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Abstract Understanding the difference between data objects is a major prob-
lem especially in a scientific collaboration which allows scientists to collectively
reuse data, modify and adapt scripts developed by their peers to process
data while publishing the results to a centralized data store. Although data
provenance has been significantly studied to address the origins of a data
item, it does not however address changes made to the source code. Sys-
tems often appear as a large number of modules each containing hundreds
of lines of code. It is, in general, not obvious which parts of source code
contributed to the change in data object. The paper introduces the Class-Based
Object Versioning framework, which overcomes some of the shortcomings of
popular versioning systems (e.g. CVS, SVN) in maintaining data and code
provenance information in scientific computing environments. The framework
automatically identifies and captures useful fine-grained changes in the data
and code of scripts that perform scientific experiments so that important
information about intermediate stages (i.e. unrecorded changes in experiment
parameters and procedures) can be identified and analyzed. The benefits of
such a system include querying specific methods and code attributes for data
items of interest, finding missing gaps of data lineage and implicit storage of
intermediate data.
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1 Introduction

Astronomers, like any other scientists often prototype data analysis scripts
using high-level languages like Python. These scripts parse input, execute a
sequence of steps and create output. A script could be a class, method or
a function or lines of code as defined in the programming language being
used. Developed scripts live in conventional file systems like in centralized
versioning system (e.g. CVS!), or in a personalized checkout on a folder on
the researchers computer.

Being able to quickly implement and refine prototype code is vital to the
research process, since the specifications for research code (as compared to
production-quality code) are often ill-defined and constantly-changing, fairly
distributed, are made of thousands modules that evolve rapidly and indepen-
dently.

A typical data analysis work cycle is a recursive process that consists of basic
actions: create an analysis script (or pipeline) and execute its initial run; view
results. If not satisfactory, modify input data or an analysis function (script), or
add an analysis function and re-execute the pipeline; while publishing results
to a centralized data store.

During a data analysis work cycle not all intermediate or working ver-
sions/variations of scripts become part of the software repository and therefore
not all versions/variations of classes during the scientific analysis process will
necessarily be released and made part of the software repository. The way
people use versioning systems is by committing changes from time to time
when they feel that they have completed a feature, but what happens between
two commits is a mystery. For example, a user could make a change to a script,
process and store a result A, makes another change, processes and stores the
result (A’). Both A and A’ are committed into a centralized database but we
do not know the difference between A and A’. The user could possibly commit
his code after making and processing several other results. We can only make
some hypothesis about the difference between A and A’ by considering the
two successive states of the script at hand, which could lead to a false negatives.

Often scientists may prefer to use their own implementation of a script and
probably maintain other variations of the same implementation for compari-
son purposes. A study carried out on scientists computers also revealed that
the users maintained several copies of a script saved under different names.
(e.g. scriptl.py, script2.py, script3.py, etc.). This is an indication of conflicting
or alternative implementations. If all these working versions of classes from
different users become part of the repository, these differences (conflicts)
could be detectable, but perhaps hard to be resolved.

A scientist faces two principal obstacles when working with data: firstly,
understanding the origins of data (i.e., data provenance [9], and secondly,
understanding the differences between two data items (i.e., object versioning).

IConcurrent Versioning System http://www.cvshome.org/
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Provenance systems (e.g., StarFlow [7], Chimera [8], Kepler [1], Karma [19],
and ZOOM [4]) do trace lineage by capturing and storing a complete trace
of a data flow. However changes made to the scripts are usually ignored. At
a coarse level, provenance systems refer to ‘a procedure x’ was run on
‘data y’ [14] but at the lowest, scientists are also interested in knowing what
changes in ‘procedure x’ made data to appear the way it is. Capturing
these kind of changes is possible when all users sign up to a systematic
approach of change management, processing and storage. However this is
not often the case. For example, Astro-WISE [3, 20] provides scientists
with an Astro-WISE environment and allows users to have their own code.
Users can modify code in their repository to evaluate their specific questions
about the datasets, change/apply their own algorithms on datasets and derive
results following their insights. For each object processed using Astro-WISE,
we are able to keep truck of all dependencies, and processing parameters.
However, tracing what users are doing with the code in their own repositories
and how the code is affecting published data is still a challenge. Knowing
the changes done to script and the data created, is of utmost importance
especially in scientific collaboration which allows scientists to collectively reuse
data, modify and adapt scripts developed by their peers to process data while
publishing the results to a centralized data store.

To support scientific collaboration, we propose a mechanism that allows
collaborators to work on source code, process data while we automatically
capture relevant changes to source code and link the changes to data objects
created. With this mechanism we do not automatically merge changes like
version control systems. Rather, we create persistent code objects in a database
representing source code and the changes made to source code.

In order to support the proposed mechanism we require; a versioning
mechanism because each user needs to know how their collaborators’ work
relates to their own or how code objects are related, a centralized reposi-
tory to manage all the code objects and to provide the means for notifying
collaborators when changes occur and a linking mechanism to link versions
to data objects. Most scientific environments depend on the versioning capa-
bilities available in versioning systems (e.g. CVS, SVN)to keep a log on how
source code has changed over time. However, these tools are limited in their
ability to detect differences in programs because they provide purely textual
differences [16]. These tools do not consider changes in program behavior, they
are based on copy-modify-merge model, therefore no support for alternative
implementations, they can not group related changes, so that they appear as a
single logical entity.

The level granularity of all of the commonly used versioning systems are file
and/or program based and to some extent lines. While files/programs are too
coarse-grained for detailed analysis, lines seem to be too fine-grained. A line is
usually too excessively coupled to other lines (commands) to be considered a
unit of comparison. For example, SVN’s revision numbers apply to entire trees
not individual files. If we version an object based on a build/release number
(e.g., from Maven, SVN) then the version number that applies to the whole
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program will be the version of all objects even when the classes used to make a
specific object may not have changed. Moreover, the version numbers created
from such tools are purely opaque identifiers because a simple textual, space
change in such tools will create a new version.

Using this versioning model, browsing information in a precise way for such
systems is not possible as classes themselves and even methods, are not part
of the navigation. The versioning information considered by these tools is the
number of files, directories (and other dependencies) and their relationships,
as well as lines added, deleted or modified for each commit(version). This
might be helpful to a software developer, but not a scientist who is trying to
understand the differences in his data to establish relevant links between data
and changes in the program elements. There is also significant work that has
been done on detecting differences in source code in literature however, these
techniques are based on purely syntactic differences [11, 13, 21] at the same
time, the results of these tools are targeted towards software maintenance
tasks.

