Dini Lipschitz functions for the Dunkl transform in the Space $\mathbb{L}^2(\mathbb{R}^d, w_k(x)dx)$

Mohamed El Hamma1 · Radouan Daher1

1 Introduction and preliminaries

Younis Theorem 5.2 [13] characterized the set of functions in $L^2(\mathbb{R})$ satisfying the Cauchy Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms, namely, we have the following

Theorem 1.1 [13] Let $f \in L^2(\mathbb{R})$. Then the following are equivalents

1. \[\|f(x + h) - f(x)\|_2 = O\left(\frac{h^\alpha}{(\log \frac{1}{h})^\beta}\right) \quad \text{as } h \to 0, \ 0 < \alpha < 1, \beta \geq 0, \]
2. \[\int_{|x| \geq r} |\mathcal{F}(f)(x)|^2 dx = O\left(\frac{r^{-2\alpha}}{(\log r)^{2\beta}}\right) \quad \text{as } r \to +\infty, \]

where \mathcal{F} stands for the Fourier transform of f.
In this paper, we obtain an analog of Theorem 1.1 for the Dunkl transform on \(\mathbb{R}^d \). For this purpose, we use a generalized spherical mean operator. We point out that similar results have been established in the Bessel transform [4].

We consider the Dunkl operators \(D_i; 1 \leq i \leq d \), on \(\mathbb{R}^d \), which are the differential-difference operators introduced by Dunkl in [6]. These operators are very important in pure mathematics and in physics. The theory of Dunkl operators provides generalizations of various multivariable analytic structures, among others we cite the exponential function, the Fourier transform and the translation operator. For more details about these operators see [5–7]. The Dunkl Kernel \(E_k \) has been introduced by Dunkl in [8]. This Kernel is used to define the Dunkl transform.

Let \(R \) be a root system in \(\mathbb{R}^d \), \(W \) the corresponding reflection group, \(R_+ \) a positive subsystem of \(R \) (see [5,7,9–11]) and \(k \) a non-negative and \(W \)-invariant function defined on \(R \).

The Dunkl operators are defined for \(f \in C^1(\mathbb{R}^d) \) by

\[
D_j f(x) = \frac{\partial f}{\partial x_j}(x) + \sum_{\alpha \in R_+} k(\alpha) \alpha_j f(x) - f(\sigma_\alpha(x)), \quad x \in \mathbb{R}^d \quad (1 \leq j \leq d)
\]

Here (,) is the usual euclidean scalar product on \(\mathbb{R}^d \) with the associated norm \(|.| \) and \(\sigma_\alpha \) the reflection with respect to the hyperplane \(H_\alpha \) orthogonal to \(\alpha \), and \(\alpha_j = \langle \alpha, e_j \rangle \), \((e_1, e_2, \ldots, e_d)\) being the canonical basis of \(\mathbb{R}^d \).

The weight function \(w_k \) defined by

\[
w_k(x) = \prod_{\xi \in R_+} |\langle \xi, x \rangle|^{2k(\alpha)}, \quad x \in \mathbb{R}^d,
\]

where \(w_k \) is \(W \)-invariant and homogeneous of degree \(2\gamma \) where

\[
\gamma = \gamma(R) = \sum_{\xi \in R_+} k(\xi) \geq 0.
\]

The Dunkl Kernel \(E_k \) on \(\mathbb{R}^d \times \mathbb{R}^d \) has been introduced by Dunkl in [8]. For \(y \in \mathbb{R}^d \) the function \(x \mapsto E_k(x, y) \) is the unique solution on \(\mathbb{R}^d \) of

\[
\begin{align*}
D_j u(x, y) &= y_j u(x, y) \quad \text{for } 1 \leq j \leq d \\
u(0, y) &= 1 \quad \text{for all } y \in \mathbb{R}^d
\end{align*}
\]

\(E_k \) is called the Dunkl Kernel.

