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1 Introduction and summary

The bulk viscosity of strongly coupled thermal systems is a quantity of phenomenological

importance. On the other hand it is quite difficult to compute. The main difficulty arises

from the fact that the bulk viscosity, as one of the plasma deep-infrared transport coeffi-

cients, is sensitive to the microscopic (ultraviolet) parameters of the theory.1 Necessarily,

a computation of the bulk viscosity in a given system requires the understanding of its

physics over a wide range of scales. It is perhaps not surprising that the first computation

of the bulk viscosity in gauge theory plasmas [1] was performed in the framework of gauge

theory/string theory correspondence [2, 3].

In [4] it was observed that for a large class of holographic models, the bulk viscosity

of the strongly coupled plasma satisfies the following bound

ζ

η
≥ 2

(

1

3
− c2

s

)

, (1.1)

1The only exception is a conformal theory, where the scale invariance imposed the bulk viscosity to

vanish.
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where η is the universal shear viscosity of strongly coupled holographic plasma [5–8], and

cs is the speed of sound waves in plasma. The computation of the bulk viscosity which led

to (1.1) was based on analyzing the dispersion relation of the sound waves in the plasma.

Alternatively, the bulk viscosity can be computed using the Kubo formula

ζ = −4

9
lim
ω→0

1

ω
ImGR(ω) , (1.2)

where GR is the retarded correlation function of the stress-energy tensor

GR(ω) = −i

∫

dtd3xeiωtΘ(t)

〈[

1

2
T i

i (t, ~x),
1

2
T k

k (0, 0)

]〉

. (1.3)

The holographic computations of the correlator (1.3) for a certain class of dual gravitational

models by Gubser, Pufu and Rocha (GPR) was reported in [9]. It was claimed that some

of the Einstein-scalar models considered led to a violation of the bound (1.1). On the other

hand, in the Improved Holographic QCD model, [12–14], the bound (1.1) is comfortably

obeyed, [31].

Recently an alternative expression for the bulk viscosity in strongly coupled plasmas

with a holographic dual was obtained by Eling and Oz (EO) in [10]. They have analyzed

directly the hydrodynamic limit of the equations of motion of a generic Einstein-scalar

theory and derived a formula for the bulk viscosity that is apparently different from the

GPR formula. The EO formula is very general and reads

ζ

η
=
∑

i

[

s
∂φi

h

∂s
+
∑

a

ρa
∂φi

h

∂ρa

]

(1.4)

where i labels different bulk scalars, φi
h is the value of the i-th scalar at the horizon, and

ρa are different conserved charged densities. The case comparable with GPR, involves a

single scalar field and no charge density. In [10] the two formulae were shown to give the

same result in cases where the adiabatic approximation to the equations is valid, but their

equivalence in more general cases was put in doubt.

In this paper we re-analyze the bulk viscosity in two non-trivial holographic theories,

the bosonic N = 2∗ theory [11] as well as Improved Holographic QCD, [12–15]. The bosonic

N = 2∗ theory is N = 4 superYM, with a non-trivial (and equal) mass for 4 of the 6 scalars.

Improved holographic QCD on the other hand is a semi-phenomenological Einstein-scalar

theory tuned to match non-supersymmetric Yang Mills theory in the large Nc limit.2

We point out that the analysis done in [9], when applied to N = 2∗ gauge the-

ory plasma [11, 16–20] at high temperatures, agrees with earlier computations reported

in [1, 10, 21]. The agreement is also checked numerically at all temperatures.

Both in the N = 2∗ theory and Improved Holographic QCD we confirm the agreement

between GPR and EO formulae for the holographic bulk viscosity.

2Similar Einstein-scalar theories were also proposed to describe the crossover behavior of QCD with light

quarks in [22].
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2 The GPR formula for the holographic bulk viscosity

Here we mostly follow [9]. For details we refer to the original work.

Consider a gravitational system, dual to some strongly coupled gauge theory plasma,

described by an Einstein-dilaton system of the form

S =
1

16πG5

∫

d5x
√−g

[

R − 1

2
(∂φ)2 − V (φ)

]

. (2.1)

The black brane background geometry dual to a thermal state of the plasma takes the form

ds2 ≡ g(0)
µν dxµdxν = e2A(r)

[

−h(r)dt2 + d~x2
]

+ e2B(r) dr2

h(r)
, φ = r . (2.2)

Notice that the field φ was chosen as a radial coordinate.3

The background equations of motion take a simple form

0 = A′′ − A′B′ +
1

6
,

0 = h′′ + (4A′ − B′)h′ ,

0 = 6A′h′ + h(24A′2 − 1) + 2e2BV ,

0 = 4A′ − B′ +
h′

h
− e2B

h
V ′ .