The Class-Based Object Versioning (COVA) we propose here will version
data/source code, in much finer-grained ways. The versioning will be based
on program entities (e.g., classes, methods and class hierarchies relationships)
while linking this information to the data objects. This information will be
made persistent in the database which can then be queried directly, without
needing costly parsing steps. Scientists can then focus on more precise rela-
tionships and exploit the relationships to evaluate the variations of the lines
of code (e.g., of a single method) and how the variation affects the data. We
would like at the lowest level to link the changes made to program entities
that do change results of a class to the data objects created. If two data objects
were created by different variations (versions) of the same class, the difference
between the two objects can be explained. This paper makes the following
contributions;

— a framework that supports automatic change capture which allows sci-
entists to define new processing routines, support multiple variations of
methods for solving a task and let users choose during run-time, which of
the different variations is most appropriate for them.

— develop framework that identifies and classifies changes based at different
abstraction levels using object-oriented structures while linking the
changes to derived data.

— an extensible infrastructure that will allow effective sharing of data and
source code and provide common resource discovery mechanisms, by
representing source code and extracted attributes from source code as
persistent objects.

The rest of the paper is organized as follows; We briefly review Astro-
WISE in Section 2 and present the underlying design objectives of COVA in
Section 3. In Section 4 we present the framework for change detection. We
present our object linking and version management in Section 5. We evaluate
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this work in Section 6. We review related work in Section 7 and Section 8
concludes and presents an outline of future work.

2 Astro-WISE review

The work we present in this paper is based on Astro-WISE. Readers are re-
ferred to [3,20] for detailed information on Astro-WISE. Each Astro-WISE’s
user has an Astro-WISE environment from which the user interacts with the
system and processes data. Included in the environment is the complete source
code for Astro-WISE. This environment allows the astronomer to plan, modify
and rerun the analysis process to fit the particular needs that follows from
the astronomical questions posed to the data. This often requires that a user
modify source code and process data as needed.

Although we have all data stored in the system, we do not have a connection
between the class/methods that created the data. Classes in Astro-WISE are
associated with the various conventional calibration images, data images, and
other derived data products. For example, bias exposures become instances
of the RawBiasFrame class, and twilight (sky) flats become instances of the
RawTwilightFlatFrame class. From this association we know the class that
was used to make a derived data product, however the specific version of the
class is probably in an individual’s code base. If significant changes were made
to the class, retrieving the object without access to the specific version of the
class that used to make it, may throw an exception. Since most of the changes
remain on the local node, it becomes very hard other researchers to learn from
another user, or more still understand the differences between data objects.

Our goal in this work is to capture fine-grained code and data provenance
for each user, by capturing and analyzing detailed actions performed on source
code that exists in the users checkout repositories. We then present this
information in a way that will enable collaboration such that other astronomers
could benefit from results and methods used by their peers.

3 Architecture

To address the current inherit limitations of Astro-WISE as highlighted in
Sections 1 and 2, we need a versioning mechanism to detect changes that go be-
yond simply providing purely textual differences, an object linking mechanism
that links versions of classes to derived data objects and a centralized reposi-
tory to manage all source code and derived data objects. The combination of
these features will provide common source code/data discovery mechanisms
and allow effective sharing of source code, methods and data.

Because we expect to encounter a large number of code edits, it will be
inefficient to create a new version of a class for each change detected. A code
edit can be lexical, syntactical or semantic. For this work we only consider
changes that would change the results of a class. The requirement is that, given
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a class with same input data and arguments, the class should always return the
same derived object. Source edits that change spacing, comments, and other
minor cosmetic tweaks that do not change a result of a function are ignored. In
general, this technique works as follows:

1. The scientist runs a script in Astro-WISE environment. If this is the first
time this script has been run, a request to save the computed results to
the database, will automatically create a code object. A code object(code
object) is persistent object that stores information extracted from source
code. e.g., classes, methods, class attributed and variables, class depen-
dency relationships, in a database while linking the complete source code
file with this information. The persistent code object will have a version
number which is used to reference the code object to the derived object.

2. During subsequent runs of the same script (possibly after some edits),
Astro-WISE compares the current script with the source code file linked to
the persistent code object to detect changes. This comparison is only done
when a user requests to commit the results.

3. If changes are detected Astro-WISE automatically creates a new version
of the code object and creates dependencies between the code object, the
created data objects and the source code edits.

3.1 Class-Based Object Versioning (COVA)

This section gives an overview of Class-Based Object Versioning, it describes
the relationships among classes and explains what kind of dynamic information
is used as input to Class-Based Object Versioning.

3.1.1 Versioning units and object versions

An important aspect of the Class-Based Object Versioning is how to select
the elements that shall be compared. These elements are the versioning units
that form the basis of comparison. We define versioning unit as an element
associated to versioning information. A new version of the element is created
when any part of it is modified.

Each versioning unit may have its own version but the aggregation of
these versioning units (the class) may have another version. i.e., a version
number attached to an object should have the state of all classes, methods
and attributes that were used at the time of making the object. For example,
a Python class is composed of methods and attributes (locally defined in the
class and inherited). In this scenario, a class is a versioning unit and its methods
and attributes are also versioning units. If a method or an inherited class is
changed, a new version of the class is also created, because the class has been
indirectly changed as shown in Fig. 1. Therefore the object processed with this
modified class will have a new version, even when the most specific class may
not have changed.
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Fig.1 The graphs shows the
dependency hierarchy of class
I. In the graph class E was
modified to a new version E’.
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3.1.2 Selecting versioning units

For object-oriented systems, the state of an object depends not only on its own
data attributes but also on the objects it refers to. This means, the class that
creates an object may use services of other classes to create the object. In
such cases, a class will have elements to be versioned which are distributed
through different files. Due to the complexity of this data model, it is not
desirable to have a single versioning behavior for all objects. This is the reason
why version numbers from versioning control systems e.g., SVN or version
numbers from build tools like Maven, would fail to address the versioning
requirements for this work. Current versioning control systems do not work
with fine grained versioning information. Our approach allows a fine-grained
definition of versioning units. For example, a class may be defined as an atomic
versioning unit and also its methods, and attributes as other versioning units.