Proposition 1.2 [5] Let \(z, w \in \mathbb{C} \) and \(\lambda \in \mathbb{C} \). Then

1. \(E_k(z, 0) = 1. \)
2. \(E_k(z, w) = E_k(w, z). \)
3. \(E_k(\lambda z, w) = E_k(z, \lambda w). \)
4. For all \(v = (v_1, \ldots, v_d) \in \mathbb{N}^d \), \(x \in \mathbb{R}^d \), \(z \in \mathbb{C}^d \), we have

\[
|\partial^v_z E_k(x, z)| \leq |x|^{|v|} \exp(|x||Re(z)|),
\]

where

\[
\partial^v_z = \frac{\partial^{v_1}}{\partial z_1^{v_1}} \cdots \frac{\partial^{v_d}}{\partial z_d^{v_d}}, \quad |v| = v_1 + \cdots + v_d.
\]

In particular

\[
|\partial^v_z E_k(ix, z)| \leq |x|^{|v|},
\]

for all \(x, z \in \mathbb{R}^d \).
The Dunkl transform is defined for \(f \in L^1_k(\mathbb{R}^d) = L^1(\mathbb{R}^d, w_k(x)dx) \) by

\[
\hat{f}(\xi) = c_k^{-1} \int_{\mathbb{R}^d} f(x) E_k(-i\xi, x) w_k(x)dx,
\]

where the constant \(c_k \) is given by

\[
c_k = \int_{\mathbb{R}^d} e^{-\|z\|^2/2} w_k(z)dz.
\]

The Dunkl transform shares several properties with its counterpart in the classical case, we mention here in particular that Parseval Theorem holds in \(L^2_k = L^2_k(\mathbb{R}^d) = L^2_k(\mathbb{R}^d, w_k(x)dx) \), when both \(f \) and \(\hat{f} \) are in \(L^1_k(\mathbb{R}^d) \), we have the inversion formula

\[
f(x) = \int_{\mathbb{R}^d} \hat{f}(\xi) E_k(ix, \xi) w_k(\xi) d\xi, \quad x \in \mathbb{R}^d.
\]

In \(L^2_k(\mathbb{R}^d) \), consider the generalized spherical mean operator defined by

\[
M_h f(x) = \frac{1}{d_k} \int_{S^{d-1}} \tau_x(f)(hy)d\eta_k(y), \quad (x \in \mathbb{R}^d, h > 0)
\]

where \(\tau_x \) Dunkl translation operator (see [11,12]), \(\eta \) is the normalized surface measure on the unit sphere \(S^{d-1} \) in \(\mathbb{R}^d \) and set \(d\eta_k(y) = w_k(x)d\eta(y), \eta_k \) is a \(W \)-invariant measure on \(S^{d-1} \) and \(d_k = \eta_k(S^{d-1}) \).

We see that \(M_h f \in L^2_k(\mathbb{R}^d) \) whenever \(f \in L^2_k(\mathbb{R}^d) \) and

\[
\|M_h f\|_{L^2_k} \leq \|f\|_{L^2_k},
\]

for all \(h > 0 \).

For \(p \geq -\frac{1}{2} \), we introduce the normalized Bessel function of the first kind \(j_p \) defined by

\[
j_p(z) = \Gamma(p+1) \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{z}{2})^{2n}}{n!\Gamma(n + p + 1)}, \quad z \in \mathbb{C}.
\]

Lemma 1.3 [1] The following inequalities are fulfilled

1. \(|j_p(x)| \leq 1, \)
2. \(1 - j_p(x) = O(1), \ x \geq 1, \)
3. \(1 - j_p(x) = O(x^2); \ 0 \leq x \leq 1.\)

From lemma 1.3, we have

\[
|1 - j_p(x)| \leq C_p x, \quad \forall x \in \mathbb{R}^+ \tag{2}
\]

Lemma 1.4 The following inequality is true

\[
|1 - j_p(x)| \geq c,
\]

with \(|x| \geq 1, \) where \(c > 0 \) is a certain constant which depends only on \(p \).

