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An integrated approach to epitope analysis I:
Dimensional reduction, visualization and
prediction of MHC binding using amino acid
principal components and regression approaches
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Abstract

Background: Operation of the immune system is multivariate. Reduction of the dimensionality is essential to
facilitate understanding of this complex biological system. One multi-dimensional facet of the immune system is
the binding of epitopes to the MHC-I and MHC-II molecules by diverse populations of individuals. Prediction of
such epitope binding is critical and several immunoinformatic strategies utilizing amino acid substitution matrices
have been designed to develop predictive algorithms. Contemporaneously, computational and statistical tools have
evolved to handle multivariate and megavariate analysis, but these have not been systematically deployed in
prediction of MHC binding. Partial least squares analysis, principal component analysis, and associated regression
techniques have become the norm in handling complex datasets in many fields. Over two decades ago Wold and
colleagues showed that principal components of amino acids could be used to predict peptide binding to cellular
receptors. We have applied this observation to the analysis of MHC binding, and to derivation of predictive
methods applicable on a whole proteome scale.

Results: We show that amino acid principal components and partial least squares approaches can be utilized to
visualize the underlying physicochemical properties of the MHC binding domain by using commercially available
software. We further show the application of amino acid principal components to develop both linear partial least
squares and non-linear neural network regression prediction algorithms for MHC-I and MHC-II molecules. Several
visualization options for the output aid in understanding the underlying physicochemical properties, enable
confirmation of earlier work on the relative importance of certain peptide residues to MHC binding, and also
provide new insights into differences among MHC molecules. We compared both the linear and non-linear MHC
binding prediction tools to several predictive tools currently available on the Internet.

Conclusions: As opposed to the highly constrained user-interaction paradigms of web-server approaches, local
computational approaches enable interactive analysis and visualization of complex multidimensional data using
robust mathematical tools. Our work shows that prediction tools such as these can be constructed on the widely
available JMP® platform, can operate in a spreadsheet environment on a desktop computer, and are capable of
handling proteome-scale analysis with high throughput.

Background
The utility of the multivariate statistical approaches to
the analysis of peptide quantitative structure-activity
relationships (QSAR) using partial least squares (PLS) was
first demonstrated by Wold and colleagues in 1987 [1].

Since that time use of QSAR and PLS have become the
norm in chemometrics and medicinal chemistry. QSAR
methods have contributed greatly to developing an
understanding of the physicochemical interactions
between peptides and their receptors. Theoretical and
practical aspects of these approaches have recently been
discussed [2,3]. The role of peptide binding to MHC
molecules was also first demonstrated in the 1970 s, but
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the QSAR approaches have not been widely adopted to
understand MHC binding. Flower and colleagues have
been pioneers in this area [4-6]. A recent publication by
this group [7] is complementary to the work described
here and in the accompanying paper [8]. Use of PLS for
predicting subtle variations in peptide binding by MHC
molecules has also been described by Tian et al [9,10].
Henikoff and Henikoff [11] laid the foundation for

bioinformatics analysis of protein sequences and the
concept of position-based sequence weighting as a
means of analysis of protein sequence data. A wide
array of MHC binding prediction schemes have evolved
using position sensitive substitution matrices (PSSM) in
combination with a number of machine learning
approaches. The approaches have recently been
reviewed [12-14]. The development of the field of
immunological bioinformatics in general is described in
Lund et al [15]. A variety of the different methods are
publically available on web servers (Additional File 1;
Table S1).
The practical limitations of bandwidth and computa-

tional power of web-based approaches quickly become
apparent when attempting to analyze proteome-scale
data from multiple strains of organisms. After experi-
mentation with web-based systems and local versions
of web-based applications, we found that recent ver-
sions of JMP®, a commercial software package for sta-
tistical analysis and data visualization http://www.jmp.
com, had capabilities that made it possible to under-
take proteomic scale analysis on a contemporary desk-
top computer. We demonstrate an alternative
approach to MHC binding affinity predictions using a
QSAR PLS approach and we compare the predictions
to contemporary web-based prediction programs as
benchmarks. We further demonstrate how this
approach enables the visualization of several features
of MHC binding interactions that have not been pre-
viously described. In an accompanying paper we show
how QSAR PLS approach can be applied to visualize
and quantify other aspects of MHC binding in a pro-
teomic scale analysis [8].
We have used publically available datasets of amino

acid physical properties and MHC-I and MHC-II bind-
ing for specific peptides to develop novel approaches for
predicting MHC binding affinities. Principal component
analysis of the amino acid physical property datasets
was used to develop sets of z-scales, which were in turn
used to convert the peptide sequences into vectors of
z-scales. These vectors were then used to develop PLS
and neural net (NN) models to predict the natural loga-
rithm transformed binding affinity of the peptides.
Linear prediction equations of MHC binding were

developed by standard PLS techniques. The prediction
equations of the NN for each of the MHCs (essentially a

non-linear PLS) were developed by two different
methods in a multi-tour, random holdback process
where different random training subsets were used to
develop a final prediction. Assessment of over-fitting
was statistically assessed in a systematic way as recom-
mended by the JMP® software. A unique feature made
possible by the QSAR modelling approach is that the
models were constructed having conceptual symmetries
with the binding domains of the MHCs. The models
were tested for reliability internally using standard sta-
tistical methodologies and then further validated by
benchmarking them against prediction methods devel-
oped by others using identical peptide datasets. The
benchmark comparisons consisted of two metrics: first,
the r2 of the relationship between experimental and pre-
dicted binding affinities was computed, which is most
appropriate for continuous numerical data. Second, the
AROC was computed after converting the continuous
numerical predictions of the models to binary categories
of “strong” binders and “weak” binders; a classification
commonly used in evaluating other MHC binding. We
further show that the symmetry between the statistical
models and the MHC binding domains makes it possi-
ble to visualize aspects of the physicochemical properties
of the binding reaction between the peptide and the
MHC molecule.

