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Abstract

The current success of targeted inhibition against cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and
Programmed Death 1/Programmed Death Ligand 1 (PD-1/PD-L1, herein collectively referred to as PD) pathways is
hailed as a cancer immunotherapy breakthrough. PD-L1, known also as B7 homolog 1 (B7-H1), was initially discovered
by Dr. Lieping Chen in 1999. To recognize the seminal contributions by Chen to the development of PD-directed
therapy against cancer, the Chinese American Hematologist and Oncologist Network (CAHON) decided to honor him
with its inaugural Lifetime Achievement Award in Hematology and Oncology at the CAHON’s 2015 annual meeting.
This essay chronicles the important discoveries made by Chen in the exciting field of immuno-oncology, which goes
beyond his original fateful finding. It also argues that PD-directed therapy should be appropriately considered as
Tumor-Site Immune Modulation Therapy to distinguish it from CTLA-4-based immune checkpoint blocking agents.
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Background
Monoclonal antibodies targeting the PD pathway have
become a critical breakthrough in our long fight against
cancer [1, 2]. Distinct from any previous anti-cancer
drugs, PD-based cancer therapy neither directly targets
tumors, nor simply revamps the immune system non-
specifically. It depends on the strategic modulation of a
key tumor immune evasive mechanism featured by the
PD-L1 (B7-H1) molecule, and controls tumor growth by
resetting immune responses in the tumor microenviron-
ment to the homeostatic and beneficial level [3, 4]. Cur-
rently, several anti-PD therapeutic agents have been
approved for the treatment of multiple cancer types in-
cluding lung cancer, head and neck cancer, melanoma and
others in the United States, Europe, as well as in Japan
and other parts of the world. Numerous clinical trials are
ongoing worldwide in order to broaden and increase the
utility of anti-PD therapeutics to most if not all human
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cancers, thanks to the impressive clinical efficacy with
favorable toxicities of these novel agents. The successful
development of PD-modulating medicines has revolu-
tionized the field of immuno-oncology in an unprece-
dented way, and opens the door for Tumor-Site Immune
Modulation Therapy [5] that will profoundly impact basic
and clinical immune-oncology research. Indeed, many
outstanding reviews have been written on this topic
[3–12]. Nevertheless, in this essay, we review the key
milestones in the history of anti-PD drug develop-
ment, and specifically highlight some of Lieping
Chen’s contributions to this revolutionary cancer
treatment modality.
History of anti-PD drug development and the roles of
Lieping Chen
The success of anti-PD drug development benefited
from the advancement of our fundamental understand-
ing of both cancer biology and the immune system. Can-
cer originates from the mutated self of the host in the
setting of genotoxic insults with molecular hallmarks of
genetic instability and heterogeneity [13, 14]. Most con-
ventional therapies, including radiation, chemotherapy
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Fig. 1 Timeline for major events leading to the development of
anti-PD drugs. The contributions by Lieping Chen are highlighted in
light orange. The contributions by Lieping Chen are highlighted in
light orange
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and even molecular-targeted therapies, directly target
cancers themselves with improving, but still less desir-
able efficacy due to significant side-effects, drug resist-
ance and recurrence of more aggressive malignant
clones [8, 13, 15]. The limitations of conventional ther-
apies are especially evident for late stage and advanced
cancers. In contrast, the immune system, especially the
adaptive arm of immunity such as T cells, is capable of
surveilling against mutated antigens in tumor cells and
controlling tumor growth through specific immune ef-
fector mechanisms. Importantly, these immune cells
evolve in parallel with tumors, and are capable of sustain-
able tumor recognition and killing [16, 17]. However, sur-
veillance efficacy often fails due to multiple tumor immune
evasive mechanisms, resulting in the outgrowth and metas-
tasis of cancer cells [18, 19]. Efforts in understanding the
basic mechanisms of immune tolerance in general and the
primary immune evasive mechanisms by cancer cells in
particular have been the key to the successful development
of drugs targeting the PD-1/PD-L1 pathway.
Many individuals contributed to the success of PD-