(2.3)

To compute the correlation function (1.3), the authors of [9] considered an SO(3)-

invariant fluctuation of the metric δgµν(t, φ) → e−iωtg
(0)
µν (φ)Hµν(φ) in the gauge δφ = 0. It

was shown that the equation for H11 decouples from the rest of the fluctuation equations

and is4

H ′′
11 =

(

− 1

3A′
− 4A′ + 3B′ − h′

h

)

H ′
11 +

(

−e−2A+2B

h2
ω2 +

h′

6hA′
− h′B′

h

)

H11 . (2.4)

One further has to solve (2.4) with the following UV (r → 0) and IR (r → φh)5 boundary

conditions:

UV : lim
r→0

H11 = 1 , (2.5)

IR : H11 → c−11(φh − r)−iω/4πT + 0 × (φh − r)+iω/4πT , as r → φh . (2.6)

The bulk viscosity, computed from (1.2), is given by [9]

ζ

η
=

1

9A′(φh)2
lim
ω→0

|c−11|2 , (2.7)

3One might worry whether φ is monotonic from the boundary to the black brane horizon. In the

Einstein-dilaton theory, there are solutions where φ′ vanishes along the flow. These where analyzed in [23]

and shown to be unphysical, violating the Gubser bound [24]. Therefore, this is not expected to happen in

the middle of an RG flow. At theories with an extra gauge field and at finite density however, it is possible

that φ′ = 0 in a physical solution. A class of such examples were studied recently in [26].
4We independently reproduced this equation. We also verified the consistency of the gauge choice δφ = 0.
5Note that in the gauge we are working the position of the black hole horizon rh is identified with the

value of the scalar at the horizon φh.
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where one has to use the universality of the shear viscosity [5–8]. The authors of [9]

used (2.3) to obtain

A′(φh) = − V (φh)

3V ′(φh)
, (2.8)

and arrived at the final formula for the bulk viscosity ratio

ζ

η
=

V ′(φh)2

V (φh)2
lim
ω→0

|c−11|2 . (2.9)

2.1 The EO versus GPR formula for the bulk viscosity

In [10] Eling and Oz, by analyzing the hydrodynamic limit of the scalar-tensor equations,

produced the following expression for the holographic bulk viscosity6

ζ

η

∣

∣

∣

∣

EO

=

(

s
dφh

ds

)2

=
1

9A′(φh)2
, (2.10)

Even though (up to a factor of c−11) (2.10) and (2.7) appear to be the same, they are, in

fact, different : in (2.10),

A′(φh)

∣

∣

∣

∣

EO

=
d (limφ→φh

A(φ))

dφh
6= A′(φh)

∣

∣

∣

∣

GPR

= lim
φ→φh

dA(φ)

dφ
= lim

φ→φh

− V (φ)

3V ′(φ)
. (2.11)

To be specific, in N = 2∗ gauge theory plasma at high temperature (see appendix A

for some details)

A′(φh)

∣

∣

∣

∣

EO

=
πT 2

√
6

m2
b

+ O
(

(

m2
b

T 2

)0
)

, (2.12)

A′(φh)

∣

∣

∣

∣

GPR

=
2πT 2

√
6

m2
b

+ O
(

(

m2
b

T 2

)0
)

. (2.13)

From (2.12) and (2.13) it is clear that (2.7) would produce the correct expression for

the N = 2∗ plasma bulk viscosity, provided7

|c−11|
∣

∣

∣

∣

N=2∗, prediction

= 2 + O
(

m2
b

T 2

)

. (2.14)

In the next section we explicitly compute c−11, and find that it agrees with (2.14).

3 Bulk viscosity calculation in the N = 2∗ plasma

In this section we will first address the calculation of bulk viscosity in the N = 2∗ theory.

6The formula derived in [10] applies also to systems at finite charge density. Here we restrict our attention

to zero charge density systems. The EO formula was further tested in [27].
7We assume the ω → 0 limit taken.
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3.1 The computation of c−11 in x-gauge

We find it convenient to recast the equation for H11 in terms of x coordinate, defined as

x ≡ 1 −
√

h . (3.1)

Notice that x → 0+ corresponds to the boundary and x → 1− to the horizon.

In this gauge the background equations take the form (all the derivatives are with

respect to x):

0 = A′′ − 4(A′)2 +
A′

1 − x
+

1

6
(φ′)2 , (3.2)

0 = φ′′ − V,φ

2V
(φ′)2 +

φ′

x − 1
+

6V,φ A′(2A′(x − 1) + 1)

V (1 − x)
, (3.3)

where

V,φ ≡ dV

dφ
. (3.4)

The equation for H11 is somewhat complicated

0 = H ′′
11 + H1 H ′

11 + H2 H11 , (3.5)

where we collected the coefficients Hi in appendix B. In order to compute the bulk viscos-

ity (2.7), we need to solve (3.5) subject to the following boundary conditions:

UV : lim
x→0+

H11 = 1 , (3.6)

IR : H11 → c̃−11(1 − x)−iω/2πT + 0 × (1 − x)+iω/2πT , as x → 1− . (3.7)

For generic ω, c̃−11 6= c−11 (see (2.6)), however, in the hydrodynamic limit

lim
ω→0

c̃−11 = lim
ω→0

c−11 ≡ c−11 . (3.8)

We can test (3.2)–(3.5) with a simple, exactly solvable background, like the exponential

potential case. This is described in appendix C.

