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Abstract

Background: It has been shown that there are electromagnetic resonances in
biological molecules (proteins, DNA and RNA) in the wide range of frequencies
including THz, GHz, MHz and KHz. These resonances could be important for
biological function of macromolecules, as well as could be used in development of
devices like molecular computers. As experimental measurements of macromolecular
resonances are timely and costly there is a need for computational methods that can
reliably predict these resonances.
We have previously used the Resonant Recognition Model (RRM) to predict
electromagnetic resonances in tubulin and microtubules. Consequently, these
predictions were confirmed experimentally.

Methods: The RRM is developed by authors and is based on findings that protein,
DNA and RNA electromagnetic resonances are related to the free electron energy
distribution along the macromolecule.

Results: Here, we applied the Resonant Recognition Model (RRM) to predict possible
electromagnetic resonances in telomerase as an example of protein, telomere as an
example of DNA and TERT mRNA as an example of RNA macromolecules.

Conclusion: We propose that RRM is a powerful model that can computationally
predict protein, DNA and RNA electromagnetic resonances.
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Background
Resonances are ever intriguing processes as they enable energy to be transferred select-

ively and with minimum loss. Resonances in biological macromolecules (proteins,

DNA and RNA) are even more compelling, because they relate to macromolecular bio-

logical activity as well as have possible usage in technological developments (molecular

computers) [1–11]. Recently, it has been shown that tubulin and microtubules have

specific electromagnetic resonances that have a frequency range from THz to KHz

[11]. Although there are similar examples where these resonances are measured ex-

perimentally [8–11], there is a need for theoretical models that can reliably predict

these resonances in a variety of different macromolecules (proteins, DNA and RNA).

Here we present the Resonant Recognition Model (RRM) [12–16] as a good candidate

for such predictions. RRM is a revolutionary new approach proposing that macromol-

ecular activity is based on electromagnetic resonances [12–16]. In our previous work

we have used the RRM to predict resonances in tubulin and microtubules and shown
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that these resonances are in the frequency ranges from THz to KHz [17], which has

been experimentally confirmed by a recently published paper [11]. Here, we are apply-

ing the RRM to predict possible electromagnetic resonances in other proteins (telomer-

ase), DNA (telomere) and RNA (TERT mRNA). We propose that RRM is a powerful

universal tool that can predict protein, RNA and DNA electromagnetic resonances,

which is relevant for macromolecular biological function as well as applicable to new,

innovative technological devices.

Methods
Resonant recognition model

The RRM is based on the findings that certain periodicities within the distribution of

energy of delocalised electrons along a protein molecule are critical for protein DNA

and RNA biological function and/or interaction with their targets. If possible charge

transfer through these macromolecules is introduced, then charge moving through

macromolecular backbone or through its 3D structure, like helical structure, can pro-

duce electromagnetic radiation, absorption and resonance with spectral characteristics

corresponding to energy distribution along the protein. The RRM enables for these

spectral characteristics to be determined.

All proteins, DNA and RNA can be considered as a linear sequence of their constitu-

tive elements: amino acids or nucleotides. The RRM model interprets this linear infor-

mation as a numerical series by assigning each amino acid a physical parameter

representing the energy of delocalised electrons of each amino acid and then trans-

forming this numerical series into the frequency domain using Fourier Transform. As

the distance between amino acid in a polypeptide chain is 3.8 Å, it can be postulated

that the points in the numerical sequence derived are equidistant. Therefore, for this

numerical analysis the distance between points are set at an arbitrary value d = 1. The

maximum frequency in the corresponding numerical spectrum is F = 1/2d = 0.5. The

total number of points in the sequence influences the resolution of the spectrum. Thus,

for N-point sequence the resolution in the spectrum is equal to 1/N. The n-th point in

the spectral function corresponds to the frequency of f = n/N.

The RRM uses cross-spectral function to extract common spectral characteristics for

sequences with the same or similar biological function. The presence of a peak fre-

quency in a multiple cross-spectral function implies that all of the analysed sequences

within the group have this frequency component in common. The same approach can

be used for DNA and RNA sequences. However, for the characteristic frequencies

between proteins and DNA/RNA macromolecules to be compared, it is required to

make adjustments for the differences in distances between nucleotides (3.4 Å) and

amino acids (3.8 Å). These adjustments are made on nucleotide sequences spectrum so

the final result could be compared with frequency calculations made for the proteins.

Our previous research has shown that all protein, DNA and RNA sequences with a

common biological function have the common frequency component [12–16], that

represents the characteristic feature for the observed function/interaction. This charac-

teristic frequency is related to the protein biological function [12–16].

