Ē2, SPS1a 0.005 0.45 0.03 0.10 0.02 0.35

L2L3Ē3, SPS1a 0.02 0.09 0.26 0.10 0.13 0.39

L2L3Ē1, SPS1a 0.09 0.02 0.03 0.44 0.32 0.05

L2L3Ē1, SPS1b 0.09 0.01 0.04 0.44 0.35 0.04

L2L3Ē1, SPS6 0.10 0.02 0.01 0.54 0.32 0.02

Table 5. Branching fractions for different final states, estimated from events with 4 leptons (in-

cluding τjet) with a total charge-sum of zero.

3.7 Redefining taus

Another way of getting a grip on the decay channels containing taus is to include hadronic

taus in the analysis; in this section leptons also include τjet’s and the only cuts imposed on

the leptons are the acceptance cuts of pT > 5GeV (10 GeV for τjet) and isolation.

The event selection used here is exactly four leptons (including τjet’s), two positive and

two negative. In addition, we require pmiss
T > 100 GeV.

We can then expand the definitions (3.3) and (3.5) to include τjet’s. Using these

probabilities we can estimate all branching fractions of neutralinos decaying to lepton

pairs. The result for all couplings at SPS1a is shown in table 5 along with the result for

L2L3Ē1 at SPS1a, SPS1b and SPS6. It is clear from table 5 that this method does pick

out the correct channels as the dominant ones; for all couplings, the two dominant ones

are the same as those given in table 1. It should be noted that channels with tau will

give rise to several different final states depending on the decay of the tau. If we look at

L2L3Ē1 at SPS6 the above points become clear; the two dominant final states are eµ and

eτjet and the eτ channel contributes about 0.05 − 0.10 to both Pe+e− and Peµ and about

0.3 to Peτjet which is consistent with the branching ratios of taus. We also have some

contamination of around 0.02 in all channels.

Compared to the cases of table 3, there are now more leptons that do not arise from

neutralino decays. For example, for the SPS1a point, each of the couplings considered

results in more τjet’s than expected from the neutralino decays alone. And when comparing

the values for L2L3Ē1 at SPS1a, SPS1b and SPS6 we notice some differences which are

consistent with the differences in the contributions from the cascade decay chain; e.g. we

see that SPS6 gives fewer τjet’s than SPS1a and SPS1b. The conclusion is that the numbers

are rather sensitive to the parameter point.
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Figure 7. Electron, muon and τjet spectra for mix1 (left) and mix2 (right) at SPS6.

These issues make it hard to interpret the exact values of the branching fractions. It

is also important to remember that tau tagging efficiencies should be added on top of this

and that will further suppress the τjet’s in comparison with the light leptons.

3.8 Combinations of couplings — case study

To illustrate the usefulness of the observables discussed in the previous sections, let us

study two cases where two operators are comparable, namely,

mix1 : L1L2Ē1 = L2L3Ē2 = 10−4;

mix2 : L1L2Ē2 = L2L3Ē1 = 10−4.
(3.10)

These combinations are chosen such that the total flavour content of mix1 and mix2 are

the same at the operator level. However, the effect of the cuts will be somewhat different

and that will induce some differences. For example, the pT spectra for the two mixtures at

SPS6 (as shown in figure 7) do look similar, but we can see some small differences caused

by the fact that the light lepton flavour accompanying the tau gets suppressed by the cuts.

The corresponding invariant mass distributions (figure 8) are clearly different. For

mix1 we see prompt di-lepton (i.e. eq. (B.2)) signals in each of the ee, eµ and µµ channels.

We also see that at masses below some 100 GeV, the latter two distributions are slightly

larger than the ee one (we ignore the triangular contributions from the cascade chain). A fit

confirms that the difference is well explained by an additional contribution of type (B.11),

which in turn suggests a µτ channel. It should be noted that the ability to detect a µτ

channel in the light di-lepton distributions depends on the SUSY model so it cannot always

be done, but we see that the µτ channel clearly shows up in the µτjet distribution as well.

Looking at mix2 in the lower panels of figure 8, we see a strong prompt eµ signal as

well as a smaller prompt µµ signal. This is difficult to explain without assuming at least

two couplings where both give eµ and only one gives µµ. We also see a small signal in the

ee distribution, consistent with eq. (B.11) and the fit also prefers such a contribution to

the eµ channel. This suggests an eτ channel, which is confirmed by the eτjet distribution.
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Figure 8. Di-lepton invariant masses for mix1 (upper panels) and mix2 (lower panels) at SPS6.

model Pe−e+ Peµ Pµ−µ+ (3.7) (3.8)
∫

Nee

∫

Neµ

∫

Nµµ

mix1, SPS1a 0.27 0.37 0.36 0.48 0.84 0.29 0.35 0.36

mix1, SPS1b 0.27 0.37 0.37 0.44 0.82 0.29 0.36 0.36

mix1, SPS6 0.28 0.37 0.36 0.48 0.85 0.30 0.34 0.37

mix2, SPS1a 0.07 0.62 0.30 1.31 0.63 0.05 0.63 0.31

mix2, SPS1b 0.08 0.62 0.29 1.47 0.65 0.05 0.64 0.31

mix2, SPS6 0.08 0.62 0.31 1.35 0.63 0.06 0.62 0.32

Table 6. Similar to table 3 for mix1 and mix2 at SPS1a, SPS1b and SPS6.

model Pe−e+ Pµ−µ+ Pτ−

jet
τ+
jet

Peµ Peτjet Pµτjet

mix1, SPS1a 0.19 0.24 0.02 0.25 0.05 0.21

mix1, SPS6 0.23 0.29 0.003 0.29 0.01 0.17

mix2, SPS1a 0.06 0.21 0.02 0.42 0.19 0.06

mix2, SPS6 0.06 0.25 0.006 0.51 0.16 0.02

Table 7. Similar to table 5 for mix1 and mix2 at SPS1a and SPS6.
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Let us now look at the counting observables from the last section. They are all listed in

tables 6 and 7. If we first look at table 6, we again see that these numbers seem largely inde-

pendent of the SPS point. When looking at mix1 we see that we have significant branching

fractions to ee, eµ and µµ and that the last two are a little larger than the first. We also see

that the measurement of the fraction (3.7) is about half the prediction from (3.8), suggest-

ing a µτ channel which would also explain the higher values for eµ and µµ compared to ee.

If we instead look at mix2 we see a large branching fraction to eµ and also a significant

µµ channel while the ee channel is small but non-zero. We also notice a measured

fraction (3.7) that is twice that of the prediction (3.8), indicating an eτ channel, consistent

with the small ee contribution.

If we finally turn our attention to table 7, we see a larger variation with SPS point but

the structure of the numbers is in agreement with our previous conclusions.