Proof (Analog of lemma 2.9 in [3])

Moreover, from (1) we see that

\[
\lim_{z \to 0} \frac{(j_{\frac{p}{2} - 1}(z) - 1)}{z^2} \neq 0 \tag{3}
\]
Proposition 1.5 Let \(f \in L^2_k(\mathbb{R}^d) \). Then

\[
\widehat{(M_h f)}(\xi) = j_{\gamma + \frac{d}{2} - 1}(h|\xi|) \widehat{f}(\xi).
\]
i.e

\[
M_h f(x) = \int_{\mathbb{R}^d} j_{\gamma + \frac{d}{2} - 1}(h|\xi|) \widehat{f}(\xi) E_k(i x, \xi) w_k(\xi) d\xi
\]
and

\[
f(x) = \int_{\mathbb{R}^d} \widehat{f}(\xi) E_k(i x, \xi) w_k(\xi) d\xi.
\]
We have

\[
M_h f(x) - f(x) = \int_{\mathbb{R}^d} (j_{\gamma + \frac{d}{2} - 1}(h|\xi|) - 1) \widehat{f}(\xi) E_k(i x, \xi) w_k(\xi) d\xi.
\]
Invoking Parseval’s identity (4) gives

\[
\|M_h f(x) - f(x)\|_{L^2_k}^2 = \int_{\mathbb{R}^d} |j_{\gamma + \frac{d}{2} - 1}(h|\xi|) - 1|^2 |\widehat{f}(\xi)|^2 w_k(\xi) d\xi.
\]

\[2\text{ Dini Lipschitz condition}\]

Definition 2.1 Let \(f(x) \in L^2_k(\mathbb{R}^d) \), and let

\[
\|M_h f(x) - f(x)\|_{L^2_k} \leq C \frac{h^\alpha}{(\log \frac{1}{h})^\gamma}, \quad \gamma \geq 0
\]
i.e

\[
\|M_h f(x) - f(x)\|_{L^2_k} = O \left(\frac{h^\alpha}{(\log \frac{1}{h})^\gamma} \right),
\]
for all \(x \) in \(\mathbb{R}^d \) and for all sufficiently small \(h \), \(C \) being a positive constant. Then we say that \(f \) satisfies a \(d \)-Dunkl Dini Lipschitz of order \(\alpha \), or \(f \) belongs to \(Lip(\alpha, \gamma) \).

Definition 2.2 If however

\[
\|M_h f(x) - f(x)\|_{L^2_k} = O \left(\frac{h^\alpha}{(\log \frac{1}{h})^\gamma} \right) \text{ as } h \to 0,
\]
i.e

\[
\|M_h f(x) - f(x)\|_{L^2_k} = o \left(\frac{h^\alpha}{(\log \frac{1}{h})^\gamma} \right) \text{ as } h \to 0, \quad \gamma \geq 0
\]
then \(f \) is said to be belong to the little \(d \)-Dunkl Dini Lipschitz class \(lip(\alpha, \gamma) \).

Remark It follows immediately from these definitions that

\[lip(\alpha, \gamma) \subset Lip(\alpha, \gamma).\]
Theorem 2.3 Let $\alpha > 1$. If $f \in \text{Lip}(\alpha, \gamma)$, then $f \in \text{lip}(1, \gamma)$.

Proof For $x \in \mathbb{R}^d$ and h small, $f \in \text{Lip}(\alpha, \gamma)$ we have

$$\|M_h f(x) - f(x)\|_{L_k^2} \leq C \frac{h^\alpha}{(\log \frac{1}{h})^\gamma}.$$

Then

$$\left(\log \frac{1}{h}\right)^\gamma \|M_h f(x) - f(x)\|_{L_k^2} \leq C h^\alpha$$

Therefore

$$\frac{(\log \frac{1}{h})^\gamma}{h} \|M_h f(x) - f(x)\|_{L_k^2} \leq C h^{\alpha - 1},$$

which tends to zero with $h \to 0$. Thus

$$\frac{(\log \frac{1}{h})^\gamma}{h} \|M_h f(x) - f(x)\|_{L_k^2} \to 0 \text{ as } h \to 0$$

Then $f \in \text{lip}(1, \gamma)$.

