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1 Introduction

At distance and time scales much larger than the inverse temperature and any other micro-

scopic dynamical scales, a quantum many-body system in local thermal equilibrium should

be described by hydrodynamics. Except for ideal fluids, the current formulation of hydro-

dynamics has been on the level of equations of motion. There are, however, many physical

situations where hydrodynamical fluctuations play an important role. An action principle

is greatly desired. There are two main difficulties. One is to properly treat dissipation, and

the other is to find the right set of dynamical degrees of freedom to formulate an action

principle, as standard variables such as the velocity field appear not suitable.

In principle it should be possible to derive hydrodynamics as a low energy effective field

theory from a quantum field theory at a finite temperature via Wilsonian renormalization
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Figure 1. (a) Complex bulk manifold Mc consisting of two copies of asymptotic AdS spacetimes

patched together at a horizon hypersurface. Also labeled are stretched horizons Σ1,Σ2 discussed

around (1.2). (b) A boundary theory Schwinger-Keldysh contour used to describe non-equilibrium

physics. The two AdS regions map to the two horizontal legs of the Schwinger-Keldysh contour,

while the analytic continuation around the horizon corresponds to the vertical leg which defines the

initial thermal density matrix.

group (RG) by integrating out all gapped modes, but in practice it has not been possible

to do so. Such a formulation should lead to an action principle.

For holographic systems, the holographic duality [1–3] provides a striking geometric

description of the renormalization group flow in terms of the radial flow in the bulk geom-

etry. In particular, the Wilsonian renormalization group flow of a boundary system can

be described on the gravity side by integrating out part of the bulk spacetime along the

radial direction [4, 5]. The proposal expresses the Wilsonian effective action in terms of a

gravitational action defined at the boundary of the remaining spacetime region.

The purpose of the current paper is to take a first step toward deriving an action for

hydrodynamics using holographic Wilsonian RG.1 The basic idea is as follows: consider

the gravity path integral

Z[ḡ1, ḡ2] =

∫

Mc

DGeiS[G] (1.1)

over metrics G on a complex bulk manifold Mc consisting of two copies of asymptotic AdS

spacetimes patched together at a dynamical horizon hypersurface, as shown in figure 1.

Mc has two asymptotic boundaries ∂M1,2
c with boundary metrics ḡ1, ḡ2 respectively. The

horizon is dynamical as its metric is integrated over. The two copies of AdS can be

considered as corresponding to the two long horizontal legs of a Schwinger-Keldysh contour,

with the continuation around the horizon corresponding to the vertical leg [13]. In (1.1) one

integrates out all gapped degrees of freedom, and the resulting effective action for whatever

gapless degrees of freedom remain is the desired action for hydrodynamics. For this purpose,

it is convenient to introduce stretched horizons Σα, α = 1, 2 on each slice of the bulk

manifold, which separate the bulk manifold into three different regions (see figure 1), i.e.

∫

Mc

=

∫ Σ1

∂M1
c

+

∫ Σ2

Σ1

+

∫ ∂M2
c

Σ2

. (1.2)

1The connections between holography and hydrodynamics has by now quite a history, starting with [6–9]

and culminated in the fluid/gravity correspondence [10–12].
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Figure 2. The gapless degrees of freedom in the path integrals (1.4) are the relative embedding

coordinates Xa

1
(σµ) between the horizon and the boundary. Xa

1
can be understood geometrically

as follows: start with σµ at Σ1, shooting a congruence of geodesics orthogonal to Σ1 toward the

boundary, the intersections of these geodesics with the boundary define Xa

1
.

The bulk path integral can be written as

Z[ḡ1, ḡ2] =

∫

Σ1

Dh̄1

∫

Σ2

Dh̄2ΨIR[h̄1, h̄2] ΨUV[h̄1, ḡ1]Ψ
∗
UV[h̄2, ḡ2] (1.3)

where h̄1 and h̄2 are induced metric on the stretched horizons. Various factors in the

integrand of (1.3) arise from the path integrals in three regions, e.g.

ΨUV[h̄1, ḡ1] =

∫ h̄1

ḡ1

DGeiS[G] (1.4)

integrates over all metrics G between ∂M1
c and Σ1 with Dirichlet boundary conditions ḡ1

and h̄1, and similarly with the others. The complex conjugate on Ψ∗
UV[h̄2, ḡ2] is due to

that the bulk manifold in the region between Σ2 and ∂M2
c has the opposite orientation

from that between ∂M1
c and Σ1.