To summarize, the invariant mass distributions and the counting observables from the

last section can independently help identify the relevant decay channels which then leads

us to the correct combinations of operators. The comparison between the measurement of

the fraction (3.7) and the prediction (3.8) is the most reliable way of detecting an eτ or µτ

channel without relying on tau tagging.

4 LQD̄ coupling

LQD̄ couplings can induce two types of neutralino decays. The neutralino can either go

to one up-type and one down-type (anti)quark and a charged lepton or to a down-type

quark-antiquark pair and a neutrino. In the case of LiQ3D̄k the latter decay dominates

since otherwise a top would have to be produced, which is either strongly suppressed by

phase space or requires an off-shell top; hence, in these cases, there are no isolated charged

leptons from the decay and the lepton flavor of the λ′ operator cannot be determined.

Table 8 summarizes possible scenarios for the various flavour combinations. Operators

easier to study are of the type L1,2Q1,2D̄3, where lepton identification combined with b-

tagging might give some interesting signals. The reason the ℓj signal is mentioned in

table 8 is that in many cases the two jets can be so close in the detector that they merge

into one jet and the peak expected in the ℓjj distribution instead shows up in ℓj. This is

also partially true for ℓbjet; however, in that case a more realistic algorithm for b-tagging is

needed to know how well the b-tagging works if the jets are so close that they might merge.

When the λ′ operator has τ flavour the situation is rendered more complicated on

account of the loss of information involving the neutrinos in the decay of the tau. The

most problematic situation, however, appears when we have a Q3 operator, as discussed

above we only expect decays to a neutrino and two jets and therefore this scenario might

be hard to identify.

4.1 Event selection

The task of suppressing backgrounds is a bit more difficult with LQD̄ couplings as compared

to LLĒ couplings, especially when it comes to suppressing tt̄ events. However, the lepton

multiplicity is useful in this respect.
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Coupling Decay products Signals

L1,2Q1,2D̄1,2 ℓqq̄, νqq̄ ℓj, ℓjj

L1,2Q1,2D̄3 ℓqb̄, νqb̄ ℓbjet, ℓbjetj

L3Q1,2D̄1,2 τqq̄, νqq̄ τjetj, τjetjj

L3Q1,2D̄3 τqb̄, νqb̄ τjetbjet, τjetbjetj

L1,2,3Q3D̄1,2 νbq̄ bjetj

L1,2,3Q3D̄3 νbb̄ bjetbjet

Table 8. The various possible scenarios with LQD̄ operators. It is here assumed that the neutralino

is lighter than the top. Notation: τjet, bjet and j denote a tau jet, a b-jet and a light-flavor jet,

respectively.

To cover most possibilities we use three different cuts in this analysis. All three require:

• Transverse sphericity > 0.2,

• ET = Σleptons,jets|pT | > 1000 GeV,

• Hardest jet pT > 300 GeV.

We define a “hard cut” to additionally require at least two same-sign isolated leptons

with pT > 20 GeV. The same-sign requirement suppresses the tt̄ background by several

orders of magnitude, whereas the signal is reduced to only about 1% of its precut value.

An alternative is to use a “loose cut” which passes a lot more of the signal, at the

cost of a significant background from tt̄ events. This requires only one isolated lepton with

pT > 20 GeV, and at least 7 jets with pT > 20 GeV.

The third cut is meant for the cases where we only get neutrinos and no leptons.

Therefore it requires instead of leptons, pmiss
T > 200 GeV, and at least 7 jets with

pT > 20 GeV. We name this the “pTmiss cut”.

The effects of these cuts, on some representative LQD̄ couplings as well as on the tt̄

background, are summarized in table 9. All other backgrounds are less important than tt̄

for these cuts.

We see that for the hard cut we get a satisfactory suppression of the tt̄ while the loose

cut will suffer from a significant contamination by tt̄ events.

It is also clear that the operators with tau flavour are more problematic due to fewer

leptons. As expected, of the operators in table 9, the most problematic one is L1Q3D̄3

where the signal would be νebb or e−tb. With the t-quark above the kinematical threshold,

only the νebb-channel is open and we have to rely on the pTmiss cut. This last case will

appear very similar to an R-parity conserving scenario, the most significant difference being

that the particles now responsible for the missing pT are the (massless) neutrinos rather

than the neutralinos. This problem is present for all operators of type LQ3D̄.
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model hard cut loose cut pTmiss cut

L1Q1D̄2, SPS1a 0.011 0.082 0.043

L1Q1D̄2, SPS1b 0.043 0.24 0.16

L1Q1D̄2, SPS3 0.06 0.25 0.16

L1Q1D̄2, SPS5 0.015 0.089 0.046

L1Q1D̄2, SPS6 0.008 0.096 0.083

L1Q1D̄2, SPS1a 0.011 0.082 0.043

L1Q3D̄3, SPS1a 0.0013 0.03 0.048

L3Q1D̄3, SPS1a 0.0027 0.043 0.041

tt̄ 1.5 · 10−6 0.002 0.00083

Table 9. The fraction of events that passes the various cuts for some LQD̄ operators, as well as tt̄

production. Note that this does not take the different cross-sections into account.

4.2 Invariant mass distributions

There are plenty of interesting invariant mass distributions to be studied with respect to

LQD̄ operators. Unfortunately, the lack of knowledge of the charge of light quark jets

implies that the same-sign subtraction tool is essentially rendered inoperative. As a result,

most signals tend to drown in combinatorial and other backgrounds. This problem would

be reduced if the couplings were small enough for displaced vertices to appear, however,

as mentioned before, we do not make use of such possibilities here.

A further problem is that the boost of the neutralino results in all the decay products

being very close in the detector, thereby raising the probability of jets merging. It is,

therefore, not always true that we get two jets and one lepton from each neutralino. On

the other hand, the closeness of the decay products can be used to choose which jets and

leptons to compute the invariant mass of.

These proximity issues make the choice of jet algorithm very important. Especially

the parameter Rjet is very important. To optimize each analysis, we perform it using jets

as defined by Rjet equal to 0.2, 0.4 and 0.7 and show results using the most favourable

value for each analysis. The event selection always uses jets as defined when Rjet = 0.4.

