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Abstract
In this article we use the generalized Gossez-Lami Dozo property and the Opial
condition to study the fixed point property for left reversible semigroups in separable
Banach spaces. As a consequence, some previous results will be deduced and new
examples of Banach spaces satisfying the fixed point property for left reversible
semigroups are shown. We will also extend some previous theorems when we
consider the semigroup formed by a unique nonexpansive mapping and its iterates.
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1 Introduction
A semigroup S is said to be a semitopological semigroup if S is equipped with a Hausdorff
topology such that for each a ∈ S, the two mappings from S into S defined by s → as and
s → sa are continuous. A semitopological semigroup S is said to be left reversible if any
two nonempty closed right ideals of S have nonempty intersection. Clearly every Abelian
semitopological semigroup and every semitopological group are left reversible. Also left
amenable and in particular amenable semitopological semigroups are left reversible [].

Let C be a subset of a Banach space X and let S be a semitopological semigroup. A non-
expansive action of S on the set C is a map φ : S × C → C, denoted by φ(s, u) = s(u) (or su),
which satisfies:

(i) ts(u) = t(su) for all t, s ∈ S and u ∈ C.
(ii) For all u ∈ C, the function s ∈ S → s(u) ∈ C is continuous.

(iii) For every s ∈ S, the mapping u ∈ C → s(u) ∈ C is nonexpansive.
A subset C is said to verify the fixed point property for left reversible semigroups if

for every left reversible semitopological semigroup S and for every nonexpansive action
φ : S × C → C, the set Fix(S) := {u ∈ C : t(u) = u,∀t ∈ S} is nonempty.

Definition . Let X be a Banach space and τ be a topology on X. It is said that X has
the τ fixed point property (τ -FPP) for left reversible semigroups if every closed, convex,
bounded subset C which is τ -compact has the fixed point property for left reversible semi-
groups.

Given a nonexpansive mapping T , if we replace the left reversible semigroup by the dis-
crete and Abelian semigroup {T , T, T, . . .} acting from C to C, Definition . becomes the
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usual definition of the τ -FPP for nonexpansive mappings. There exist some Banach spaces
failing the w-FPP [] and therefore they fail the w-FPP for left reversible semigroups (we
can consider the semigroup S = {T , T, T, . . .} where T is the fixed point free nonexpan-
sive mapping in the well-known Alspach example []).

In  Kirk proved that every Banach space with weak normal structure satisfies the
w-FPP for nonexpansive mappings. In a similar way it can be proved that weak∗ normal
structure implies the weak∗-FPP in dual Banach spaces.

In the seventies Kirk’s result was generalized by Lim [], Holmes and Lau [] in the set-
ting of nonexpansive actions of left reversible semigroups, that is, weak normal structure
implies the w-FPP for left reversible semigroups. In the case of dual Banach spaces, such
a general statement is still unknown for the weak∗ normal structure and the weak∗-fixed
point property for left reversible semigroups (see Open Problem . in []).

Particular examples of dual Banach spaces are known to satisfy the weak∗-FPP for left
reversible semigroups. In  Lim [] proved that the sequence space � satisfies the
weak∗-FPP for left reversible semigroups. In , Lau and Mah in [] generalized Lim’s
result by proving that the Fourier-Stieltjes algebra B(G) of a separable compact group ver-
ifies the weak∗-FPP for left reversible semigroups. Notice that if G is the torus group, then
B(G) is isometric to �(Z). In , Randrianantoanina [] proved that the space T (H)
of trace class operators on a Hilbert space also satisfies the weak∗-FPP for left reversible
semigroups. He also proved the same property for the Hardy Banach space [].

However, the techniques used in the previous articles cannot be extended to more gen-
eral dual Banach spaces since they are mainly based on the following fact: in the above-
mentioned Banach spaces, the asymptotic center of a weak∗ compact set with respect to
a decreasing net of bounded subsets is proved to be either norm compact or weakly com-
pact. This is not true for every weak∗ compact set in a dual Banach space, as we will later
check in Example ..

In , Randrianantoanina [] proved that the Banach space L[, ] or, more generally,
every noncommutative L-space associated to a finite von Neumann algebra satisfies the
fixed point property for left reversible semigroups with respect to the abstract measure
topology τ (the convergence in measure topology in case of L[, ]). Here the asymptotic
centers of τ -compact sets are norm compact.

In this paper we develop new arguments to deduce whether a dual Banach space satis-
fies the weak∗-FPP for left reversible semigroups. More generally, we will consider τ as any
translation invariant topology on a separable Banach space X and we give sufficient con-
ditions to assure the τ -FPP for left reversible semigroups. The strict Opial condition and
the generalized Gossez-Lami Dozo property will be our main tools. Most of the previous
known results will be deduced from ours, but we will also achieve new examples of Banach
spaces which satisfy the τ -FPP for left reversible semigroups. Here we will consider dif-
ferent types of topologies. Firstly we will regard the weak∗ topology in Musielak-Orlicz
sequence spaces, in some renormings of � and in some other dual Banach spaces non-
isomorphic to �. We will also consider the topology of the convergence locally in measure
in some function spaces, the abstract measure topology in L-embedded Banach spaces and
the topology of ρ-almost everywhere convergence in modular function spaces.

Moreover, we will extend some known results for nonexpansive mappings to the setting
of the fixed point property for left reversible semigroups.
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2 Preliminaries
We introduce some definitions and concepts.

Let X be a Banach space and let {Bs}s∈A be a decreasing net of bounded subsets of X. For
x ∈ X and s ∈ A, we consider

rs(x) := sup
{‖x – y‖ : y ∈ Bs

}
,

r(x) := inf
{

rs(x) : s ∈ A
}

= lim
s

rs(x).

Notice that r(·) is a continuous function for the norm topology.
We defined the asymptotic radius and the asymptotic center of a set C with respect to

the family {Bs}s∈A as

r := inf
{

r(x) : x ∈ C
}

,

AC
({Bs}s∈A, C

)
:=

{
x ∈ C : r(x) = r

}
.