3.2 N = 2∗ plasma at high temperatures

The effective action of the gravitational dual to strongly coupled N = 2∗ plasma with a

bosonic mass deformation is given by [20]

S =
1

4πG5

∫

M5

dξ5√−g
[

1
4R − 3(∂α)2 − V

]

, (3.9)

where the potential is8

V = −1

4
e−4α − 1

2
e2α . (3.10)

8We set the five-dimensional gauged supergravity coupling to one. This corresponds to setting the radius

ℓ of the five-dimensional sphere in the undeformed metric to 2.
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Notice that the canonically normalized scalar is φ =
√

24α, and therefore

V,φ =
1√
24

V,α . (3.11)

We will study the theory (3.9) in the high-temperature regime. In this case (see

appendix A)

eα ≡ ρ = 1 + δ1α1 + O(δ2
1) ,

A = ln δ3 −
1

4
ln(2x − x2) + δ2

1A1 + O(δ4
1) .

(3.12)

In the hydrodynamic limit, i.e.,ω → 0, and to leading order in δ1, we find

0 + O(δ1) = H ′′
11 +

(xα′
1(2 − x)(x2 − 2x + 4) − 2α1(1 − x)

α′
1x

2(1 − x)(2 − x)2
H ′

11

+
2((4x − 2x2)α′

1 + α1(x − 1))

(2 − x)2(1 − x)2α′
1x

2
H11 .

(3.13)

Notice that there is dependence only on α1, which satisfied the following equation

0 = α′′
1 +

1

x − 1
α′

1 +
1

x2(2 − x)2
α1 . (3.14)

Even though we know an analytic solution for α1 (see (A.2)), we can not solve for

H11 analytically. We find it convenient to use numerical techniques to solve both (3.13)

and (3.14). Near the boundary we have

α1 =
√

x

(

∞
∑

n=0

1
∑

k=0

an,k xn lnk x

)

, (3.15)

with normalization9 a0,1 = 1, and

an,k = an,k

(

a0,0

)

. (3.16)

For example, for the first few terms we have:

a1,0 =
1

2
+

1

4
a0,0 , a1,1 =

1

4
, a2,0 =

5

16
+

5

32
a0,0 , a2,1 =

5

32
. (3.17)

The asymptotic expansion for H11 is a bit unusual because the perturbing operator has

scaling dimension 2:

H11 =
∞
∑

n=0

n+1
∑

k=0

hn,k xn 1

(a0,0 + 2 + ln x)k
, (3.18)

with normalization h0,0 = 1, see (3.6). Here,

hn,k = hn,k

(

h0,1

)

. (3.19)

9The overall normalization of α1 is arbitrary, we choose the leading ln x coefficient to be 1.

– 6 –
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For the first few terms we have:

h1,0 = −1 , h1,1 = −h0,1 , h1,2 = −1

2
h0,1 ,

h2,0 = −1

4
, h2,1 =

1

4
(1 − h0,1) , h2,2 =

9

16
h0,1 , h2,3 =

1

4
h0,1 . (3.20)

Near the horizon, y ≡ 1 − x, we obtain

α1 = ah
∞
∑

n=0

ah
ny2n = ah

(

1 − 1

4
y2 − 7

64
y4 − 17

256
y6 + · · ·

)

,

H11 = hh
∞
∑

n=0

hh
ny2n = hh

(

1 − 1

8
y2 − 3

64
y4 − 27

1024
y6 + · · ·

)

.

(3.21)

Altogether we have four integration constants:

{ a0,0 , h0,1 , ah , hh } ,

precisely what is needed to solve uniquely the system of two second order ODEs: (3.13)

and (3.14). Using numerical techniques developed in [28] we find

a0,0 = −2.079441(5) , ah = −2.221441(5) ,

h0,1 = −2.000000(0) , hh = 2.000000(0) .
(3.22)

Of course, {a0,0, a
h} are known analytically from (A.2),

{a0,0 , ah} =

{

− ln 8 ,− π√
2

}

,

and are in excellent agreement with (3.22).

From (3.22),

c−11
∣

∣

N=2∗
= hh = 2 , (3.23)

to a very good accuracy, confirming the agreement of bulk viscosity for the high-

temperature N = 2∗ plasma from (2.7) with earlier computations [1, 10, 21].