Results and Discussion
Amino Acid Physical Properties
Source data for the amino acid physicochemical proper-
ties were obtained from the proteomics resource at the
Swiss Institute for Bioinformatics. Attempts were made
to balance the types of physical data used and to obtain
independent measurements of related physicochemical
properties from two or more different studies. A total of
31 sets of physical parameters were tabulated (Addi-
tional File 2; Table S2) and the principal components
(PC) computed from the correlation matrix. Results of
this analysis are shown in Figure 1. The first three prin-
cipal components account for approximately 90 percent
of the variance in the 31 datasets. Table 1 is a listing of
the 20 amino acids found in proteins, sorted indepen-
dently by each of the first three principal components.
It is apparent that the first PC is correlated with the
polarity or hydrophobicity of the amino acid, and the
second PC with molecular size. The underlying physical
correlate of the third principal component is less
obvious, but is generally considered to be electronic in
nature [15]. The two sulfur-containing amino acids
(cysteine and methionine) and histidine, with an imida-
zole ring, are ranked at one end of the third PC. Other
amino acids with aromatic rings are ranked close
behind. The actual z-scale numbers are slightly different
from those originally reported by Wold et al [1,16],
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likely because we used a significantly larger dataset to
develop the PC.
PC are mutually orthogonal and are effectively uncorre-
lated proxies that embody the effect of the physical
properties of amino acids found in proteins. An addi-
tional property characteristic of PC is that they are
numerically appropriately weighted for their relative
contributions to fitting a multivariate regression.

Human MHC-I and MHC-II Datasets
Extensive datasets of binding affinities of synthetic pep-
tides have recently been made publicly available at the
Immune Epitope Database (IEDB) [17-19]. Because we
wanted to use the web-based programs NetMHCII and
NetMHCIIPan at the Center for Biological Sequence
Analysis (CBS) as comparators, we downloaded MHC-I
and MHC-II databases from CBS [20]. Although the
principles can readily be expanded to peptides of other
sizes, the work described herein is restricted to 9-mers
for MHC-I and 15-mers for MHC-II. The datasets
downloaded contained binding affinity measurements as
ic50 values for 29,336 9-mers for 35 alleles of MHC-I
and 9,117 15-mers for 14 alleles of MHC-II (Additional
File 3; Table S3a. and Additional File 4; Table S3b.).
The binding data were natural logarithm-transformed ln
(ic50) and the distributional characteristics of the bind-
ing data examined. The paper that is the primary source
of the MHC-II dataset does not describe the experimen-
tal strategy for choosing the various peptides [19] but
clearly the experimentalists designed the peptides in the
datasets based on prior knowledge of binding character-
istics. Several features of the datasets were noted. All of
the datasets consist of several subsets. For example with
the MHC-II allele datasets there are three major subsets:
232 peptides (232-subset) have been tested in all 14
HLA MHC-II supertypes, 167 (167-subset) with 11/14
supetypes, and 49 with 8/14 supertypes. In addition to

Figure 1 Principal component analysis of 31 different studies
estimating different physical properties of amino acids.

Table 1 First three principal components of amino acid physical properties

Amino acid Principal Component 1 Amino acid Principal Component 2 Amino acid Principal Component 3

K -6.68 W -3.50 C -3.84

R -6.30 R -2.93 H -1.94

D -6.04 Y -2.06 M -1.46

E -5.70 F -1.53 E -1.46

N -4.35 K -1.32 R -0.91

Q -3.97 H -1.00 V -0.35

S -2.65 Q -0.47 D -0.18

H -2.55 M -0.43 I 0.04

T -1.42 P -0.36 F 0.05

G -0.76 L -0.20 Q 0.15

P -0.03 D 0.03 W 0.16

A 0.72 N 0.21 N 0.30

C 2.11 I 0.29 Y 0.37

Y 2.58 E 0.34 T 0.94

M 4.14 T 0.80 K 1.16

V 4.79 S 1.84 L 1.17

W 5.68 V 1.98 G 1.21

L 6.59 A 2.48 S 1.30

I 6.65 C 2.74 A 1.42

F 7.18 G 3.08 P 1.87

Principal component 1 is correlated with polarity or hydrophobicity, principal component 2 is correlated with size. The physical correlate of principal component
3 is not obvious but is generally considered to be electronic.
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these larger subsets there are subsets with fewer pep-
tides that have been tested in various combinations of
alleles and some of these have quite high average affi-
nities. For example, one subset has an e4.1 higher aver-
age affinity than the 232-subset. The amino acid
combinatorials are different among the different subsets
and they have statististically different means and var-
iances. The experimentally measured average binding
affinities of the 167 peptide subset is consistently greater
than the 232 peptide subset in every one of the alleles
where both have been tested. The difference between
the means of the 232-subset and the 167-subset is e2.2