In the following example we check that asymptotic centers of weak∗-compact sets are
not weakly compact in general.

Example . Let X be the space � renormed as follows:

‖x‖ = max
n∈N

(
∣∣x(n)

∣∣ +



∞∑

i=n+

∣∣x(i)
∣∣
)

.

Since {en} is a monotonous boundedly complete Schauder basis for X = (�,‖·‖), this space
is isometric to the dual of the closed subspace spanned by the orthogonal functions {e∗

n}.
Thus X is a dual space and in fact its weak∗ topology coincides with the σ (�, c) topology.

Consider the set

C :=

{ ∞∑

n=

tnen : tn ≥ ,
∞∑

n=

tn ≤ 


}

,

which is a closed convex bounded w∗-compact set.
Define the bounded subsets Bs = {ek : k ≥ s}, where the {en} are the unit basic vectors. In

this case r(x) = lim sups ‖x – es‖, and it is easy to check that r(x) ≥  for all x ∈ �. However,
for all k, n with k < n,

∥∥∥∥



ek – en

∥∥∥∥ = ,

which implies that 
 en belongs to the asymptotic center of C with respect to the sequence

{Bs}s, and this center is not weakly compact. Therefore, the arguments used in [–] or []
to prove the existence of a common fixed point for left reversible semigroups of nonex-
pansive mappings are not useful in this example. We will later deduce that (�,‖ · ‖) does
satisfy the w∗-FPP for left reversible semigroups.

Let (T , τ ) be a topological space. Recall that a function f : T →R is said to be τ -sequen-
tially lower semicontinuous (τ -slsc) if f (t) ≤ lim infn f (tn) for every sequence (tn)n ⊂ T
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with τ -limn tn = t. From now on, let X be a Banach space and let τ be a translation invari-
ant topology on X, that is, τ -limn xn = x if and only if τ -limn(xn – x) = .

We introduce the following definitions which generalize two geometric properties which
are well known in case of the weak topology. These properties were attempts to get some
information about the behavior of the norm on the weakly convergent sequences. The
Opial condition was introduced by Opial () [] and the generalized Gossez-Lami
Dozo property was introduced by Jiménez-Melado () [] when τ is the weak topol-
ogy.

Definition . Let (X,‖·‖) be a Banach space and τ be a topology on X. We will say that X
has the generalized Gossez-Lami Dozo property for the topology τ (τ -GGLD) if for every
(norm) bounded and τ -null sequence {xn} such that lim‖xn‖ �=  and limn,m,n�=m ‖xn – xm‖
exists, it is the case that

lim‖xn‖ < lim
n,m,n�=m

‖xn – xm‖.

Definition . It is said that a Banach space (X,‖ · ‖) satisfies the Opial condition with
respect to a topology τ if

lim inf
n

‖xn – x‖ < lim inf
n

‖xn – x‖

for all x ∈ X with x �= x, whenever (xn) is a sequence in X with τ -limn xn = x.

The τ -GGLD property and the Opial condition will be the key to our main results. It is
well known that these properties are not related. We will also illustrate this assertion with
some examples.

Definition . Let (X,‖ ·‖) be a Banach space and τ be a topology on X. It is said that X is
uniformly Kadec-Klee with respect to τ , UKK(τ ), if for every ε >  there exists some δ > 
such that whenever {xn}n is a sequence in the closed unit ball of X, which is τ -convergent
to a point x ∈ X with infn�=m ‖xn – xm‖ > ε, then ‖x‖ <  – δ.

Associated with the UKK(τ ) property, the following modulus is defined:

PX,τ (ε) = inf
{

 – ‖x‖ : ‖xn‖ ≤ , τ -lim
n

xn = x, inf
n�=m

‖xn – xm‖ > ε
}

.

In case that τ is the weak topology the previous coefficient is known as Partington’s
modulus, and it is clear that a Banach space has the UKK(τ ) property if and only if PX,τ (ε) >
 for every ε ∈ (, ]. We denote PX,τ (–) = limε→– PX,τ (ε). For τ a linear topology, it is not
difficult to check that

lim‖xn‖ ≤ (
 – PX,τ

(
–))

lim
n,m,n�=m

‖xn – xm‖

for every (norm) bounded τ -null sequence {xn} such that limn,m,n�=m ‖xn – xm‖ exists.
Therefore X verifies the τ -GGLD property whenever X is UKK(τ ).
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3 Main results
Let C be a set and {Bs}s∈A be a decreasing net of bounded subsets of X. It is clear that

AC
({Bs}s∈A, C

)
=

⋂

n∈N

{
x ∈ C : r(x) ≤ r +


n

}
.

Therefore, if the set C is τ -sequentially compact and the function r(·) is τ -slsc, the
asymptotic center AC({Bs}s∈A, C) is a nonempty, τ -sequentially compact set. If C is con-
vex, so is AC({Bs}s∈A, C).

We now prove the following technical lemma.

Lemma . Let C be a convex bounded subset of X. Let {Bs}s∈A be a decreasing net of subsets
of C such that AC({Bs}s∈A, C) = C. If C is (norm) separable, then there exists {xn} ⊂ C such
that

lim
n

‖xn – x‖ = r

for every x ∈ C, where r denotes the asymptotic radius of C with respect to the net {Bs}s.

Proof We will use a similar argument to that of Theorem  in []. Let {yn} be a dense
sequence in C and define yn =

∑n
i=

yi
n .

Since y ∈ C = AC({Bs}s, C), we can find s ∈ S such that

r ≤ rs (y) ≤ r + .

Then select any x ∈ Bs such that ‖x – y‖ ≥ r – .
Assume we have constructed x, x, . . . , xn– such that for all  ≤ j ≤ k ≤ n –  we have

r –

k

+


k ≤ ‖xk – yj‖ ≤ r +


k .