directed cancer therapy (Table 1 and Fig. 1) [2]. Among
them, Lieping Chen’s work is the focus of this review. In
the early span of the 1990s, Chen was convinced that in
the tumor microenvironment, there exist specific mo-
lecular pathways that are primarily responsible for im-
mune evasion, and that this concept could be harnessed
for more effective cancer therapy. His passion has been
devoted towards the search for these elusive molecules
ever since. Trained as a physician-scientist in China,
Chen quickly became convinced that basic medical re-
search holds the key to cancer cure. He earned his M.S.
degree at the Cancer Institute of Peking Union Medical
College in 1986 before obtaining his Ph.D. from Drexel
University in 1989. He then undertook his postdoctoral
training at the University of Washington, Seattle in
1990, all along focusing on immunology. During that
period, important discoveries were made regarding the
major immune cell populations with different immune
functions, distinguished by cell surface molecules,
Table 1 Major contributions to the development of targeted cancer i

Contributions CTLA-4 PD-1

Gene Cloning Pierre Goldstein (1987) [59] Tasuku Ho

Inhibitory Function Jeffery Bluestone (1994) [30]
Arlene Sharpe (1995) [32]
Tak Mak (1995) [33]

Tasuku Ho

Ligand-receptor Interaction Peter Linsley (1991) [25] Tasuku Ho

Function in cancer immunity James Allison (1996) [34] NagahiroM
Lieping C
Tasuku Ho

a The discovery of PD-L2 was made by Gordon Freeman and Arlene Sharpe (2001)[6
highlighted here
b Gordon Freeman, Andrew Long and Yoshiko Iwai are the three co-first authors of
including CD3, CD4, CD8, T cell receptor (TCR) and
others [20–23]. More importantly, the guiding principle
of T cell activation and tolerance began to emerge [21].
Among those important events, the discovery of CD28,
CTLA-4 and their ligands B7 (B7.1 and B7.2) was the
key development in the field [24, 25] which vindicated
the two-signal hypothesis for lymphocyte activation
proposed by Bretscher and Cohn [26], and extended by
Lafferty and his colleagues [27]. The first signal is via TCR
triggered by an MHC-antigenic peptide complex, whereas
the second signal, also known as a co-stimulation signal, is
provided by co-stimulatory molecules expressed on the
surface of antigen presenting cells (APC) and T cells (like
B7-CD28 pathway). Based on this principle, Chen and his
mmunotherapeutics against CTLA-4 and PD-1/PD-L1 Pathways a

PD-L1 (B7-H1)

njo (1992) [57] Lieping Chen (1999) [47]

njo (1999) [60] Lieping Chen (1999) [47]
Tasuku Honjo, Clive Wood (2000) [57] b

Lieping Chen (2004) [68]

njo, Clive Wood (2000) [57] b Tasuku Honjo, Clive Wood (2000) [57] b

inato (2002) [63]
hen (2005) [70]
njo (2005) [71]

Lieping Chen (2002) [56]
Nagahiro Minato (2002) [63]

1], and Drew Pardoll (2001)[62]. Subsequent work on PD-L2 is not

this work, which renamed B7-H1 (its gene cloned one year earlier) to PD-L1
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colleagues, for the first time, demonstrated that stably-
enforced expression of B7 molecules in cancer cells elicited
strong anti-tumor immune responses, leading to eradica-
tion of distal tumors [28]. This effect is mainly CD28
dependent: upon ligation of the same B7 ligand, CD28
delivers an essential signal for naïve T cell activation [29],
which is in contrast to the CTLA-4 molecule behaving as a
T cell “checkpoint” receptor with inhibitory activities
[30–33]. Blocking CTLA-4 for immunotherapy of cancer
was later steered by James Allison who has played crucial
roles in the renaissance of cancer immunology [34–37],
whereas Chen’s earlier work laid the groundwork for the
therapeutic potential of manipulating co-stimulatory
molecules against cancer. However, the ectopic expression
of costimulatory molecules like B7 on tumor cells worked
effectively against multiple murine tumor models, its
application is currently limited in cancer patients [38].
Additionally, since both B7 ligands and CD28/CTLA-4
receptors are expressed broadly without tumor specificity
and that they play essential roles in the control of general
immune homeostasis, targeting this pathway could be met
with severe autoimmune toxicities, which was shown to
be the case in the clinical trials of TGN1412, an anti-
CD28 super agonist antibody [39], and the anti-CTLA-4
antibodies, ipilimumab and tremelimumab [40–42]. Chen
was determined to uncover tumor-specific immune eva-
sion mechanisms and find ways to block them.
During his seven-year tenure at Bristol-Myers Squibb

