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Abstract

Background: The selection of suitable internal control genes is crucial for proper interpretation of real-time PCR
data. Here we outline a strategy to identify housekeeping genes that could serve as suitable internal control for
comparative analyses of gene expression data in breast cancer cell lines and tissues obtained by high throughput
sequencing and quantitative real-time PCR (qRT-PCR).

Methods: The strategy proposed includes the large-scale screening of potential candidate reference genes from
RNA-seq data as well as their validation by qRT-PCR, and careful examination of reference data from the
International Cancer Genome Consortium, The Cancer Genome Atlas and Gene Expression Omnibus repositories.

Results: The identified set of reference genes, also called novel housekeeping genes that includes CCSER2, SYMPK,
ANKRD17 and PUM1, proved to be less variable and thus potentially more accurate for research and clinical
analyses of breast cell lines and tissue samples compared to the traditional housekeeping genes used to this end.

Discussion: These results highlight the importance of a massive evaluation of housekeeping genes for their
relevance as internal control for optimized intra- and inter-assay comparison of gene expression.

Conclusion: We developed a strategy to identify and evaluate the significance of housekeeping genes as internal
control for the intra- and inter-assay comparison of gene expression in breast cancer that could be applied to other
tumor types and diseases.

Background
As is well characterized at the cellular level, one of the main
features of cancer intrinsically involves complex signaling
pathways [1]. The identification of dysregulated genes in-
volved in the carcinogenesis and tumor progression as well
as their control poses challenges that mobilize the cancer
research community worldwide. High-throughput tech-
nologies now allow genome-wide expression profiling,
which is already providing important insights into complex
regulatory networks, enabling the identification of new or
under-explored biological processes, and helping to un-
cover the genes that are involved in various pathological
processes as is the case with cancer [2, 3]. Highly sensitive
investigative transcriptome profiling is now carried out by
high throughput sequencing (HTS). However, because of

reduced cost, clinical diagnoses rely on a set of target genes
(demonstrated to be relevant in the case analyzed in a pre-
vious investigative step) and, thus, involve quantitative
Real-Time RT-PCR (qRT-PCR) or AmpliSeq [4]. In this
context, qRT-PCR has already been incorporated into clin-
ical and translational science practice as a result of redefin-
ing the classification criteria of breast tumor diagnosis and
prognosis by the incorporation of molecular factors in
state-of-the-art protocols [5–8]. The successful transfer of
knowledge from basic research to clinical diagnosis neces-
sarily involves the demonstration that the results obtained
with the latter are statistically consistent with those ob-
tained with the former.
Statistical consistency involves experimental reprodu-

cibility and, from a general viewpoint, reproducibility is
an absolute prerequisite for reliable inference, especially
when investigating the biological significance of subtle
differences in gene expression [9]. Experimental repro-
ducibility is generally linked to the concept of robustness
that is understood as the stability of a system output
(here, the gene expression) with respect to stochastic
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perturbations. When comparing data from one transcrip-
tome profile to another, one performs normalization of
gene expression at the level of sequence and sample sizes.
The process of normalization itself increases the robust-
ness of an inference drawn from an experiment because it
decreases intra- and inter-sample variances. Cancer is a
multifactorial disease whose dimensionality (understood
in terms of the relevant parameter space) may vary in time
and space. Thus, internal controls with the highest pos-
sible robustness of gene expression are necessary to com-
pare independent experiments and to maximize the
confidence of inferences drawn from independent assays.
In terms of gene expression, the genes with the highest
level of expression stability (or expression robustness) over
time and space are called housekeeping genes (HKG), sim-
ply because these genes perform functions that are essen-
tial to any cells in any states. The main concept associated
with HKGs when dealing with transcriptome profiling is
the notion that their expression level should not: (i) be af-
fected under pathological conditions, (ii) differ between
tissues and cell types, and (iii) be altered in response to ex-
perimental treatments. As a consequence, HKGs are gen-
erally regarded as the best gene candidates for internal
controls when comparing transcriptome profiles obtained
independently. Thus, the choice of HKGs is essential to
the success of the experiment performed, especially
when transcriptome profiling is carried out on the basis
of high throughput sequencing, where any differences
of gene expression may have significant meaning ac-
cording to the expression robustness of reference genes
(the HKGs) [10–13].
In a previous study, we described a strategy for the se-

lection of protein targets suitable for drug development
against neoplastic diseases taking the case of breast can-
cer (BC) as a particularly pertinent example [14]. We ex-
tracted the sub-networks of down- and up-regulated
human genes by comparing malignant and control cell
lines and identified proteins that act as connectivity hubs
representing suitable targets for disease control in terms
of pharmacological agents. Surprisingly, this analysis re-
vealed that the most frequently used traditional HKGs
(tHKGs) such as GAPDH, ACTB and TUBA1A ap-
peared significantly altered in their expression level from
one sample to the other, which raises significant con-
cerns regarding their uses as internal controls. To ad-
dress this issue, we propose a strategy to identify
potential novel HKGs (nHKGs) and also to validate
tHKGs that may serve as internal controls in BC investi-
gations based on HTS and qRT-PCR. First, we identified
the genes with the highest level of expression stability in
transcriptome data, and second, we confirmed that these
genes were effectively the most stably expressed in qRT-
PCR experiments of mRNA extracted from axenic cul-
tures of the same cell lines. In cancer research, only a few

studies attempted to investigate the variation of HKGs’ ex-
pression rates over different tissues and samples. Here, we
used transcriptome and microarray data available from
the ICGC consortium, TCGA and GEO to assess nHKG
and tHKG candidates over different breast cancer tissue
samples. We identified CCSER2, SYMPK, ANKRD17 and
PUM1 as the top-four best candidates of HKGs for BC.