Take sn ∈ S such that rsn (yi) ≤ r + 
n , i = , . . . , n and rsn (yn) ≤ r + 

n . Select xn ∈ Bsn

such that r – 
n ≤ ‖xn – yn‖.

Fix k ≤ n. We then have the following inequalities:

r –


n ≤ ‖xn – yn‖ ≤
n∑

i=

‖xn – yi‖
n

=
‖xn – yk‖

n
+

n∑

i=,i�=k

‖xn – yi‖
n

≤ ‖xn – yk‖
n

+
n∑

i=,i�=k

r + 
n

n

=
‖xn – yk‖

n
+

(
n – 

n

)(
r +


n

)
.

From this we obtain that r
n – 

n + 
n ≤ ‖xn–yk‖

n and it follows that

r –

n

+


n ≤ ‖xn – yk‖ ≤ rsn (yk) ≤ r +


n .
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Thus for a fixed k, it easily follows limn→∞ ‖xn – yk‖ = r. Since {yn} is dense in C, we
deduce limn→∞ ‖xn – x‖ = r for all x ∈ C. �

Recall that every left reversible semitopological semigroup S becomes a directed set
when the following partial order is defined:

a, b ∈ S, a ≥ b ⇐⇒ aS ⊂ cl(bS),

where cl(bS) denotes the topological closure of the right ideal bS.
Let C be subset of X, S be a left reversible semitopological semigroup, and consider a

nonexpansive action of S acting on C. For a fixed element u ∈ C define Ws = cl(sS(u)),
where here the closure is taken for the norm topology. The sets {Ws : s ∈ S} form a non-
decreasing family of subsets of C. In this case define r(x) = lims r(x, Ws). Moreover,

rts(tx) ≤ rs(x)

for all t, s ∈ S and x ∈ C. Indeed

rts(tx) = sup
y∈Wts

‖tx – y‖ = sup
y∈tsS(u)

‖tx – y‖ = sup
p∈S

∥∥tx – tsp(u)
∥∥

≤ sup
p∈S

∥∥x – sp(u)
∥∥ ≤ sup

y∈Ws
(x) = rs(x).

Therefore r(tx) = infs rs(tx) ≤ infs rs(x) = r(x) for every t ∈ S, and this implies that the set

C(λ) :=
{

x ∈ C : r(x) ≤ λ
}

is either empty or S-invariant for every λ > .
As a consequence, the following lemma is known.

Lemma . Let X be a Banach space endowed with a topology τ . Let C be a closed convex
bounded subset of X which is τ -sequentially compact. Let S be a left reversible semitopo-
logical semigroup and consider a nonexpansive action of S on the set C. Assume that the
function r(·) is τ -slsc. Then

AC
({Ws}s∈S, C

)

is a nonempty closed convex τ -sequentially compact set which is S-invariant.

Next we obtain fixed point results by means of the τ -GGLD and the Opial property.

Theorem . Let X be a Banach space and τ be a topology on X. Let C be a (norm) sep-
arable closed, convex, bounded, τ - compact and τ -sequentially compact subset of X . Let
S be a left reversible semigroup generating a nonexpansive action over C. Assume that for
some u ∈ C the previous function r(·) is τ -slsc. If X verifies either the τ -GGLD property
or the Opial condition with respect to τ , then Fix(S) �= ∅. In case of the weak topology, the
separability of C is not necessary.
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Proof Let F be the family of nonempty, convex, τ -closed and S-invariant subsets of C.
Ordering the family by inclusion and using Zorn’s lemma, we obtain a set which is minimal
with respect to being nonempty, convex, τ -closed and S-invariant. We can then assume
that C is the minimal set.

Since AC({Ws}s, C) is also a nonempty, convex, τ -closed and S-invariant subset of C,
we have that AC({Ws}s∈S, C) = C. Let r denote the asymptotic radius of C with respect to
{Ws}s∈S and take {xn}n as in Lemma .. By Theorem III.. of [] we can further assume
that limn,m,n�=m ‖xn – xm‖ exists and it must then be equal to r. Since C is τ -sequentially
compact, we can assume that {xn}n is τ -convergent, say to some x ∈ C. We have that
limn ‖xn – x‖ = r, which contradicts the τ -GGLD property since τ -limn(xn – x) = . On
the other hand, for some y ∈ C with y �= x, we obtain

r = lim
n

‖xn – x‖ = lim
n

∥∥xn – x – (y – x)
∥∥ = r,

which contradicts the Opial condition. Therefore Fix(S) �= ∅.
In case that τ coincides with the weak topology, it is known that both the w-GGLD

condition and the Opial condition for the weak topology imply weak normal structure
[] and therefore the w-FPP for left reversible semigroups []. �

Notice that for separable Banach spaces and topologies τ weaker than the norm topol-
ogy, the τ -compactness of the domain is a superfluous assumption. Indeed, the separabil-
ity of X implies that X is Lindelöf for the norm and so does for the topology τ since it is
weaker that the norm topology. Thus, τ -sequentially compact sets are countably compact
and Lindelöf, so they are τ -compact.

Many examples of Banach spaces are known to satisfy the GGLD condition or the Opial
property with respect to some classical topologies. However, to apply Theorem ., the
τ -sequential lower semicontinuity of the function r(·) for some u ∈ C must be checked. In
what follows we study equivalent and sufficient conditions to assure this statement.

Let {xn} be a bounded sequence. We define the type function associated to the sequence
{xn}n by


(x) = lim sup
n

‖x – xn‖, x ∈ X.

In case that τ -limn xn =  we say that 
 is a τ -null type function.
Recall that given {Bs}s∈A a decreasing net of bounded subsets of X we defined r(·) asso-

ciated to the net {Bs}s∈A as r(x) = lims r(x, Bs). The following lemma will be very helpful to
assure whether the function r(·) is τ -sequentially lower semicontinuous.