3.3 N = 2∗ plasma at generic temperatures for
m2

b

T 2 > 0

It is straightforward to extend the analysis of the previous section to generic temperatures

N = 2∗ gauge theory plasma for physical mass deformations, i.e.,
m2

b

T 2 > 0. The background

geometry was studied in [20], and the bulk viscosity (from the sound waves dispersion

relation) was computed in [4]. The results of the analysis are reported in figure 1. We

further verified that the GPR formula (2.9) for the bulk viscosity, when applied to N = 2∗

plasma, agrees with the bulk viscosity of the theory at criticality [4] computed from the

sound waves dispersion relation to ≈ 5 × 10−7.

4 Bulk viscosity calculation in improved holographic QCD

In this section we perform an independent calculation of the coefficient c−11 by the methods

developed in [23, 31]. As described in section 7 of [23], one can work out the thermody-

namics of gravity-scalar system entirely by solving a system of coupled first order equations

for the so-called phase variables introduced below.

– 7 –
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1 2 3 4 5

-6.´10-7

-5.´10-7

-4.´10-7

-3.´10-7

-2.´10-7

-1.´10-7

1.´10-7

(

ζ/η|GPR

ζ/η − 1
)

m2
b

T 2

Figure 1. (Color online) Comparison of the GPR prediction for N = 2∗ plasma bulk viscosity

with the explicit computations from the quasinormal modes [4]. The dashed vertical green line

represents the critical point of the theory
m

2

b

T 2 = δc = 5.4098(6) associated with the second-order

phase transition [29, 30].

4.1 Computation of c−11 using phase variables

Starting with the action (2.1) we look for a black-hole solution of the form,

ds2 = e2A(r)
(

h−1(r)dr2 + dx2
d−1 + dt2h(r)

)

, φ = φ(r) . (4.1)

We are interested in solutions that are asymptotically AdS. In the dual field theory this

corresponds to the presence of conformal invariance in the UV that is broken either explic-

itly by a mass deformation as in the N = 2∗ theory or by a marginal deformation as in the

phenomenological models of [12–14].

In the gauge δφ = 0 one can equivalently use φ as the radial variable. Defining the

following phase variables [12–14, 23],

X(φ) ≡ 1

4

√

2

3

φ′

A′
, Y (φ) ≡ 1

4

h′

hA′
, (4.2)

the Einstein’s equations can be reduced to

dX

dφ
= −

√

2

3
(1 − X2 + Y )

(

1 +

√

3

8

1

X

d log V

dφ

)

, (4.3)

dY

dφ
= −

√

2

3
(1 − X2 + Y )

Y

X
. (4.4)

This coupled first order system is sufficient to determine all of the thermodynamic prop-

erties (and dissipation) of the gravitational theory [23]. Once a solution to (4.3), (4.4) is

constructed, the metric functions can be determined as,

A(φ) = A0 +
1

4

√

2

3

∫ φ

φ0

1

X
dφ̃ , (4.5)

h(φ) = exp

(

√

2

3

∫ φ

φ0

Y

X
dφ̃

)

. (4.6)

– 8 –



J
H
E
P
0
9
(
2
0
1
1
)
0
9
5

Here φ0 corresponds to the UV value at the boundary corresponding to the UV AdS

minimum of the potential. A0 is an integration constant that essentially determines the

energy scale of the breaking of conformal symmetry.

The thermodynamics of the black-hole can directly be determined as follows. The free

energy is given by

F (φh) =
1

4G5

∫ ∞

φh

dφ̃h e3A(φh) dT

dφ̃h

. (4.7)

These backgrounds satisfy the 1st law of thermodynamics S = −dF/dT . Equation (4.7)

directly follows from integrating this equation, where

S =
1

4πG5
e3A(φh) (4.8)

is used. In the integration in (4.7) one should make sure that the UV asymptotics is kept

fixed as φh is varied. This is explained in the case of marginal deformations in section 7

of [23].

The temperature as a function of φh is obtained from

T (φh) =
ℓ

12π
eA(φh) V (φh) e

q

2

3

R φh
φ0

X(φ) dφ
. (4.9)

Once we solve (4.3) and (4.4) above, we can calculate the free energy as a function of A0

and T by employing the formulae above.

4.2 The fluctuation equation

The fluctuation equation (2.4) in terms of the phase variables read,

H ′′
11 = c(φ)H ′

11 + d(φ)H11 , (4.10)

where

c(φ) =
1 − X2 + Y

X

(

4√
6

+
3

2X

V ′

V

)

, (4.11)

d(φ) = − 2Y

3X2
(1 − X2 + Y )(1 +

√
3√

8X

V ′

V
) −

(

2

3

ωY

4πTX

)2

e
−

q

3

2

R φh
φ

1

X . (4.12)

In passing, we note that changing the variable back to the original radial coordinate

in (4.1) produces a rather simple equation [25]:

Ḧ11 + Ḣ11

(

3Ȧ +
ḣ

h
+ 2

Ẋ

X

)

+ Ḣ11

(

ω2
h

h2
− ḣ

h

Ẋ

X

)