In figure 9 these points can be seen for L1Q1D̄2 at SPS1a: if ℓjj where the two jets are

within ∆R = 1 from the lepton, are used, one can get a very nice peak at the neutralino

mass (black curve, upper left panel). If all ℓjj are used, the peak is less pronounced but

can be clearly seen both with Rjet = 0.4 as in the lower left panel, and even better when

Rjet = 0.2, which can be seen in the upper right panel. Since the two quark jets quite

often merge into one, it is also possible to see a nice peak at the neutralino mass in the

distribution of all ℓj combinations, as seen in the upper left panel. It is also worth noting

that the branching fraction for neutralino decay to ℓjj as compared to the fraction to νjj

depends on the SUSY parameter point and e.g. SPS1b has a more favourable value, which

can be seen in the lower right panel of figure 9, where the peak is clearly more pronounced

than in the comparable plot for SPS1a (lower left panel).
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Figure 9. Invariant mass distribution for L1Q1D̄2 at SPS1a: upper left: violet: ℓj distribution,

black: ℓjj where the jets are closer than ∆R = 1 to the lepton, this distribution has been multiplied

by 5 to be visible. Upper right: ℓjj distributions using Rjet = 0.2. Lower left panel: same as upper

right but with Rjet = 0.4, lower right: same as lower left but for SPS1b. In this figure, the hard

cut has been used.

So far we have discussed the case with one light lepton and two light jets in the decay.

Another group of operators have b-quarks in the decay and that opens up for b-tagging.

Assuming that the b-tagging can also determine the charge of the bjet, it becomes possible

to use same-sign subtraction to reduce the combinatorial background.

Figure 10 shows ℓbjetj distributions as well as ℓbjet distributions where same-sign sub-

traction has been employed on the ℓbjet pair. In the upper left panel we see that this gives

a good signal for L1Q1D̄3 where we again have a peak at the neutralino mass. The signal

in the ebjet channel looks like the distribution (B.2) with a small peak at the high end

(caused by merged jets), which is consistent with our expectation. Due to the low number

of charged leptons in the neutralino decay at SPS1a, we have used the loose cut to achieve

the upper panels of figure 10. For SPS1b we get more charged leptons and as is clearly

seen in the middle panels the hard cut is fine for extracting these signals. However, the

SUSY production at SPS1b is also about one order of magnitude smaller than at SPS1a

so using the hard cut is more important to reduce the backgrounds.

If the lepton is a τjet, things are much more difficult; first of all we lose energy to the

neutrino, so we do not expect a peak anymore. However, if we use Rjet = 0.2 together
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Figure 10. Left panels: ℓbjetj distributions with same-sign subtraction in the ℓbjet pair. Right

panels: ℓbjet distributions with same-sign subtraction. Upper and middle panels: L1Q1D̄3 at SPS1a

(upper) using the loose cut and SPS1b (middle) using the hard cut. Lower panels: L3Q1D̄3 at SPS3

with Rjet = 0.2 and using the pTmiss cut.

with the pTmiss cut for SPS3 we see that the expected signals are clearly there. In the

τjetbjetj distribution (lower left panel) we see a bump below the neutralino mass. Perhaps

the best and most conclusive signal though, is in the τjetbjet channel (lower right channel)

where we see a distribution similar to what we discussed in appendix B for tau decays

(the ℓτjet distribution of figure 21).
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Figure 11. Combinations of LQD̄ operators: Invariant masses for λ′

121 = 10−4 and λ′

223 = 10−4 at

SPS1b. The two operators differ both in lepton flavours and in quark flavours. Upper left: ℓj and

ℓjj (magnified by a factor 5), in the latter case the two jets are close to the lepton (see figure 9).

Upper right: ℓjj. Lower panels show ℓbjetj (left) and ℓbjet (right) distributions. All plots use the

hard cut.

4.3 Mixing LQD̄ operators

The chances to identify two or more simultaneously large LQD̄ type operators, depend

strongly on the specific combination; if the two operators are identified through different

channels, the identification can be rather straight-forward.

One example of this can be seen in figure 11 where one operator gives a signal in µbjetj

and µbjet channels and the other shows up in the ejj distribution. This case is rather

fortunate since the two operators can be identified independently; if the lepton flavour of

the operators would have been the same, it would have been much harder to tell that we

have one operator with and one without a D̄3 component.

In figure 12 we show another combination where an operator (λ′
211) giving a peak in

the µjj distribution, is combined with a more problematic tau-flavour coupling (λ′
313) and

again we see that both operators can be identified successfully.

In conclusion, having more than one large LQD̄ operator at the same time is no

problem as long as the signals from the couplings appear in different channels and the

operators are identifiable on their own.
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Figure 12. Same as figure 11 for λ′

211 = 10−4 and λ′

313 = 10−4 at SPS1b. Here the two lower

panels use the pTmiss cut as well as Rjet = 0.2 to get enough τjet’s.

4.4 Backgrounds

As mentioned before, the most important background is tt̄. Although the hard cut is very

effective in suppressing this background; the need to sometimes use the loose or pTmiss cut

makes it necessary to look at the expected invariant mass distributions from the tt̄ events.

The interesting distributions here are the invariant masses including bjet since that is

where the weaker signals occur and we expect some contribution there from tt̄ due to tops

decaying to ℓbjet(ν).

These distributions are shown in figure 13 where we can see that the only significant

distribution is in the µbjet and ebjet channels for the loose cut. The distribution can be

understood as a triangular distribution ending around 150 GeV from the decay of the top

and a combinatorial background that due to the same-sign subtraction and the charge

correlation between the top and antitop, is negative.

It is also important to note that we see no significant signal when the pTmiss cut and

Rjet = 0.2 are used. Simulations where standard model processes were added, also show

that the studied distributions are not significantly changed by these backgrounds.
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Figure 13. Invariant mass distributions for tt̄ events. The left panels show ℓbjetj distributions and

the right panels show ℓbjet distributions. In the upper panels the loose cut is used and in the lower

panels the pTmiss cut is used and Rjet = 0.2.

5 ŪD̄D̄ coupling

Of the various scenarios with trilinear R-parity violation, the one that is most difficult to

analyse at a hadronic collider is that of non-zero ŪD̄D̄ couplings. With the lightest neu-

tralino now decaying into three jets, extracting the signal from the large QCD background

is very challenging [64]. In fact, even for simpler situations like resonance production or

one-step decays, the reach of the Tevatron or the LHC is very limited [30, 31, 65].

As mentioned earlier, assuming moderately light neutralinos, we expect them to be

highly boosted due to the large center of mass energy of the collision. This means that the

decay products of the neutralino will be rather collimated, which has enormous implications

for the identification of LQD̄ operators as discussed in the previous section. This would

also be the case for ŪD̄D̄ operators where the three jets from the decaying neutralino

will sometimes be so collimated that they merge. This very feature can be turned to an

advantage; a ŪD̄D̄ signal may be extracted by studying jet substructure, where one looks

for a big jet that looks like it could consist of three jets that have merged [66].

There is, however, an exception to the above picture, namely any of the three

operators Ū3D̄iD̄j, for the top flavour of these couplings ensures a very different behavior.