(167-subset has statistically significant higher affinities)
and among the different alleles the ratios of the means
range from about 3-fold to 60-fold. A second feature
apparent in the datasets is that the frequency distribu-
tions of the datasets have some anomalies; several are
shown in Figure 2. The three highlighted bars in the his-
togram in Panel 2a. each contain a large fraction of the
data points all ascribed exactly the same number 124/
166 (1 nM), 701/800 (20,000 nM) and 168/195 (78,125
nM). Measurement of low affinity binding, where very
small fractions of the total ligand are bound, are some-
times given identical scores. This is the assay experi-
mental limit. Wang et al [19] do not indicate the source
and history of the datasets; it is possible that they are
composites of measurements made at different times
and under different laboratory conditions. The reason
for the cluster of high affinity binders is likewise
unclear, but is also likely to represent an experimental
limitation. Wang et al [19] state that they capped the
binding affinities at 50,000 nM which is at odds with
what is found in the datasets. Panels 2b. and 2c. are
from the smaller MHC-II datasets; these have fewer
anomalies than seen in Panel 2a. Clearly peptide synth-
esis was done by systematically varying different posi-
tions in the peptides, a process which likely gave rise to
the similarities described by El-Manzalawy et al [14],
who systematically evaluated the effects of similarity
reduction on a number of commonly used datasets and
concluded that regardless of the method employed, the
performance of classifiers was substantially below that
reported.

Use of Principal Components of Amino Acids in PLS
Analysis of MHC Binding
Peptides of 9-mers and 15-mers were converted into 27
(9 × 3) and 45 (15 × 3) vectors of principal components.
This type of descriptor is commonly used in QSAR ana-
lysis where it is known as the “z"-scale [3,21]. These
z-scales were used in a partial least squares (PLS) analysis
of the binding data. Each amino acid in a 9-mer is
replaced by three z-scale descriptors. {z1(aa1), z2(aa1), z3
(aa1)}, {z1(aa2), z2(aa2), z3(aa2)}... {z1(aa9), z2(aa9), z3(aa9)}.

A 15-mer for MHC-II analysis has a correspondingly lar-
ger set of descriptors.

PLS Binding Affinity Predictions
The z-scale descriptors were used in PLS to develop
prediction equations of peptide binding by MHC-I and
MHC-II. This is essentially the approach pioneered by
Hellberg et al [22], which was the genesis of the use of
QSAR techniques for peptide binding. For evaluation of
multivariate datasets such as these, the variable impor-
tance projection (VIP) is a very useful method to reduce
the dimensionality of the data and to produce a single
metric that ranks the relative importance of a particular
predictor in the overall response (2,3). The VIP is an

Figure 2 Representative distributional properties of ln(ic50)
binding data in the MHC-I and MHC-II benchmark data sets. (A)
MHC-I A201, (B) MHC-II DRB1*0701 and (C) DRB3*0101. The dark
bars in the histogram contain a preponderance of identical ic50
binding measurements. The curve is a normal distribution fit to the
particular dataset. x axis = ln(ic50). Count is the number of peptides
in the particular bin of the histogram.
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output generated using all the experimental measure-
ments in the MHC datasets (29,336 MHC-I and 9,117
MHC-II) and the relationships among them. Any VIP
metric with a value greater than 1 is considered to be of
importance in the overall prediction. A by-product of
the symmetry between the statistical models for the
MHC binding interaction and the underlying binding
reaction itself is that it possible to visualize and concep-
tualize the physicochemical properties of the interaction.
The matrices of VIP values for all the alleles of both
sets of HLA molecules are found in Additional File 5;
Tables S4a and Additional File 6; Table S4b. The PLS
models for all of the MHC-II alleles show evidence of
significant latent factors, with twelve of the alleles hav-
ing evidence of two latent factors and two of the alleles
having three [2,3,23]. Through experimentation (data
not shown) it appeared that the latent factors arise as a
consequence of the clustering of different subsets having
different means as discussed above. It is expected that
the least squares processes of PLS should be less sensi-
tive to the anomalies in the datasets than PSSM based
methods.
MHC binding predictors have traditionally used cate-

gorical classifiers with motifs or PSSM (see Table 2 of
Wang et al) [19]. Using a performance metric of area
under the receiver operator curve (AROC), a strong bin-
der is considered to be one with an affinity <= 50 nM, a
weak binder >50 < = 500 nM, and those over 500 nM
are considered non-binders [15]. As seen in Table 2,
PLS performs most comparably to NetMHCIIPan in its

categorical classification as strong or weak binders. For
regression analysis of continuous data the application of
a categorical metric is not appropriate. However, to
make it possible to compare our results with prior pub-
lished data we performed standard regression analysis of
continuous data and computed an r for that fit between
the experimental binding data and the predictions and
then also transformed the output into the conventional
binding affinity categories to produce an AROC metric.
The results are shown in Table 2 and graphical visuali-
zation of the VIP is described below.