Methods
Interactome data
The protein connectivity inferences described below
are based on the protein interactions given in the file
intact-micluster.zip available from ftp://ftp.ebi.ac.uk/
pub/databases/intact/current/psimitab/ (accessed on
04.04.2014) as described by Carels et al. [14]. Briefly,
our resulting file contained 308,314 protein pairs. This
interaction file was then processed to form a non-
redundant list of Uniprot identifiers (UID) used to retrieve
the corresponding protein sequences (68,504) by querying
UniprotKB at http://www.uniprot.org/help/uniprotkb. The
equivalence between UID and human genes was obtained
by homology search (tBLASTn) of protein sequences
(68,504) found as queries and human coding sequences
(CDS) used as subjects from the dataset (hs37p1.EID.tar.gz)
of Fedorov’s laboratory (available at http://bpg.utoledo.edu/
~afedorov/lab/eid.html) [15]. Homologies were considered
significant when their score was ≥120, E-value ≤10−4 and
identity rate ≥80 % over ≥50 % of query size.

Transcriptome data
We recovered transcriptome datasets of breast cell lines
(MCF10A, BT-20, BT-474, MDA-MB-231, MDA-MB-
468, MCF-7, T-47D, ZR-75-1, see information at http://
www.atcc.org/) from http://www.illumina.com/science/
data_library.ilmn. We retrieved 433 transcriptome data-
sets relative to breast cancers from the ICGC portal. All
raw data analyzed can be accessed and downloaded via the
ICGC data portal (http://dcc.icgc.org/). The data samples
were generated from patients that presented distinct histo-
logical subtypes, ages, tumor stages and sizes, grades and
menoposal status, in order to perform a blind validation
experiment. Additionally, we retrieved 95 paired transcrip-
tome datasets relative to BC and their non-tumoral
samples from TCGA (http://cancergenome.nih.gov/),
considering Luminal A, Luminal B, Triple Negative and
HER2+. The gene expression profiles for cell lines and tu-
mors were assessed through a homology search with the
human CDS sample of the Fedorov laboratory. The se-
quences from transcriptome tags were used as queries in
searches for the best homologies (BLASTn) with human
CDSs. The homology redundancy in the BLASTn output
file gave us the tag count per gene i.e., a profile of human
gene expression for each sample considered. Homologous
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hits were considered significant when covering at least
50 % of their size.
Each gene expression profile (tag count per gene) was

normalized according to the CDS size and whole tag
count using the formula (109*C)/(N*L), where 109 is a cor-
rection factor, C is the number of reads that match a gene,
N is the total number of mappable tags in the experiment,
and L is the CDS size [16]. When tags were counted for
more than one gene isoform (alternative splicing forms),
we cumulated counts and allocated them to just one form
(the largest one); this strategy means that we looked for
gene expression and not isoform expression. To allow the
comparison between independent gene expression pro-
files, we further applied Quantil-normalization (Q-norm)
[17]. The normalization of tag samples according to the
CDS size and tag number is necessary to avoid values of
gene expression that may differ from one sample to the
other. The distribution of tag counts from transcriptome
data is typically a decreasing curve where the lowest
expressed genes are the most frequent ones. The size of
the human transcriptome used was 4379 genes common
to the eight cell lines investigated in our experiment.

Microarray analysis
We retrieved three microarray datasets of breast cancer
(GSE9574, GSE20437 and GSE6434) from the Gene

Expression Omnibus (GEO) repository (http://www.ncbi.
nlm.nih.gov/geo/). GSE9574 includes 29 samples from his-
tologically normal micro-dissected breast epithelium with
14 samples from epithelium adjacent to a breast tumor
and 15 samples obtained from patients undergoing reduc-
tion mammoplasty without apparent breast cancer.
GSE20437 includes 42 samples from laser capture micro-
dissection (LCM) of normal breast tissue samples analyzed
with the Affymetrix HU133A microarrays to show that his-
tologically normal epithelium from breast cancer patients
and cancer-free prophylactic mastectomy patients share a
similar expression profile. Among these 42 samples (i) 36
were from the same age group with 18 from reduction
mammoplasty and 18 from histologically normal epithelial
samples of breast cancer patients from which 9 were ER+
and 9 ER- and (ii) 6 were histologically normal epithelial
samples from prophylactic mastectomy patients. GSE6434
includes 24 BC patients sensitive or resistant to docetaxel
that were analyzed with the Affymetrix Human Genome
U95 Version 2 Array.