We use the examples in Figs. 2 and 3 to describe intuitively the selection of
the versioning units. Since this framework considers only changes that have an
effect on data, which are determined through testing (see Section 4.1.2), it is of
paramount importance that we carefully select the versioning units, to reduce
on the amount of time that will be required for testing.
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Fig. 2 Example source

code R 1 class BaseFrame(DBObject):
2 def load_image(self):
3 pass
4 def load_header(self):
5 pass
6 def empty_header(self):
7 self.header = darma.header()
8
9 class ReducedScienceFrame(BaseFrame) :
10 def debias(self):
11 self.bias.load_image ()
12 self.image -= self.bias.image
13 def flatfield(self):
14 pass
15
16
17 def update_astrom(self):
18 self.load_header()
19 def make(self):
20 self.debias()
21 self.flatfield()

A class-hierarchy graph is a straight forward relationship between classes.
Class-hierarchy changes may affect calls to methods in any classes in the
hierarchy. A straight forward approach for selecting versioning units, is to

Fig. 3 Modified source code 1 . .
for R, R’ class BaseFrame(DBObject):
2 def load_image(self):
3 pass
4 def load_header(self):
5 pass
6 def empty_header(self):
7 self .header = eclipse.header()
8
9 class ReducedScienceFrame(BaseFrame) :
10 def debias(self):
11 self.bias.load_image ()
12 self.image += self.bias.image
13 def flatfield(self):
14 pass
15 def load_header(self):
16 pass
17 def update_astrom(self):
18 self.load_header()
19 def make(self):
20 self.debias()
21 self.flatfield()
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consider all classes and methods in a class-hierarchy. From our example (Figs. 2
and 3), if the ReducedScienceFrame class is the most specific class, then
classes ReducedScienceFrame (R), BaseFrame (BF), DBObject(DBO)
and their methods would all be considered as versioning units. All these
versioning units would be compared to find differences between R and R’,
where R’ is the modified version of R.

Assume that the change at line 12 in Fig. 3 is the only change between R
and R’. The change detection algorithm should indicate that the R class has
changed and specifically that the debias method has changed. In this case the
debias method will have a new version and the R class will have a new version.
Lets also consider the addition of the load_header (line 15 and 16) method in
Fig. 3 . This change leads to a possibly different behavior for all statements
that may call load_header method. A simple difference operation for the R
class will pick up load_header as a new method in R’ but not in R. This is not a
new method but a case of method overriding. Calls to load_header in R will be
bound to the load_header of BF class, whereas calls to load_header in R’ will
be bound to the load_header in R’. During change detection, our comparison
should compare the load_header form the BF class to the load_header of R’
class.

Notice from Figs. 2 and 3, the BF class defines three methods, load_
header, load_image and empty_header. The analysis of the BF class
shows that the empty_header methods has been modified. Since R is a
subclass of the BF class, we can say that the R class has been changed
indirectly. Note however that this change does not affect the R class
since empty_header is never called in the R class. In such a case, the
empty_header method should not be considered as a versioning unit at-least
for the R class.

Although the R class defines several methods, not all methods might
be called during a data-flow. This could be caused by conditional state-
ments or specific input parameters which might trigger specific methods to
be called. Python also defines the getattr method which can be used
to call methods when a condition is True/False. For example result =
obj.empty_header (args) is equivalent to result = getattr (obj,
“empty_header”) (args). In this example, since empty_header method
has been passed to getattr as a string, a static analysis of code, would not
detect this kind of method call. In the same way getattr supports dynamic
binding in python.

Using static analysis of code, the versioning units as described above can
be extracted. However, static analysis is inherently more difficult for object-
oriented languages than for procedural languages. Static analyses need to
make conservative assumptions in the presence of dynamic binding, which
weaken the precision data collected. We therefore use dynamic information
to extract the required information where static analysis fails. However, we
need to note that dynamic information depends upon suitable input data and
the test environment in which the program are executed, dynamic information
is therefore used as a guide. Specifically, we use dynamic analysis, using python
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settrace, to record the execution profile (Control-Flow Information) of all
method calls of a given program run. This execution profile also specifies
the order of execution. From the execution profile, we gather the fact that
a method has been executed at least once. To get the specific versioning
units we mutually intersect the execution profile with the statically obtained
information.

Algorithm 1 Selecting Versioning Unit for a class

Input: ClassName, source code, Control-Flow Information (CFI)

Output: Versioning Units (VU)

: Called Methods(CM) = &

Defined methods (DM) = &

: Inherited Methods (IM) = &

: Attribute (A) = @

VU =9

tree «— ast.parse(source code)

: for node € tree do

if node (n) is ClassDef node and node name is ClassName then
tree = node

10: VU =VUU{n}

11:  end if

12: end for

13: for node (n) in tree do

14: if node is Call node then

© XD

15: CM =CMU{n}

16: else if node is FunctionDef node then
17: DM = DM U {n}

18: else if node is Attribute node then
19: VU =VUUn

20: end if

21: end for

22: VU =VUUCM
23: VU = VU U(CFIN (DM — CM))
24: IM = CM — DM

Algorithm 1, is used to parse a class and select the versioning units. We use
Abstract Syntax Tree (AST) framework to parse code into a tree then walk the
tree to select appropriate versioning units. Line 5 in the Algorithm 1 parses
provided source code into an AST. The provided source code could have
implemented several classes. Line 7 selects the class to be versioned and makes
it the current tree in line 8. The class is added to the list of versioning units in
line 9. We visit each node in the current tree while checking if the node is
callable/Called Method (line 13 & 14) or a method definition/defined method
(line 15 & 16). A called method is considered Versioning Unit (line 19). The
difference between defined and called methods, should be the methods which
were not called. However to cater for effects of dynamic binding, we find out
if these methods are not part of the control-flow information (Line 20). Those
that are part of the control-flow information are added to the versioning units
in line 20. We also have inherited methods (Line 21), which are those methods
that were called in a class, but were never defined in that class.
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We now translate Algorithm 1 to an iterative algorithm that follows the
class-hierarchy graph to detect versioning units for each class in the graph.
However for each parent classes, we are only interested in capturing methods
which exist in set /M. So after the analysis of all called and defined methods,
only those elements that will be in set /M will be compared.

3.1.3 Class construction

Since each versioning unit is versioned separately, this gives users the power to
construct classes on-the-fly during processing by putting together the specific
versions of the versioning units that make up a class. For example, consider the
process of creating a ReducedScienceFrame object. This process involves
the following operations;

1. overscan correction and trimming

subtraction of the BiasFrame

division by the MasterFlatFrame

scaling and subtraction of a FringeFrame if indicated
multiplication by an IlluminationCorrectionFrame
creation of the individual weight image

computation of the image statistics

NownkwLd

The process can be represented as an evaluation graph as shown in Fig. 4.
The circles represent input/output data, the rectangles represent operations

ReducedScienceFrame

T

Multiplication

/

Scaling&Subtraction

/ A
Division
Subtraction
RawFrame BiasFrame MasterFlatFrame FringeFrame llluminationFrame

Fig. 4 An evaluation graph: the nodes in the graph are connected with edges that show the flow
of processing. Gray nodes represent persistent operations. e.g., a method/class/or module, while
the blue nodes represent input/output to the operations
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and the arrows show the direction of the dataflow. If each operation (An
operation may be implemented as a class or as method) is a versioning unit,
then a user needs to select specific versions of each operation, construct the
whole pipeline for making the ReducedScienceFrame object. The final
version of the ReducedScienceFrame class that was used to make the
ReducedScienceFrame object is computed from the versions of each of
the operations used during the making of the object. After processing the
ReducedScienceFrame object, a new version of the class is created and
linked to the object.