Neural Network Regression using PCAA
As discussed by Bishop [24] a NN regression of data
with continuous responses is effectively a non-linear
PLS. In fact, the predecessors of the JMP® platform we
used, the statistical analysis programs of SAS http://
www.SAS.com have had extensive neural network cap-
abilities for several decades and treat neural networks as
simply a special type of regression analysis. Bishop also
discusses the use of principal components as a useful, if
not essential, adjunct to building appropriately weighted
reliable neural networks.
Thus, we submitted the MHC ln(ic50) binding data

used in PLS above to the NN platform within JMP®
using the z-scale vectors to predict the ln(ic50)) in a
simple three-layer perceptron (Figure 3). The non-linear
equation that was used by the NN platform for fitting
was the logistic function 1/(1+ex) that is a well behaved
smooth function that asymptotically approaches both a

Table 2 Comparison of Partial Least Squares and Neural Net

PLS Method 1 NetMHCII NetMHCIIPan

AROC r2 AROC r2 AROC r2 AROC r2

SB WB SB WB SB WB SB WB

DRB1*0101 0.713 0.579 0.541 0.838 0.645 0.796 0.848 0.691 0.811 0.835 0.647 0.753

DRB1*0301 0.675 0.610 0.476 0.987 0.954 0.996 0.958 0.882 0.966 0.841 0.602 0.736

DRB1*0401 0.690 0.537 0.491 0.986 0.956 0.995 0.951 0.845 0.945 0.778 0.631 0.636

DRB1*0404 0.695 0.559 0.595 0.986 0.961 0.995 0.940 0.845 0.954 0.854 0.630 0.769

DRB1*0405 0.702 0.577 0.527 0.985 0.966 0.996 0.927 0.846 0.947 0.809 0.588 0.682

DRB1*0701 0.729 0.612 0.559 0.987 0.958 0.997 0.965 0.893 0.963 0.879 0.716 0.801

DRB1*0802 0.776 0.602 0.587 0.990 0.980 0.997 0.979 0.880 0.973 0.841 0.550 0.770

DRB1*0901 0.659 0.532 0.403 0.988 0.961 0.997 0.969 0.899 0.956 0.813 0.576 0.673

DRB1*1101 0.681 0.565 0.550 0.981 0.957 0.996 0.968 0.893 0.969 0.855 0.594 0.787

DRB1*1302 0.600 0.521 0.441 0.978 0.830 0.997 0.981 0.837 0.965 0.806 0.579 0.759

DRB1*1501 0.656 0.552 0.494 0.987 0.960 0.995 0.940 0.795 0.945 0.768 0.544 0.667

DRB3*0101 0.595 0.510 0.451 0.983 0.932 0.996 0.956 0.872 0.935 0.879 0.613 0.737

DRB4*0101 0.724 0.667 0.604 0.987 0.966 0.997 0.686 0.942 0.976 0.892 0.621 0.795

DRB5*0101 0.727 0.607 0.553 0.985 0.958 0.997 0.960 0.884 0.965 0.872 0.649 0.789

Average 0.687 0.574 0.519 0.975 0.927 0.982 0.931 0.857 0.948 0.837 0.610 0.740

The performance of partial least squares (PLS) compared to the neural network regression base on amino acid principal components (NN PCAA) described with
two neural network predictors based on substitution matrices. SB and WB columns are the area under the receiver operator curve (AROC) obtained by converting
the continuous for the regression fit output to a categorical output SB = strong binder (< 50 nM) WB = weak binder (> 50 nM and <500 nM) and non-binder
(> 500 nM). The r2 is indicated is the metric for how well the particular predictor predicts the values in the training set.

Bremel and Homan Immunome Research 2010, 6:7
http://www.immunome-research.com/content/6/1/7

Page 5 of 15

http://www.SAS.com
http://www.SAS.com


minimum and maximum and at the limit is practically a
straight line. One of the key decisions in the design of
the NN is to determine the appropriate number of hid-
den nodes. We chose to use a number of hidden nodes
equal to the number of residues in the peptide that
interacts with the MHC binding domain (9 hidden
nodes for MHC-I and 15 hidden nodes for MHC-II).

The rationale was that this symmetry would facilitate
comparison of the fit obtained by this method with that
described above for the linear PLS fit. It also provides
symmetry between the statistical model and the underly-
ing physicochemical model. It should be noted that this
number of hidden nodes is actually a rather small num-
ber compared to that used by Nielsen and Lund [20] for

Figure 3 Layout of the multilayer perceptron neural net used for prediction of MHC binding. The perceptron has a single input layer of
the amino acid principal components, a hidden layer with a number of nodes equal to the binding domain, and a single output layer the
natural logarithm of the ic50.
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their substitution matrix NN NetMHCII, used to bench-
mark our predictors. The JMP® platform has a variety of
mechanisms and statistical output for “training” of the
NN, in order to control the underlying non-linear
regression convergence, to assess the statistical reliability
of the output, and to monitor and control overfitting
through the use of an overfitting penalty coefficient. We
systematically experimented with these control elements
to evaluate the quality of the predictions through several
cross validation strategies. We found that the presence
of peptide subsets with different numbers of peptides,
some having radically different mean affinities in the
predictors (detected as latent factors in the PLS), are
also somewhat problematic for random selection of
training subsets during cross validation. The results of
two different strategies are reported here. The two
different models are referred to as Method 1 and
Method 2.
In Method 1 multiple “tours” (different random seeds)