= 0 , (4.13)

where we emphasized the new terms in the bulk fluctuation eq. that arise from mixing of

the rotationally invariant graviton excitations and the dilaton. The normalized frequency

is defined by ωh = ωrh. This equation compares with the one corresponding to the shear

fluctuations:

Ḧ12 + Ḣ12

(

3Ȧ +
ḣ

h

)

+ H12
ω2

h

h2
= 0 . (4.14)

– 9 –
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One crucial difference between (4.13) and (4.14) is that, unlike in the case of the

shear deformation, the bulk deformation has a mass term even in the hydrodynamic limit

ωh = 0. This implies that in general there should be a non-trivial flow from the horizon

to the boundary in the sense of the membrane paradigm [32]. This flow is absent only in

the case X = const which corresponds to the adiabatic limit [31]. It is also absent in the

Chamblin-Reall solution that corresponds to constant X, see section C.

In the following we apply the formalism developed here to calculate the bulk viscosity

in two examples.

4.3 Numerical results for the holographic-QCD model

As another non-trivial example, we would like to confirm the agreement between the EO

and the GPR formula in the improved holographic QCD model of [12–14]. The model

is based on a single scalar in the bulk theory corresponding to the operator TrF 2 in the

SU(N) gauge theory. Therefore the deformation in the UV is marginally relevant, hence the

UV asymptotics is not of the standard asymptotically AdS type, but involves logarithmic

corrections. In the following we present the results in the variable

λ = e

q

3

8
φ
. (4.15)

The scalar potential is given by,

V (λ) = −12

ℓ2

{

1 + V0λ + V1λ
4/3
[

log
(

1 + V2λ
4/3 + V3λ

2
)]1/2

}

, (4.16)

The various parameters in (4.16)

{V0, V1, V2, V3} = {0.0413 , 14 , 5.310−9 , 170} , (4.17)

are fixed in order to fit the UV asymptotics of SU(N) beta-function, the observed latent

heat of the confinement-deconfinement transition on the lattice and the agreement with

the glueball spectrum in the vacuum theory [33].

A straightforward application of the method explained in section 4.1 yields the bulk

viscosity from the GPR formula [31]. In the figure 2 we compare the outcome of the two

formulae for a range of λh that corresponds to the entire range of temperatures above

the deconfinement transition, T > Tc on the thermodynamically favored and stable big

black-hole branch. As seen from this figure the two formulae match to great accuracy.
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Figure 2. Comparison of the bulk viscosity in the phenomenological QCD model. The solid (blue)

curve represents the outcome of the Eling-Oz formula. The (red) dots are the outcome of Gubser

et al’s formula.

A dA

dφ
in N = 2∗ plasma

From [20], to leading order in m2
b/T

2 (notice the
√

24 renormalization of the α to insure

the canonical kinetic term as in (2.1)),

A(x) = ln δ3 −
1

4
ln
(

2x − x2
)

+ δ2
1 A1(x) ,

φ(x) =
√

24 δ1 α1(x) ,
(A.1)

where

α1 =
(

2x − x2
)1/2

2F1

(

1
2 , 1

2 ; 1; (1 − x)2
)

, (A.2)

A1 = 4

∫ 1

x

(z − 1)dz

(2z − z2)2

(

γ1 −
∫ 1

z
dy

(

∂α1

∂y

)2 (2y − y2)2

y − 1

)

, (A.3)

γ1 =
8 − π2

2π2
, 2πT = δ3

(

1 +
16

π2
δ2
1

)

, δ1 = − 1

24π

(mb

T

)2
. (A.4)

From (A.1)–(A.4) it is easy to deduce that near the horizon, i.e.,x → 1−,

φ = φh

(

1 − 1

4
(1 − x)2 + O((1 − x)4)

)

, φh = − m2
b

2
√

6πT 2
,

A = ln(2πT ) − m4
b

36π4T 4
+

(

1

4
− γ1m

4
b

288π2T 4

)

(1 − x)2 + O((1 − x)4) .

(A.5)

We can now compute dA
dφ while keeping mb fixed, see (2.12) and (2.13).
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B Coefficients Hi

In the appendix we explicitly show the coefficients of the fluctuation equation (3.5):

H1 =
(φ′2(x − 1) − 12A′(2(x − 1)A′ + 1))V,φ

(x − 1)φ′V
+

φ′2(x − 1) − 3A′(3 + 8(x − 1)A′)

3(x − 1)A′
, (B.1)

H2 =
φ′2(x − 1) − 12A′(2(x − 1)A′ + 1)

6(x − 1)3φ′V A′
×
(

2φ′V (1 − x) + 6V,φ(1 − x)A′

+ 3e−2Aω2φ′A′

)

. (B.2)

C Chamblin-Reall backgrounds

We choose an exponential potential (known also as the Chamblin-Reall geometry), [34]. In

this case

V = Vegφ , (C.1)

with constant V.