Connections between hydrodynamics and Schwinger-Keldysh contour have been made

recently in various contexts in [14–21].

In this paper we describe integrations over gapped degrees of freedom in the path

integral (1.4). As anticipated earlier by Nickel and Son [22], in (1.4) the only gapless

degrees of freedom are the relative embedding coordinates Xa
1 (σ

µ) of the boundary M1
c

and the stretched horizon hypersurface Σ1, see figure 2. Integrating out all other degrees of

freedom we obtain an effective action IUV[X
a
1 , ḡ1, h̄1] for embeddings Xa

1 , i.e. (1.4) becomes

ΨUV[h̄1, ḡ1] =

∫

DXa
1 e

iIUV[Xa
1 ,ḡ1,h̄1] . (1.5)

We develop techniques to compute IUV

[

Xa
1 , ḡ1, h̄1

]

in expansion of boundary derivatives at

full nonlinear level in a saddle point approximation. Plugging (1.5) into (1.3) and evaluating

h̄1, h̄2 integrals one then obtains the full hydrodynamical action in terms of Xa
1 and Xa

2 , i.e.

Z[ḡ1, ḡ2] =

∫

DXa
1DXa

2 e
iIhydro[X1,X2;ḡ1,ḡ2] (1.6)
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with

eiIhydro[X1,X2;ḡ1,ḡ2] =

∫

Σ1

Dh̄1

∫

Σ2

Dh̄2ΨIR[h̄1, h̄2] e
i(IUV[Xa

1 ,ḡ1,h̄1]−IUV[Xa
2 ,ḡ2,h̄2]) . (1.7)

The evaluation of ΨIR

[

h̄1, h̄2
]

requires developing new techniques for analytic continu-

ations through the horizon. We will leave its discussion and the full evaluation of (1.7)

elsewhere. Hydrodynamical actions based on doubled Xa degrees of freedom discussed

here have also been discussed recently in [16–21].

We also show that at zeroth order in the derivative expansion, if one (i) takes h̄1 to

the horizon, i.e. making Σ1 a null hypersurface, and (ii) requires h̄1 to be non-dissipative,

i.e. the local area element is constant along the null geodesics which generate the horizon,

h̄1 completely decouples from IUV[X
a
1 , ḡ1, h̄1], and IUV reduces to the conformal version of

the ideal fluid action proposed by Dubovsky et al. [23, 24], i.e.

IUV[X
a
1 , ḡ1, h̄1] = Iideal[ξ1, ḡ1] (1.8)

where

Iideal[ξ, ḡ] = −(d− 1)

∫

ddσ
√−ḡ

(

detα−1
)

d
2(d−1) , (α−1)ij = ḡµν∂µξ

i∂νξ
j, (1.9)

and ξi(σµ) (with i = 1, 2, · · · , d − 1) are embeddings Xa(σµ) for a null hypersurface for

which the time direction decouples. In particular, the volume-preserving diffeomorphisms

which played a key role in the formulation of [23] arise here as residual freedom of horizon

diffeomorphism. The entropy current also arises naturally as the Hodge dual of the pull-

back of the horizon area form to the boundary.

It is tempting to ask whether conditions (i) and (ii) in the previous paragraph will

also lead to a non-dissipative fluid action at higher orders. We find, however, that the 2nd

order action is divergent unless one is restricted to shear-free flows. While it makes sense to

make such restrictions in an equation of motion, imposing it at the level of path integrals

for Xa appears problematic. We thus conclude that one must include dissipation in order

to have a consistent formulation.

We also note that the fact we find (1.9) when pushing Σ1 to the horizon does not

necessarily imply that at zeroth order the full effective action (1.7) will be given by

Ihydro = Iideal[ξ1, ḡ1]− Iideal[ξ2, ḡ2] (1.10)

as the integrations over h̄1, h̄2 will generate new structures. At this stage the precise

relation between (1.9) and the zeroth order of Ihydro is not yet fully clear to us.

The plan of the paper is as follows. We will explain our holographic setup and the

gravitational boundary value problem in details in section 2. In section 3, we perform the

path integral (1.4) using saddle point approximation to obtain IUV defined in (1.5) at ze-

roth order in the boundary derivative expansion and relate it to the ideal fluid action (1.9).

In section 4 we briefly comment on the generalization to higher orders in the derivative ex-

pansion. We conclude with a discussion of open questions and future directions in section 5.
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Note added: we understand Jan de Boer, Natalia Pinzani Fokeeva and Michal Heller

have obtained similar results [25].