(1990–1997), Lieping Chen evaluated the immune func-
tions and potential anti-tumor effects of many cell sur-
face molecules on T cells, especially 4-1BB (CD137), a
molecule specifically expressed by activated T cells and
serving as another co-stimulatory receptor. The Chen
group were the first to reveal the potent anti-tumor
effect of the anti-4-1BB agonistic antibody in both im-
munogenic and non-immunogenic tumor models [43],
making 4-1BB an attractive target for immuno-oncology
[44]. Some promising results from the anti-4-1BB clin-
ical trials were recently reported [45]. Although the
expression of 4-1BB ligand is relatively broad, 4-1BB ex-
pression could accurately identify tumor-reactive T cells
[46]. Even so, Chen believed that immune-regulatory
molecules with higher tumor specificity remained to be
identified. He returned to academia and joined the Mayo
Clinic to continue searching for these pathways. Inspired
by the progress of the Human Genome Project, Chen
turned to informatics to discover candidate molecules
from the human expressed sequence tag (EST) libraries
based on their predicted homology to B7 family mole-
cules. This effort was incredibly successful; he made
several seminal discoveries of a series of novel B7 family
members, including B7-H1 (PD-L1) [47], B7-H2 [48],
B7-H3 [49], B7-H4 [50], B7-H5 [51], PD-1H (VISTA)
[52] and so on [53–55]. In a series of papers, Chen and
his colleagues completed the fundamental characterization
of the B7-H1’s biological function and provided the
very first proof of anti-tumor effects via blockade of
B7-H1 [47, 56], which mainly serve as a ligand to PD-1
receptor on T cells [57], a molecule discovered earlier
by Tasuku Honjo in Japan [58]. In 2004, Chen joined
the Johns Hopkins University School of Medicine and
collaborated with Suzanne Topalian, Julie Brahmer and
other clinical investigators to initiate the first clinical
trial of anti-PD-1/PD-L1 pathway therapies in patients
with cancer. It was this clinical study that opened the
floodgate of PD-1/PD-L1 pathway-directed cancer
immunotherapy.
The key events that led to the successful development

of anti-CTLA-4 and anti-PD-1/PD-L1 drugs are
chronicled below (Fig. 1 and Table 1):

� From 1990 to 1991, Peter Linsley from the Bristol-
Myers Squibb discovered the interaction between
CD28, CTLA-4, and B7 [24, 25]. The B7 pathway was
later generally considered as an essential co-stimulatory
molecule for naïve T cell activation [21, 54].

� In 1992, by stably expressing B7 molecule in the
tumor cells, Lieping Chen provided the theoretical
basis for the therapeutic potential of manipulating
the expression of co-stimulatory molecules in the
tumor microenvironment for cancer immunotherapy
[28, 29].

� In 1992, Tasuku Honjo cloned the PD-1 gene (Pdcd1)
from immune cell lines undergoing apoptosis [58].

� In 1994, Jeffery Bluestone first identified the
inhibitory function of CTLA-4, and also categorized
CTLA-4 as the first cell surface T cell inhibitory
receptor [30]*.

*Note: During the process of drug development
targeting this molecule, Pierre Goldstein cloned
CTLA-4 gene (Ctla4) [59] and Peter Linsley discov-
ered the receptor-ligand interaction between B7 and
CTLA-4 [25] (Table 1). Arlene Sharpe and Tak Mak
subsequently reported the fatal autoimmune diseases
of Ctla4-deficient mice [32, 33]. James Allison char-
acterized the anti-tumor effect of antibody targeting
CTLA-4 [34]. The anti-CTLA-4 antibody, ipilimu-
mab, was later approved by the U.S. Food and Drug
Administration (FDA) for treatment of melanoma in
2011 [37].