Theorem 2.4 If $\alpha < \beta$, then $\text{Lip}(\alpha, 0) \supset \text{Lip}(\beta, 0)$ and $\text{lip}(\alpha, 0) \supset \text{lip}(\beta, 0)$.

Proof We have $0 \leq h \leq 1$ and $\alpha < \beta$, then $h^\beta \leq h^\alpha$.

Then the proof of this theorem.

Theorem 2.5 Let $f, g \in L_k^2(\mathbb{R}^d)$ such that $M_h (fg)(x) = M_h f(x)M_h g(x)$. If $f, g \in \text{Lip}(\alpha, \gamma)$, then $fg \in \text{Lip}(\alpha, \gamma)$.

Proof Since $f, g \in \text{Lip}(\alpha, \gamma)$, we have for all x in \mathbb{R}^d

$$\|M_h f(x) - f(x)\|_{L_k^2} \leq C_f \frac{h^\alpha}{(\log \frac{1}{h})^\gamma}$$

and

$$\|M_h g(x) - g(x)\|_{L_k^2} \leq C_g \frac{h^\alpha}{(\log \frac{1}{h})^\gamma}$$

It is clear that

$$\|M_h (fg)(x) - f(x)g(x)\|_{L_k^2}$$

$$= \|M_h (fg)(x) - f(x)M_h g(x) + f(x)M_h g(x) - f(x)g(x)\|_{L_k^2}$$

$$= \|M_h f(x)M_h g(x) - f(x)M_h g(x) + f(x)M_h g(x) - f(x)g(x)\|_{L_k^2}$$

$$= \|M_h g(x)(M_h f(x) - f(x)) + f(x)(M_h g(x) - g(x))\|_{L_k^2}$$

$$\leq \|M_h g(x)\|_{L_k^2} \|M_h f(x) - f(x)\|_{L_k^2} + \|f(x)\|_{L_k^2} \|M_h g(x) - g(x)\|_{L_k^2}$$

$$\leq K_1 C_f \frac{h^\alpha}{(\log \frac{1}{h})^\gamma} + K_2 C_g \frac{h^\alpha}{(\log \frac{1}{h})^\gamma}$$

$$\leq M \frac{h^\alpha}{(\log \frac{1}{h})^\gamma},$$

where $M = \max(K_1 C_f, K_2 C_g)$. Then $fg \in \text{Lip}(\alpha, \gamma)$
3 New results on Dini Lipschitz class

Theorem 3.1 Let $\alpha > 2$. If f belong to the d-Dunkl Dini Lipschitz class, i.e

$$f \in \text{Lip}(\alpha, \gamma), \quad \alpha > 2, \quad \gamma \geq 0.$$

Then f is equal to the null function in \mathbb{R}^d.

Proof Assume that $f \in \text{Lip}(\alpha, \gamma)$. Then

$$\|M_h f(x) - f(x)\|_{L^2_k} \leq C f h^\alpha \left(\log \frac{1}{h}\right)\gamma.$$

We have to recall that the Dunkl transform of $f(x)$ satisfies the Parseval’s identity $\|f\|_{L^2_k} = \|\hat{f}\|_{L^2_k}$.

So

$$\|M_h f(x) - f(x)\|_{L^2_k} = \|M_h \hat{f} - \hat{f}\|_{L^2_k},$$

i.e

$$\left\| (1 - j_{\gamma + \frac{d}{2} - 1}(h|\xi|)) \hat{f}(\xi) \right\|_{L^2_k} \leq C f h^\alpha \left(\log \frac{1}{h}\right)\gamma.$$

it follows that

$$\int_{\mathbb{R}^d} |1 - j_{\gamma + \frac{d}{2} - 1}(h|\xi|)|^2 |\hat{f}(\xi)|^2 w_k(\xi) d\xi \leq C^2 f h^{2\alpha} \left(\log \frac{1}{h}\right)^{2\gamma}.$$

Then

$$\frac{\int_{\mathbb{R}^d} |1 - j_{\gamma + \frac{d}{2} - 1}(h|\xi|)|^2 |\hat{f}(\xi)|^2 w_k(\xi) d\xi}{h^4} \leq C^2 f h^{2\alpha-4} \left(\log \frac{1}{h}\right)^{2\gamma}.$$