If the neutralino is lighter than the top, it may appear stable on the detector scale and
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Figure 14. Invariant mass distributions for λ′′

312 at SPS6. The distributions shown are ℓbjet

distributions for all lepton flavours.

we might be facing a fake MSSM scenario. On the other hand, if the neutralino is heavier

than the top, it decays into a top (or antitop) and two jets that often would tend to be

soft (due to limited phase space). While a tt̄ + n–jets final state has a very large QCD

background, note that the latter decreases fast with both increasing n as well as with

an increasing pmin
T (jet) (the minimal requirement on the transverse momenta of these

additional putative jets). And as additional jets accrue not only from the decay of the

neutralinos, but also in earlier steps in the SUSY cascade, and as at least some of them

are likely to have a sufficiently large pT , this final state is worth investigating. However,

rather than performing this admittedly difficult task, we recommend concentrating on a

relatively cleaner subsample. Noting that the neutralinos are Majorana particles, the very

last pair of decays is as likely to produce a like-sign top-pair (tt or t̄t̄) as an opposite-sign

one. The possibility of same-sign tops makes the extraction of these events rather straight

forward. One way is to look for same-sign isolated leptons accompanied by two same-sign

b-jets; this approach was taken in a similar study [67].

However, it turns out that the harder cuts used on LQD̄ operators are also efficient

in this case. This comes as no surprise since those cuts are based on same-sign leptons. If

we, for example, look at Ū3D̄1D̄2 at SPS6 where the neutralino mass is 189 GeV so that

the top decay channel is open, about 1% of the events pass the hard cut from the LQD̄

section. This leaves good hope for detection and if we then look at the ℓbjet invariant

mass, as is done in figure 14, we see the same structure (although rather weak) as in the

corresponding distribution from tt̄ events as shown in the upper right panel of figure 13.

This similarity demonstrates the presence of top quarks in the events and can therefore

be used to confirm the presence of a Ū3D̄jD̄k operator.
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Figure 15. Mix of operators: Invariant mass distributions for λ121 = 10−5 and λ′

123 = 10−4 at

SPS1a. Upper panels: di-lepton invariant mass distributions. Lower left panel shows ℓbjetj and

lower right shows ℓbjet.

6 Mixing and models

To date, most phenomenological analyses have assumed the dominance of a single R-

violating operator. However, once a flavour structure is invoked (e.g., to explain fermion

masses and mixings),8 hierarchies in R-violating couplings would be related to the flavour

charges of the respective fields [37–41]. Even more importantly, even if only one R-violating

operator is to be postulated in the interaction basis, fermion mixing would, in general,

induce non-zero values for others. This implies that it is natural to expect a range of

hierarchies for R-violating operators.

6.1 LLĒ and LQD̄ operators

Before entering into a discussion of models that require operators being related in

magnitude, we shall first look at some examples of the presence of two different operators.

Without jeopardizing proton stability, we can allow for the simultaneous presence of LLĒ

and LQD̄ operators.

8See e.g. [68].
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Since both LQD̄ and LLĒ operators can be identified due to the lepton multiplicity,

the presence of one might mask the presence of the other, especially if the corresponding

decay widths are comparable. Interestingly, for many of the SPS points in question, having

one each of LLĒ and LQD̄ operators of the same magnitude, results in the decay width

associated with the LLĒ coupling being about 10 − 20 times larger than that due to the

LQD̄ operator.9 Furthermore, even if the decay widths for the two sets of channels were

comparable, the LLĒ ones would be more visible due to their higher lepton multiplicity

which implies easier detection. Thus, in order to study scenarios where one might actually

see effects of both operators at the same time, we take the LQD̄ operator to be 10 times

larger than the LLĒ one.

While most of the conclusions from the study of single couplings are still valid when

more than one coupling is relevant, the details of section 3.6 are modified. In particular,

the differences between the measured and estimated values of the fraction (3.7) no longer

point to the relevant tau channels. Therefore, it is more useful to study invariant mass

distributions.

A favourable scenario would be the combination of two operators that are both

relatively easy to identify. One example of this would be λ121 = 10−5 and λ′
123 = 10−4.

The invariant mass distributions corresponding to this scenario, at SPS1a, are shown in

figure 15. We clearly see the signals expected from the LLĒ coupling in the eµ and ee

distributions (upper left panel) as well as the ℓbjetj (lower left panel) signals expected

from the LQD̄ coupling. We also note that the distributions including τjet’s (in the upper

right plot) show signals that might suggest a ττ channel, however, those tau pairs actually

come from the cascade chain and one has to be careful not to interpret them as decay

products of the neutralino.

Whether the potentially confusing background from the cascade is present or not,

depends on the parameter point, in e.g. SPS6 it is not. However, SPS6 comes with another

problem; it turns out that the branching fractions for decay to charged leptons plus quarks

is much smaller (factor ≈ 7) than the branching fraction to neutrino plus quarks. This,

then, results in fewer events with leptons and, as a consequence, the identification of the

LQD̄ operator is rendered more difficult.

Similarly, for other experimentally complicated scenarios, such as operators with a lot

of tau flavour, the problems (in identifying the LQD̄ operator) noted in section 4 remain

pretty much unchanged when combinations are considered. In general, the identification of

the LLĒ and the LQD̄ operators can be handled independently and the only interference

between them is that for the smaller coupling we get less statistics to work with. This also

means that there is an interval where both operators can be identified while in the periphery

we will see only one dominant operator. This interval is centered roughly where the LQD̄

operator is about 10 times larger than the LLĒ coupling. In general, the LLĒ operators

are easier to identify, which allows for smaller LLĒ couplings to be successfully identified.

6.2 Link with flavour symmetries: two examples

9The reason for this is not far to seek. The squarks tend to be much heavier than the sleptons, and,

of the latter, the stau tends to be the lightest. Consequently, the purely leptonic decay modes of the LSP

dominate over the semileptonic ones.
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Qi Ūi D̄i Li Ēi H2 H1

U(1) ai ai ai bi bi −2a3 −2a3

Table 10. Assignments of U(1) charges.

ijk 111 121 122 222 131

U(1) −12 − w −7 − w −2 − w 3 − w −8 − w

ijk 133 333 223 233 123

U(1) −4 − w −w 2 − w 1 − w −3 − w

Table 11. Operator charges in a model (see text) with both family and Left-Right symmetry. Here

w parametrises flavour-independent contributions [42].

For a given flavour model, the relative magnitude of R-violating operators is, to a large

extent, predicted, allowing us to tabulate the expected signals in neutralino decays. This

will be done for two representative cases, namely Left-Right symmetric models and SU(5).

6.2.1 Left-right-symmetric models

The simplest starting point is a single U(1) family symmetry with the same charges for the

left- and right-handed states (left-right symmetry) as shown in table 10, where, e.g., the

choice ai = (−4, 1, 0) [3, 4] gives an acceptable pattern for the mass matrices.