� In 1997, Lieping Chen identified the potent anti-
tumor effect of agonistic antibody targeting 4-1BB,
another co-stimulatory receptor on T cells, which
further inspired the field of cancer immunotherapy
[43].

� Around 1997, given the progress of the Human
Genome Project, Lieping Chen’s group started to
search for B7-like molecules from the human EST
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libraries, thus began his seminal works on expanding
the members of the B7 family.

� In 1999, Chen cloned the first B7 homolog, the
human B7-H1 gene, and identified its inhibitory ac-
tivity on T cells by inducing IL-10 [47]. During the
following years, Chen’s group also cloned B7-H2 [48],
B7-H3 [49], B7-H4 [50], B7-H5 [51] and PD-1H [52].

� In 1999, Tasuku Honjo discovered that the PD-1
gene (Pdcd1) knockout mice have mild autoimmune
symptoms, which revealed the inhibitory function of
PD-1 in preventing autoimmunity [60].

� In 2000, Tasuku Honjo and Clive Wood discovered
the interaction between B7-H1 and PD-1, and chan-
ged the name of B7-H1 to PD-L1 [57].

� In 2001, Arlene Sharpe and Gordon Freeman
discovered another PD-1 ligand, PD-L2 (Pro-
grammed Death Ligand 2), which also shows inhibi-
tory activity to T cells [61]. Drew Pardoll’s group
identified PD-L2 around the same time, and named
this molecule B7-DC for its specific expression on
dendritic cells [62].

� In 2002, Lieping Chen discovered the critical role of
B7-H1 (PD-L1) as a potential immune evasion
mechanism in the tumor microenvironment. B7-H1
is found to be overexpressed in many human tumor
tissues, but minimally detected in the normal tissues,
which was mainly regulated by IFN-γ [56]. Most im-
portantly, antibody-targeting B7-H1 could restore T
cell function and control tumor growth both in vitro
and in vivo [56]. Subsequent works by Nagahiro
Minato [63] and Weiping Zou [64] further sup-
ported this finding. Moreover, Chen’s study sug-
gested the existence of other receptor(s) for B7-H1,
which was later validated by a follow-up mutation
study made by Chen [65], and finally led to the dis-
covery of B7-1 as another B7-H1 inhibitory receptor
by Arlene Sharpe and Gordon Freeman [66].

� In 2003, Scott Strome and Lieping Chen showed
that B7-H1 overexpression in tumor cells and T cell
activation are two indispensable pre-conditions for
the potent anti-cancer effect of antibodies blocking
this pathway [67].

� In 2004, Lieping Chen discovered that the B7-H1
gene (Cd274) null mice have some spontaneous
accumulation of activated CD8+ T cells in the liver,
but do not have overt autoimmune manifestations.
This work further proved the inhibitory function of
B7-H1 and predicted the acceptable safety profile of
B7-H1-targeted therapy [68]. An independent study
by Arlene Sharpe and Gordon Freeman using Cd274-
deficient mice also proved that PD-L1 negatively regu-
lates T cells [69].

� In 2004, Lieping Chen joined the Johns Hopkins
University School of Medicine, and contributed to
the development of the first-in-human trial concept
on antibodies targeting the PD-1/PD-L1 pathway for
the treatment of advanced cancers.

� In 2005, Lieping Chen demonstrated that antibodies
blocking either B7-H1 or PD-1 could promote anti-
tumor immune responses, and proposed the “Mo-
lecular Shield” mechanism of PD-L1 on tumors that
offers resistance to cytotoxic T lymphocytes (CTL)
[70]. Tasuku Honjo also demonstrated that PD-1
blockade by genetic manipulation or antibody treat-
ment inhibited hematogenous spreading of tumor
cells [71].

� In 2006, Rafi Ahmed characterized a role of the PD-
1/PD-L1 pathway in T cell exhaustion with the
lymphocytic choriomeningitis virus (LCMV) chronic
infection model [72].

� In 2006, the first human cancer clinical trial
targeting the PD-1/PD-L1 pathway was launched in
the Johns Hopkins Hospital.