Lemma . The function r(·) is τ -slsc if and only if the type functions 
(·) are τ -slsc.

Proof One implication is direct since we can take Bs = {xn : n ≥ s}. Then 
(x) = r(x) =
lim supn ‖xn – x‖.

Assume that the type functions are τ -sequentially lower semicontinuous. Take {Bs}s∈A

any decreasing net of bounded subsets, and let (yn)n be a τ -convergent sequence to some
point y ∈ X. We have to prove that r(y) ≤ lim infn r(yn).

Consider a sequence (εn)n of positive real numbers with limn εn = .
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We claim that there exists a sequence {xn}n with xn ∈ Bsn and sn > · · · > s, such that

r(y) – εn ≤ ‖y – xn‖ < r(y) + εn, ()

‖yi – xn‖ ≤ r(yi) + εn; i = , , . . . n. ()

Indeed, take s ∈ A such that

r(y, Bs ) < r(y) + ε; r(y, Bs ) < r(y) + ε

and x ∈ Bs with

r(y) – ε < ‖y – x‖ < r(y) + ε.

Assume now that we have obtained x, . . . , xn satisfying () and (). Take sn+ > sn such
that

r(y, Bsn+ ) < r(y) + εn+

and

r(yi, Bsn+ ) < r(yi) + εn+

for i = , . . . , n, n + . Consider xn+ ∈ Bsn+ with

r(y) – εn+ < ‖y – xn+‖ < r(y) + εn+.

Moreover,

‖yi – xn+‖ ≤ r(yi, Bsn+ ) ≤ r(yi) + εn+; i = , , . . . , n + ,

and the claim is proved.
By (), lim supn ‖xn – y‖ = r(y) and by (), lim supn ‖xn – yi‖ ≤ r(yi) for every i ∈N.
We consider the type function 
(x) = lim supn ‖xn – x‖. We now have

r(y) = lim sup
n

‖xn – y‖ = 
(y) ≤ lim inf
i


(yi)

= lim inf
i

lim sup
n

‖xn – yi‖ ≤ lim inf
i

r(yi),

which implies that the function r(·) is τ -sequentially lower semicontinuous as we wanted
to prove. �

In the setting of Theorem ., the set C is τ -sequentially compact, so we can assume that
the sequence {xn} obtained in the previous lemma is τ -convergent. Moreover, since the
topology is translation invariant, we only need to assume that the τ -null type functions
are τ -sequentially lower semicontinuous.

Finally, we can state our main result in this section.



Castillo-Santos and Japón Fixed Point Theory and Applications  (2015) 2015:109 Page 9 of 19

Theorem . Let X be a separable Banach space, τ be a translation invariant topology on
X such that τ -compact sets are τ -sequentially compact. Assume that the τ -null functions
are τ -slsc. If X verifies either the τ -GGLD property or the τ -Opial condition, X has the
τ -FPP for left reversible semigroups.

Notice that when τ is the weak topology, the separability of X is not necessary.
On the other hand, it is said that the τ -null type functions are constant on spheres if

lim sup
n

‖xn – x‖ = lim sup
n

‖xn – y‖

for every x, y ∈ X with ‖x‖ = ‖y‖, where {xn}n is a norm bounded τ -null sequence. In []
(Lemma ) it is proved that the norm and the τ -null type functions are τ -slsc whenever
they are constant on spheres.

4 First examples and applications for the weak-star topology
In this section we are going to apply Theorem . to several different classes of dual Banach
spaces endowed with their weak∗ topologies.

To begin with, consider X = (�,‖ · ‖), where by ‖ · ‖ we denote the usual norm, and
let τ be the weak∗ topology σ (�, c), which is metrizable. It can easily be checked that for
every w∗-null sequence {xn}n and for all x ∈ �,

lim sup
n

‖xn + x‖ = ‖x‖ + lim sup
n

‖xn‖,

which implies both the w∗-GGLD property and the w∗-sequential lower semicontinuity
of the w∗-null type functions. Therefore we deduce that � has the weak∗-FPP for left
reversible semigroups []. This result can be generalized as follows since the same equality
holds for w∗-null sequences.

Corollary . Let (Xn)n be a sequence of finite dimensional Banach spaces. Then the one-
direct sum

X = ⊕
∑

n∈N
Xn

has the weak∗-FPP for left reversible semigroups, where the considered predual is defined
by E = {x = (xn)n : xn ∈ Xn, limn ‖xn‖Xn = }.

In case that G is a separable compact group, its Fourier-Stieltjes algebra B(G) is the direct
one-sum of a sequence of finite dimensional Banach spaces (see Section  in [] and
Chapter I, Theorem . in []). Applying Corollary . we can deduce the following.

Corollary . [] Let G be a separable compact group and B(G) be its Fourier-Stieltjes
algebra. Then B(G) satisfies the w∗-FPP for left reversible semigroups.

We can now state an improvement of the results in [] about the w∗-FPP for left re-
versible semigroups as follows.
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Theorem . Let (X,‖ · ‖) be a Banach space with a boundedly complete Schauder basis
{en}n. Assume that for every block basic sequence {xn}n and for every x ∈ X, there holds

lim sup
n

‖x + xn‖ = ‖x‖ + lim sup
n

‖xn‖

for every x ∈ X. Then X has the w∗-FPP for left reversible semigroups where w∗ = σ (X, Z)
and Z is the closed subspace spanned by the orthogonal functions {e∗

n}n.

Proof When the Schauder basis is boundedly complete, the Banach space X is isomorphic
to Z∗ ([], Proposition .b..), and we can consider the weak∗ topology σ (X, Z) where the
convergence is equivalent to the pointwise convergence for bounded sequences. Now the
w∗-null type functions are w∗-sequentially lower semicontinuous since they are constant
on spheres and the w∗-GGLD property is satisfied. �

We can apply Theorem . to more general Banach spaces. The following example is
given in [].