With these charge assignments the quark mass matrices (up to numerical factors and

phases, which, in general, are expected to be of order unity) take the form

Mup ∼









ǫ8 ǫ3 ǫ4

ǫ3 ǫ2 ǫ

ǫ4 ǫ 1









, Mdown ∼









ǭ8 ǭ3 ǭ4

ǭ3 ǭ2 ǭ

ǭ4 ǭ 1









(6.1)

where ǭ ≈ √
ǫ ≈ 0.2.

We now consider the effect of the U(1) symmetry on the pattern of allowed R-violating

interactions [37–41]. In this simple example, with all fermions of a given family having

the same charge and with a left-right symmetry, the charges of the operators depend only

on the combination (i, j, k) and are independent of the type, viz. LLĒ, LQD̄ or ŪD̄D̄,

(see table 11).

The parameter w accounts for the fact that the charge assignment is not unique in

model constructions [42] (although it is strongly constrained by phenomenological and the-

oretical arguments). For instance, while the addition of flavour independent contributions

would not modify the fermion mass and mixing ratios, it can affect other considerations,

such as anomaly cancellation conditions. Flavour-independent contributions could also

arise from additional fields with a non-trivial flavour charge that couple to all operators.

These issues in the context of R-violating hierarchies are addressed in more detail in ref. [42].

The above flavour symmetries cannot ensure, by themselves, that rapid proton decay

is avoided. This is done by imposing a baryon or a lepton parity [3–5, 34], which imply that
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the cases with ∆L 6= 0 and with ∆B 6= 0 have to be considered separately. For instance,

lepton-number violating operators can be eliminated by imposing a lepton triality [34],

under which the fields transform as

Z3 : (Q, Ū , D̄, L, Ē,H1,H2) → (1, 1, 1, a, a2, 1, 1). (6.2)

This allows only the baryon-number-violating operators and the mass terms, while forbid-

ding lepton-number-violating ones. On the other hand, to forbid baryon-number violating

operators, we would work instead with a baryon triality, such as in ref. [3, 4], viz.

Z3 : (Q, Ū , D̄, L, Ē,H1,H2) → (1, a2, a, a2, a2, a2, a). (6.3)

Along these lines, we can use the hierarchies implied by table 11 to make the link

between flavour models and the expected decay rates in neutralino decays for two separate

cases, namely:

• for LLĒ and LQD̄ operators;

• for ŪD̄D̄ operators.

While w can be adjusted in order to ensure that all operators remain within the experi-

mental bounds, there can be additional sources of suppression in the couplings (arising due

to a small tan β in supersymmetric models, the form of the Kähler potential, or additional,

model dependent, features of the theory that may involve extra fields and symmetries). To

keep the problem manageable (especially since our purpose here is to show how specific

models can be tested in flavour neutralino decays), we will:

• assume that the couplings that correspond to higher flavours are bigger (have smaller

flavour charge). The Yukawa couplings generating fermion masses are larger for the

higher generations, having a smaller net flavour charge. If this is true for R-violating

couplings as well, then the operators that involve third-generation flavours would

dominate also in this case. Dominance of the R-violating couplings of the heavier

flavours would also favour radiative over three body gravitino decays in scenarios

with gravitino dark matter [33, 34].

• ensure that all couplings remain within the experimental bounds.

For ∆L 6= 0 the strictest bounds are on L1Q1D̄1 from nuclear ββ decay and on L1L3Ē3

from bounds on Majorana neutrino masses, constraining the choice of the charge w to be

|12 + w| ≥ 2 and |4 + w| ≥ 2, which are easy to satisfy [42]. We also note that the magni-

tudes of the couplings in table 11 are symmetric in the three indices ijk. This implies, for

example, that, at this level, the λ′
121 and λ′

112 couplings should have similar magnitudes.

This must be made consistent with the constraint (L1Q2D̄1) · (L1Q1D̄2) ≤ 4 · 10−9, which

arises from bounds on ∆mK . In the present context, this constraint indicates that the

relevant charge |7 + w| has to be large.

The problem gets more complicated by taking into account mixing effects, which for

left-right symmetric models have been studied in detail in [42], in combination with bounds
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Figure 16. The same as figure 5 for the Left-Right symmetric scenario defined by (6.4) at SPS1a.

on both individual couplings as well as on products. Summarising, it turned out that the

strong correlations were leading to a suppression of all couplings, and even the 333 flavour,

in order to be fully safe, had to be smaller than 0.006. Within this framework, therefore,

single superparticle productions are suppressed and the best signal would be pair pro-

ductions followed by R-violating decays (which favour the neutralino search channel even

further). Finally, quantum corrections, expressed through renormalisation group effects,

would only mildly affect the relative hierarchies of R-violating couplings (although they

would modify their absolute values between the GUT and the low energy scale) [18].

For the ∆L 6= 0 operators, we may then study the correlated operators:

LLĒeff + LQD̄eff, (6.4)

with

LLĒeff = ǭL2L3Ē3 + ǭ2L1L2Ē2 + O(ǭ3),

LQD̄eff = L3Q3D̄3 + ǭ(L2Q3D̄3 + L3Q2D̄3 + L3Q3D̄2) + O(ǭ2), (6.5)

Due to the larger decay widths associated with the LLĒ operators as compared to the

LQD̄ operators as well as the lack of a clear signal associated with the Q3 factor in the

dominant operator; the only thing we can see is the L2L3Ē3 operator and possibly a hint

of the L1L2Ē2 operator. This is illustrated in figure 16 where the leptonic invariant mass

distributions are plotted. The data is consistent with a dominant contribution from a µτ

decay channel giving the µτjet distribution, together with contributions of type (B.11) to

the µµ and eµ distributions. Since the µµ and eµ distributions have kinematical cutoffs of

the same scale as the µτjet distribution, we need an additional contribution of type (B.2)

to those distributions, consistent with a subdominant L1L2Ē2 operator.

Due to the dominant LQD̄ operator, a larger fraction of the leptons in the final state

will come from the upper decay chain rather than the neutralino decay, as compared to the

pure LLĒ case, and therefore the numerical observables of section 3.6 are too dependent

on SPS point and not very useful. This contamination also causes the invariant mass

distributions to be much less smooth and therefore more difficult to interpret.

– 35 –



J
H
E
P
0
7
(
2
0
1
1
)
0
7
0

ijk 121,131 231 122,132 232 123,133 233

U(1) 4 − w 3 − w 3 − w 2 − w 1 − w −w

Table 12. LLĒ charges in SU(5) enhanced by a U(1) flavour symmetry.