HKGs
We selected 10 tHKGs among the genes most com-
monly used as internal control in expression experi-
ments to evaluate their expression variance by HTS and
qRT-PCR (see Table 1 for gene name, uniprotkb,

Table 1 Features of nHKGs and tHKGs

Uniprotkb Protein name Gene Mean CV (%) Biological process

nHKGs

Q92575 UBX domain-containing protein 4 UBXN4 81.75 11.45 Response to unfolded protein

Q08211 ATP-dependent RNA helicase A DHX9 158.25 12.42 ATP catabolic process, DNA duplex unwinding

P17152 Transmembrane protein 11, mitochondrial TMEM11 68.12 12.83 Mitochondrion organization

Q6PKG0 La-related protein 1 LARP1 137.87 13.10 Cell proliferation

Q13190 Syntaxin-5 STX5 65.37 13.33 Vesicle transport

O75179 Ankyrin repeat domain-containing protein 17 ANKRD17 33.62 14.03 Blood vessel maturation

Q92797 Symplekin SYMPK 60.75 14.29 Cell adhesion

Q6P1X5 Transcription initiation factor TFIID subunit 2 TAF2 23.87 14.41 G2/M transition of mitotic cell cycle

Q9H7U1 Serine-rich coiled-coil domain-containing protein 2 CCSER2 20.00 15.12 Microtubule bundle formation

Q6NZ67 Mitotic-spindle organizing protein 2B MZT2B 179.62 15.69 –

tHKGs

Q14671 Pumilio homolog 1 PUM1 45.50 24.56 Vesicle-transport, translation

P40429 60S ribosomal protein L13a RPL13A 3028.62 25.51 Translation

P00558 Phosphoglycerate kinase 1 PGK1 488.37 30.91 Glycolysis

P08236 Beta-glucuronidase GUSB 70.00 36.56 Metabolic processes

P60709 Actin, cytoplasmic 1 ACTB 9500.25 37.06 Protein folding, chromatin remodeling

Q9UNQ2 Probable dimethyladenosine transferase DIMT1 26.62 41.82 rRNA processing

Q71U36 Tubulin alpha-1A chain TUBA1A 658.00 47.50 Protein folding, G2/M transition of cell cycle

P04406 Glyceraldehyde-3-phosphate dehydrogenase GAPDH 3580.12 66.79 Metabolic process, protein folding

P61769 Beta-2-microglobulin B2M 1530.12 93.47 Immunity
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function; and see Additional file 1: Table S1 for primer
sequence). The strategy used to identify nHKGs is out-
lined in Fig. 1. We searched for candidate HKGs whose
expression was detected in the transcriptomes of eight
cell lines (MCF10A, BT-20, BT-474, MDA-MB-231,
MDA-MB-468, MCF-7, T-47D, ZR-75-1) using 0’s propor-
tion in transcriptome datasets. 0’s proportion is defined as
the proportion of different cell lines in which a given gene
is not expressed and was calculated as follows:

0’s proportion ¼ Number of cell lines not expressing the gene
Total number of cell lines

ð1Þ

A 0 value for the 0’s proportion indicates that the gene
is expressed in the eight cell lines, and a value between 0

and 1 indicates that the gene is not expressed in at least
one cell line.
To select nHKGs, we (i) eliminated the genes that

were not-expressed in all cell lines (0’s proportion =1)
from the list; (ii) evaluated the coefficient of variation
(CV) for each gene, which is the ratio of the standard
variation and the mean; (iii) further filtered out potential
nHKGs by keeping the 10 genes with the lowest CV
among the 4379 genes common to the eight cell line
transcriptomes (tumoral and non-tumoral cell lines).
In order to annotate HKGs, we searched for their

homologies with nr (GenBank, rel 181) using the BLAST
to gene ontology - Blast2GO [18]. We also looked for
the most common transcription factors (TFs) involved
in BC signaling pathways that could regulate HKG expres-
sion by searching the literature, and selected the following
ones: AP1, NFKB, GATA3, FOXA1, ER, Elk1, STAT3,
STAT5, HIF, NOTCH, SP1, TP53, MYC [19]. In order to
crosscheck the information available as far as possible, we
also compared our data with three reference databases: (i)
STRING (http://string-db.org/), which includes direct and
indirect associations derived from four sources: genomic
context, high-throughput experiments, (conserved) co-
expression and previous knowledge, (ii) CCSB interactome
(http://interactome.dfci.harvard.edu/) and (iii) cancer-
systemsbiology (http://www.cancer-systemsbiology.org/).
In order to determine the degree of interdependence
associated to HKGs, we graphically analyzed their
sub-networks formed with TFs in the GEPHI (http://
gephi.github.io/) environment by pasting data in the
input node file and using the toolbox of this program
to automatically calculate and represent protein con-
nectivity (i.e., the relative number of edges per node).