2 Setup

In this section, we describe in detail our setup for computing (1.4) to obtain IUV[X
a, ḡ, h̄]

defined in (1.5).

2.1 Isolating hydrodynamical degrees of freedom

In this subsection, we describe a series of formal manipulations of path integrals for gravity

which allow us to isolate Xa as the “would-be” hydrodynamical degrees of freedom. There

are standard difficulties in defining rigorously path integrals for gravity, which will not

concern us as we will be only interested in the path integrals at a semi-classical level, i.e.

in terms of saddle points and fluctuations around them.

Consider a path integral of the form

Ψ[h̄, ḡ] =

∫ h̄

ḡ

DGeiS[G] (2.1)

where the integration is over all spacetime metrics

ds2 = GMN (σ)dσMdσN = N2dz2 + χµν(dσ
µ +Nµdz)(dσν +Nνdz) (2.2)

between two hypersurfaces ΣUV and ΣIR at some constant-z slices and whose respective

intrinsic geometries are specified by gµν and hµν , i.e.

χµν

∣

∣

ΣUV
= ḡµν(σ

λ), χµν

∣

∣

ΣIR
= h̄µν(σ

λ) . (2.3)

In (2.1), one should integrate over all values of N and Nµ without any boundary conditions

for them on ΣUV and ΣIR. For this paper we will only be concerned with evaluating (2.1) to

leading order in the saddle point approximation, thus will not be careful about the precise

definition of integration measure, ghosts, and Jacobian factors for changes of variables. We

will comment on these issues in section 5.

Later we will take ΣUV to the boundary of an asymptotic AdS spacetime and ΣIR

to an event horizon. We will for now keep them arbitrary for notational convenience.

We will also for now keep the gravitational action S[G] general assuming only that it is

diffeomorphism invariant and that the boundary conditions (2.3) give rise to a well defined

variational problem. The variation of the action then has the form

δS =
1

2

∫

dd+1σ
√
−GEMNδGMN (2.4)

without any boundary term. The equations of motion are thus

EMN = 0 (2.5)
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while diffeomorphism invariance of the action S[G] also leads to the Bianchi identities

∇MEMN = 0 . (2.6)

Given the diffeomorphism invariance of the bulk action S[G], Ψ[h̄, ḡ] is invariant under

independent coordinate transformations DiffIR ×DiffUV of the two hypersurfaces, i.e.

Ψ[h̄, ḡ] = Ψ[Λt
IRh̄ΛIR,Λ

t
UVḡΛUV] (2.7)

where ΛIR and ΛUV denote independent coordinate transformation matrices on ΣIR and

ΣUV.

Now consider transforming the metric (2.2) to the Gaussian normal coordinates (GNC)

ξA(σ) = (u, xa) in terms of which

ds2 = du2 + γab(u, x)dx
adxb ≡ G̃ABdξ

AdξB . (2.8)

Here we choose Gaussian normal coordinates for later convenience. The subsequent dis-

cussion applies with little changes to any set of “gauge fixed” coordinates. The metric

components GMN can be expressed in terms of (γab, ξ
A) as

GMN = G̃AB∂MξA∂NξB = ∂Mu∂Nu+ γab∂Mxa∂Nxb . (2.9)

In choosing the Gaussian normal coordinates we have the freedom of fixing the values of u

and xa at one end. For our later purpose it is convenient to choose a hybrid fixing

u
∣

∣

ΣUV
= u0 = const, xa

∣

∣

ΣIR
= σµδaµ. (2.10)

The values of u at ΣIR and xa at ΣUV are then determined dynamically, which we will

parameterize as

u
∣

∣

ΣIR
= τ̃(σµ), xa

∣

∣

ΣUV
= Xa(σµ) . (2.11)

In terms of the foliation of (2.8), ΣUV and ΣIR can thus be written as

ΣUV : u = u0, ΣIR : u = τ(xa) = τ̃(X−1(xa)) (2.12)

and the boundary conditions (2.3) now become

γab
∣

∣

u=τ(xa)
= hab, γab

∣

∣

u=u0
= gab (2.13)

with

hab = h̄ab − ∂aτ∂bτ, gab(X) = ḡµν(σ)
∂σµ

∂Xa

∂σν

∂Xb
=

(

J−1tḡJ−1
)

ab
, Ja

µ ≡ ∂Xa

∂σµ
. (2.14)

Note that ξA = (u(σM ), xa(σM )) are dynamical variables and in going from (2.2)

to (2.8), we have essentially traded GMN = (N,Nµ, χµν) for (u, x
a, γab). The path integral

can now be written as

Ψ[h̄, ḡ] =

∫

Dxa
∫

Du

∫ h

g

Dγab e
iS[u,xa,γab] (2.15)