Furthermore, it was shown that the proteins and their targets, other proteins, DNA

or RNA, have the same characteristic frequency in common. Thus, we propose that the

RRM frequencies characterise not only a general function, but also a recognition and
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interaction between the particular protein and its target, which is based on resonant

recognition [12–16].

Macromolecular interactions can be considered as resonant energy transfer between the

interacting molecules. This energy can be transferred through oscillations of a physical

field, possibly electromagnetic in nature. Since there is evidence that proteins, DNA and

RNA have certain conducting or semi-conducting properties, a charge, moving through

the macromolecular backbone and passing different energy stages caused by different

amino acid or nucleotide side groups, can produce sufficient conditions for a specific elec-

tromagnetic radiation or absorption. The frequency range of this field depends on a

charge velocity. The RRM proposes that charge is travelling through macromolecular

backbone at the charge velocity estimated at 7.87 × 105m/s [12, 13]. For this velocity and

the distance between amino acids in a protein molecule, which is 3.8 Å, the frequency

range obtained for protein interactions was estimated to be in the range of 1013Hz up to

1015Hz. For nucleotide sequences, this frequency needs to be adjusted, as distance

between nucleotides is 3.4 Å. The adjustment has been done within nucleotide sequences

to match amino acid sequences. Therefore, the estimated range for both amino acid and

nucleotide macromolecules includes infra-red, visible and ultra-violet light. These compu-

tational predictions were found to be related to biological function of the macromolecules

by comparison with a number of experimental measurements [12–19].

However, if we take into account protein and DNA/RNA complex structures, and in

particular alpha helices, the charge transfer is also possible through these structures in

the form of solitons [20] (Davydov [21, 22], Hayman [23], Sinkala [24]), excitons

(Davydov [21, 22], Sinkala [24], Pang [25],Yomosa [26]) and phonons (Pang [25],

Yomosa [26], Ichinose [27], Pang [25]). These other forms of charge transfers are at

different velocities ranging from 105 m/s for solitons and some exciton all the way

down to the speed of sound and small fractions of the speed of sound for phonons.

Thus, with the same periodicities within proteins sequences, as determined by the

RRM, different modalities of charge transfer can produce different resonant frequen-

cies, which are not necessarily related to their protein biological function, but could be

related to the protein and DNA/RNA resonances, in general.

In our previous work, we have applied these charge moving modalities to tubulin and

microtubule macromolecules and identified a number of possible electromagnetic

resonance frequencies in their macromolecule structures. These results have been

experimentally confirmed in research by Bandyopadhyay team, by Sahu et al. [11].

Results and discussion
Here we applied the RRM approach to three different groups of macromolecules: pro-

teins (telomerases), coding nucleotide sequences (TERT mRNA) and DNA regulatory

sequences (telomeres), with the aim to predict electromagnetic resonant frequencies

for these three different groups of macromolecules.

Proteins

As an example of protein macromolecules, the following TERT telomerase proteins

were analysed using the RRM approach: Q27ID4 - TERT_BOVIN, O14746 -

TERT_HUMAN (1–230), O14746 - TERT_HUMAN (325–550), O70372 - TERT_MOUSE

and Q673L6 - TERT_RAT. The characteristic common RRM frequency for analysed TERT
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telomerase proteins was found to be at frequency of f = 0.2930 ± 0.001, as presented in Fig. 1.

This result is consistent with our previously published common frequency for human

telomerase [28].

When RRM frequencies for telomerase were calculated and used in conjunction with

different possible charge velocities through protein, the possible resonant frequencies

were in the ranges of THz, GHz, MHz and KHz, as presented in Table 1a.

Coding mRNA

As an example of coding nucleotide sequences, we analysed the following telomerase

TERT mRNA coding sequences, Homo sapiens telomerase reverse transcriptase isoforms:

JF896280.1 - Delta2, JF896283.1 – Delta2-8, JF896282.1 – Delta4C, JF896285.1 – Delta4-

13, JF896281.1 – Delta3p-12 and JF896286.1 – INTR1. The common numerical charac-

teristic RRM frequency was found to be at frequency of f = 0.3340 ± 0.002, as presented in

Fig. 2a. This is in accordance with our previous findings, that all coding nucleotide se-

quences have the same characteristic frequency of f = 0.3300 ± 0.002, describing the com-

mon function “coding”. As three nucleotides code for each amino acid, it is reasonable to

expect that characteristic frequency for “coding” function will reflect triplet codes and will

represent periodicity of three nucleotides or frequency of 0.33 (1/3).