Cell culture, cDNA preparation and qRT-PCR
To validate our in silico inferences, we used four breast tu-
moral cell lines: MCF-7 (Luminal A), T47D (Luminal A),
MDA-MB-231 (Triple Negative), MDA-MB-468 (Triple
Negative), and a non-tumoral breast cell line, MCF-10A.
All cell lines were cultured in standard conditions as rec-
ommended by ATCC, supplemented with 10 % fetal bo-
vine serum (FBS), 100 IU/ml penicillin and 100 mg/ml
streptomycin in a humidified environment containing 5 %
CO2 at 37 °C.
We isolated total RNA from breast cell lines using a

PureLink RNA Mini Kit (Ambion) according to the
manufacturer’s instructions. Total RNA was eluted in
40 μl of RNase-free H2O and stored at −80 °C. Extracted
RNAs were quantified using NanoDrop ND-1000
(NanoDrop Technologies) and the absorbance ratios at
260/280 and 260/230 were measured to assess RNA pur-
ity. The ratios of optical densities (OD) at 260 vs.
280 nm (260/280) were between 1.8 and 2.0 for all sam-
ples. First-strand cDNA synthesis was carried out with

Download from 
http://www.illumina.com/science/data_library.

4,379 candidate housekeeping genes

10 potential nHKGs

BT-20, BT-474, MDA-MB-231, MDA-MB-468, 

MCF-7, MCF10A, T-47D, ZR-75-1

0’s proportion = 0

Ranking by CV (%) in all eight
cell line

5 candidate reference genes

qRT-PCR

ICGC, TCGA and 

microarrays databases

3 nHKGs: CCSER2, SYMPK, ANKRD17

1 tHKGs: PUM1

10 tHKGs (from literature)

Fig. 1 Flowchart of a novel identification strategy for housekeeping
genes (nHKGs) in breast cancer. A list of 7780 genes was first obtained
by selecting genes with low 0’s proportion and coefficient of variation
(CV). 0’s proportion is defined as the proportion of different cell lines
in which a given gene is not expressed; and CV is the ratio of the
standard variation to the mean. Among the nHKG candidates, 10 with
the lowest CVs were further validated by qRT-PCR and for their 0’s
proportion in a large human tissue dataset from ICGC. For the sake of
comparison, we included traditional housekeeping genes (tHKGs)
selected from the literature, i.e., PUM1, RPL13A, PGK1, GUSB,
ACTB, DIMT1, TUBA1A, GAPDH, B2M, 18S
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1 μg total RNA using oligo(dT) primers and Superscript
II reverse transcriptase (Invitrogen Life Technologies)
following manufacturer’s instructions. PCR assays were
performed using the primers listed in Additional file 1:
Table S1. All oligonucleotides were analyzed for poten-
tial secondary structure and dimerization using OligoA-
nalyzer 3.1. qRT-PCR was performed on a StepOne Plus
System (Applied Biosystems) using Power SYBR Green
PCR Master Mix (Applied Biosystems). PCR was done
using the following protocol: 50 °C for 2 min, initial de-
naturation 94 °C for 5 min, then 40 cycles at 94 °C for
30 s, 60 °C for 30 s, 72 °C for 45 s; and 72 °C for 15 min.
To verify that the used primer pair produced only a sin-
gle product, a DNA melting curve analysis was added
after thermocycling, determining dissociation of the PCR
products from 60 to 90 °C (with a heating rate of 0.2 °C
and continuous fluorescence measurement). The ampli-
fication efficiency of each set of oligonucleotides was
determined by plotting the cycle threshold (Ct) values
obtained for four cDNA dilutions (1:100, 1:200, 1:400,
1:800) (Additional file 2: Figure S1).

Results
Identification of HKGs from transcriptome data
Table 1 shows the list of top-10 candidates of nHKGs ob-
tained from the analysis of the eight breast cell lines se-
lected. Among genes with low CV (%) values across breast
cell lines, some may have either a low or a large average ex-
pression level. Because of their ease of detection, the HKGs
with large average expression levels are suitable for gene
expression characterization by RT-PCR, microarrays and/
or HTS. The top-10 nHKGs (DHX9, MZT2B, UBXN4,
LARP1, TAF2, CCSER2, STX5, SYMPK, TMEM11 and
ANKDR17) with the smallest expression variability identi-
fied here have not been used yet as internal control in ex-
pression experiments and have independent functions in
cellular maintenance (Table 1). Interestingly, GAPDH,
ACTB and TUBA1A, the most commonly reported refer-
ence genes for comparative expression experiments, did
not meet the parameters applied by us for the selection of
nHKGs. However, for the sake of comparison, we included
the nine tHKGs most commonly found in the literature
(PUM1, RPL13A, PGK1, GUSB, ACTB, DIMT1, TUBA1A,
GAPDH and B2M). The tHKGs did not belong to the list
of top-100 genes with the lowest coefficient of variation
(the standard deviation over the average of a random vari-
able) of gene expression.
The average expression level of nHKGs is 82.92 (for a

range of 20.00 to 179.62), and that of tHKGs is 2323.87
(range of 26.62 to 9500.25) (Fig. 2a and Table 1). The aver-
age expression of nHKGs was an order of magnitude lower
than that of tHKGs. Figure 2b shows the CV for each gene
over the eight breast cell lines. tHKGs shows a ~10 time
larger CV (44.91, on average) than nHKGs (3.67, on