– 6 –
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where γ is required to satisfy the boundary conditions (2.13). The coordinate invariance of

the action implies that the action is independent of the bulk fluctuations of u and xa. Thus

the path integrals over xa and u reduce to those over the boundary fluctuations (2.11)

Ψ[h̄, ḡ] =

∫

DXa

∫

Dτ

∫ h

g

Dγab e
iS[τ,γ] . (2.16)

In the above integrals Xa always appears with ḡ through the induced metric g defined

in (2.14). In addition to appearing in the IR boundary condition hab for γab integrals,

τ also appears in the action S explicitly as the IR integration limit and boundary terms

(which we will specify below).

Xa and τ can be considered as the “Wilson line” degrees of freedom associated with

Nµ and N . Physically Xa(σµ) describes the relative embedding between the coordinates xa

on ΣIR and the coordinates σµ on ΣUV, while τ(x) describes the proper distance between

ΣUV and ΣIR.

The path integrals (2.16) will be evaluated in stages: we first integrate over all possible

γab with a fixed relative embedding Xa and proper distance τ to find

eiI1[τ,h,g] =

∫ h

g

Dγab e
iS[τ,γ] (2.17)

and then integrate over τ (i.e. all possible proper distances)

eiIUV[h̄,g] =

∫

Dτ eiI1[τ,h,g] . (2.18)

In the path integrals (2.17), with a finite τ , u direction is essentially compact and γab can be

consistently integrated out to yield a local action I1[τ, h, g], which can be expanded in the

number of boundary derivatives of τ, h and g, assuming they are slowly varying functions

of boundary coordinates. In the boundary theory language γab should thus correspond to

modes with a mass gap. τ depends only on boundary coordinates, and does not contain

derivatives at leading order, and thus can also be consistently integrated out. By definition

Xa always come with boundary derivatives as in (2.14), i.e. they correspond to gapless

modes, and thus should be kept in the low energy theory. Integrating them out will lead

to nonlocal expressions.

Let us briefly consider the symmetries of I1[τ, g, h]. It is invariant under u-independent

diffeomorphisms of xa → x′a(x) under which g, h transform simultaneously as tensors.

These are large diffeomorphisms as they change the asymptotic behavior of AdS. I1 is also

invariant under diffeomorphisms of σµ as it contains Xa and ḡ only through g, which is

invariant due to the canceling of transformations in ḡ and Xa,

ḡµν(σ) → ḡ′µν(σ) =
∂σ′λ

∂σµ
ḡλρ(σ

′(σ))
∂σ′ρ

∂σν
, Xa(σ) → X ′a(σ) = Xa(σ′(σ)) . (2.19)

This implies that
√−ḡ∇̄ν

(

1√−ḡ

δI1

δḡµν

)

=
δI1

δXa
∂µXa (2.20)

– 7 –
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where ∇̄ denotes the covariant derivative associated with ḡ. Identifying 1√
−ḡ

δI1
δḡµν

as the

boundary stress tensor, we then see that the Xa equations of motion are equivalent to the

conservation of the boundary stress tensor. Parallel statements can be made about IUV

which comes from integrating out τ .

Finally to conclude this subsection, let us be more explicit about the UV boundary

condition. In an asymptotic AdS spacetime with ΣUV at a cutoff surface near the boundary,

γab in (2.8) should have the behavior

lim
u→−∞

γab(u, x
a) = e−

2u
L

(

γ
(0)
ab (x

a) +O(e
2u
L )

)

(2.21)

with L the AdS radius and γ
(0)
ab (x

a) finite. Thus we should replace the boundary condi-

tion (2.13) at u = u0 by

lim
u0→−∞

γab(u0, x
a) = e−

2u0
L

(

gab(x) +O(e
2u0
L )

)

, (2.22)

where

gab =
(

J−1tḡJ−1
)

ab
(2.23)

and ḡµν(σ) is the background metric for the boundary theory.

2.2 Saddle point evaluation

Now consider evaluating the path integrals (2.16)–(2.18) using the saddle point approxima-

tion. To elucidate the structure of equations of motion for τ and Xa, we consider (2.4) now

with GMN considered as a function of γab and ξA via (2.9). Under variations of γab, we have

δGMN (x) = δγab∂Mxa∂Nxb (2.24)

which then (2.4) implies the equations of motion

EMN∂Mxa∂Nxb = 0, ⇒ Eab = 0 (2.25)

where Eab = 0 is the ab-component of the equations of motion in coordinates (2.8). Below

we will refer to these equations as “dynamical equations.”