Solving the background equations we find,

A(x) =A− 1

3g
φ(x) ,

exp

(

3g2 − 8

6g
φ(x)

)

=
1

P(x − 1)2 + 1 − P ,

(C.2)

where A,P are the integration constants, and without the loss of generality we assumed

φ(0) = 0.

To leading order in the hydrodynamic limit (3.5) simplifies dramatically

0 = H ′′
11 +

1

x − 1
H ′

11 . (C.3)

We outline now the solution of the boundary value problem that we will use in the more

complicated example of the N = 2∗ gauge theory below.

First, the general solution with the UV boundary condition (3.6) is given by

Hb
11 = 1 + huv ln(1 − x) , (C.4)

with an arbitrary constant huv. It is straightforward to rewrite (C.3) in terms of y = 1−x,

and find the most general solution satisfying the IR boundary condition (3.7)

Hh
11 = hir , (C.5)

with an arbitrary constant hir. Matching Hb
11 and Hh

11 (the value of the function and the

first derivatives) uniquely determines

huv = 0 , hir = 1 . (C.6)
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Thus, much like in [9], we conclude that for the Chamblin-Reall model

c−11 = 1 . (C.7)

We may also present the results above in the language of phase variables, (4.2). The

Chamblin-Reall solution is given by (see appendix J of [23]),

X = −
√

3

8
g , Y =

1 − X2

eα(φh−φ) − 1
, (C.8)

where we defined the constant,

α = −
√

2

3

(1 − X2)

X
. (C.9)

We note that for consistency of thermodynamics X2 < 1, otherwise the black-hole solution

has negative specific heat, hence corresponds to a small black-hole [23]. One finds the

following metric functions in the variable φ:

A(φ) = A0 +
1√
6X

φ , (C.10)

h(φ) = 1 − eα(φ−φh) . (C.11)

One distinguishing fact about the above solution is that the scale function A(φ) is inde-

pendent of the temperature φh.

Before making this connection however, let us provide a simple proof — closely related

to the one given in section C. The fluctuation equation (4.10) simplifies drastically as the

coefficient d(φ) in (4.12) vanishes for ω = 0. This means in particular that there is no flow

from the horizon to the boundary in the sense of the membrane paradigm, see e.g. [32] for

the bulk-viscosity in the case of Chamblin-Reall backgrounds.

The proof that |c−11|(φh) = 1 in this case is already given in appendix B of [31], that

we review here. When, the coefficient d(φ) in (4.12) vanishes in the ω = 0 equation, the

solution to H11 is simply given by,

H11(φ) = 1 + C

∫ φ

−φ0

dt e
R t

−φ0
c(t)

, (C.12)

where the function c(φ) is given by (4.11) and we used the boundary condition H11(φ0) = 1.

The second integration constant C is determined by the second boundary condition that

H11(φ) is regular at the horizon [9]. On the other hand, the function c(φ) in (4.11) is

positive definite because X < 0, Y > 0, X2 < 1, and the term inside the brackets is given

by −4/3g, hence negative. Therefore the only way to guarantee regularity at the horizon

is to set C = 0, hence H11 = 1 for all values of λ in the limit, in particular |c−11| is 1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.

– 13 –



J
H
E
P
0
9
(
2
0
1
1
)
0
9
5

References

[1] P. Benincasa, A. Buchel and A.O. Starinets, Sound waves in strongly coupled non-conformal

gauge theory plasma, Nucl. Phys. B 733 (2006) 160 [hep-th/0507026] [SPIRES].

[2] J.M. Maldacena, The large N limit of superconformal field theories and supergravity,

Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113]

[hep-th/9711200] [SPIRES].

[3] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large N field theories,

string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [SPIRES].

[4] A. Buchel, Bulk viscosity of gauge theory plasma at strong coupling,

Phys. Lett. B 663 (2008) 286 [arXiv:0708.3459] [SPIRES].

[5] A. Buchel and J.T. Liu, Universality of the shear viscosity in supergravity,

Phys. Rev. Lett. 93 (2004) 090602 [hep-th/0311175] [SPIRES].

[6] P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field

theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231]

[SPIRES].

[7] A. Buchel, On universality of stress-energy tensor correlation functions in supergravity,

Phys. Lett. B 609 (2005) 392 [hep-th/0408095] [SPIRES].

[8] P. Benincasa, A. Buchel and R. Naryshkin, The shear viscosity of gauge theory plasma with

chemical potentials, Phys. Lett. B 645 (2007) 309 [hep-th/0610145] [SPIRES].

[9] S.S. Gubser, S.S. Pufu and F.D. Rocha, Bulk viscosity of strongly coupled plasmas with

holographic duals, JHEP 08 (2008) 085 [arXiv:0806.0407] [SPIRES].

[10] C. Eling and Y. Oz, A Novel Formula for Bulk Viscosity from the Null Horizon Focusing

Equation, JHEP 06 (2011) 007 [arXiv:1103.1657] [SPIRES].