average), supporting the notion that nHKGs are generally
expressed more stably and at lower levels than tHKGs.
For the purpose of challenging the robustness of

nHKG to expression variation, we tested the co-
regulation between HKGs by examining the network of
transcription factors involved in BC signaling pathways
in nHKGs as well as in tHKGs (Fig. 3 and Additional
file 3: Figure S2). The interpretation of resulting net-
works in the light of the version of human interac-
tome that we used provides evidence that estrogen
receptor (ER) directly regulates DHX9, LARP1, ACTB,
GAPDH and RPL13A expression; whereas MYC regu-
lates DIMT1, MZT2B and TAF2; TP53 regulates STX5;
and AP1 regulates TUBA1A. We also found interac-
tions between GAPDH, PGK1, ACTB and TUBA1A;
and also between DHX9 and LARP1, indicating that

Fig. 2 Pattern and variation of candidate nHKG and tHKG expression
in breast cell lines. a Comparison of gene expression between nHKG
candidates and tHKGs across all cell lines. The x-axis represents the
mean gene expression levels. Boxes delimit lower and upper quartiles
while the vertical lines within the boxes indicate median expression
values. Lateral whiskers provide lower and higher values as left and
right ticks, respectively. b Housekeeping genes (nHKGs and tHKGs,
x-axis) ordered by an increasing average of CVs for each gene over
eight cell lines (y-axis) across breast cell lines

Tilli et al. BMC Genomics  (2016) 17:639 Page 5 of 11



these genes present regulation processes that share
common routes. These interactions are also reported in
STRING (Additional file 3: Figure S2), CCSB (Additional
file 4: Table S2) and cancer-systemsbiology databases
(Additional file 5: Table S3). By contrast, according to
the common knowledge available at present, CCSER2,
TMEM11, SYMPK, UBXN4 and ANKRD17 among
nHKGs do not show cross interactions. Thus,
CCSER2, TMEM11, SYMPK, UBXN4 and ANKRD17
represented the best candidates for potential nHKGs
offering internal control in comparative expression as-
says. By assessing the relationship between the ex-
pression patterns of nHKGs and tHKGs using the
STRING database, we found that, with the exception of
DHX9 that exhibits positive correlation with UBXN4,
all remaining nHKGs are independently expressed
(Additional file 6: Figure S3A). Among tHKGs,
GAPDH shares expression with PGK1, ACTB and
TUBA1A and the expression of TUBA1A is directly
associated with ACTB (Additional file 6: Figure S3B).
Based on all these results taken together, we selected
CCSER2, TMEM11, SYMPK, UBXN4 and ANKRD17 as a
set of nHKGs for validation. These nHKGs include genes
with the largest expression stability among the transcrip-
tome data of our cell line sample as well as the absence of
obvious co-regulation and co-expression with other genes.

Additionally, we selected TUBA1A, GAPDH, ACTB, B2M
and 18S as a set of tHKGs for comparison.

Evaluation of selected nHKGs and tHKGs by qRT-PCR
To validate inferences about nHKGs and tHKGs from
HTS data, we next performed qRT-PCR analyses with
the five nHKG candidates (CCSER2, SYMPK, TMEM11,
UBXN4 and ANKDR17) for comparison with tHKG ex-
pression (ACTB, GAPDH, TUBA1A, B2M and 18S). In
order to compare our results across cell lines and genes,
we used the simplest and most direct method, the com-
parative CT method, which uses only raw values of
threshold cycles CT. Since CT is inversely proportional
to the gene expression, we compared gene expression
according to 1/CT as shown in Fig. 4a. The amplification
of cDNA with gene-specific primers from an independ-
ent set of breast cell lines (MCF-10A, MCF-7, MDA-
MB-231, MDA-MB-468 and T47D) demonstrated better
performance in terms of stability for nHKGs than
tHKGs (Fig. 4a and Table 2). nHKGs showed nearly the
same gene expression levels for each sample of the
whole set (Fig. 4a). Based on qRT-PCR data, the average
expression of nHKGs was 28.18 when calculating CT

(σCT = 0.94) and 35.66 10−3 (σ1/CT = 1.2 10−3) when cal-
culating 1/CT (CT ranging from 29.23 to 26.82 or 1/CT

ranging from 34 10−3 to 37 10−3) and that of tHKGs was

ER

STAT5

STAT3

HIF

SP1

TP53
MYC

AP1

NFKB

NOTCH
FOXA1

GATA3

ELK1

RPL13AGAPDH

PGK1

ACTB

TUBA1A

DIMT1

PUM1

GUSB

B2M

DHX9

LARP1

MZT2B

TAF2

STX5

UBXN4

CCSER2

ANKRD17
SYMPK

TMEM11

Fig. 3 Subnetworks of nHKGs, tHKGs and transcription factors in Gephi. Nodes are for genes and links for interactions among them. Node size
indicates connectivity grade. Red is for transcription factors, green for tHKGs, and blue for nHKGs
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19.86 (σCT = 2.31) and 51.66 10−3 (σ1/CT = 6.4 10−3) when
calculating 1/CT (CT ranging from 23.15 to 16.07 or 1/CT