If we now look at the ŪD̄D̄ operators, we see that even though, within this model,

the largest coupling is Ū3D̄2D̄3, the phase-space suppression caused by the top quark in

the final state makes the dominant channels the ones with three quark jets, even at SPS6

where the neutralino is sufficiently heavy to decay to a top.

6.2.2 SU(5)

Another interesting possibility is that the family symmetry commutes with an SU(5) GUT,

where the SM fermions are assigned as follows to the representations of the group:

Q(q,uc,ec)i
= Q10

i

Q(l,dc)i
= Q5

i (6.6)

Q(νR)i
= QνR

i

From the above it immediately follows that:

1. The up-quark mass matrix is symmetric (both left- and right-handed up quarks are

in the 10, and thus have the same flavour charge).

2. the charged lepton mass matrix is the transpose of the down quark mass matrix.

In this case, a viable choice of charges obeying the restrictions of the symmetry (see

e.g., [69]), is:

Q1,2,3 = Ē1,2,3 = 3, 2, 0

D̄1,2,3 = L1,2,3 = 1, 0, 0 (6.7)

leading to matrices that, apart from other features, lead to a maximal 2-3 lepton mixing, viz.

Mup ∼









ǭ6 ǭ5 ǭ3

ǭ5 ǭ4 ǭ2

ǭ3 ǭ2 1









, Mdown ∼









ǭ4 ǭ3 ǭ3

ǭ3 ǭ2 ǭ2

ǭ 1 1









, M ℓ ∼









ǭ4 ǭ3 ǭ

ǭ3 ǭ2 1

ǭ3 ǭ2 1









, (6.8)

where ǭ ≈ 0.2.

Let us first look at the implications for the LLĒ operators. Since the charges of L2,3

are the same, couplings such as LiL2Ēk and LiL3Ēk would be expected to be of similar

magnitude. In short, the U(1) assignments of eq. (6.7) lead to operator charges as listed

in table 12.

Similarly for LQD̄, where now we have the connection λ′
ijk = λijk arising directly from

the way we accommodate the fields in the GUT representation. For the LQD̄ operators

we also note the following:
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ijk′ 111 112,113 121 122,123 131 132,133

U(1) 5 − w 4 − w 4 − w 3 − w 2 − w 1 − w

ijk′ 211,311 212,213,312 221,321 222,223,322,323 231 232,233,332,333

U(1) 4 − w 3 − w 3 − w 2 − w 1 − w −w

Table 13. LQD̄ charges in SU(5) enhanced by a U(1) flavour symmetry.

ijk′′ 112,113 123 212,213 223 312,313 323

U(1) 4 − w 3 − w 3 − w 2 − w 1 − w −w

Table 14. ŪD̄D̄ charges in SU(5) enhanced by a U(1) flavour symmetry.
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Figure 17. The same as figure 5 for the SU(5) scenario defined by tables 12 and 13 at SPS1a.

• Since the U(1) charges of L2,3 are the same, the respective operators are linked,

reducing the number of independent couplings.

• Since the U(1) charges of D̄2,3 are the same, the respective operators are linked,

reducing the number of independent couplings.

This leaves us with the results of table 13. Finally, for the baryon-number violating oper-

ators, we find the results given in table 14.

As for the L-violating part, for w = 0, the L2L3Ē3 coupling is as large as the largest

of the LQD̄ couplings and therefore the prospects of accurately identifying this coupling

are improved. Moreover, the leading subdominant LLĒ operators, namely L1L3Ē3 and

L1L2Ē3, also carry a lot of tau flavour. This ensures an even larger dominance of the

L2L3Ē3 operator after cuts are applied (in the Left-Right symmetric case the cuts partially

compensate for the difference in width between the L2L3Ē3 and the L1L2Ē2 operator). All

in all, the prospects of identifying the L2L3Ē3 operator are good but it does not appear

possible to extract any of the subdominant couplings.

This can be seen in the invariant mass distributions shown in figure 17 where all

distributions look much like we expect for a pure L2L3Ē3 operator. Note that all the

light lepton distributions of the left panel of figure 17 vanish between ≈ 80 GeV and the

– 37 –



J
H
E
P
0
7
(
2
0
1
1
)
0
7
0

kinematical end-point of the µτjet distribution (≈ Mχ0
1
) and we can therefore exclude any

significant neutralino decay to light leptons.

Note that this strong statement is linked to the simplifying assumption that like for

the Yukawa couplings, R-violating couplings of the third generation are in general larger. If

this assumption is dropped, the picture would change. For instance, for the LLĒ operators:

• w = 1 would imply a simultaneous dominance of the L1L2Ē3 and L1L3Ē3 couplings,

• w = 2 leads to a dominant L2L3Ē2 coupling, and

• w = 3 results in a simultaneous dominance of the L2L3Ē1, L1L2Ē2 and L1L3Ē2

couplings.

A similar situation (but for different respective flavours) would occur for the rest of the

operators.

For the baryon-violating case, w = 0 leads to a stronger dominance of the Ū3D̄jD̄k

operators as compared to the Left-Right symmetric case. Consequently, the decay to top

plus 3 jets will dominate if the neutralino is heavy enough, e.g. in SPS6.

7 Summary

Within a supersymmetric theory with trilinear R-parity violation and a neutralino LSP,10

one would expect the usual pair production of squarks and gluinos, followed by cascade

decays down to the neutralino, to be the dominant scenario at the LHC. The novel feature

introduced by the R-parity violation would then be the three-body decay of the neutralino.

Within such a model, the neutralino can decay through any of the 45 trilinear R-parity

violating operators and therefore this channel allows us to study all those operators and

their internal hierarchies simultaneously. On account of the typically large number of

detectable particles (especially leptons) produced in such neutralino decays, the inferences

drawn from such a study are not as dependent on the underlying SUSY scenario as

R-parity conserving SUSY scenarios can be.

In general, bilinear and trilinear terms are generated in different ways (for instance

an underlying string theory would favour trilinear couplings; on the other hand, flavour

symmetries could in principle favour either possibility). See, however, ref. [78]. The

decay modes χ̃0
1 → W±ℓ∓ and χ̃0

1 → Zν exist in bilinear schemes, leading to interesting

signatures [79, 80]. For these terms to dominate, one would require non-negligible

neutrino-neutralino mixing.

We have shown that the prospects of identifying trilinear operators of the LLĒ type are

rather good, mostly due to the abundance of invariant mass distributions one can explore.

While one can, in principle, also identify such operators from pure counting measures, the

corresponding conclusions would not only be more sensitive to backgrounds, but also to

potential competing operators, as well as to the SUSY model. In addition to a significant

10The lightest neutralino could even be the NLSP if, for example, we invoke a gravitino LSP for dark

matter; such an assumption does not affect this study.
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reduction in such dependences, the invariant mass distributions are also promising for

measuring the neutralino mass; this has been shown to be feasible thanks to the knowledge

of the theoretically expected distributions, despite the lack of clear peaks or edges.