[11] K. Pilch and N.P. Warner, N = 2 supersymmetric RG flows and the IIB dilaton,

Nucl. Phys. B 594 (2001) 209 [hep-th/0004063] [SPIRES].

[12] U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: Part I,

JHEP 02 (2008) 032 [arXiv:0707.1324] [SPIRES].

[13] U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: Part

II, JHEP 02 (2008) 019 [arXiv:0707.1349] [SPIRES].

[14] U. Gürsoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis and F. Nitti, Improved Holographic

QCD, Lect. Notes Phys. 828 (2011) 79 [arXiv:1006.5461] [SPIRES].

[15] U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Deconfinement and Gluon Plasma

Dynamics in Improved Holographic QCD, Phys. Rev. Lett. 101 (2008) 181601

[arXiv:0804.0899] [SPIRES].

[16] A. Buchel, A.W. Peet and J. Polchinski, Gauge dual and noncommutative extension of an

N = 2 supergravity solution, Phys. Rev. D 63 (2001) 044009 [hep-th/0008076] [SPIRES].

[17] N.J. Evans, C.V. Johnson and M. Petrini, The enhancon and N = 2 gauge theory/gravity RG

flows, JHEP 10 (2000) 022 [hep-th/008081] [SPIRES].

[18] A. Buchel and J.T. Liu, Thermodynamics of the N = 2∗ flow, JHEP 11 (2003) 031

[hep-th/0305064] [SPIRES].

– 14 –

http://dx.doi.org/10.1016/j.nuclphysb.2005.11.005
http://arxiv.org/abs/hep-th/0507026
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0507026
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=IJTPB,38,1113
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC,323,183
http://dx.doi.org/10.1016/j.physletb.2008.03.069
http://arxiv.org/abs/0708.3459
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0708.3459
http://dx.doi.org/10.1103/PhysRevLett.93.090602
http://arxiv.org/abs/hep-th/0311175
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0311175
http://dx.doi.org/10.1103/PhysRevLett.94.111601
http://arxiv.org/abs/hep-th/0405231
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0405231
http://dx.doi.org/10.1016/j.physletb.2005.01.052
http://arxiv.org/abs/hep-th/0408095
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0408095
http://dx.doi.org/10.1016/j.physletb.2006.12.030
http://arxiv.org/abs/hep-th/0610145
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610145
http://dx.doi.org/10.1088/1126-6708/2008/08/085
http://arxiv.org/abs/0806.0407
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.0407
http://dx.doi.org/10.1007/JHEP06(2011)007
http://arxiv.org/abs/1103.1657
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1103.1657
http://dx.doi.org/10.1016/S0550-3213(00)00656-8
http://arxiv.org/abs/hep-th/0004063
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0004063
http://dx.doi.org/10.1088/1126-6708/2008/02/032
http://arxiv.org/abs/0707.1324
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0707.1324
http://dx.doi.org/10.1088/1126-6708/2008/02/019
http://arxiv.org/abs/0707.1349
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0707.1349
http://dx.doi.org/10.1007/978-3-642-04864-7_4
http://arxiv.org/abs/1006.5461
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1006.5461
http://dx.doi.org/10.1103/PhysRevLett.101.181601
http://arxiv.org/abs/0804.0899
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.0899
http://dx.doi.org/10.1103/PhysRevD.63.044009
http://arxiv.org/abs/hep-th/0008076
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0008076
http://dx.doi.org/10.1088/1126-6708/2000/10/022
http://arxiv.org/abs/hep-th/008081
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JHEPA,0311,031
http://dx.doi.org/10.1088/1126-6708/2003/11/031
http://arxiv.org/abs/hep-th/0305064
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0305064


J
H
E
P
0
9
(
2
0
1
1
)
0
9
5

[19] A. Buchel, N = 2∗ hydrodynamics, Nucl. Phys. B 708 (2005) 451 [hep-th/0406200]

[SPIRES].

[20] A. Buchel, S. Deakin, P. Kerner and J.T. Liu, Thermodynamics of the N = 2∗ strongly

coupled plasma, Nucl. Phys. B 784 (2007) 72 [hep-th/0701142] [SPIRES].

[21] A. Yarom, Notes on the bulk viscosity of holographic gauge theory plasmas,

JHEP 04 (2010) 024 [arXiv:0912.2100] [SPIRES].

[22] S.S. Gubser and A. Nellore, Mimicking the QCD equation of state with a dual black hole,

Phys. Rev. D 78 (2008) 086007 [arXiv:0804.0434] [SPIRES].

[23] U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Holography and Thermodynamics of 5D

Dilaton-gravity, JHEP 05 (2009) 033 [arXiv:0812.0792] [SPIRES].

[24] S.S. Gubser, Curvature singularities: The good, the bad and the naked, Adv. Theor. Math.