ranging from 43 10−3 to 63 10−3). Furthermore, for HTS
data, the average expression of nHKGs was lower than
that of tHKGs. Additionally, we confirmed that the CV of
nHKGs (6.63 on average for CT and 52.72 10−3 for 1/CT)
was lower than that of tHKGs (9.74 on average for CT and
73.62 10−3 for 1/CT) (Fig. 4a and Table 2). All these results
support our previous hypothesis that nHKGs are generally
expressed more stably and at lower levels than tHKGs. By
comparing the logarithm of average normalized read
counts of RNA-seq data to the logarithm of 1/CT values of
qRT-PCR for each gene, we observed a strong linear
correlation (r = 0.963), which allows the transposition
of results obtained with one technique to the other
and vice versa (Fig. 4b).
Good laboratory practice would recommend the use of

more than one internal control for comparative analyses
of gene expression to minimize the risk associated with
accidental errors and to increase statistical consistency.

Thus, we assessed the potential combination of all five
genes based on qRT-PCR data. Correlation coefficients (r)
were calculated, representing the relationship between the
expression of each individual housekeeping gene and the
mean expression of the remaining genes (Table 3). Clearly,
all nHKGs showed a very high correlation coefficient,
which means that we could alternatively choose and com-
bine each one of nHKGs. By extension, if three nHKGs
are used as internal controls, at least two should give simi-
lar levels of gene expression in order to provide confi-
dence in the experimental results obtained.

Validation of nHKGs and tHKGs in large breast cancer
tissue datasets from ICGC, TCGA and GEO
We obtained the transcriptome expression patterns of
433 tissue samples associated with breast cancer from
the ICGC consortium, 95 paired tissue samples from
TCGA, and three distinct microarray datasets from GEO
and successively screened these data for nHKGs and
tHKGs validation. This assay presented three main goals:

Fig. 4 Scatter plot of gene expression measured by real-time PCR and read counting in RNA-seq data. a Expression pattern of nHKG candidates
and tHKGs in breast cell lines obtained by qRT-PCR across eight cell lines. Boxes delimit lower and upper quartiles while the vertical lines within
the boxes indicate median expression values. Lateral whiskers provide lower and higher values as left and right ticks, respectively. The x-axis gives
the mean of 1/CT for each gene. Results are representative of three independent experiments. b Correlation between qRT-PCR and read count from
RNA-seq data for each gene across eight breast cell lines (r = 0963). The y-axis represents the average of CVs for each gene over eight cell lines

Table 2 Threshold cycle (CT): Values of average, standard deviation and coefficient of variation for tHKGs and nHKGs

CT GAPDH B2M ACTB TUBA1A 18S CCSER2 UBXN4 SYMPK TMEM11 ANKRD17

MCF-7 18.51 23.97 16.24 21.92 20.49 29.72 26.61 29.46 27.04 28.82

MDA-MB-231 16.45 20.80 13.84 20.22 19.61 27.47 24.83 27.35 24.69 27.12

MDA-MB-468 20.48 25.49 18.09 24.94 23.47 30.96 30.49 30.84 29.44 31.57

T47D 15.66 22.14 14.62 20.32 19.56 28.01 25.33 27.34 24.94 26.80

MCF10A 18.29 23.32 17.56 22.69 17.86 29.96 28.61 29.74 27.98 29.25

Minimum 15.67 20.81 13.85 20.23 17.87 27.47 24.84 27.35 24.69 26.81

Maximum 20.49 25.50 18.10 24.94 23.47 30.96 30.50 30.84 29.45 31.57

Mean 17.88 23.15 16.07 22.02 20.20 29.23 27.18 28.95 26.82 28.72

Std. Deviation 1.892 1.782 1.831 1.942 2.062 1.444 2.359 1.550 2.021 1.912

Coefficient of variation (%) 10.58 7.70 11.39 8.82 10.21 4.94 8.68 5.35 7.53 6.66
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(i) validation of nHKGs for use in clinical conditions, (ii)
generalization of the nHKG and tHKG expression data
obtained with malignant breast cell lines to human
breast tumors, and (iii) assessment of tHKGs expression
variability in malignant tissues of human breast.
The expression levels of DHX9, LARP1, TAF2, CCSER2,