3.2 Centralized repository

In order to efficiently capture and link code edits to data objects created, we
use a relational database management system (RDBMS) for our centralized
repository. We choose to use a RDBMS because these systems provide secure
access protocols, support concurrent transactions from multiple users, and
include trigger mechanisms for alerting users when the database is updated.

3.3 Persistent code objects/object versioning

Code objects are persistent objects that store information extracted from
source code. e.g., classes, methods, class dependency relationships, in a data-
base while linking the complete source code file with this information. Classes
and methods are versioned separately, therefore methods are also represented
as objects.

Each versioned class has an associated code object from which the ver-
sions of the derived objects are obtained. Each code object knows all its
dependencies (methods and relationships with other code objects) and their
states (versions). Each code object is linked to other code objects which can
themselves be linked to other code objects. A code object can be visualized as
a version tree, where each node corresponds to a versioning unit and each
edge corresponds to a relationship to other versioning units. Each version
tree will be same for all derived objects of same version. Because the version
tree captures that state of each versioning unit, users have great flexibility of
comparing different versions of code objects. Users can easily see how their
collaborators have taken different approaches to solving related problems and
how their techniques relate or defer from their own ideas. A user can construct
a class on the fly as described in Section 3.1.3.

For each data (or derived) object processed, a persistent link to the version
of code object that was used to make the object is created and is stored as
the part of the object’s attributes (or metadata). This ensures that during the
object’s de-serialization, that appropriate classes are called to reconstruct the
object. The code object is identified by a unique object identifier (object_id)
and version number version_no. The object_id and the version_no of a code
object are used as reference to identify the relationship between the source
code and the data/derived object.
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3.4 Potential benefits of COVA
3.4.1 OOP and persistent objects

If source code is represented as objects, we can use the power of object-
oriented techniques to analyze and perform useful queries on these objects.
Rather than viewing source code as linear streams of ASCII characters, we can
now view source code as objects (code objects). It will certainly allow extreme
data validation, data reuse, ability to view it in many ways, and to search for
data or code by any attribute/key.

We can associate temporal information with individual code objects. This
provides means of recording code object histories and thereby allowing the
histories of code object and the types of code object to be easily traced and
compared. To show the potential benefit of this approach, potential queries as
below can be answered,;

— I want to apply an astronomical analysis program to millions of objects. If
the program has already been run and the results stored, I will save weeks
of computation

— I want to find out and recompute all products made from a method that
implements the x, y, =z attributes and where y="some value’.

— TI'have detected a bug in a program, I want to know which derived data to
recompute

— A user has presented two final re-gridded images, I would like to know the
difference between the two images.

3.4.2 Code-based searches and data lineage

Code-based searches should enable users find data of interest based on
code/attributes/changes that was used to make the objects. For example, one
could search for all data created by a particular method implementation.
Combining code-based searches and data lineage (provenance) introduces
functionality not available in existing systems. For example, suppose objects
were made with a version of code with a bug. A code based search should be
able to identify all objects processed with this code. Then data lineage is used
to find all derived objects that depend on the data that was created with code
with a bug and also objects created prior to version with the bug. These two
traces would precisely identify the appropriate objects and versions that need
to be recomputed (or removed).

3.4.3 Incremental re-computation

Computational scientists often speed up execution times by refactoring their
scripts into stages (separate modules) while saving intermediate results to
avoid recomputing them in subsequent runs. This eliminates processing steps
when intermediate data products have already been generated (by another
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workflow or previous execution of this workflow). Selection of intermediate
data is based on provenance information [6, 15]. Specifically if the input
and processing parameters have not changed that are required to process
intermediate data for the current process.

However, when source code changes, provenance information used to
determine if the intermediate data should be re-used is no longer sufficient,
since some changes in source code might produce different results. This work
adds another dimension to dependency checking when selecting intermediate
data products for re-use. Specifically we compare source code currently in
use and source code that was used to process the intermediate results. If
the two do not match, then re-computation of intermediate data will be
necessary.

3.4.4 Management of intermediate data

Common to the dataflow programming frameworks, is the existence of inter-
mediate data produced as an output from one stage and used as an input for
the next stage during a dataflow. Intermediate data is short-lived, used imme-
diately, written once and probably read once. Intermediate data management
problem is largely unexplored in current dataflow programming frameworks.
However due to the requirements of storing and capturing provenance for
eScience and the evolving nature of eScience, scientists have resulted into the
storage of intermediate data explicitly.

With this framework, rather than storing intermediate data explicitly, we
instead store a link to the code object that was used to make the intermediate
data. Intermediate data is only stored if it is necessary for performance
reasons and the results can be shared between pipelines. This ensures that the
appropriate version of the intermediate data product that was used during a
processing can be re-created on-the-fly when required.

4 Change detection

To determine if a new version of a class has to be created, two classes are
matched together to find the differences. We use two metrics to determine a
matching between two classes. The first metric is the semantic difference in
the class and the second metric is if the changes identified affect the results
of a computation. We also acknowledge that changes to the methods which
speed up execution times are very important when processing large data-sets,
however in this framework such changes have not been considered and are
only limited to the current versioning mechanisms in Astro-WISE.

For each class, we generate and build a dependency graph (G). We denote
a dependency graph of a class as node-labeled directed graph G(V, E) where
V(G) denotes the set of all nodes in G and E(G) denote the set of all edges in
G. The graph contains class and method nodes. A class node is connected to
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the method node by an edge. For a derived class, there exists an edge between
the class and the classes from which it inherits.

The dependency graph represents the class and its interaction with other
classes. This graph accounts for effects of inheritance, scoping, polymorphism
and dynamic binding as demonstrated in Section 3.1. What remains is to find
the difference between the graph generated for the original class (G) and the
graph of the modified class (G’).

Non-leaf nodes in the graph are the classes, and leaf nodes are the methods
and attributes of each class. We begin by matching the classes, then for each
class matched we match the methods and attributes. We do not build enhanced
control-flow graph to compare methods as work done in [2], we instead
compare Python bytecodes. We do so because we want to avoid source edits
that change spacing, comments, and other minor cosmetic tweaks that do not
alter a function’s behavior. If changes are detected during method comparison,
we continue to check if the results of the two methods differ. i.e., given two
methods M and M’ and same input dataset o, if M(0) # M’'(0), then we assume
the changes made to M to create M’, are significant to create a new version
of a method, and eventually a new version of a class. The actual differences
between the two methods are determined by comparing their disassembled
bytecodes.