Example . Let c be the vector space of all sequences of scalars which are eventually
zero. Denote by [N]<w the subsets of N with finite cardinality. For A ⊂ N, let PA be the
usual projection, that is, if x = (x(n))n ∈ c, PA(x) is the vector whose coordinates are x(n)
if n ∈ A and zero otherwise.

Consider the family S ⊂ [N]<w by

S :=
{

S = (n, . . . , nk) ∈ [N]<w : ni+ ≥ ni for i = , . . . , k – 
}

.

Define

|x| := sup
S∈S

∥∥PS(x)
∥∥

,

and let X be the completion of c with the norm | · |. Then (X, | · |) is a dual Banach space
satisfying the hypotheses of Theorem .. Indeed, the sequence {en} forms a monotonous
bounded complete Schauder basis, which implies that X is isometric to the dual of Z,
where Z is the Banach space spanned by the orthogonal functionals {e∗

n}. The fact that
X satisfies the equality given in Theorem . is proved in []. Therefore, it satisfies the
w∗-FPP for left reversible semigroups. Notice that this Banach space is not isomorphic to
� [].

Corollary . [] Let H be a Hilbert separable Banach space. Then T (H), the space of the
trace class operators on H , has the weak∗-FPP for left reversible groups, where the predual
is E = K(H), the space of all compact operators defined on H .

In this case, Lennard proved that T (H) verifies the weak∗ uniform Kadec-Klee prop-
erty [] and therefore the w∗-GGLD condition. Proposition . in [] implies that the
w∗-null type functions are w∗-sequentially lower semicontinuous. (Notice that in [] the
separability of the Hilbert space can be dropped.)

Corollary . [] The Hardy space H(�) has the weak∗-FPP for left reversible semigroups.
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Notice that H(�) is a separable Banach space, it has the w∗-GGLD property since it
verifies the w∗-UKK condition [], and Lemma . in [] implies that the w∗-null type
functions are w∗-sequentially lower semicontinuous. Here, the weak∗ topology refers to
the isometric predual C(T)/A(T), where C(T) is the space of all continuous functions on
the torus T, with the usual supremum norm, and A(T) is the set of boundary values of
the disc algebra with zero constant term.

Recall that map φ : [, +∞) → [, +∞) is said to be an Orlicz function if φ is convex,
vanishing at , continuous and not identically equal to zero. A sequence � := {φn}n of
Orlicz functions is called a Musielak-Orlicz function.

Given a Musielak-Orlicz function, a convex modular I� is defined on the set of all real
sequences given by

I�(x) =
∞∑

n=

φn
(∣∣x(n)

∣∣).

A Musielak-Orlicz sequence space generated by � is defined by

�� =
{

x = (xn) : I�(λx) < +∞ for some λ > 
}

.

We can consider �� equipped with the Luxemburg norm

‖x‖ := inf
{

k >  : I�(x/k) ≤ 
}

,

or with the Orlicz norm

‖x‖o := inf

{

k
(
 + I�(kx)

)
: k > 

}
.

It is well known that both norms are equivalent and �� is a Banach space [, ].
In case that φm = φn for all n, m ∈N, we simply say that �� is an Orlicz sequence Banach

space.
It is said that a Musielak-Orlicz function � = {φn}n satisfies the condition δ if there are

positive constants a and K and a nonnegative sequence (cn) ∈ � such that

φn(t) ≤ Kφn(t) + cn

for every n ∈N, t ∈R+ satisfying φn(t) ≤ a.
For Orlicz sequence Banach spaces, it is said that an Orlicz function φ satisfies the con-

dition δ if there exist some t >  and K >  such that φ(t) ≤ Kφ(t) for every t ∈ [, t].
When the condition δ is satisfied, the unit vectors form a boundedly complete normal-

ized unconditional basis of �� ([], Proposition .d.). We denote by e∗
n the functional

vector associated with en for every n ∈ N and consider [e∗
n] the closed span of the vectors

{e∗
n} in the dual of the Musielak-Orlicz space. Since the Schauder basis is monotone, the

dual of the Banach space [e∗
n] is isometric to �φ ([], Proposition .b..). Therefore we can

consider the weak∗ topology σ (��, [e∗
n]). At this point we can state the following.

Theorem . Let � = {φn} be a Musielak-Orlicz function satisfying the condition δ.
The Musielak-Orlicz space satisfies the w∗-FPP for left reversible semigroups for both the
Luxemburg and the Orlicz norm.
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Proof Notice that �� is a separable Banach space. The arguments included in the proof of
(iii) ⇒ (i) of Theorem  in [] imply that �� endowed with the Luxemburg norm satis-
fies the w∗-uniform Opial condition. From the proof of Theorem  in [] we can deduce
that the Musielak-Orlicz space �� satisfies the w∗-uniform Kadec-Klee property when it
is equipped with the Orlicz norm and so the w∗-GGLD property. Since the weak∗ conver-
gence implies the coordinatewise convergence, standard arguments show that

lim sup
n

I�(xn + x) = lim sup
n

I�(xn) + I�(x)

for every x ∈ �� and for every w∗-null sequence {xn}. This implies that the functional x ∈
�� → lim supn Iφ(xn – x) is w∗-slsc. With this property, it is easy to check the w∗-sequential
lower semicontinuity for the w∗-null type functions for both norms, the Luxemburg and
the Orlicz norm. �

Particular examples of Musielak-Orlicz sequence spaces are the Nakano spaces �(pn)

where the Orlicz functions are φn(t) = |t|pn with pn ⊂ [, +∞) []. In this case, the
Musielak-Orlicz function satisfies the condition δ if and only if supn pn < +∞. In case
that pn =  for every n ∈ N, we obtain �. However, there exist some dual Nakano spaces
which are not isomorphic to � and satisfying limn pn =  [].

Corollary . Let (pn) be a bounded sequence in [, +∞). Then the corresponding Nakano
sequence Banach space verifies the w∗-FPP for left reversible semigroups.