SYMPK, and ANKDR17 (nHKGs) were measurable in all
433 samples, while we did not observe expression of
MZT2B, UBXN4, STX5 and TMEM11 in all samples.
These results mean that among the 5 core nHKGs, we
identified CCSER2, SYMPK and ANKDR17 as the best
nHKG candidates. It is worth stressing that among
tHKGs, DIMT1, TUBA1A and B2M were not expressed
in all samples. However, PUM1 appeared to be the best
tHKG candidate for use as internal controls in BC investi-
gations. Comparison of the mean expression levels, stand-
ard deviations and CV of tissue sample sets revealed that
nHKGs showed lower values than the commonly used
housekeeping genes (Fig. 5). The average expression of
nHKGs by RNA-seq read count was 24.97 and that of

tHKGs was 247.66 (Table 4). With respect to expression
variation, most of the tHKGs showed relatively higher
variation levels than the majority of nHKGs and the mean
CV values of nHKGs (55.94, on average) was ~3 times
lower than those of tHKGs (161.39, on average) (Table 4).
Similar results were also observed when we analyzed
TCGA and microarray data (Additional file 7: Figure S4
and Additional file 8: Figure S5). All these data support
the hypothesis that nHKGs are generally expressed more
stably and at lower levels than tHKGs. The results of our
data analysis identified CCSER2, SYMPK, ANKDR17 and
PUM1 as suitable reference genes for bench experiments
of gene expression since they showed low variation, but
persistent expression across individual tissues and over
large-scale sampling. Given that the expression stability of
nHKGs was consistently better than that for the majority
of tHKGs, one may conclude here that nHKGs are better
internal controls than tHKGs to report on disease and/or
tissue-specific effects on the basis of molecular investiga-
tions. Our results indicate CCSER2, SYMPK, ANKRD17
and PUM1 to be the best HKG candidates for clinical and
in vitro investigations in BC.

Discussion
Despite the considerable progress in high-throughput
technologies, a rational method design to identify HKGs
has not been achieved yet. Until now, no fully effective
reference HKGs have been proposed for comparative
analyses of gene expression in the context of complex
diseases, such as cancer, neurological, autoimmune, car-
diovascular and metabolic diseases. Such lack of critical
assessment can promote biases in the conclusions drawn
from these investigations. Thus, we believe that the
strategy that we outlined here is relevant for the identifi-
cation of suitable HKGs as internal control for bench ex-
periments on gene expression in BC, and should be
explored for other neoplasias and diseases.
Our findings illustrate the importance of minimizing

any sources of bias and suggest the importance of critic-
ally assessing the performance of the HKGs used as
internal controls in each case studied. We used tran-
scriptome data to select genes with low variability in ex-
pression levels across breast cell lines. Our large-scale
dataset samples were filtered out to identify genes with
the largest expression stability across breast cell lines.
Further screening including the elimination of candidate
genes with obvious co-regulation, co-expression and/or
similar biological function was successfully added to the
protocol. HKGs distributed within different functional
classes significantly reduce the chance of genes co-
regulation. All these criteria taken together increase the
likelihood of independent expression of candidate HKGs
and decrease the likelihood of expression alterations in

Table 3 Correlation coefficients for the expression of each
individual gene and the mean expression of the remaining
four genes

CCSER2 UBXN4 SYMPK TMEM11 ANKD17

MCF-7 29.72351 26.61776 29.46543 27.04637 28.82998

MDA-MB-231 27.4733 24.83932 27.3512 24.69488 27.12572

MDA-MB-468 30.9613 30.49971 30.84297 29.44699 31.57093

T47D 28.0175 25.33814 27.34727 24.94886 26.80775

MCF10A 29.96375 28.61279 29.74568 27.98631 29.25333

Correlation 0.976768 0.969011 0.983436 0.99814 0.977064

Fig. 5 Distribution of expression levels by read counts of 10 nHKGs
and 9 tHKGs in breast cancer RNA-seq (n = 433) from ICGC. Boxes
delimit lower and upper quartiles while the vertical lines within the
boxes indicate median expression values. Lateral whiskers provide
lower and higher values as left and right ticks, respectively
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the context of complex networks such as those found in
cancer diseases.
Clearly, the use of nHKGs is expected to improve the

robustness likelihood of bench experiments aimed to
validate bioinformatic inferences in the context of BC
for in vitro models. We demonstrated a very high correl-
ation level (r = 0.963) between expression levels obtained
from RNA-seq data (Illumina sequencing) and qRT-PCR
using the same cell lines despite being cultured in a dif-
ferent place, at a different time, on different media and
from independent sources; a set of modifications that
represents a huge source of potential variability. The
high correlation level and the almost perfect match with
the linear regression of RNA-seq and qRT-PCR data
gives a simple mean for direct result extrapolation from
one result to another. As a consequence, a real possibil-
ity exists to translate the expression data of investigative
RNA-seq into diagnosis at a clinical level by using qRT-
PCR or AmpliSeq. Such a high level of robustness of
gene expression on a multidimensional scale suggests
that CCSER2, ANKRD17 and SYMPK are suitable nHKGs
as well as the tHKG PUM1 for fine comparative analyses
of gene expression by HTS and qRT-PCR.
Most of the tHKGs selected here have been indiscrim-

inately used by a number of scientists worldwide and are
available commercially as standard kits. Typically, these
kits focus on a specific pathway and include a panel of