To be able to calculate the actual electromagnetic resonant frequencies in nucleotide se-

quence, it is necessary to adjust for the difference in distances between nucleotides and

amino acids, as described above. Therefore, the main numerical frequency peak shifted to

the frequency of f = 0.3730 ± 0.002, as presented in Fig. 2b. The analysis of the mRNA se-

quences have shown two distinct characteristic peaks at frequency of f = 0.3730 ± 0.002

and at frequency of f = 0.4014 ± 0.002. Keeping in mind the different modalities of possible

charge transfer through the protein molecule these frequencies (periodicities) can produce

specific resonances in the ranges of THz, GHz, MHz and KHz, as presented in Table 1b.

It is interesting to note that TERT and TERT mRNA have similar the second most prom-

inent peak frequency within the range from 0.40 to 0.41. This could be due to TERT

telomerase activity which is also coded within TERT mRNA. Such similarity is causing

overlaps between TERT and TERT mRNA across the whole range of electromagnetic

resonances related to the second most prominent frequency.

Regulatory DNA

We have analysed the telomeres as an example of DNA sequences. The following

homo sapiens telomeric repeat region isolates were analysed: HQ167745.1 - AE,
Fig. 1 Peak for five TERT telomerase proteins at frequency of f = 0.2930 ± 0.001



Table 1 Electromagnetic Resonance Frequencies taking into consideration as proposed by different mechanisms of charge velocities for: a. five TERT telomerase proteins; b.
six TERT mRNA coding sequences; c. ten telomere sequences, after conversion

RRM Frequency EMf THz per EMf THz per EMf GHz per EMf GHz per EMf MHz per EMf MHz per EMf KHz per

v = 787000 m/s v = 180000m/s v = 170 m/s v = 68 m/s v = 3.2 m/s v=0.34 m/s v = 0.0005 m/s

(Cosic) (Yomosa) (Davydov) (Pang) (Yomosa) (Ichinose) (Ichinose)

a. TERT (5)

0.2930 299-308 46-47 65-67 26-27 1215-1252 129-133 190-196

0.4194 420-429 66-67 92-95 37-38 1747-1785 186-190 272-279

0.0161 12-21 2-2 2-5 1-2 49-86 5-9 8-14

0.2778 383-392 43-46 61-63 34-35 1151-1180 122-126 180-186

0.2525 261-271 55-57 70-80 21-22 1470-1507 156-160 220-225

b. TERT mRNA (6) conversion

0.3730 881-891 58-60 82-85 33-34 1550-1592 165-169 242-249

0.4014 411-431 63-64 89-91 35-36 1669-1711 177-182 261-267

0.4902 503-513 77-78 109-111 43-44 2043-2085 217-222 319-326

c. TELOMERE (10)

0.1875 181-207 28-32 39-45 16-18 737-842 78-89 115-132

0.1904 184-210 28-32 40-45 16-18 749-854 80-91 117-134

0.1768 170-196 26-30 37-42 15-17 692-797 78-85 108-125

0.1846 178-204 27-31 38-44 15-18 785-830 77-86 113-130
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Fig. 2 a Peak for six TERT mRNA coding sequences at frequency of f = 0.3340 ± 0.002. b. Peak for six TERT
mRNA coding sequences, after conversion, at frequency of f = 0.3730 ± 0.002
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HQ167740.1 - DVW, HQ167744.1 - KA, HQ167746.1 - KM, HQ167741.1 - KP,

HQ167742.1 - LH, HQ167748.1 - SA, HQ167747.1 - SF, HQ167743.1 - VDEC and

AF020783.1 - chromosome 20. The main numerical characteristic RRM frequency

was found to be at frequency of f = 0.1875 ± 0.002 [28], as presented in Fig. 3. This

frequency has been adjusted for the differences in distances between the amino acids

in protein and the nucleotides in DNA. When this adjusted numerical characteristic

frequency was used in conjunction with different modalities of charge transfer, the

possible electromagnetic resonances have been found to be in the ranges of THz,

GHz, MHz and KHz, as presented in Table 1c. It is interesting to note that telomere

have much lower characteristic frequencies than TERT telomerase and TERT

mRNA.
Fig. 3 Peak for ten telomere sequences, after conversion, at frequency of f = 0.1875 ± 0.002
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Conclusion
We have shown here that the Resonant Recognition Model can be used as universal

tool in predicting protein, RNA and DNA electromagnetic resonances in the wide

frequency range from THz. GHz, MHz and KHz. Keeping in mind that our earlier pre-

dictions with tubulin molecules have been experimentally proved [11], we propose that

the RRM could be used as a powerful universal method for predicting the electromag-

netic resonances in biological macromolecules that could be used in experimental plan-

ning and in conjunction with experiments to minimise time and expenditure in

exploring such complex macromolecular systems.
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