In the rest of this section we will consider some relevant equivalent norms in �, and
we will study whether they provide the w∗-FPP for left reversible semigroups. On the
one hand, there are some equivalent norms in � which fail to have this property. For
instance � endowed with the norm ‖x‖ = max{‖x+‖,‖x–‖}, as the dual of c with the
norm ‖x+‖∞ +‖x–‖∞, fails the w∗-FPP for nonexpansive mappings []. On the other hand,
the τ -GGLD and the Opial conditions are properties that can be transferred by isomor-
phisms under certain conditions. For instance, it is known (see []) that if we consider
Y = (�, | · |) for some equivalent norm, then Y satisfies the σ (�, c)-GGLD condition
whenever d(Y , (�,‖ · ‖)) <  (and this is the best upper bound that can be obtained due to
the previous norm). However, as far as we know, the w∗-FPP for left reversible semigroups
cannot be derived from stability results since the same does not hold for the τ -sequential
lower semicontinuity of the τ -null type functions. Indeed, consider the Euclidean norm
‖ · ‖ in R

 and define the equivalent norm in � by

v(x) :=

∥∥∥∥∥
∣∣x()

∣∣u +
∞∑

n=

∣∣x(n)
∣∣u

∥∥∥∥∥


,

where u = (, ) and u = (–a, ( – a)/) for some a ∈ (, ). Finally, for λ > , define the
norm

|x|λ := ‖x‖ + λv(x)

for all x ∈ �. It is not difficult to check that | · |λ is equivalent to ‖ · ‖ and that the Banach-
Mazur distance between (�,‖·‖) and (�, | · |λ) tends to one when λ goes to zero. Consider
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xn = e + aen, which tends to x = e in the σ (�, c)-topology. Notice that

|x|λ =  + λ >  + λ
(
 – a) 

 = |xn|λ

for every n ∈ N. Hence the norm | · |λ is not σ (�, c)-sequentially lower semicontinuous,
and consequently σ (�, c)-null type functions are not σ (�, c)-slsc in general.

A relevant renorming in metric fixed point theory was given by Lin in [] in the follow-
ing way: Let {γk} be a nondecreasing sequence of positive numbers converging to  and
define

∥∥∣∣{an}
∥∥∣∣ := sup

k
γk

∞∑

n=k

|an|

for every {an} ∈ �. Lin proved that � endowed with this norm verifies the fixed point
property for nonexpansive mappings, that is, every ‖| · ‖|-nonexpansive mapping defined
on a closed convex bounded subset of � into itself has a fixed point. This assertion proves
that FPP does not imply reflexivity as it was conjectured for a long time.

At this point, we do not know whether (�,‖| · ‖|) verifies a similar statement for left re-
versible semigroups of nonexpansive mappings. Here we prove that (�,‖| · ‖|) does verify
the w∗-FPP for left reversible semigroups where by the weak∗ topology we refer to σ (�, c).
Notice that the above norm is a dual norm, that is, if X = (�,‖| · ‖|) then X is isometric to
a dual space. This can be deduced from the fact that the Schauder basis {en} is bound-
edly complete and it is monotonous for the ‖| · ‖| norm. Moreover, X is isometric to the
dual of the Banach space spanned by [e∗

n] so the weak∗ topology is in fact σ (�, c) (see
Proposition .b. in []).

If {xn}n is a w∗-null sequence in �, then lim supn ‖|xn – xm‖| =  lim supn ‖|xn‖| [], which
clearly implies the w∗-GGLD. Notice that the w∗-null type functions are not constant in
spheres: consider the sequence xn = en for every n ∈ N and x = 

γ
e, y = 

γ
e. Now ‖|x‖| =

‖|y‖| =  but

lim sup
n

‖|xn – x‖| =  + γ and lim sup
n

‖|xn – x‖| =  + γ,

so we cannot derive the w∗-sequential lower semicontinuity of the w∗-null type functions
from this fact. We will consider the following result which is due to Lennard and it was
included in []. However, we here develop a shorter proof for the sake of completeness.

Lemma . Let {xn}n be a w∗-null sequence in �. Define


(y) := lim sup
n→∞

‖|xn – y‖|.

Then


(y) = sup
k∈N

{

γk

( ∞∑

n=k

|yn| + lim sup
n

‖|xn‖|
)}

()

for every y ∈ � with y =
∑∞

n= ynen.
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Proof We may, without loss of generality, assume that the sequence {xn} is disjointly sup-
ported.

First of all, assume that the vector y is finitely supported, that is, there exists some n ∈N

such that yn =  if n > n. We can assume that n < min{supp(x)}. In such case, for every
n ∈N,

‖|y – xn‖| = max

{

sup
≤k≤n

γk

( n∑

n=k

|yn| + ‖xn‖

)

,‖|xn‖|
}

.

Taking limits when n goes to infinity and using that lim supn ‖xn‖ = lim supn ‖|xn‖| since
{xn} is disjointly supported, we deduce

lim sup
n

‖|y – xn‖| = max

{

sup
≤k≤n

γk

( n∑

n=k

|yn| + lim sup
n

‖|xn‖|
)

, lim sup
n

‖|xn‖|
}

= sup
k∈N

{

γk

( ∞∑

n=k

|yn| + lim sup
n

‖|xn‖|
)}

,

where the last equality follows from the fact that limk γk =  and yn =  if n > n. Then the
lemma holds in this case.

Let y =
∑∞

n= ynen be any vector in � and denote ys =
∑s

n= ynen. Notice that 
 is a con-
tinuous function for the norm topology so 
(y) = lims 
(ys). If we prove that lims 
(ys)
coincides with the right part of the equality stated in the lemma, the proof will be fin-
ished.