Since $\alpha > 2$ we have

$$\lim_{h \to 0} \frac{h^{2\alpha-4}}{(\log \frac{1}{h})^{2\gamma}} = 0$$

Then

$$\lim_{h \to 0} \int_{\mathbb{R}^d} \left(\frac{|1 - j_{\gamma + \frac{d}{2} - 1}(h|\xi|)|}{|\xi|^2 h^2} \right)^2 |\xi|^4 |\hat{f}(\xi)|^2 w_k(\xi) d\xi = 0.$$

and also from the formula (3) and Fatou’s theorem, we obtain $\|\xi|^2 \hat{f}(\xi)\|_{L^2_k} = 0$. Thus $|\xi|^2 \hat{f}(\xi) = 0$ for all $\xi \in \mathbb{R}^d$, then $f(x)$ is the null function. \(\square\)

Analog of the theorem 3.1, we obtain this theorem

Theorem 3.2 Let $f \in L^2_k(\mathbb{R}^d)$. If f belong to $\text{lip}(2, 0)$, i.e

$$\|M_h f(x) - f(x)\|_{L^2_k} = o(h^2) \quad \text{as} \quad h \to 0.$$

Then f is equal to null function in \mathbb{R}^d.

Now, we give another the main result of this paper analog of theorem 1.1.
Theorem 3.3 Let \(\alpha \in (0, 1) \), \(\gamma \geq 0 \) and \(f \in L^2_k(\mathbb{R}^d) \). Then the following are equivalents

1. \(f \in \text{Lip}(\alpha, \gamma) \)
2. \(\int_{|\xi| \geq s} |\hat{f}(\xi)|^2 w_k(\xi) d\xi = O \left(\frac{s^{-2\alpha}}{(\log s)^{2\gamma}} \right) \) as \(s \to +\infty \)

Proof 1) \(\implies \) 2) Assume that \(f \in \text{Lip}(\alpha, \gamma) \). Then we have

\[
\|M_h f(x) - f(x)\|_{L^2_k} = O \left(\frac{h^\alpha}{(\log \frac{1}{h})^{2\gamma}} \right) \quad \text{as } h \to 0.
\]

Proposition 1.5 and Parseval’s identity give

\[
\|M_h f(x) - f(x)\|_{L^2_k}^2 = \int_{\mathbb{R}^d} |1 - j_{\gamma + \frac{d}{2} - 1}(h|\xi|)|^2 |\hat{f}(\xi)|^2 w_k(\xi) d\xi.
\]

If \(|\xi| \in [\frac{1}{h}, \frac{2}{h}] \) then \(h|\xi| \geq 1 \) and lemma 1.4 implies that

\[
1 \leq \frac{1}{c^2} |1 - j_{\gamma + \frac{d}{2} - 1}(h|\xi|)|^2.
\]

Then

\[
\int_{\frac{1}{h} \leq |\xi| \leq \frac{2}{h}} |\hat{f}(\xi)|^2 w_k(\xi) d\xi \leq \frac{1}{c^2} \int_{\frac{1}{h} \leq |\xi| \leq \frac{2}{h}} |1 - j_{\gamma + \frac{d}{2} - 1}(h|\xi|)|^2 |\hat{f}(\xi)|^2 w_k(\xi) d\xi
\]

\[
\leq \frac{1}{c^2} \int_{\mathbb{R}^d} |1 - j_{\gamma + \frac{d}{2} - 1}(h|\xi|)|^2 |\hat{f}(\xi)|^2 w_k(\xi) d\xi
\]

\[
= O \left(\frac{h^{2\alpha}}{(\log \frac{1}{h})^{2\gamma}} \right).
\]

We obtain

\[
\int_{s \leq |\xi| \leq 2s} |\hat{f}(\xi)|^2 w_k(\xi) d\xi \leq C \frac{s^{-2\alpha}}{(\log s)^{2\gamma}}.
\]

where \(C \) is a positive constant.

