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total energy of collision and momenta transfers are high, we investigate evolution equations

of high energy factorization. In order to study such effects like parton saturation in final
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which suggests a possible form of the nonlinear extension of the CCFM equation.
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1 Introduction

The Large Hadron Collider (LHC) is already operational and Quantum Chromodynamics

(QCD) is the basic theory which is used to set up the initial conditions for the collisions

at the LHC as well as to calculate hadronic observables. The application of perturbative

QCD relies on the so called factorization theorems which allow to decompose a given process

into a long distance part, called parton density, and a short distance part, called matrix

element. Here we will focus on high energy factorization [1, 2]. The evolution equations of

high energy factorization sum up logarithms of energy accompanied by a strong coupling

constant, i.e. terms proportional to αn
s lnm s/s0, which applies when the total energy of a

scattering process is much bigger than any other hard scale involved in a process.

Until now, in principle, the BFKL [3–5], BK [6–8] and CCFM [10–12] evolution equa-

tions were used on equal footing since the energy ranges did not allow to discriminate

between these frameworks. However, there were indications already at HERA [13] for the

need to account for nonlinear effects in gluon density. These observation are supported by

recent results obtained in [14, 15]. On top of this, the results from [16] point at the need to

use the framework which incorporates hardness of the collision into BFKL like description.

With the LHC one entered into a region of phase space where both the energy and

momentum transfers are high. Therefore, one should provide a framework where both

dense systems and hard processes can be studied. This might be achieved with a relatively

simple nonlinear extension of the CCFM equation where one could take into account both

the gluon production and recombination in the description of final states.

In this paper we obtain such an equation, see eq. (3.6). In order to arrive at this

equation in the first crucial step we perform resummation of virtual and unresolved real

contributions in the BK equation in a similar fashion as in [17]. As a result, we arrive at

a new form of the BK equation, see eq. (2.16), where both the linear and nonlinear parts

are folded with a Regge form factor in which singularities of the linear part have been

resummed. In this new form, the singularity in the unresolved real contribution of the

s-channel real gluon is canceled by the virtual contribution. This is the minimal condition

in order to eventually perform a Monte Carlo simulation based on the BK equation.
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However, the BK equation concerns inclusive observables and does not allow for ap-

plications to the description of exclusive final states. Thus, we need the CCFM equation

which is applicable to the description of the exclusive processes. We propose the nonlin-

ear extension of the CCFM equation being motivated by the resummed form of the BK

equation in which we replace the Regge form factor by the non-Sudakov form factor and

introduce angular ordering (coherence). In addition we supplement the BK kernel with a

large x part. For a different approach to the extension of the CCFM equation to allow

for gluon saturation we refer the reader to [18–20]. For an approach in which inter-jet

observables are resummed by nonlinear evolution equation which has an analogous struc-

ture as in the BK equation we refer the reader to [21, 22, 24] and to [23], where the exact

mapping was found.

The paper is organized as follows. In section 2 we introduce the BK evolution equation

for the dipole amplitude in the momentum space and perform resummation of unresolved

real emissions and virtual emissions arriving at a new representation of the BK equation.

In section 3 we present the main result of this paper which is a new evolution equation

using the resummed BK equation — i.e. the CCFM equation extended by a nonlinear term.

2 Exclusive form of the Balitsky-Kovchegov equation

At the leading order in ln 1/x the Balitsky-Kovchegov equation for the dipole amplitude

in the momentum space is [8]:

∂Φ(x, k2)

∂ ln 1/x
= αs

∫

∞

0

dl2

l2

[

l2Φ(x, l2) − k2Φ(x, k2)

|k2 − l2| +
k2Φ(x, k)
√

(4l4 + k4)

]

− αsΦ
2(x, k) . (2.1)

the linear term can be linked to the process of creation of gluons while the nonlinar term

can be linked to fusion of gluons and therefore introduces gluon saturation effects. In order

to find an exclusive form of the BK equation and define a link to the CCFM equation, in

the first step we rewrite it as an integral equation following the KMS framework [9]

Φ(x, k2) = Φ0(x, k
2) (2.2)

+ αs

∫ 1

x

dz

z

∫

∞

0

dl2

l2

[

l2Φ(x/z, l2) − k2Φ(x/z, k2)

|k2 − l2| +
k2Φ(x/z, k)
√

(4l4 + k4)

]