of a random holdback strategy were used. Examination
of the residuals in the various hyperplanes was used to
examine the residuals of these fits. In as much as the
three principal components we used for the model
account for approximately 90% of variance in the under-
lying physical properties, we set the overfitting penalties
to target an r2 of 0.9. For benchmarking, the prediction
models the IEDB datasets downloaded from CBS were
contemporaneously submitted to the webservers for
NetMHCII (version 2.0) and NetMHCIIPan (version
1.0) at CBS [25-28]. The performance of Method 1 is
compared to the PLS model and the output of the ser-
vers at CBS in Table 2. As described above for the PLS,
both an r2 comparing the fit and a categorical transfor-
mation were used to make the comparisons.
The predictions produced by Method 1 and its ability

to generalize in the training sets compared favorably to
NetMHCII (Table 2) evaluated either as a continuous fit
or as a categorical classifier. The statistical metrics asso-
ciated with the model suggested that some overfitting
was likely occuring with this model and therefore a sec-
ond method (Method 2) was developed.
In Method 2 the prediction models were produced

through the use multiple random subsets of the training
set each producing a unique set of prediction equations.
For example, nine random selections of 2/3 of the train-
ing set produces nine sets of prediction equations where
each of the peptides will have been used six times in
combinations with different peptide cohorts. The predic-
tions of these equations were averaged to produce a
mean estimate as well as a standard error of the mean.
The coefficient of variation gives an estimate of the var-
iation in the estimates. Results with two differently sized
randomly selected subsets of the IEDB training sets are
shown in Table 3.

Having five prediction methods based on different
underlying predictors, substitution matrices for NetMH-
CII and NetMHCIIPan and physical properties of amino
acids for PLS, Method 1 and Method 2 described above
provided an opportunity to examine the comparative
performance of the different prediction methods with
both the IEDB training sets as well as with other pep-
tides. This was done by creating a test set of 1000 15-
mer peptides selected at random from the proteome of
Staphylococcus aureus COL (Genbank NC_002951).
This random test set was submitted to each of predic-
tion tools and the results tabulated for comparison. Fig-
ure 4 shows the results of comparisons of the different
methods with Method 2 as the base method, using the
Pearson correlation coefficient of the predictions as the
metric for comparison for the training sets (see addi-
tional file 7 for detail). Method 1, NetMHCII and
NetMHCIIPan all produce highly correlated predictions,
the highest correlations being between Method 2 and
NetMHCII. The results of evaluation using categorical
predictors gave comparable results (not shown).
As with the training set, the correlated response of

between Method 2 and Method 1 is also seen for the
random peptide set. Table 3 also shows the comparison
of Method 2 with both the training set and the random
set. Interestingly, with the random set the correlation

Table 3 Coefficient of variation of the mean estimate of
the LN(ic50) for different alleles of human MHC-II using
two different schemes for cross validation

Allele Training Random 1000 Training

9 × 67% (1) 9 × 67% (2) 9 × 50% (3)

DRB1_0101 10.4% 14.4% 17.8%

DRB1_0301 6.2% 6.2% 7.4%

DRB1_0401 9.5% 9.5% 6.6%

DRB1_0404 7.3% 22.0% 9.4%

DRB1_0405 7.9% 7.3% 9.3%

DRB1_0701 4.8% 10.0% 12.4%

DRB1_0802 7.6% 7.0% 8.5%

DRB1_0901 12.6% 9.4% 12.9%

DRB1_1101 8.3% 7.6% 10.2%

DRB1_1302 6.7% 6.6% 8.5%

DRB1_1501 10.5% 8.3% 10.4%

DRB3_0101 4.4% 4.5% 5.4%

DRB4_0101 8.6% 6.9% 9.8%

DRB5_0101 12.5% 8.9% 13.8%

Average 8.4% 9.2% 10.2%

The training dataset used was the IEDB dataset (Additional File 4; Table S3b).
The random dataset consisted of 1000 15-mers drawn from the surfome and
secretome of the proteome of Staphylococcus aureus COL Genbank
NC_002951. (1) A random 2/3 of the data set was selected 9 times to produce
9 sets of prediction equations. Each peptide in the set was used 6 times in
combination with other peptides in the training set. (2) Equations from (1)
were used to predict the LN(ic50) of the random peptides. (3) As in (1) but
half of the training set was used to develop the equations.
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with PLS is substantially better than for the training set,
however the correlation between Method 2 and both
NetMHCII and NetMHCIIPan is diminished. Also, the
correlation coefficients of the later two prediction meth-
ods show a higher degree of variability.

MHC-I predictions
Similar comparisons to those described above for MHC-
II were conducted with the MHC-I datasets (results not
shown). Distributional issues are very common in the
MHC-I datasets, like those shown in Figure 2A., in
which a clustering of identical ic50 values occur prob-
ably as a result of experimental limitations. For the
MHC-I, final prediction r2 values are somewhat lower,
in the range of 0.7 - 0.85. Visualization of the VIP from
the PLS analysis is shown below. As seen with the
MHC-II alleles, the PLS analysis suggested the presence
of several latent factors in the datasets.