genes relevant to that specific pathway or disease state.
For example, the cancer-pathway kit from Qiagen array
includes: B2M, HPRT1, RPL13A, GAPDH, ACTB while
that of Life technologies array includes: CDKN1B, G6PD,
POLR2A, IPO8, CASC3, YWHAZ, CDKN1A, UBE2D2,
HMBS, UBC,TP5B, HPRT1, CUL1, 18S, RPLP0, ACTB,
PPIA, GAPDH, PGK1, B2M, GUSB, HPRT1, TBP, TFRC.
On the other hand, ACTB, GAPDH, RPLP0, GUSB and
TFRC form a set of reference genes included in a
commercial Oncotype DX test. This test was sup-
ported by the National Comprehensive Cancer Center
Network (NCCN) and the American Society of Clin-
ical Oncology (ASCO) in their treatment guidelines
[20] in order to calculate a recurrence risk score for
each patient. Here, we have shown that most of these
genes are not stably express across breast cell lines.
As a result, in a large subset of human tissues, the
introduction of these genes as reference HKGs is ex-
pected to promote noise in the assessment of expres-
sion levels from other genes. As a matter of fact, this
situation can be expected since tHKGs have a higher
level of connection with other genes, such as TFs for
example, than nHKGs.
Astounding discrepancies can be found in the data

from the literature when considering the most frequently
used tHKGs in qRT-PCR as internal controls. Révillion
et al. [21] showed an association of GAPDH expression

Table 4 Expression level, average, standard deviation, median and coefficient of variation values of nHKGs and tHKGs in a large data
set of breast cancer tumors (n = 433) from ICGC

Minimum 25 % percentile Median 75 % percentile Maximum Mean Std. deviation Coefficient of variation (%)

DHX9 16.00 27.00 36.00 47.50 97.00 39.22 14.56 37.14

MZT2B 0.0 2.000 7.000 12.00 39.00 7.896 6.834 86.55

UBXN4 0.0 15.00 21.00 30.50 95.00 23.94 12.93 54.04

ANKRD17 3.000 15.00 27.00 40.00 60.00 27.55 13.88 50.37

LARP1 1.000 12.00 26.00 35.00 61.00 25.53 13.92 54.54

TAF2 2.000 15.00 23.00 34.00 53.00 23.94 11.95 49.94

CCSER2 2.000 17.50 24.00 34.00 58.00 25.58 11.64 45.50

STX5 0.0 14.00 33.00 44.50 95.00 32.82 21.33 65.00

TMEM11 0.0 7.000 11.00 18.00 108.0 14.10 12.07 85.62

SYMPK 2.000 9.000 16.00 24.00 58.00 17.40 10.58 60.80

PUM1 4.000 15.00 20.00 29.50 76.00 22.63 11.32 50.03

DIMT1 0.0 16.00 27.00 35.00 85.00 27.93 15.46 55.38

ACTB 7.000 37.50 59.00 102.5 1232 87.07 108.7 124.8

GUSB 11.00 29.00 45.00 64.00 177.0 53.06 32.19 60.67

GAPDH 9.000 19.00 39.00 157.0 437.0 97.21 98.85 101.6

TUBA1A 0.0 7.000 13.00 44.00 158.0 26.07 24.98 95.80

B2M 0.0 13.00 23.00 37.00 26248 608.1 3264 536.73

RPL13A 12.00 34.00 73.00 185.0 26248 1094 4564 417.25

PGK1 4.000 42.00 52.00 71.50 146.0 59.78 29.30 49.02

Tilli et al. BMC Genomics  (2016) 17:639 Page 9 of 11



with BC cell proliferation and with the aggressiveness of
tumors. Ahmad et al. [22] demonstrated phosphoglycer-
ate kinase 1 (PGK1) as a promoter of metastasis in colon
cancer. Hence, PGK1 is a promoting enzyme for peri-
toneal dissemination in gastric cancer [23]. McNeill et
al. [24] showed alterations in GUSB expression in breast
cancer. Stromal myofibroblasts in invasive breast cancer
expression of alpha-smooth muscle actin (α-SMA) cor-
relate with worse clinical outcomes [25] and the metas-
tasis group showed significantly higher α-SMA
expression compared with the non-metastasis group.
Loss of α-tubulin was significantly correlated with dis-
tant metastases [26]. B2M expression demonstrated a
significant difference in the breast cancer molecular sub-
types, and may be related to apoptosis regulation in
breast cancer [27].
The expression pattern of each nHKG selected here

accurately reflected the mean expression pattern of the
others. This demonstrates that the expression of each
single nHKG is expected to be similar to the other four
nHKGs, which is an important point in relation to the
use of more than one HKG to normalize each assay and
increase the assessment consistency. A universal internal
control based on only one ideal HKG may not exist, thus
we recommend to normalize bench experiments with a
panel of HKGs whose expression has been proven to be
as minimally variable as possible and the most robust as
possible regarding variation under experimental condi-
tions. In order to warrant robustness, the average of
nHKG expression in one experiment should serve as in-
ternal control for comparison among experiments.

Conclusions
In summary, we have modeled the performance of can-
didate HKGs to test their goodness-of-fit in serving as
internal controls for comparative analysis of gene ex-
pression through HTS and qRT-PCR. A major advantage
of a model approach is that the genes are placed within
a robust bioinformatics and bench framework, which al-
lows the strategy to be generalized to a variety of differ-
ent diseases and cancer types.
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