Phys. 4 (2000) 679 [hep-th/0002160] [SPIRES].

[25] U. Gürsoy, Continuous Hawking-Page transitions in Einstein-scalar gravity,

JHEP 01 (2011) 086 [arXiv:1007.0500] [SPIRES].

[26] C. Charmousis, B. Gouteraux, B.S. Kim, E. Kiritsis and R. Meyer, Effective Holographic

Theories for low-temperature condensed matter systems, JHEP 11 (2010) 151

[arXiv:1005.4690] [SPIRES].

[27] A. Buchel, On Eling-Oz formula for the holographic bulk viscosity, JHEP 05 (2011) 065

[arXiv:1103.3733] [SPIRES].

[28] O. Aharony, A. Buchel and P. Kerner, The black hole in the throat — thermodynamics of

strongly coupled cascading gauge theories, Phys. Rev. D 76 (2007) 086005

[arXiv:0706.1768] [SPIRES].

[29] A. Buchel and C. Pagnutti, Transport at criticality, Nucl. Phys. B 834 (2010) 222

[arXiv:0912.3212] [SPIRES].

[30] A. Buchel and C. Pagnutti, Critical phenomena in N = 2∗ plasma,

Phys. Rev. D 83 (2011) 046004 [arXiv:1010.3359] [SPIRES].

[31] U. Gürsoy, E. Kiritsis, G. Michalogiorgakis and F. Nitti, Thermal Transport and Drag Force

in Improved Holographic QCD, JHEP 12 (2009) 056 [arXiv:0906.1890] [SPIRES].

[32] N. Iqbal and H. Liu, Universality of the hydrodynamic limit in AdS/CFT and the membrane

paradigm, Phys. Rev. D 79 (2009) 025023 [arXiv:0809.3808] [SPIRES].

[33] U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Improved Holographic Yang-Mills at Finite

Temperature: Comparison with Data, Nucl. Phys. B 820 (2009) 148 [arXiv:0903.2859]

[SPIRES].

[34] H.A. Chamblin and H.S. Reall, Dynamic dilatonic domain walls,

Nucl. Phys. B 562 (1999) 133 [hep-th/9903225] [SPIRES].

– 15 –

http://dx.doi.org/10.1016/j.nuclphysb.2004.11.039
http://arxiv.org/abs/hep-th/0406200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0406200
http://dx.doi.org/10.1016/j.nuclphysb.2007.06.019
http://arxiv.org/abs/hep-th/0701142
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0701142
http://dx.doi.org/10.1007/JHEP04(2010)024
http://arxiv.org/abs/0912.2100
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.2100
http://dx.doi.org/10.1103/PhysRevD.78.086007
http://arxiv.org/abs/0804.0434
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.0434
http://dx.doi.org/10.1088/1126-6708/2009/05/033
http://arxiv.org/abs/0812.0792
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.0792
http://arxiv.org/abs/hep-th/0002160
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0002160
http://dx.doi.org/10.1007/JHEP01(2011)086
http://arxiv.org/abs/1007.0500
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1007.0500
http://dx.doi.org/10.1007/JHEP11(2010)151
http://arxiv.org/abs/1005.4690
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1005.4690
http://dx.doi.org/10.1007/JHEP05(2011)065
http://arxiv.org/abs/1103.3733
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1103.3733
http://dx.doi.org/10.1103/PhysRevD.76.086005
http://arxiv.org/abs/0706.1768
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0706.1768
http://dx.doi.org/10.1016/j.nuclphysb.2010.03.016
http://arxiv.org/abs/0912.3212
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.3212
http://dx.doi.org/10.1103/PhysRevD.83.046004
http://arxiv.org/abs/1010.3359
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1010.3359
http://dx.doi.org/10.1088/1126-6708/2009/12/056
http://arxiv.org/abs/0906.1890
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0906.1890
http://dx.doi.org/10.1103/PhysRevD.79.025023
http://arxiv.org/abs/0809.3808
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.3808
http://dx.doi.org/10.1016/j.nuclphysb.2009.05.017
http://arxiv.org/abs/0903.2859
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.2859
http://dx.doi.org/10.1016/S0550-3213(99)00520-9
http://arxiv.org/abs/hep-th/9903225
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9903225

	Introduction and summary
	The GPR formula for the holographic bulk viscosity
	The EO versus GPR formula for the bulk viscosity

	Bulk viscosity calculation in the N=2*(*) plasma
	The computation of c*-(11) in x-gauge
	N=*(*) plasma at high temperatures
	N=*(*) plasma at generic temperatures for (m*2(b))/(T*2)>0

	Bulk viscosity calculation in improved holographic QCD
	Computation of c*-(11) using phase variables
	The fluctuation equation
	Numerical results for the holographic-QCD model

	(dA)/(d phi) in N=2*(*) plasma
	Coefficients H(i)
	Chamblin-Reall backgrounds