Visualization of the Variable Importance Projection
Computation of the VIP provides a means of estimating
the relative importance of predictors to the overall

model and as such is a very useful aspect of a PLS ana-
lysis. In the case of the peptide datasets used here,
where the predictors are conceptual physicochemical
proxies, the VIP provides a statistical view of the under-
lying physical interactions between the peptide and the
MHC binding domains. As a visualization paradigm for
the VIP we use a “heat plot”, commonly used in other
areas of systems biology. In these relatively simple plots,
each cell represent tens of thousands of statistical com-
parisons reduced to a single metric and displayed in a
uniformly scaled graphic system that facilitates visual
comprehension [29]. All of the plots in Figures 5, 6, 7,
and 8 are produced from two VIP matrices (the
matrices can be found in the Additional File 3; Tables
S3a and Additional File 4; Table S3b), one for MHC-I
binding and the other for MHC-II, that have been color-
ized in different ways to accentuate different potential
physicochemical properties and to summarize all bind-
ing reactions of all peptides in the datasets used to
derive the predictions described above. Any value in the
VIP matrices >1 are interpreted as being the most rele-
vant in explaining the binding affinity. In Figures 5, 6, 7,

Figure 4 Comparisons of different prediction schemes for prediction of MHC-II binding affinity. Comparison of the perfomance of
3 different NN predictors and PLS with the IEDB training set and a random set of 15-mer peptides drawn from the proteome of Staphylococcus
aureus COL. The mean estimate of the NN described as Method 2 in the text is used as the base comparator. Comparisons are based on the
Pearson correlation coefficient (r) of the predicted ln(ic50) as a metric. The error bar is the standard deviation of the r obtained for the 14
different MHC-II alleles. See Additional File 7; Table S5 for detail.
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and 8 the matrices are colored by three different meth-
ods which provide different views of the underlying phy-
sicochemical properties and interactions between the
peptide and binding site. Each of the underlying physical
properties are on individual plots; Additional File 8; Fig-
ures S5, S6, S7, and S8 provide copies of Figures 5, 6, 7,
and 8 that include the “thermometers” for the heat plots
that detail how the numerical information in the VIP
matrix was color scaled. We designate the MHC binding
pocket to consist of 9 zones of interactions given the
label P1 to P9 based on MHC-I. Peripheral to this, the
MHC-II molecules comprises 3 additional residues on
each side (N-3, N-2, N-1 and C+1, C+2 and C+3) to
make up the 15-mer. In MHC-II molecules the ends of
the binding pocket (groove) are open and longer pep-
tides can interact with additional residues.
Figure 5 shows the VIP of the PLS regression predic-

tion of ln(ic50) of peptide binding by using the first

three principal components of the amino acids in each
of the amino acids in the 9-mer as predictors for MHC-
I (5a) and 15-mer for MHC-II (5b). In these Figures the
coloration of the plot is uniform over all cells in
the matrix (complete scaling information is found in
the Additional File 8; Figure S5). The colors compare
the relative importance of the particular numbered resi-
due of the binding domain among all of the MHC
alleles indicated. As the selection of peptide sequences
were highly non-random it is likely that the coloration
seen is a combination of two factors, the prior knowl-
edge of the experimentalists use in designing the amino
acid combinatorials in the peptides and the actual physi-
cochemical properties. The coloration is consistent with
the amino acid composition thought to provide the best
fit into the binding groove. The VIP provides an insight
into the potential physicochemical interactions in the
binding groove of MHC molecules which have not been

Figure 5 Visualization of peptide binding to MHC-I and MHC-II. Variable importance projection (VIP) of the PLS regression prediction of ln
(ic50) of peptide binding by using the first three principal components of the amino acids in each of the amino acids in the 9-mer as predictors
for MHC-I (5A)and 15-mer for MHC-II (5B). Coloration is uniform over all cells in the matrix for each principal component (a copy of this figure
with details of color scaling can be found in Additional File 8; Figure S5). The colors compare the relative importance of the particular numbered
residue of the binding domain among all of the MHC alleles indicated. (PC1) Principal component 1 (polarity correlate), (PC2) Principal
component 2 (size correlate), and (PC3) Principal component 3 (elctronic correlate). Cells in the matrix with VIP >1 are the most relevant in
explaining the binding affinity. The particular MHC allele in each row is indicated on the left. A 9 amino acid binding domain is shown using the
standard for the MHC binding groove numbered N-terminus to C-terminus 1 through 9 for MHC-I. A 15 amino acid binding domain is shown
using the standard for the MHC-II binding groove numbered N-terminus to C-terminus 1 through 9 flanked by 3 amino acids on the N-terminus
and C-terminus.
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studied as intensely. The relative importance of the
polarity of position 9 for the MHC-I locus A binding is
seen. PC3, the third ranked principal component elec-
tronic physical correlate, emerges as important in posi-
tion 2 of MHC-I locus B alleles. In Figures 6 and 7 the
coloration emphasizes a different aspect of the binding
interaction of MHC-I (Figure 6) and MHC-II (Figure 7).
In these two Figures the color scaling compares the
relative importance of the particular numbered residue
of the binding domain among the all of the alleles indi-
cated. Again, cells in the VIP matrix with a value >1 are
the most relevant in explaining the binding affinity. Col-
oration is column-relative for each position in the bind-
ing domain. One position of note in Figure 7 is the
strong signal of PC1 (the polarity correlate) for C+1
position for DRB3*0101. Giving credence to the proper-
ties visualized, a recent paper of Parry [30] using an
entirely different methodology, suggested a major role of
P10 (the binding zone located one amino acid position
toward the C-terminus and equivalent to C+1 in our
notation) in the binding of peptides to DRB3*0101. For
different MHC-II alleles the possible role of each of the