All attributes in Astro-WISE are persistent. Constants are excluded from
source-code and are also represented as a persistent attributes at class level.
So changing the a value of a constant will be a modification on the data object
and not source-code. Therefore the graph includes attribute nodes and an
edge connecting a persistent attributes node to the class where the attribute
is defined.

4.1 Class matching

Graph (class) matching measures the similarity between two graphs using the
notion of graph edit distance, i.e., it produces a set of edit operations that
model inconsistencies by transforming one graph into another [5]. Typical
graph edit operations include the deletion, insertion and substitution of nodes
and edges. Each edit operation is assigned a cost. Then the edit distance of two
graphs G and G’ is found by searching for the sequence of edit operations with
the minimum cost that transform G into G’. A similar problem formulation
can be used for trees.

Our interest is not the computation of the edit distance, since some changes
will eventually be ignored if they do not have an effect on the data. We
therefore provide a new graph representation and a differencing algorithm
that will identify and classify changes between two graphs corresponding to
a class while comparing known results of changed methods to verify the
effect of the changes on the methods. Our goal is to enable data re-use
and foster collaboration between scientists. Rather than computing the edit-
distance, we associate the detected changes between classes and/or methods
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to the derived data objects that shall be created through the modified
classes.

4.1.1 Node matching

To find differences between two graphs, we carry out a matching between
corresponding nodes. We begin by matching non-leaf nodes (class nodes) and
then match the leaf nodes. For two graphs G and G’'. Leaf nodes that appear
in G that do not appear in G’ are deleted classes, whereas leaf nodes in G" and
not in G are added classes. The same applies to non-leaf nodes.

To ensure uniqueness of a node, we introduce the pathToNode for this
purpose which is defined as follows;

Let V denote a set of all nodes in Tree (7)), if v € V, the pathToNode(v,) =
V].03 ... Uy—1.Uy, Where vy is the root of T, and vy, ...vy,, vy is the path from root
vy to v,. The “. represents a link property attribute which defines relationships
between two nodes that are transitively connected. Based on the definition of
the pathToNode, we define a matching M as below;

Given set of node pairs (v,, vp) Where v, € V, and v, € V},, M is called a
matching from T, to Ty, iff

1. v, vp € M,v, € V,,vp € V), pathToNode(v,) = pathToNode(vp)

2. Y(va1,vp1) € M and (ve, vp2) € M, v = Va2 lﬁc Up1 = Up2

3. Given (v,, vp) € M, suppose v, is a parent of v, and v, is the parent of v,
then (v, v,) e M

4. Dbytecode(v,) == bytecode(vy)

We now use the pathToNode and matching definitions to recursively match
nodes in G and G’. We begin the comparison at the class level. After matching
classes we then match methods for each pair of unmatched classes. Unmatched
classes are those classes that have differences in their implementation. For any
unmatched methods, we compare the output of two methods and we continue
to log the semantic differences if the output of the methods differ. This process
is summarized in Algorithm 2.

4.1.2 Comparing output of two methods

Given the same list of source code segments, processing environment and
arguments, a compilation should always return the same derived object. If
the results defer, then we can confirm a change in the implementation. We
note that when external imports e.g., numpy, pyfits are modified, these too
can change a result of a method. To diminish the effects of such changes, the
test environment includes a standard setup with known versions for external
exports and expected output from each method. The modified methods are
plugged into this test environment while other dependencies remain constant.
We only execute sections that have been modified.
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Algorithm 2 Change Detection
Input: Original Class C, Modified class C’

Output: set of unmatched methods classes, C”/ unmatched methods M", set of semantic
differences DIFF

1: Parse classes C' and C’ into their dependency graphs G and G’ respectively
2: T «— V(G) Set of all none leaf nodes of G

3: T' «— V(G’) Set of all none leaf nodes of G’

4: for each node int € T'and t' € T’ do

5. matched < match(t,t')

6: if matched then

7 t,t are equivalent

8: continue

9: else

10: V — V(t) Set of all leaf nodes of t

11: V' — V(¢') Set of all leaf nodes of ¢

12: for every node m in V' do

13: for every node m/ in V’ do

14: matched < match(m, m’)

15: if not matched then

16: compare the output of both methods given the same input data
17: if output differ then

18: add m, m’ to M"', remove m and m’ from V and V' respectively
19: add semantic differences between m and m’ to DIFF
20: else
21: remove m and m’ from V and V' respectively
22: end if
23: else
24: remove m and m/ from V and V'’ respectively
25: end if
26: end for
27: end for
28: if M"" is not empty, add ¢,t' to C”’
29: remaining in V and V' are new nodes(methods)
30: end if
31: end for

If a method M was modified to M’, we check to see if for any object o,
0.M() ==o0.M'(). If N, and M are two methods, where N precedes M during
execution, if the state of object o, at the time the compiler completes the
execution of N is o’ i.e., 0.N() = 0'. and the o’.M() = 0" then if o’.M' # 0"
then we can confirm that changes in M, are significant to create a new version
of Mie., M.

4.1.3 Semantic dif ferences between methods

To get the semantic differences between methods that have not been matched,
we use the Python dis module to disassemble the bytecodes of the un-
matched methods. Figs. 5 and 6 shows the disassembly of two methods. The
methods in Fig. 5 are the original methods while the methods in Fig. 6 are the
modified versions. Line 6 and 17 are the changed lines. In the method debias
the operation between attributes self.image and self.bias.image
was INPLACE_SUBTRACT, that has been changed to INPLACE_ADD in the
modified method.
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Fig. 5 Disassembled

bytecode of _init__and 1 Disassembly of __init__

debias methods 2 O LOAD_FAST 1 (image)
3 3 LOAD_FAST 0 (self)
4 6 STORE_ATTR O (image)
5
6 27 LOAD_CONST 1 (0)
7 30 LOAD_FAST 0 (self)
8 33 STORE_ATTR 3 (commit)
9
10 Disassembly of debias:
11 10 LOAD_FAST O (self)
12 13 DUP_TOP
13 14 LOAD_ATTR 1 (image)
14 17 LOAD_FAST 0 (self)
15 20 LOAD_ATTR 2 (bias)
16 23 LOAD_ATTR 1 (image)
17 26 INPLACE_SUBTRACT
18 27 ROT_TWO
19 28 STORE_ATTR 1 (image)

5 Object linking and version management

We describe in this section Astro-WISE’s mechanisms for linking objects
and how we manage versions between objects. We have used persistent code
objects that represent a set of closely related parameters extracted from a class
that are represented as an object stored in a relational database.