For every s ∈N,


(ys) = max

{

sup
≤k≤s

γk

( s∑

n=k

|yn| + lim sup
n

‖|xn‖|
)

, lim sup
n

‖|xn‖|
}

≤ max

{

sup
k≥

γk

( ∞∑

n=k

|yn| + lim sup
n

‖|xn‖|
)

, lim sup
n

‖|xn‖|
}

= sup
k∈N

{

γk

( ∞∑

n=k

|yn| + lim sup
n

‖|xn‖|
)}

.

On the other hand, let ε >  and s ∈N such that ‖y – ys‖ < ε for every s ≥ s. Fix s ≥ s.
In this case

sup
≤k≤s

{

γk

( ∞∑

n=k

|yn| + lim sup
n

‖|xn‖|
)}

≤ sup
≤k≤s

{

γk

( s∑

n=k

|yn| + ε + lim sup
n

‖|xn‖|
)}

.

And

sup
s<k

{

γk

( ∞∑

n=k

|yn| + lim sup
n

‖|xn‖|
)}

≤ sup
s<k

{
γk

(
ε + lim sup

n
‖|xn‖|

)}
= ε + lim sup

n
‖|xn‖|.
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In any case,


(ys) ≤ sup
k∈N

{

γk

( ∞∑

n=k

|yn| + lim sup
n

‖|xn‖|
)}

≤ max

{

sup
≤k≤s

γk

( s∑

n=k

|yn| + lim sup
n

‖|xn‖|
)

, lim sup
n

‖|xn‖|
}

+ ε = 
(ys) + ε.

Taking limits when s goes to infinity and having in mind that ε is arbitrary, we obtain the
desired equality. �

By using the previous equality we can now check the following.

Lemma . For the space (�,‖| · ‖|), w∗-null type functions are w∗-sequentially semicon-
tinuous.

Proof Let {ym} be a w∗ convergent sequence and take y its w∗ limit.
Take Pk the natural projections associated to the usual basis of � and take Qn = I – Pn.

Fix n ∈N. By Lemma ., we have that 
(ys) = supk∈N{γk(
() + ‖Qk–(ys)‖)} ≥ γn(
() +
‖Qn–(ys)‖).

It is clear that Qn–(yk) converge w∗ to Qn–(y). Using that ‖ · ‖ is a w∗ lower semicon-
tinuous function, we obtain that

lim inf
m→∞ 
(ym) ≥ lim inf

m→∞ γn
(

() +

∥∥Qn–(ym)
∥∥



)

= γn
() + γn lim inf
m→∞

∥∥Qn–(ym)
∥∥



≥ γn
() + γn
∥∥Qn–(y)

∥∥
.

This inequality then holds for each n ∈ N, which proves that lim infm→∞ 
(ym) ≥
supn∈N{γn(
() + ‖Qn–(y)‖)} = 
(y) as we wanted to prove. �

Using Theorem . we finally deduce the following.

Corollary . (�,‖| · ‖|) has the w∗-FPP for left reversible semigroups.

Example . Consider X = � endowed with the equivalent norm

|x| = max

{



‖x‖, max
n

{∣∣x(n)
∣∣} +

∞∑

n=

|x(n)|
n

}

.

Consider τ as the weak∗ topology σ (�, c). Notice that (�, | · |) is a dual space since the
Schauder basis {en} is boundedly complete and monotonous. Taking the sequence xn = en

for n ∈ N, we obtain limn ‖xn‖ =  = limn,m;n�=m ‖xn – xm‖ = , which implies that X fails
the w∗-GGLD condition. However, it is easy to check that X has the Opial condition with
respect to the σ (�, c) topology and that the σ (�, c)-null type functions are sequentially
lower semicontinuous. From Theorem . we can deduce the w∗-FPP for left reversible
semigroups in the space (�, | · |).
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We finish the section with the Banach space introduced in Example ., for which we
showed that the asymptotic centers were not weakly compact in general, so the arguments
used in [, , ] or [] are not valid for proving the w∗-FPP for left reversible semigroups.

Example . Let X := (�,‖ · ‖), where the norm ‖ · ‖ is defined as

‖x‖ = max
n∈N

(
∣∣x(n)

∣∣ +



∞∑

i=n+

∣∣x(i)
∣∣
)

.

Here 
‖x‖ ≤ ‖x‖ ≤ 

‖x‖ for every x ∈ �. Notice that if x, y are vectors in � such that
max{supp(x)} < min{supp(y)}, then it is not difficult to check that

‖x + y‖ = max

{
‖y‖,‖x‖ +



‖y‖

}
. ()

The previous equality also proves that the Schauder basis is monotonous for ‖ · ‖ and
X is isometric to a dual space. Assume that {xn} is a weak∗-null sequence, where by
w∗ topology we mean the σ (�, c) topology. Without loss of generality, we can assume
that {xn} is a block basic sequence, l = limn ‖xn‖ exists and that limn,m;n�=m ‖xn – xm‖ =
lim supn lim supm ‖xn – xm‖. Therefore

lim sup
n

lim sup
m

‖xn – xm‖ = lim sup
n

lim sup
m

max

{
‖xm‖,‖xn‖ +



‖xm‖

}

= lim sup
n

max

{
l,‖xn‖ +




lim sup
m

‖xm‖

}

= l +



lim sup
m

‖xm‖ ≥ 


l,

which implies the w∗-GGLD property.
Let us prove that the weak∗-null type functions are w∗-lower semicontinuous.
Take {xn} a w∗-null sequence and y =

∑∞
n= ynen ∈ �. We can assume that {xn} is a block

basic sequence. Let ε >  and s ∈ N such that ‖y – ys‖ < ε for every s ≥ s, where ys =
∑s

n= ynen. Notice that 
(y) = lim supn ‖y – xn‖ = lims lim supn ‖ys – xn‖. Moreover, from
the definition of the norm and from the equality (),

lim sup
n

‖ys – xn‖ = max

{
lim sup

n
‖xn‖,‖ys‖ +




lim sup
n

‖xn‖

}

≤ max

{
lim sup

n
‖xn‖,‖y‖ +




lim sup
n

‖xn‖

}

for every s ∈N. On the other hand, for every s ≥ s,

max

{
lim sup

n
‖xn‖,‖y‖ +




lim sup
n

‖xn‖

}

≤ max

{
lim sup

n
‖xn‖,‖ys‖ +




lim sup
n

‖xn‖

}
+ ε

= lim sup
n

‖ys – xn‖ + ε.
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Taking limits when s goes to infinity, we deduce that for every y ∈ �,

lim sup
n

‖y – xn‖ = max

{
lim sup

n
‖xn‖,‖y‖ +




lim sup
n

‖xn‖

}
.