three physical properties in the overall binding reaction
of those N-terminal and C-terminal residues outside the
core binding pocket is suggested by these Figures.
Figure 8 provides a visualization only for MHC-I; out-

put for MHC-II is included only in the Additional File
8; Figure S8. Coloration scaling is column-relative for
each position in the binding domain. The comparison is
within MHC-I allele and is repeated for each of the 3
principal components. The colors compare the relative
importance of the physicochemical property of each par-
ticular numbered residue of the binding domain within
each of the MHC-I alleles indicated.
Using the JMP® “contour profiler” it is possible to seg-

regate and visualize of the interaction between any two
of the input variables and the output prediction. An
example is shown in Figure 9, however a two-dimen-
sional representation does not adequately illustrate the
fully interactive demonstration of the physicochemical
interactions involved in the binding reactions. Figure 9
is a plot showing a hyperplane of the first principal
component predictions for amino acid P9 and C+1 (also
called P10 by Parry [30]). It shows not only how the

Figure 6 Visualization of the contribution of the different physical properties of amino acid to the peptide binding to MHC-I. Variable
importance projection (VIP) of the PLS regression prediction of ln(ic50) of peptide binding by using the first three principal components of the
amino acids in each of the amino acids in the 9-mer as predictors (PC1) Principal component 1, polarity correlate; (PC2) principal compent 2, size
correlate, (PC3) principal component 3, electronic correlate. The colors compare the relative importance of the particular numbered residue of
the binding domain among the MHC-I alleles indicated. Cells in the matrix with VIP >1 are the most relevant in explaining the binding affinity.
Coloration is column-relative for each position in the binding domain (a copy of this figure with details of color scaling can be found in
Additional File 8; Figure S6). The particular MHC-I allele in each row is indicated on the left. A 9 amino acid binding domain is shown using the
standard for the MHC binding groove numbered N-terminus to C-terminus 1 through 9.
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polarity of these two residues might play a role in bind-
ing, but also how the experimentalist might systemati-
cally vary the amino acids in these positions and what
would be the expected impact on binding affinity. In the
perspective depicted in Panel A the non-randomness of
the amino acids used in the training sets is readily
apparent. Panel B provides a means of examining of the
relative scatter of the actual datapoints around the fitted
hyperplane in multidimensional space.

Conclusions
We have shown the utility of using QSAR concepts that
are the backbone of cheminformatics to analyze and
build a tool for prediction of MHC binding. Three dif-
ferent prediction schemes are described that use the
first three principal components of the physical proper-
ties of amino acids as predictors. The first scheme uses
a linear PLS approach that is commonly used in QSAR.
In addition, two different cross-validation approaches
are used to develop NN prediction equations in the
JMP® application. Overall, these methods benchmark
well against the most recently available substitution
matrix predictors when considered as either as categori-
cal predictors or as regression predictors using the IEDB
training sets. The three prediction schemes described in
this paper also perform consistently with both the train-
ing sets and a random comparator test set of 15-mer
peptides. Unlike their performance with the training
sets, NetMHCII and NetMHCIIPan do not perform as
consistently with the random test set. Given the rela-
tively good agreement between the methods for the
IEDB training sets this result with the random set is
unanticipated and the reason for the disparity is
unknown. We suspect one possibility might be the
implicit non-randomness of the peptide structures
synthesized to create the training sets themselves. As we
noted, within the IEDB datasets there are clusters of
peptide subsets with unique and statistically separable
characterisitics. The peptide structures designed for reli-
able predictions of binding with relatively small sets of
peptides might be so unique as to provide relatively
poor training for random peptides such as those that
might be encountered from a proteome. It is also con-
ceivable that this is but a different facet of the issues
noted by El-Manzalawy et al [14] for these datasets.
Symmetry between the statistical models and the

underlying physicochemical interactions provides a
unique way to use a large number of binding measure-
ments to gain insight into the binding reactions and
results in a statistical docking akin to molecular docking
done in silico structural studies which are based on phy-
sical properties at the atomic level [31]. These statistical
models complement and corroborate inferences drawn
from other physical measurements of the interactions