− αs

∫ 1

x

dz

z
Φ2(x/z, k)

where the lengths of transverse vectors lying in transversal plane to the collision axis are

k ≡ |k|, l ≡ |l| (k is a vector sum of transversal momenta of emitted gluons during

evolution), z = x/x′(see figure (1), αs = Ncαs/π. The impact parameter dependence

b of the dipole amplitude in momentum space is assumed to be trivial i.e. in a form of

a theta function, θ(R − b) with R defining the target radius. Therefore we suppress it

but it is understood implicitly. The unintegrated gluon density obeying the high energy

factorization theorem [1] is obtained from [25–27]:

FBK(x, k2) =
Nc

αsπ2
k2∇2

kΦ(x, k2) (2.3)

– 2 –
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Figure 1. Plot explaining meaning of variables in BK and CCFM evolution equations.

where the angle independent Laplace operator is given by ∇2
k = 4 ∂

∂k2
k2 ∂

∂k2
.

In order to arrive at an exclusive form of the BK equation first we reintroduce the angular

dependence to the linear part of eq. (2.2). We obtain

Φ(x, k2) = Φ0(x, k2) (2.4)

+ αs

∫ 1

x

dz

z

∫

d2q

πq2
[

Φ(x/z, |k + q|2) − θ(k2 − q2)Φ(x/z, k)
]

− αs

∫ 1

x

dz

z
Φ2(x/z, k)

where q = l − k. Introducing the resolution scale µ and decomposing the linear part of

eq. (2.4) into the resolved real emission part with q2 > µ2 and unresolved part with q2 < µ2,

we obtain

Φ(x, k2) = Φ0(x, k2) (2.5)

+ αs

∫ 1

x

dz

z

∫

d2q

πq2
Φ(x/z, |k + q|2)θ(q2 − µ2)

+ αs

∫ 1

x

dz

z

∫

d2q

πq2
[

Φ(x/z, |k + q|2)θ(µ2 − q2) − θ(k2 − q2)Φ(x/z, k)
]

− αs

∫ 1

x

dz

z
Φ2(x/z, k) .

A convenient way of performing resummation or exponentiation of virtual and unresolved

real emissions is provided by the Mellin transform defined as

Φ(ω, k2) =

∫ 1

0
dxxω−1Φ(x, k2) (2.6)

while the inverse transform reads

Φ(x, k2) =

∫ c+i∞

c−i∞

dω x−ωΦ(ω, k2) . (2.7)

– 3 –
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Performing the Mellin transform and using in the unresolved part |k + q|2 ≈ k2 since

q2 < µ2 we obtain

Φ(ω, k2) = Φ
0
(ω, k2) (2.8)

+
αs

ω

∫

d2q

q2
[Φ(ω, |k+q|2)θ(q2−µ2)]+

αs

ω

∫

d2q

q2
Φ(ω, k2)[θ(µ2−q2)−θ(k2−q2)]

− αs

ω

∫ 1

0
dyyω−1Φ2(y, k2)

where in the nonlinear term we changed the variables x/z → y and we integrated over x

what gives 1/ω in front of the nonlinear part. After combining the unresolved real and

virtual parts we obtain

Φ(ω, k2) = Φ
0
(ω, k2) (2.9)

+
αs

ω

∫

d2q

πq2
Φ(ω, |k + q|2)θ(q2 − µ2) − αs

ω
Φ(ω, k2) ln

k2

µ2

− αs

ω

∫ 1

0
dyyω−1Φ2(y, k2) .

This can be simplified to

Φ(ω, k2) = Φ̂0(ω, k2) (2.10)

+
αs

ω + ω

∫

d2q

πq2
Φ(ω, |k + q|2)]θ(q2 − µ2) − αs

ω + ω

∫ 1

0
dyyω−1Φ2(y, k2)

where

Φ̂0(ω, k2) =
ω Φ

0
(ω, k2)

ω + ω
, ω = αs ln

k2

µ2
. (2.11)

The inverse transform (2.7) can be computed as follows

Φ(x, k2) =
1

2πi

∫ c+i∞

c−i∞

dω x−ωΦ̂0(ω, k2) (2.12)

+
1

2πi

∫ c+i∞

c−i∞

dω x−ω αs

ω + ω

∫

d2q

πq2

∫ 1

0
dy yω−1Φ(y, |k + q|2)]

− 1

2πi

∫ c+i∞

c−i∞

dωx−ω αs

ω + ω

∫ 1

0
dy yω−1Φ2(y, k2) .