Fig. 6 Disassembled - .

bytecode of the modified __ 1 Disassembly of __init__:

init__ and debias methods 2 0 LOAD_FAST 1 (image)
3 3 LOAD_FAST O (self)
4 6 STORE_ATTR O (image)
5
6 27 LOAD_CONST 1 (1)
7 30 LOAD_FAST 0 (self)
8 33 STORE_ATTR 3 (commit)
9
10 Disassembly of debias:
11 10 LOAD_FAST O (self)
12 13 DUP_TOP
13 14 LOAD_ATTR 1 (image)
14 17 LOAD_FAST O (self)
15 20 LOAD_ATTR 2 (bias)
16 23 LOAD_ATTR 1 (image)
17 26 INPLACE_ADD
18 27 ROT_TWO
19 28 STORE_ATTR 1 (image)

@ Springer



Exp Astron (2013) 35:157-186 175

5.1 Persistent and code objects

The persistent object hierarchy makes the core of this framework. We au-
tomatically make all objects persistent in the database as attributes, as fully
integrated objects or as descriptors. Source-code files are not stored in the
database, however their unique filenames and links to their code objects are
stored in the database.

5.1.1 Definition of persistent attributes

All Astro-WISE classes are derived from a customized metaclass. Using the
metaclass we can manipulate class creation, object instantiation and method
execution. We defined another class DBObject derived from the metaclass
which is the root class of the hierarchy of the persistent classes. This class
defines the primary key (i.e., object_id) of all objects. Any class that inherits
DBObject automatically becomes persistent. This creates all the necessary
schema structures, such that attributes and data created or used during the
processing will be stored. Likewise, a persistent attribute is defined by using
the following expression in the class definition.

prop_name = persistent (prop_docs, prop_type,
prop_default)

where, prop_name is the name of the persistent property, and persistent
is constructed using three arguments: the property documentation, the type
of the property, and the default value for the property respectively.We distin-
guish between 5 different types of persistent properties, based on the signature
of the arguments to persistent.

— descriptors: If the type of the persistent property is a basic (built-in) type,
then we call the persistent property a descriptor. Valid types are: integers
(int), floating point numbers (float), date-time objects (datetime), and
strings (str).

— descriptor lists: Persistent properties can also be homogeneous variable
length arrays of basic built in types, called descriptor lists. Valid types are
the same as those for descriptors. Descriptor lists are distinguished from
descriptors by the property default. If the default is a Python list, then the
property is descriptor list, else it is a simple descriptor.

— links: Persistent objects can refer to other persistent objects. The corre-
sponding properties are called links. If the type of the persistent property
is a subclass of DBOb ject, then the property is a link.

— link lists: Persistent properties can also refer to arrays of persistent objects,
in which case they are called link lists. Link lists are distinguished from
links by the property default. If the default is a Python list, then the
property is link list.
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— self-links: A special case of links are links to other objects of the same type.
These are called self-links. If no type and default are specified for the call
to persistent, then the property is a self-link.

For example, consider the following persistent attribute definition

attr_1 = persistent(’ ', ClassA, (ClassA, (),{})
attr_2 = persistent(’ ', ClassA, None)

attr_3 = persistent(’ ', ClassA, [])

attr_4 = persistent (‘Link to object of ClassB’)
then,

— attr_1lisalink to an instance of ClassA

— attr_2isalink to an instance of ClassA,:

— attr_3isa array of links to instances of ClassA (default empty)
— attr_4isalink to another instance of ClassB.

An attribute defined as filename = persistent (‘File part’, str,
* 1) supports the storage of files by creating persistent link to the source code
file. Note that persistent properties are inherited.

A class (or derived object) is linked to the code object through a persistent
attribute called code_object. as shown below;

Example 1 Linking an object to the code object

class ReducedScienceFrame (DBObject) :
code_object = persistent (‘The CodeObject used to make this object
[None]’, CodeObject, None)

5.2 Version control

Our requirement is that we are able to test the equivalence of two code
objects. Each code object has a unique identity, a version attribute and a
version predecessor attribute. If a code object is created as a new version
of another existing code object, its version predecessor pointer points to its
version predecessor otherwise its version predecessor pointer is null. Each
code object is read-only. Changes made to an existing code object are stored
as a new version of the code object.

We have created versioned groups called ‘type’ which are identified by the
class names. For each type, the version number counter begins from 1 and
incremented by 1. For example, the type of a class called BaseFrame will be
BaseFrame.

Three basic operations for version control are new, edit and delete. Each of
these operations is modeled as a function that takes a class as its major input
and returns a new version and a code object stored in the database.
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The New operation creates and adds new code object to a database. The
code object represents new type which is different from any existing type in
the database. This new code object will have no version predecessor.

Algorithm 3 New Operation

Input: class
Output: code object
type < get-type of class
if type exists in database then
return
else
create new code object
set version number of to code object 1
set version predecessor pointer to NULL
end if

The Edit operation is used to create a new (edited) version of an existing
type in the database. This operation takes as input a class that is assumed to be
modified and matches the class against an existing code object. Based on the
results of matching, a new version of a code object might be created. If a new
version of the code object is created, the version predecessor attribute of the
new version will point to the code object that was used during the matching.
A user has an option of selecting a specific version of the code object to use
during matching, otherwise the latest version will be used during the matching
process.

Algorithm 4 Edit Operation

Input: class, version_-number
Output: code object
modifiedClass « class
type < get type of class
if type exists in database then
max_version < get max_version_-number of type
if version_number is provided then
vers «— version_number
else
vers «— max._version
end if
originalClass «— retrieve source code for code object with vers
match (modifiedClass, originalClass)
if not matched then
create code object for modifiedClass
set version of code object to (max_version + 1)
set version predecessor pointer to vers
end if
else
use new operator to create code object

end if

The Delete operation is used to remove a version represented by a code
object from the database. If the code object being removed is referred to by
other code object, then the Delete operation wont be successful.
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6 Evaluation

To evaluate our framework, we implemented the algorithms described here
in Astro-WISE and we performed studies on real code and objects. In this
section, we check the efficiency of the algorithm by observing the time it
takes to compute differences between two classes, we also describe a few
implementation details.

6.1 Execution time

For the timing experiments, we used a dedicated Intel dual core 2.8Ghz desk-
top, with 4GB of memory, running GNU/Linux 2.6.18-238.12.1.e15, connected
on 1Gbit network connection to the data server and database. In the first test,
we randomly made changes to source code of two classes while running our
differencing algorithm. Each test was run 1000 times and we took the average.
The results of this test are shown in Fig. 7a. The cost of this test is linear to
the number of nodes that have been changed. In the second test, we made the
same changes to different classes of different sizes. The results are shown in
Fig. 7b. From the results, the size of the input documents did not change the
processing time. Since, this was done on a live network and execution time is
highly dependent on the database, this could explain some of the differences
in Fig. 7b. We can conclude from the two results that execution time primarily
depends on the number of changed nodes.