The above implies that the w∗-null type functions are constant on spheres and therefore
w∗-slsc.

Therefore (�,‖ · ‖) verifies the w∗-FPP for left reversible semigroups Notice also that
this space fails the Opial condition with respect to the w∗ topology. Indeed, consider
the weak∗-null sequence xn = en for n ∈ N and the vector x = 

 e. Then limn ‖xn‖ =
limn ‖xn + x‖.

5 Modular function spaces and the ρ-FPP for left reversible semigroups
In this section we consider modular function spaces Lρ := {f ∈ M : ρ(αf ) →  as α → }
endowed with the Luxemburg norm

‖f ‖ := inf

{
α >  : ρ

(
f
α

)
≤ 

}
,

and the Orlicz norm

‖f ‖o := inf

{

k
(
 + ρ(kf )

)
: k > 

}
.

Here M denotes a set of measurable functions and ρ a convex additive function modular
defined over M. It is said that a sequence (fn) ⊂ Lρ converges to f ρ-almost everywhere,
fn → f ρ-a.e., if {w ∈ � : f (w) �= limn fn(w)} is ρ-null. For all general definitions we refer to
[, ] or [].

A function modular ρ is said to satisfy the �-type condition if there exists some K > 
such that ρ(f ) ≤ Kρ(f ) for every f ∈ Lρ .

In this section we assume that ρ is a σ -finite convex additive function modular which
satisfies the �-type condition (see [] or []). In this case, a topology τρ is defined
over Lρ such that τρ-compact sets coincide exactly with τρ-sequentially compact sets [].
Moreover, the ρ-convergence coincides with the τ -convergence up to subsequences.

In [] (Section ) it is proved that, under the �-type condition, the modular function
space Lρ verifies the τρ-uniform Opial condition for both the Luxemburg and the Orlicz
norm. Moreover, Lemma . and Lemma . of [] show that the τρ-null type functions
are τρ-sequentially lower semicontinuous. Hence we can state the following theorem.

Theorem . Let ρ be a σ -finite convex additive function modular which satisfies the
�-condition. Then the modular function space Lρ verifies the τρ-FPP for left reversible
semigroups when it is equipped with either the Luxemburg or the Orlicz norm.

Examples of modular function spaces are the Lp-spaces and more generally the
Musielak-Orlicz function spaces, where the τρ topology coincides with the local conver-
gence in measure topology. For the definition of Musielak-Orlicz function spaces and for
more examples of modular function spaces, see [] and [].
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6 L-Embedded Banach spaces and the FPP for left reversible semigroups with
respect to the abstract measure topology

In this section we consider L-embedded Banach spaces endowed with the so-called mea-
sure topology. A Banach space X is said to be an L-embedded Banach space if there exists
a closed subspace Xs ⊂ X∗∗ such that X∗∗ = X ⊕ Xs. A wide study and many examples of
this class of Banach spaces can be found in the monograph []. Examples of L-embedded
Banach spaces are the following:

() Duals of M-embedded Banach spaces.
() L(μ)-spaces and preduals of von Neumann algebras.
Recall that a sequence {xn} is said to span an asymptotically isometric copy of � if there

exists a nonincreasing sequence {δn} ⊂ [, ) tending to  such that

∞∑

n=

( – δn)|αn| ≤
∥∥∥∥∥

∞∑

n=

αnxn

∥∥∥∥∥
≤

∞∑

n=

|αn|

for every {αn} ∈ �. In this case we will denote xn ∼ (asy)�.
For L-embedded Banach spaces, the abstract measure topology (τμ) is defined in []

(Section ) by considering the class of convergent sequences. Namely, if {xn} is a sequence
in an L-embedded Banach space, we say that {xn} tends to  in the abstract measure topol-
ogy (τμ-limn xn = ) if

{xn} is norm bounded and every subsequence {xnk } contains a subsequence {xnkl
}

such that xnkl
/‖xnkl

‖ ∼ (asy)� or ‖xnkl
‖ → .

When X is a separable L-embedded Banach space, the notions of compactness and se-
quential compactness agree for τμ [].

It is proved in [] (see also []) that for every τμ-null sequence {xn} in an L-embedded
Banach space,

lim sup
n

‖xn + x‖ = lim sup
n

‖xn‖ + ‖x‖

for all x ∈ X. This equality implies the τμ-GGLD property and the τμ-sequential lower
semicontinuity of the τμ-null type functions.

It is known that L-embedded Banach spaces satisfy the FPP for nonexpansive mappings
with respect to the abstract measure topology []. According to Theorem ., we can
extend this result to left reversible semigroups in the following way.

Corollary . Let X be a separable L-embedded Banach space. Then X verifies the τμ-FPP
for left reversible semigroups.

As a particular case we can deduce Theorem . in [] when the Hilbert space H is sep-
arable. Indeed, in case that the L-embedded Banach space is L(M, τ ) for some finite von
Neumann algebra M defined over a Hilbert space, the previous measure topology coin-
cides with the usual measure topology defined on L(M, τ ) for bounded sets (see The-
orem . in []). Hence, noncommutative L-spaces verify the fixed point property for
left reversible semigroups with respect to the usual measure topology. This topology is in
fact the convergence locally in measure topology in case that L(M, τ ) = L(μ) for some
σ -finite measure space.
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