Figure 7 Visualization of the contribution of the different
physical properties of amino acid to the peptide binding to
MHC-II. Variable importance projection (VIP) of the PLS regression
prediction of ln(ic50) of peptide binding using the first three
principal components of each of the amino acids in the 15-mer as
predictors. (PC1) Principal component 1, polarity correlate; (PC2)
principal compent 2, size correlate, (PC3) principal component 3,
electronic correlate. Coloration is column-relative indicated by the
scales for each position in the binding domain (a copy of this figure
with details of color scaling can be found in Additional File 8;
Figure S7). The amino acid in the binding domain of the particular
MHC-II allele in each column is indicated on the left. A 15-amino
acid binding domain is shown using the standard for the MHC
binding groove numbered N-terminus to C-terminus 1 through 9
along with the additional 3 N-terminal and 3 C-terminal residues.
The colors compare the relative importance of the particular
numbered residue of the binding domain among the MHC-II alleles
indicated. Cells in the matrix with VIP >1 are the most relevant in
explaining the binding affinity.
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Figure 8 Visualization of the contribution of different residues in MHC binding. Variable importance projection (VIP) of the PLS regression
prediction of ln(ic50) of peptide binding using the first three principal components of each of the amino acids in the 9-mer as predictors (PC1)
Principal component 1, polarity correlate; (PC2) principal compent 2, size correlate, (PC3) principal component 3, electronic correlate. Coloration
is column-relative indicated by the scales for each position in the binding (a copy of this figure with details of color scaling can be found in
Additional File 8; Figure S8). The colors compare the relative importance of the particular numbered residue of the binding domain among the
MHC-I alleles indicated. Cells in the matrix with VIP >1 are the most relevant in explaining the binding affinity. The amino acid in the binding
domain of the particular MHC-I allele (A) or MHC-II (B) in each column is indicated on the left. A 9 amino acid binding domain is shown using
the standard for the MHC binding groove numbered N-terminus to C-terminus 1 through 9. For MHC-II three additional amino acids are added
to each the N-terminus and C-Terminus.
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between the peptide and the MHC binding domain.
Unlike matrix approaches which view the binding site as
a static entity without interactions between adjacent
amino acids (see Parry [30] for discussion) the approach
adopted in this paper makes no assumptions about the
interaction: a peptide of a fixed length having three
major physicochemical properties, interacts with an
MHC binding domain, and binds to it with a certain
affinity. While no “anchor” residue is predicted, it is
conceivable that the VIP might be implicitly providing
an equivalent of an anchor residue score as can be seen
by comparing the scales of the heat plot thermometers
in the Additional File 8; Figures S5-S8.
By use of all the binding data in a PLS model, the VIP

suggest that the first two residues outside the MHC-II
binding pocket at the N terminus and C terminus play
significant roles in the binding interaction. This finding
corroborates and extends the work of Parry [30].
The true power of PLS and QSAR approaches have

been in their applications to molecular and experimental
design. In this regard the concepts described herein
might provide a context within which to design molecu-
lar dynamic simulations of the physicochemical interplay
between a peptide and the MHC binding site domains.
An important feature of our approach is that it makes

it possible to analyze entire proteomes comprising over
a million binding peptides in real-time on a desktop (or
laptop) computer. Coupled with the data visualization

capabilities [8], it enables new insights into the underly-
ing physicochemical characteristics of peptide binding to
the MHC molecules and should assist in future experi-
mental design. In the companion paper we describe the
use of these tools in combination with other predictors
to create an integrated epitope prediction platform cap-
able of proteome-scale analyses.

Methods
Data sources
Amino acid physical properties were retrieved from the
repository at the Swiss Institute of Bioinformatics:
http://expasy.org/tools/protscale.html
MHC-I and MHC-II peptide binding datasets were

retrieved from the repository at Center for Biological
Sequence Analysis http://www.cbs.dtu.dk and IEDB
http://www.IEDB.org.
A random dataset of 1000 15-mer peptides was

selected from the surfome and secretome of Staphylo-
coccus aureus COL (Genbank ID NC_002951) (Addi-
tional File 9; Table S6).

Internet data analysis and manipulation
Web servers for benchmark comparisons NetMHCII
version 2.1, NetMHCIIPan 1.0 http://www.cbs.dtu.dk/
services/NetMHCII/. Some testing was done with the
MHCserver but there were no extensive or systematic
comparisons to NetMHC 3.0.

Figure 9 Example of visualization of physicochemical interactions between the peptide and the binding pocket of DRB3*0101.
Potential effects of physicochemical interactions on the binding affinity can be explored interactively for all combinations of peptide amino acid
and binding groove domain. (A) Inter-relationship of principal property 1 (hydrophobicity) for positions P9 and P(C+1). (B) rotation of the
hyperplane of (A) to show the scatter of the residuals of the fit about this hyperplane.
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Workstation applications
The Partial Least Squares and Neural Network plat-
forms in JMP® 8.02 and JMP® Genomics 4.2 were used
for all local calculations and data manipulation (SAS
Institute Inc. Cary, NC).
The statistical background for the JMP® platforms is

found in: JMP® 8 Statistics and Graphics Guide, SAS
Institute Inc., Cary, NC, USA (ISBN 978-1-59994-923-9).

Variable influence
For a given PLS dimension a, (VIN)ak

2 is equal to the
squared PLS weight (wak)

2 of that term, multiplied by
the explained sums of squares (SS) of that PLS dimen-
sion [2,3]. The accumulated (overall PLS dimensions)
value,

VIP VINak k
a

= ( )∑
is then divided by the total explained SS by the PLS

model and multiplied by the number of terms in the
model. The final VIP is the square root of that number.
The formula can also be expressed as follows:
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The SS of all VIP is equal to the number of terms in
the model and hence the average VIP is equal to 1. The
VIP of one term can be compared to others and terms
with the larger VIP, larger than 1, are the most relevant
for explaining the response. The VIP were computed
within the PLS platform of JMP®.
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