6.2 Actualization of COVA

We present in this section a few implementation details for the system in rela-
tion to change detection, processing data objects and querying code objects.
Astro-WISE implements our object versioning and differencing algorithm.
The differencing algorithm inputs the original and modified versions of python
files, compares them, and outputs detected differences.
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The AWEPIPE environment variable specifies to Astro-WISE where the
local personalized checkout is stored. It is the classes in the personalized
checkout that are used to process data. During the processing of a target, the
specific classes that are being used to make the target are matched against the
code object of the same type stored as the database. If changes are detected
a new code object will be created with a new version and this will be linked
to the derived object, otherwise the object will be linked to the version of the
code object that is being used.

6.3 AWE classes

We briefly describe some of the classes and some special methods that have
been implemented for this framework.

6.3.1 DBObject

The DBObject is the base class of all persistent objects in Astro-WISE.
Python objects whose classes are derived from DBObJject can be stored in
the database. Such an object can be instantiated on the Python prompt by
querying the database on the persistent properties of the object. DBObject
defines the primary key (i.e. object_1id) of all objects. The DBOb ject class
defines the store () and commit () methods. Both methods make a transient
object persistent.

6.3.2 DataObject

The DataObject class is derived from DBObject and is the base class for
persistent classes for which data is stored in a file on the data-server. An
example of a Persistent Property is filename which is the name of the
associated file as it is stored on the data-server.

6.3.3 CodeObject

The CodeObject class is derived from DataObject and is the base class
for persistent code objects. This class provides mechanisms for making code
objects, setting version numbers and making each code object persistent
in the database. The CodeObject class defines new persistent attribute
called methods, which is an array of links to instances of the Methods
class.

Since CodeObject is inherited from the DataObject class, it inherits the
persistent attribute filename. This attribute links a complete source code file
to the code object. The filename attribute is used to implement store ()
and retrieve () methods to transfer files to and from dataservers. Using
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regular kind of expressions, we can search and retrieve files that meet a specific
criteria.

6.3.4 CodeObjectMetaData

The CodeObjectMetaData class is derived from DBObject and class that
creates and stores metadata for persistent code objects.

6.3.5 Methods

The Methods class is derived from DBObject and class that creates and
stores information about methods. The Methods class defines new persistent
attributes as follows

— methodName, Name of method

— methodVersion, the version of the method

— definingClass, the class that defines this method

— methodAttributes, Method arguments defined for this method
— description, description of the method

— defaultReturnValues, Baseline Return Values

— bytecode: The bytecodes of the function, for quick comparison.

6.4 Querying versioning information

We have defined a notation that is based on the idea that a class is in some
sense equivalent to the set of all its instances. To illustrate the concept, let
us give a few examples. Given a persistent class X with persistent property
v, then the expression X.y == 5 represents the set of all instances x of X,
or subclasses of X, for which x.y == 5 is true. To obtain these objects the
expression needs to be evaluated, which can be done by passing it to the select
function, which returns a list of objects satisfying the selection. Given a class
X with a descriptor desc, a descriptor list dsc_1st, and a link 1nk, then

{select (X.desc > 2.0 && X.dsc_1st[2]= ‘abc’ and
X.lnk.attr = 5)}

will return a list of instances x of X, or subclasses of X, for which x.desc > 2.0
and x.dsc_lst[2] = ‘abc’ and x.Ink.attr = 5 is true.

For example, in Astro-WISE methods can be selected by executing this
query as below;

awe> method = CodeObject.Methods.methodName == ’apply_fringe_correction’
awe> method &= CodeObject.Methods.methodVersion == 2
awe> method &= CodeObject.Methods.definingClass == ’ReducedScienceFrame’
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6.4.1 Target processing and object versioning

To process a target (data object), a researcher begins sending a query to
the database for the target. If the target exists, the target is returned, else
the processing of the target is initiated. The inputs to the pipeline are either
queried from the database if they already exist or created on the fly if the
objects are not uptodate or do not exist. This is a recursive process that begins
from the target to the raw data as observed from the telescope. An object is
uptodate if the most specific class and its dependencies that were used to make
the object have not changed or if any of its dependencies have not been made
by a newer version of a class. This is determined by comparing version of code
object that was used to make the object and version of the current (latest) code
object. Astro-WISE provides a webservice for this check, an example of this
comparison is shown in Fig. 8. If a newer version of class exists, it is highlighted
in orange.

The object viewer of each object would give details of the changed at-
tributes, an example is shown in Fig. 9. Notice from the figure that the
methods, check_preconditions, copy_attributes, debias_and_
flatfield_frame were modified from the previous versions and therefore
their methodVersion values should have been incremented from previous
versions, depending on how many times the method has been modified.

Also note from Fig. 9, that each code object has an attribute called Methods
which is a link to methods defined, inherited or imported into that class
being versioned. For example, in the figure, the method with methodName
select_for_rawis defined by the ProcessTarget class and currently this
method has version 1. If the definingClass re-implements this method, the
showChanges () method will show which classes have been affected by this
change. Then a reprocess command can be issued to create new code object

#844 CousinsR 17 Apr 2005 09:58:07  ccd50 expanded “'""].an

[=] 0.0 ReducedScienceFrame (outdated)
[#] 1.1 BiasFrame (new version available)
1.2 ColdPixelMap
1.3 MasterFlatFrame (new version available)
* L4 FringeFrame (null)
L.5 HotPixelMap
[=] 1.6 NluminationCorrectionFrame (new version available)
* 2.1 MluminationCorrection (new version available)

* 0.7 RawScienceFrame

Fig. 8 Dependency graph of classes required to make the ReducedScienceFrame object
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= CodeObject{9e34a2955b6a1611e0407d81e60e2026)
= category ReducedScienceFrame
* code_type
+ code_version 6

creation_date 2011-03-11 13:50:16

Code-JMWEBAZE-astro.main.ReducedScienceFrame---------- 55631.5766708-
b90e3609709dc2a0ff825c22522f44dedd1ec?72.py