� In 2010, the first clinical observation on anti-PD-1
treatment was reported by Suzanne Topalian [73].

� In 2012, the results of the first two large anti-PD-1
and anti-PD-L1 clinical trials in the Johns Hopkins
Hospital, the Yale-New Haven Hospital and others
were reported [74, 75].

� In 2006, Lieping Chen’s group developed a sensitive
and effective immunohistochemistry staining
protocol for detecting PD-L1 expression in cancer
cells, and pointed out the value of PD-L1 staining in
tumor sections on the prediction of anti-PD-1/PD-
L1 clinical efficacy in 2012. Chen also refined his
theory on anti-PD-1/PD-L1 therapy by proposing
the adaptive resistance concept [76].

� In 2013, cancer immunotherapy was selected as the
breakthrough of the year by the Science magazine [1, 2].

� In 2014, anti-PD-1 antibodies (nivolumab and pem-
brolizumab) were approved in the United States and
Japan for treatment of advanced metastatic melan-
oma [77], and subsequently for treatment of many
other cancer types in 2015–2016 [78–82].

� In 2016, the anti-PD-L1 antibody, atezolizumab, was
approved by the FDA for the treatment of advanced
urothelial carcinoma and non-small cell lung cancer
[82, 83].

Anti-PD modality and tumor-site immune modulation
therapy
The timeline in the history of anti-PD drug development
(Fig. 1) spans from the understanding of the B7 pathway
in regulating T cell responses to the discovery of the PD
pathway with tumor-site immune modulation properties,
reflecting our increased understanding of both T cell
biology and tumor immunity. This advancement resulted
from the progress of research in the field of both



Fig. 2 Mechanism of the PD pathway in driving tumor-associated
immune evasion. Tumor cells, tumor-associated antigen-presenting
cells (APCs), and stromal cells upregulate PD-L1 in response to on-
going immune responses, mainly through the action of IFN-γ. The
ligation of PD-1 by PD-L1 delivers inhibitory signals to T cells,
leading to T cell anergy, functional exhaustion, and apoptosis. PD-1-
PD-L1 interaction also favors conversion of T cells to the regulatory T
cell (Treg) phenotype with secretion of inhibitory cytokines, such as IL-
10. PD-1 on myeloid cells also impairs dendritic cell functions. In
addition, PD-L1 reversed signaling on tumor cells can serve as a
“Molecular Shield” protecting tumor cells from CTL-mediated killing.
IFN-γR: IFN-γ receptor

Fig. 3 Anti-PD modality: Tumor-site immune modulation therapy.
Anti-PD therapy is mechanistically distinct from anti-CTLA-4 therapy:
the latter affects immune responses more systemically, whereas anti-
PD therapy primarily targets its actions at the tumor site. Anti-PD
modality is thus capable of repairing tumor-induced immune
defects, ultimately leading to resetting of the anti-tumor immunity
to a desirable level. TN: Naïve T cells; TE: T effector cells; Tm: memory
T cells; DC: dendritic cells
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immunology and oncology, eventually leading to the
birth of immuno-oncology. Ironically, anti-PD antibodies
did not show clear anti-tumor effects in many animal
models in the early days of research, raising skepticism
among many over their therapeutic application. How-
ever, Lieping Chen and his colleagues proposed that the
potency of anti-PD therapy depends on both the existence
of immune cells especially T cells in the tumor site, as well
as PD-L1 expression by the tumor cells [67, 70, 84].
He steadfastly and passionately championed the clinical
development of agents targeting this pathway. Thus,
Chen played key roles in advancing the anti-PD drug
program in the areas of basic research as well as in
clinical translation (Table 1), for which he was recog-
nized with the 2014 William Coley Award in Basic and
Tumor Immunology [85] (shared with Tasuku Honjo,
Arlene Sharpe and Gordon Freeman), the 2015 Lifetime
Achievement Award in Hematology and Oncology by
CAHON (www.cahon.org, and this paper), and the
2016 American Association of Immunologists (AAI)-
Steinman Award for Human Immunology Research
(http://www.aai.org/Awards/Archive/index.html).
Targeting the PD pathway for treatment of cancer is