As compared to LLĒ operators, LQD̄ operators have both advantages and disadvan-

tages. One disadvantage is that background in the form of tt̄ events is more challenging,

but the large lepton multiplicity is still sufficient to get a clean event sample. Operators

that lead to charged leptons and jets also have the advantage of producing peaks in the

relevant invariant mass distributions, which not only allow good determination of the

operator, but also accurate measurements of the neutralino mass. Particularly promising

are the operators leading to b-quarks in the decay since, in this case, b-tagging can also be

used to extract the signal.

With a tau as the lepton of the operator, things are not equally promising, due to

the loss of energy to neutrinos in the tau decay. However, if the tau is accompanied by

a b-quark, then b and tau tagging together might provide the information we need. For

the case with a tau and two light jets, and for LQ3D̄ operators (which only gives neutrino

and two jets) we do not have an obvious method of identifying the operator.

If more than one lepton number violating operators are large at the same time, we

have shown that the prospects of identifying them are good (in most cases, the signals

we are looking for appear in different channels for different operators and these signals

are mostly independent of each other). It is also worth mentioning that if both LLĒ and

LQD̄ operators are large at the same time we expect to see only the LLĒ operator since

it gets a larger branching fraction and is easier to detect.

From flavour models one may expect large R-violating hierarchies, similar to those of

the Yukawa couplings that generate fermion masses. Fermion mass terms are dominated by

the heavier flavours. If this feature persists for the R-violating couplings as well, it would

make the identification of the LQD̄ operators very difficult since the dominant ones will

either contain tau flavour or a Q3 operator, with either case implying a low chance of identi-

fication. In addition, accompanying LLĒ operators have the advantage of larger branching

fraction as well as easier detection. The conclusion is that in this subclass of flavour models

we would expect to see dominant LLĒ operators with heavy flavours, i.e. lots of tau flavour.

Finally we have looked at the case where a heavy neutralino (Mχ0
1

> Mtop) decays

via a Ū3D̄jD̄k operator to a top quark and two jets, and have shown that this scenario

can be identified. This is important for flavour physics since in many models the R-parity

violating couplings with heavy flavours will be the dominant ones.
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Figure 18. Kinematics of three-body neutralino decay.

A Energy spectra from three-body decays

For any decay into a final state comprising more than two particles, the energy distribution

of a given final state particle is determined not only by kinematics, but has a dependence

on the dynamics as well. In particular, let us consider the decay of a neutralino to three

fermions, namely

χ̃0
1 → f1f2f3. (A.1)

There are three contributions, characterized by the identity of the sfermion (corresponding

to the fermion coupling to the neutralino). Adopting the notation of figure 18, the

corresponding matrix element will be of the form

M ∼ [ū(p1)u(p)] [ū(p2)v(p3)]. (A.2)

Here, we disregard the energy dependence of the propagator (valid for a heavy sfermion)

and the pseudoscalar part of the coupling, since its presence will not modify any differential

decay rate. Then,
∑

spins

M†M ∝ (p · p1)(p2 · p3) (A.3)

In the decay, two of the final-state particles will be charged, and potentially observable.

For a particular final-state particle, the energy distribution depends on whether it comes

from the upper or lower vertex in figure 18. With the notations p = {M,0}, pi = {Ei,pi},
and ǫi = Ei/E

max
i ≡ 2Ei/M , we find

1

Γ

dΓ

dǫi
=

{

12ǫ2
i (1 − ǫi) i = 1,

2ǫ2
i (3 − 2ǫi) i = 2, 3.

(A.4)

For i = 1, the distribution vanishes at the upper end due to angular momentum conser-

vation. For comparison, if the distribution had been determined by kinematics alone, it

would have read
1

Γ

dΓ

dǫi
= 2ǫi. (A.5)

To see the implications of this, consider the operator L1L2Ē3. The last factor represents a

coupling to a tau or a stau (both charged), whereas the first two (by SU(2) invariance) rep-

resent couplings to a charged field and a neutral one, one of which will be of the first family,

whereas the other will be of the second family. We thus have two distinct decay channels:

χ̃0
1 → τ+e−νµ, χ̃0

1 → τ+µ−νe, (A.6)
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Figure 19. Energy distributions for the decay products in a three body decay, eq. (A.4). The

straight black line shows the distribution achieved when only phase space (PS) is taken into account.

The average, eq. (A.7), is denoted ‘RPV’.

and charge conjugates. Each of these channels is governed by three diagrams of the

type shown in figure 18. Assuming that all the sfermions have comparable masses, and

neglecting interferences, the energy distribution for each of the decay products would be

averaging the distributions (A.4) over all three values of i, resulting in

1

Γ

dΓ

dǫ
= ǫ2

(

8 − 20

3
ǫ

)

. (A.7)

The above assumptions are not entirely justified, e.g. we do expect differences in sparticle

masses to introduce differences between the three diagrams due to propagator effects and

we have no reason to ignore interference altogether. However, eq. (A.7) should still be a

good approximation and the assumptions involved provide a useful formula.

The distributions (A.4), (A.7) as well as (A.5) are shown in figure 19.

B Theoretical invariant mass distributions

In order to calculate the theoretically expected invariant mass distributions [72–77] from

the leptonic neutralino decays, we start with the energy distribution of the decay products,

as given by eq. (A.7).

Let us now denote the three decay products a, b and c, with corresponding four-

momenta pa, pb and pc. The invariant mass Mab of particles a and b is given by

M2
ab = (pa + pb)

2 = M2 − 2MEc + m2
c , (B.1)

where Ec denotes the energy in the neutralino rest frame and M is the neutralino mass.

Assuming that particle c is massless and follows the distribution given by eq. (A.7) we get:

fMab
(Mab) =

8Mab

3M8
(M2 − M2

ab)
2(M2 + 5M2

ab). (B.2)
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Figure 20. Theoretical invariant di-lepton mass distributions for massless particles from χ̃0
1 decay.

Left: No cuts. The ℓℓ curve is given by eq. (B.2). Right: Cuts as indicated by eq. (B.11). Solid

curves: directly produced leptons; long-dashed curves: one lepton comes from a decaying tau;

short-dashed curves: both leptons come from decaying taus. Blue heavy curves do not take tau

polarization into account while the thin green curves do. The labels refer to the heavy curves (blue).

This distribution is shown in figure 20 (solid curves).

If one of the charged particles is a τ , we get a contribution to the di-lepton invariant

mass only if the τ decays leptonically. To calculate the distribution from this, we need to

estimate a distribution for the fraction of the energy of the tau that is transferred to the

charged lepton.