Calculating the residue, changing variables y → x/z and using ∆R(z, k, µ) ≡
exp
(

−αs ln 1
z

ln k2

µ2

)

, which is called Regge form factor, we obtain:

Φ(x, k2)=Φ̃0(x, k2) + αs

∫

d2q

πq2

∫ 1

x

d z

z
∆R(z, k, µ) Φ(

x

z
, |k + q|2) θ(q2 − µ2) (2.13)

−
∫ 1

x

dz

z
∆R(z, k, µ2) Φ2(

x

z
, k2)

where we introduced

Φ̃0(x, k2) ≡ 1

2πi

∫ c+i∞

c−i∞

dω x−ωΦ̂0(ω, k2) . (2.14)
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Finally we obtain

Φ(x, k2) = Φ̃0(x, k2) (2.15)

+ αs

∫ 1

x

d z

z
∆R(z, k, µ2)

[

∫

d2q

πq2
θ(q2 − µ2) Φ

(x

z
, |k + q|2

)

− Φ2
(x

z
, k2
) ]

or equivalently

Φ(x, k2) = Φ̃0(x, k2) (2.16)

+αs

∫ 1

x

dz

∫

d2q

πq2
θ(q2−µ2)

∆R(z, k, µ)

z

[

Φ
(x

z
, |k+q|2

)

−q2δ(q2−k2)Φ2
(x

z
, q2
)]

.

Eq. (2.16) is a new form of the BK equation in which the resummed terms in a form of

Regge form factor are the same for the linear and nonlinear part. This form will serve as a

guiding equation to generalize the CCFM equation to include nonlinear effects which allow

for recombination of partons. It will also be useful as a starting point in an attempt to solve

nonlinear extension of the CCFM equation using iterative and Monte Carlo methods [29].

3 Towards nonlinear extension of the CCFM equation

Motivated by the suggestive form of the BK equation where the Regge form factor appears

in the nonlinear part, in this section we propose an extension of the CCFM equation to

account for the nonlinearity, what could be viewed as an extension of the BK equation to

the large x domain. This extension is of course to some extend arbitrary since at present

we do not have a diagrammatic picture of the triple pomeron vertex [30, 31] which would

account for coherence. Our guiding principle is eq. (2.16) in which the linear part resembles

the CCFM equation. The expectation is that at the low x limit the solution of nonlinear

extension of the CCFM equation should approach the solution of the BK equation. Also

they should give similar predictions for inclusive observables.

3.1 CCFM evolution equation

The CCFM equation sums up gluonic emissions with the condition of strong ordering in

emission angle which allow for smooth interpolation between BFKL limit when z → 0 and

the DGLAP limit (in gluonic channel) when z → 1. The BFKL or the BK equations are

generally applied for the calculation of elastic scattering and total cross-sections while due

to the dependence on the hard scale (which is expressed as the maximal angle) the CCFM

equation allows for studies of exclusive observables. It is the following

A(x, k2, p) = A0(x, k
2, p) (3.1)

+ ᾱs

∫ 1

x

dz

∫

d2q̄

πq̄2
θ(p− zq̄)∆s(p, zq̄)

(

∆ns(z, k, q)

z
+

1

1 − z

)

A
(x

z
, k

′2, q̄
)

.

The gluon density obtained from the CCFM equation, usually denoted A(x, k2, p), on

a level of linear equation has interpretation of the gluon density describing parton with

– 5 –
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longitudinal momentum fraction x and transverse momentum (squared) k2 which is probed

by a hard system at a scale p.

The momentum vector associated with i-th emitted gluon is

qi = αi pP + βi pe + qt i (3.2)

from which the rapidity and angle of emitted gluon with respect to incoming parent proton

(beam direction) can be obtained as

ηi =
1

2
ln(ξi) ≡

1

2
ln

(

βi
αi

)

= ln

( |qi|√
s αi

)

, tan
θi
2

=
|qi|√
s αi

. (3.3)

The variable p in (3.1) is defined via ξ̄ = p2/(x2s) where 1
2 ln(ξ̄) is a maximal rapidity which

is determined by the kinematics of hard scattering,
√
s is the total energy of the collision.