unique in several aspects, including the following (Figs. 2
and 3):
First, the action of anti-PD therapy is primarily local-

ized to the tumor site. The ligand for PD-1, PD-L1 (B7-
H1), has high expression on tumor cells. It is absent in
the majority of normal tissues, but could be induced in
the tumor microenvironment by ongoing immune re-
sponses, mostly by the cytokine IFN-γ [3, 56]. This
tumor-localized effect of PD-L1 dictates that the anti-
bodies targeting either ligand or receptor will work in
the tumor microenvironment with ongoing immune re-
sponses. In contrast, PD-L2, another ligand of PD-1, has
weak expression in tumors and is constitutively
expressed by dendritic cells [53, 54]. The expression pat-
tern of PD-L2 likely explains why targeting PD-L2 has
only minor anti-tumor effects, although PD-L2 and PD-
L1 have similar binding affinity to PD-1, and their in-
hibitory effects on T cells in vitro are comparable.
Second, targeting the PD pathway repairs or resets

tumor-associated immune defects. The PD-L1 molecule
is a key mechanism for tumor-mediated immune evasion
[3]. The ligation of PD-L1 to PD-1 causes functional de-
fects in T cells through several different mechanisms
(Fig. 2), including anergy to antigen stimulation [86–88],
functional exhaustion [72], apoptosis [56], induction of
immune suppressor cells [89, 90], and secretion of in-
hibitory cytokines, such as IL-10 [47]. PD-1 on myeloid
cells also impairs dendritic cell functions [91]. In
addition, PD-L1 reverse-signaling on tumor cells was
found to serve as a “Molecular Shield,” protecting the
tumor from killing by CTLs [70, 92]. Importantly, this

http://www.cahon.org/
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type of immune defect is not permanent, and can be re-
stored by termination of this pathway, especially by the
antibody blockade of either PD-L1 or PD-1 [70]. More-
over, anti-PD therapy may reset the global anti-tumor
immune defects possibly by yet unknown “cascade reac-
tion” mechanisms, as profound and sustainable thera-
peutic effects have been observed in many patients
receiving this therapy [3].
Third, the PD blockade aims to normalize the anti-

tumor immune response but not over-exuberate im-
mune responses in general. Blockade of either PD-L1 or
PD-1 is not to simply amplify immunity, but to re-adjust
the anti-tumor immune responses to a desirable level
(Fig. 3). Given the mild and rare autoimmune symptoms
observed in PD-L1 and PD-1 gene-deficient mice [60, 68]
and weak expression of these molecules by normal tissues
[56, 93], targeting the PD pathway in the tumor settings
will normalize anti-tumor immunity but spare the normal
peripheral tolerance mechanism against self-antigens [3].
Thus, anti-PD treatment has an understandably great
safety window [94].
These abovementioned features of the PD pathway are

very unique among the many pathways currently tested
for cancer immunotherapy. Strictly speaking, PD-1/PD-
L1 is the only known pathway responsible for key
tumor-specific immune evasion mechanisms so far. Yet,
both PD-1/PD-L1 and CTLA-4 are often lumped to-
gether as “immune checkpoints” [6, 8, 31, 95], which is
an immunological term defining a plethora of inhibitory
pathways in the control of physiological immune re-
sponses [6]. This concept does not distinguish the
immune modulating role of anti-PD therapy from the
actions of anti-CTLA-4 therapy [3, 7] (Fig. 3). An alter-
native term of “Tumor-Site Immune Modulation Therapy”
might better describe the attributes of anti-PD therapy
[5], which is characterized by targeting molecules re-
sponsible for tumor-site specific immune evasion mech-
anisms, resetting and restoring the anti-tumor immunity
back to a desirable level. Such action is clearly different
from CTLA-4 blockade, which overdrives systemic T cell
immunity including self-reactive T cell responses.
Lieping Chen continues his journey to discover more

PD-like molecules, aiming to convert human cancers to
chronic and manageable diseases via exploiting the
power of the hardwired immune system. His contribu-
tions to this field have cemented his place in immuno-
oncology.
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