To do this, we assume that the tau decays into three massless particles (one charged

lepton and two neutrinos). The kinematics of a tau decay will be the same as discussed

in appendix A for a neutralino decay. However, with a V − A coupling, i = 1 in eq. (A.4)

represents the antiparticle among the decay products. In the rest frame of the tau, the

charged lepton will then follow the distribution for i = 2, 3 with M = Mτ .

The next step is to perform a Lorentz boost to the rest frame of the neutralino. If

we denote the momentum four-vector of the charged lepton in the rest frame of the tau,

(El,P l) and that of the tau in the rest frame of the neutralino, (E,P ), we get the energy

of the lepton in the rest frame of the neutralino as:

ElE

Mτ
+

P l · P
Mτ

. (B.3)

Since we assume that the lepton is massless, i.e., El = |P l|, and that the lepton carries a

fraction x of Mτ/2 in the rest frame of the tau, i.e. El = xMτ/2, eq. (B.3) can be written:

x

2
(E + |P | cos θ) , (B.4)

where θ is the angle between P and P l. Let us now take the limit of a massless tau, i.e.,

E = |P |, then we get:
xE

2
(1 + cos θ) . (B.5)
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Assuming that the direction of the lepton is chosen isotropically11 in the rest frame

of the tau, implies that the distribution of cos θ is flat. From that we can calculate the

distribution of y = 1 + cos θ as:

fy(y) =
1

2
, (B.6)

where y ∈ [0, 2]. We are interested in the fractional lepton energy with respect to that of

the tau, in the χ̃0
1 rest frame, i.e., the product z = x

2y where x by construction follows the

distribution (A.4) with i = 2, 3. The distribution fz(z) is now given by:

fz(z) =
5 − 9z2 + 4z3

3
. (B.7)

With all decay products from the neutralino massless, we can simplify the invariant mass

formula:

M2
ab = (pa + pb)

2 = 2EaEb(1 − cos φ), (B.8)

where φ is the angle between P a and P b. If we then assume that particle b is a tau and

decays to a charged lepton d, the resulting invariant mass Mad is given by:

Mad = Mabq, (B.9)

where q =
√

z and has a distribution fq(q) = 2q
3 (5−9q4+4q6). Mad then has a distribution:

fMad
(Mad) =

∫ 1

Mad/M

fq(q)fMab
(Mad/q)

q
dq. (B.10)

We see from eq. (B.7) that there are many low-energy leptons coming from the tau decay.

These low-energy leptons will, however, not pass the pT cuts we impose and therefore we

need to take the cuts into account when calculating the distribution (this is not required

for the direct decay to leptons since the amount of low energy leptons there is small). The

simplest thing to do to include some cuts, is to constrain the lower limit in the integral of

eq. (B.10):

fMad
(Mad) =

∫ 1

max(Mad/M,0.4)

fq(q)fMab
(Mad/q)

q
dq. (B.11)

The introduction of this cut does not preserve the normalization of the distribution;

up to this point all distributions have been normalized to unity as one would expect for

probability distributions. However, this is no longer true for eq. (B.11), moreover, the new

normalization will depend on the distribution to which this kind of cut is applied, due to

the larger impact on the lower end of the distribution.

Since we are more concerned about the shape rather than the exact values from the

distributions, there is no need to normalize eq. (B.11). Note also that introducing the cuts

this way is simple and gives a reasonably good result, but it is very ad hoc, the specific

value 0.4 is adopted for no other reason than the fact that it gives a good approximation

to the Monte Carlo results.

11Since the tau will in general be left-handed, this is not a very accurate assumption. For a discussion of

the effects of tau polarization, see below.

– 43 –



J
H
E
P
0
7
(
2
0
1
1
)
0
7
0

0 0.2 0.4 0.6 0.8 10

1

2

3

0
1

χM/M

τ l

τ τ

ττl

0 0.2 0.4 0.6 0.8 10

1

2

3

0
1

χM/M

τ l

τ τ

ττl

Figure 21. Effects of cuts on invariant mass distributions involving taus. Left: No cuts. Right:

Cuts as indicated by eq. (B.11). Long-dashed (green) curve: two tau jets are combined; solid (blue):

one directly produced lepton combined with a tau jet; short-dashed (blue): a tau together with a

lepton from a tau decay.
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Figure 22. Invariant mass distributions expected from the higher RPC chain. Left: No cuts.

Right: Cuts as indicated by eq. (B.11). Solid: the familiar triangular di-lepton distribution; short-

dashed: the di-tau-jet invariant mass; long-dashed: lepton-tau-jet mass distribution, expected when

one of the taus decays leptonically.

We can also extend the analysis to the case when both leptons come from decaying

taus by multiplying Mad with q =
√

z once again. The result of this is shown as the

long-dashed curves of figure 20 and the distributions of eq. (B.10) and eq. (B.11) are

shown as the short-dashed curves.

So far we have ignored any effects of tau polarization. However, since the neutralino

will in general decay to left-handed taus, the spin of the tau will affect the mass distri-

bution. More precisely, we get an extra factor 1
2(1 + cos θ) which amounts to replacing

eq. (B.6) with fy(y) = y
2 . The result of this can be seen in the thin green curves of

figure 20. The tau polarization pushes the distributions to higher energy but the effect

is smaller than the uncertainties regarding the effects of the cuts. Given that PYTHIA

also does not take polarization into account, we use the distributions without polarization

effects for the comparison with Monte Carlo.
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In the right panel of figure 20 we see the result of simulating the cuts with a constraint

on the integral as done in eq. (B.11). As mentioned before, this suppresses the lower

end of the distributions and changes the normalizations. We can see that the change in

normalization is different without (blue curves) and with tau polarization effects (green

curves). Including tau polarization effects, the distributions are pushed towards higher

masses and are therefore less affected by the cuts.

If the tau instead decays hadronically, we need to estimate the energy of the resulting

tau-jet (τjet). The simplest thing to do is to assume a three-body decay of the tau where

the neutrino gets a fraction c of the tau mass and the rest of the energy goes into the τjet.

The distribution of c will then follow (A.4) for i = 2, 3. We get the invariant mass of a τjet

combined with a lepton, Mτjetl as:

Mτjetl = Mab

√
1 − c, (B.12)

where Mab and c are as defined above. In line with the above procedure we introduce the

cuts by requiring
√

1 − c > 0.4.

This procedure can be repeated to produce the distribution of two τjet’s as well as

lepton-τjet distributions where the lepton comes from the decay of a tau. The result of

this is shown in figure 21.

For comparison, in figure 22 we show the expected signals from the RPC chain. One

clearly sees the similarities between the RPV and RPC signals in channels including τjet’s.

This makes the study of these channels much more difficult.
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