For example, for the electron proton scattering s = (pP +pe)
2 and k′ = |kkk+(1−z)q̄qq|. Using

the variables ξ the angular ordering can be conveniently expressed as: ξ̄ >ξi>ξi−1>. . .>

ξ1 > ξ0, where ξ0 ≡ µ with µ being infrared cut off. The momentum q̄ is the transverse

rescaled momentum of the real gluon, and is related to q by q̄ = q/(1 − z) and q̄ ≡ |q̄|.
The Sudakov form factor which screens the 1 − z singularity is given by

∆s(p, zq̄) = exp

(

−ᾱs

∫ p2

(zq̄)2

dq2

q2

∫ 1

0

dz

1 − z

)

. (3.4)

The form factor ∆ns screens the 1/z singularity, in a similar form as the Regge form factor

but also accounts for angular ordering:

∆ns(z, k, q) = exp

(

−αs

∫ 1

z

dz′

z′

∫ k2

z′2q2

dq′2

q′2

)

= exp

(

−αs ln
1

z
ln

k2

zq2

)

. (3.5)

where for the lowest value of zq2 we use a cut off µ. In the literature [32] different forms

of the non-Sudakov form factor were considered, where the differences came from the

approximations taken, the one we are using follows results obtained in [11]. For studies of

effects of various forms of non-Sudakov form factors we refer the reader to [20]. For our

purposes it is enough to mention that the nonlinearity which suppresses contributions from

gluons with low transversal momenta makes the dependence on the non-Sudakov’s form

subleading. This is because the non-Sudakov form factor affects mainly the low k part of

the gluon distribution.

3.2 Nonlinear extension of the CCFM equation

As it has already been stated, the motivation to extend the CCFM equation to account

for nonlinearity is to be able to study the impact of saturation of partons on exclusive

observables. There are indications [18, 33] that such effects might be significant in for

instance production of charged particles at HERA or in forward production of di-jets [14].

Below we propose the extension of the CCFM equation to include nonlinearity. In

order to avoid confusion we introduce a new notation for the proposed nonlinear CCFM

– 6 –
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equation. We also want to recall that the nonlinear extension of the CCFM equation

changes the interpretation of the quantity for which the equation is written. It is no longer

high energy factorisable gluon density A but the dipole scattering amplitude Φ in the

momentum space (denoted from now on by E) which additionally depends on a hard scale

p. Below we propose the new equation, the peculiar structure of the nonlinear term is

motivated by the following requirements:

• the second argument of the E should be k2 as motivated by the analogy to BK

• the third argument should reflect locally the angular ordering

E(x, k2, p) = E0(x, k2, p) (3.6)

+ ᾱs

∫ 1

x

dz

∫

d2q̄

πq̄2
θ(p− zq̄)∆s(p, zq̄)

(

∆ns(z, k, q)

z
+

1

1 − z

)

[

E
(x

z
, k

′2, q̄
)

− δ(q̄2 − k2) E2
(x

z
, q̄2, q̄

)

]

.

Similarly as in case of the BK equation in order to obtain high energy factorisable uninte-

grated gluon density one applies:

Anon−linear(x, k
2, p) =

Nc

αsπ2
k2∇2

k E(x, k2, p) . (3.7)

The nonlinear term in (3.6), apart from allowing for recombination of gluons might be

understood as a way to introduce the decoherence into the emission pattern of gluons.

This is because the gluon density is built up due to coherent gluon emission and since the

nonlinear term comes with the negative sign it slows down the growth of gluon density and

therefore it introduces the decoherence.

We expect the nonlinear term to be of main importance at low x similarly as in

case of the BK equation. In this limit it will be of special interest to check whether in

this formulation of the nonlinear extension of the CCFM equation one obtains an effect

of saturation of the saturation scale as observed in [20]. In the mentioned paper it has

been stated that extension of the CCFM equation which mimics saturation by special

boundary conditions generates saturation scale which saturates itself due to constraints

on the phase space coming from maximal allowed scale by the kinematics. This effect

is of great importance since it has important consequences, for example for a bound on

amount of entropy production from saturated part of gluon density, as observed in [34].

Another interesting limit is the large x region of the phase space where the nonlinear effects

are believed to be subleading and can be safely be neglected. However, since the CCFM

extends beyond BFKL asymptotics, with the presented formulation one can study the onset

of saturation in a function of x.

– 7 –
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4 Conclusions and outlook

In this paper we have studied the high energy factorizable evolution equations. We obtained

a new form of the BK equation where the unresolved real and virtual contributions in

the linear part of the kernel are resummed. On top of this, both the linear part and

nonlinear pieces became folded with the Regge form factor. The obtained representation

of the BK equation might likely be useful in future Monte Carlo solution. However, in

order for it to be useful for phenomenological studies of exclusive final states one has to

take also into account angular ordering of gluon emissions. This we do by extending the

CCFM equation by nonlinear term following the suggestive form of the BK equation in the

exclusive representation. In a future, the obtained new equation will be investigated with

a focus on possibility to solve it using Monte Carlo methods.
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