So that

\[
\int_{|\xi| \geq s} |\hat{f}(\xi)|^2 w_k(\xi) d\xi = \left(\int_{s \leq |\xi| \leq 2s} + \int_{2s \leq |\xi| \leq 4s} + \int_{4s \leq |\xi| \leq 8s} + \cdots \right) |\hat{f}(\xi)|^2 w_k(\xi) d\xi
\]

\[
\leq C \left(\frac{s^{-2\alpha}}{(\log s)^{2\gamma}} + \frac{(2s)^{-2\alpha}}{(\log 2s)^{2\gamma}} + \frac{(4s)^{-2\alpha}}{(\log 4s)^{2\gamma}} + \cdots \right)
\]

\[
\leq C \frac{s^{-2\alpha}}{(\log s)^{2\gamma}} \frac{(1 + 2^{-2\alpha} + (2^{-2\alpha})^2 + (2^{-2\alpha})^3 \cdots)}{2^\gamma}
\]

\[
\leq CK_\alpha \frac{s^{-2\alpha}}{(\log s)^{2\gamma}},
\]

where \(K_\alpha = C(1 - 2^{-2\alpha})^{-1} \) since \(2^{-2\alpha} < 1 \).

This proves that

\[
\int_{|\xi| \geq s} |\hat{f}(\xi)|^2 w_k(\xi) d\xi = O \left(\frac{s^{-2\alpha}}{(\log s)^{2\gamma}} \right) \quad \text{as } s \to +\infty.
\]
2) \(\implies\) 1) Suppose now that
\[
\int_{|\xi| \geq s} |\hat{f}(\xi)|^2 w_k(\xi) d\xi = O \left(\frac{s^{-2\alpha}}{(\log s)^2\gamma} \right) \text{ as } s \to +\infty.
\]
We have to show that
\[
\int_0^\infty r^{2\gamma+d-1} |1 - j_{\gamma+\frac{d}{2}-1}(hr)|^2 \phi(r) dr = O \left(\frac{h^{2\alpha}}{(\log \frac{1}{h})^{2\gamma}} \right), \quad \text{as } h \to 0
\]
where
\[
\phi(r) = \int_{S^{d-1}} |\hat{f}(ry)|^2 w_k(y) dy.
\]
We write
\[
\int_0^\infty r^{2\gamma+d-1} |1 - j_{\gamma+\frac{d}{2}-1}(hr)|^2 \phi(r) dr = I_1 + I_2,
\]
where
\[
I_1 = \int_0^{1/h} r^{2\gamma+d-1} |1 - j_{\gamma+\frac{d}{2}-1}(hr)|^2 \phi(r) dr,
\]
and
\[
I_2 = \int_{1/h}^\infty r^{2\gamma+d-1} |1 - j_{\gamma+\frac{d}{2}-1}(hr)|^2 \phi(r) dr.
\]
Firstly, from (1) in lemma 1.3 we see that
\[
I_2 \leq 4 \int_{1/h}^\infty r^{2\gamma+d-1} \phi(r) dr = O \left(\frac{h^{2\alpha}}{(\log \frac{1}{h})^{2\gamma}} \right) \text{ as } h \to 0.
\]
Set
\[
\psi(r) = \int_r^\infty x^{2\gamma+d-1} \phi(x) dx.
\]
From formula 2, an integration by parts yields
\[
I_1 = \int_0^{1/h} r^{2\gamma+d-1} |1 - j_{\gamma+\frac{d}{2}-1}(hr)|^2 \phi(r) dr
\leq -C_p h^2 \int_0^{1/h} r^2 \psi'(r) dr
\leq -C_p \psi(1/h) + 2C_p h^2 \int_0^{1/h} r \psi(r) dr
\leq 2C_p h^2 \int_0^{1/h} r \frac{r^{-2\alpha}}{(\log r)^{2\gamma}} dr
\leq C_1 \frac{h^{2\alpha}}{(\log \frac{1}{h})^{2\gamma}},
\]
where \(C_1\) is a positive constant, and this ends the proof \(\square\)
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References