globalname  None

- filename

+ is_valid 1

* module_name astro.main.ReducedScienceFrame

* name ReducedScienceFrame.py

* path_to_code /net/plaut/data/ i fdata/ ise/awe/  mair

code_parameters

& s e L('Check_preconditions',), ('copy_attributes',), ('debias_and_flatfield_frame',),
('get_fri _scale_factor',)]
[('AIRMEND",), (CAIRMSTRT',), ('DATE',), ('DATE_OBS',), ('EXPTIME',), ('NAXIS1',), ("NAXISZ2",),
('OBJECT",), (‘astrom',), ('bias',), ('chip’,), ('cold",), (‘creation_date',), ('filename’,), ('filter’,), (*fat’,),
* classAttributes  ('fringe’,), ( ), ('hat',), (i ,), ('imstat’,), (‘instrument’,), ('is_valid',), (‘object_id',),
(‘observing_block’,), (‘pathname’, ), ('process_params’,), (‘process_status',), ('psf_radius’,),
('quality_flags',), ('raw',), ('scale_factor’,), (‘template',), (‘weight',}]
A trimmed, de-biased, flat-fielded and, depending on filter, de-fringed, sclence image for one CCD. An
fllumination correction is also applied when given as input.
[('PROCESS_TIME',), ('STATUS_COMPARE',), ('STATUS_INSPECT",}, ('STATUS_MAKE',),
("STATUS_VERIFY',), ("_IS_CAL",), ("_IS_CONFIG',), ('"_IS_RAW",), ('_IS_SCIENCE',), ('_IS_SEQ',),
+ globalVariables ('_IS_SUPPORT), ('__class_ '), ("__dict_",), ("__doc_",), ("__metaclass_",), ('"__module__",),
('_new__",), ('_weakref_ '), ('_inverses',), ('database’,), ('filepath’,), ("has_boundingbox’,),
('localname’,), (‘mandatory_dependencies',), (‘pickle_id",), ('storage’,)]

= description

= patch
= methods

“ [0] Methods

= [1] Methods

= [2] Methods
* defaultReturnValues []
= definingClass ProcessTarget
« description None
* methodAttributes  [('cls’,), (‘raw’,), (‘overscan’,), (‘check_gquality',), (‘check_validity',)]
* methodName select_for_raw

methodVersion 1

Fig. 9 The object view of a code objecto of type ReducedScienceFrame

based on the changes in the inherited method. This will increment the version
attribute for all the code objects that use the changed method.

For example, using the method inverse_objects (), we can retrieve and
display all classes that use a particular method, an example is shown in the
output below;

awe> obj = (CodeObject.Methods.methodName == ’select_for_raw’) [0]
awe> klasses = obj.inverse_objects()
awe> for klass in klasses:
. print ’Class: %s, ClassVersion:%d’ ’%(klass.category, klass.code_version)

Class: BaseFrame, ClassVersion:1

Class: RegriddedFrame, ClassVersion:1
Class: RawTwilightFlatFrame, ClassVersion:1
Class: ReducedScienceFrame, ClassVersion:1
Class: ReducedScienceFrame, ClassVersion:2
Class: DomeFlatFrame, ClassVersion:2

Class: DomeFlatFrame, ClassVersion:3
Class: ReferenceFrame, ClassVersion:1
Class: SatelliteMap, ClassVersion:1
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7 Related work

Schema evolution and versioning [12] are other related concepts that deal with
changes to classes. In order to avoid the loss of data after schema changes,
many object-oriented systems use schema evolution, which provides (partial)
automatic recovery of the extant data by adapting them to the new schema.
However, if only the updated schema is retained, all the applications compiled
with the past schema may cease to work. In order to let applications work on
multiple schemata, schema versioning [18] is used. Schema versioning makes
it possible to view the data under different versions of the schema. However
schema versioning often does not take the versioning of instance data into
account. Changing classes sometimes may not lead to a schema change but
might change results or the process. Such changes are not addressed by schema
evolution and versioning mechanisms.

There are a number of existing techniques for computing differences be-
tween two versions that also recognize differences in object-oriented fea-
tures. Semantic diff [11], compares two versions of a program procedure-by-
procedure. However, it does not consider dependencies relationship between
classes and variables. BMAT [21] performs matching on both code and
data blocks between two versions of a program in binary format, however
it does not provide information about differences between matched enti-
ties. JDIFF [2], uses the OOP approach when comparing classes. Its main
focus is to determine differences that change the behavior of a program,
e.g., changing branch conditions. Our focus is not behavior of the program,
but changes that have an effect on the results of a program. There is also
considerable work related to VCSs [16, 17], however their focus is dedi-
cated on modeling software artifacts and therefore version numbers created
by VCSs are opaque identifiers and as such can not be used for object
versioning.

Insight about storing source code in some intermediate representation (e.g.
a relational database) is given in [10]. Source Code in Database (SCID) is a
related concept where code is pre-parsed and stored in a database. This leads
to the elimination of source code files since source code is stored exclusively
in the database. SCIDs has been explored for the purposes of developing
Integrated Development Environments (IDE). We use the same concept.
However, rather than storing the complete source code, only useful (querible)
attributes are extracted and stored in the database while we maintain a link to
the source code file which is identified with a uniquely generated name. The
advantages are enormous. These range from versioning abilities, linking and
performance of the system.

8 Conclusion

The major goal of this work is to support scientific collaboration in a fully
distributed way. This requires a shift from traditional data processing to a more
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interactive environment which enables scientists collectively reuse, change and
adapt scripts developed by their peers to derive new insight or to evaluate their
specific hypotheses.

In distributed scientific environment, scientists may work at the same time
on source code, change methods (or an implementation) or may even disagree
on some implementations. In a such an environment, not all these changes
would become part of the source code repository. The work done in this paper,
allows such kind of changes to be stored while linking them to the objects
they created. All variations of implementations created during the scientific
processes become publicly available and can be used to reprocess data, to find
data through code-based searches and to understand the process that leads
to the creation of a data item. The differencing algorithm for comparing two
Python programs is based on Python’s object-oriented features. The algo-
rithms matches two classes and all its dependencies and identifies differences
that would have an effect to the data.

This framework allows potability of data, since format interoperability
problems do not exist. Each derived object knows specifically how it was made.
Through COVA, the specific class (and/or source code) is known to the object,
likewise the processing parameters which are maintained by data provenance
can also be retrieved.

However, this method is not full proof and might fail in some cases. Changes
can be highly subjective. To know what constitutes a change or more general
a major change to necessitate a new version change is still a limitation. In
some cases, applying a change can lead to ambiguity and derive multiple
similar results. However,we expect these kind of errors to be detected when
comparing output of two methods.

Pipelines often consist of a mixer of languages. Entire versioning would
require that this framework considers all programming languages. However
since Python is Astro-WISE’s data-definition and modfication langague, we
try to solve any changes required to be made in other languages at the python
layer, and as such such changes can be versioned.

For this method to be effective, users have to follow the standard object
data model so that the changes included do not break the existing data model.
For example, anything considered to be a constant is not included in source
code, but rather is stored as a processing parameter. This avoids creation of a
version where someone has specifically made a change to a constant variable.
Secondly, a new-version might be created as a result of changing the order of
operations thus producing new versions. If changing the order of operations
does not change the data model and hence the processed results, Then such
changes will be picked up by the data comparison test (Section 4.1.2).

There are many avenues for future work, we propose to extend this work
into a full-fledged entity-based versioning system. This will allow versioning
of instance data in much finer-grained ways by eliminating costly parsing and
matching steps. Hence data objects can be queried directly without needing
the building and definition of code objects.
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