Under variations of ξA, we have

δGMN =
∂G̃AB

∂ξC
∂MξA∂NξBδξC + 2G̃AC∂MξA∂NδξC . (2.26)

The bulk part of (2.4) then leads to the Bianchi identities in coordinates (2.8), which is

as it should be since ξA(σ) is a coordinate transformation. But now there are boundary

terms remaining

δS =

∫

ddx
√
−HEA

B ∂z

∂ξB
δξA

∣

∣

∣

∣

ΣIR

−
∫

ddx
√
−HEA

B ∂z

∂ξB
δξA

∣

∣

∣

∣

ΣUV

(2.27)

which upon using (2.10)–(2.12) implies that

√
−HEu

B ∂z

∂ξB

∣

∣

∣

∣

ΣIR

= 0 ⇒
(

Eu
u − Eu

a ∂τ

∂xa

)∣

∣

∣

∣

ΣIR

= 0 (2.28)
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and √
−HEa

B ∂z

∂ξB

∣

∣

∣

∣

ΣUV

= 0 ⇒ Ea
u
∣

∣

ΣUV
= 0 (2.29)

with (2.28) corresponding to the equation of motion from varying τ while (2.29) corresponds

to those from varying Xa. In deriving the second equations in both (2.28) and (2.29)

we have assumed that
√
−H and ∂z

∂u
at ΣIR and ΣUV are nonzero. It can be readily

checked that (2.25) and (2.28)–(2.29) are equivalent to (2.5), and that the Bianchi identity

ensures that (2.28) and (2.29) are satisfied everywhere once they are imposed at ΣIR and

ΣUV, respectively. Following standard convention, below we will refer to (2.28) as the

Hamiltonian constraint and (2.29) as the momentum constraints.

Now recall from the general results on the holographic stress tensor [26] that the

momentum constraints (2.29) in fact correspond to the conservation of the boundary stress

tensor

∇aT
ab = 0 (2.30)

where ∇a is the covariant derivative associated with gab and T ab is the stress tensor for

the boundary theory with background metric gab in the state described by (2.8). Since ḡµν
and gab are related by a coordinate transformation equation (2.30) is equivalent to

∇̄µT̄
µν = 0 (2.31)

where ∇̄µ is the covariant derivative associated with ḡµν and T̄µν is the stress tensor for

the boundary theory with background metric ḡµν . This gives an alternative way to see

that Xa equations of motion are equivalent to conservation of the boundary stress tensor.

At the level of saddle point approximation, I1 as defined in (2.17) is obtained by

solving (2.25) for γab, and IUV in (2.18) by solving (2.28) for τ(xa). In other words, IUV is

computed by evaluating the gravity action with dynamical equations and the Hamiltonian

constraint imposed, but not the momentum constraints.

2.3 Einstein gravity

We now specialize to Einstein gravity, in which the gravity action S[G] in (2.1) can be

written in the Gaussian normal coordinates (2.8) as

S[τ, γ] =

∫

dd+1ξ
√−γ(R− 2Λ)−

∫

ΣUV

√−γ 2K +

∫

ΣIR

√−γ 2K + Sct

=

∫

dd+1ξ
√−γ

[

(d)R[γ]−
(

KabK
ab −K2

)

− 2Λ
]

+ SIR + Sct (2.32)

where

Kab =
1

2
∂uγab ≡

1

2
γ′ab, Ka

b =
1

2
(γ−1γ′)ab, K = Ka

a =
1

2
γabγ′ab (2.33)

are extrinsic curvatures for a constant-u hypersurface, and Sct is the standard AdS coun-

terterm action at the ΣUV [26]

Sct =

∫

u=u0→−∞
ddx

√−γ

(

2(1− d)

L
+

L

d− 2
(d)R[γ] + · · ·

)

. (2.34)
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SIR is a boundary action at ΣIR which arises from the fact that ΣIR, given by u = τ(xa), is

not compatible with the foliation of constant-u hypersurfaces, and can be written as (see

appendix A for a derivation)

SIR = 2

∫

ΣIR

ddx
√

−h̄
1

n

((

h̄ab(∂̄τ)2 − ∂̄aτ ∂̄bτ
)

Kab − D̄2τ
)

(2.35)

with

n =
√

1− ∂̄aτ∂aτ (2.36)

where the indices are raised and lowered by the intrinsic metric h̄ab on ΣIR and D̄ is the

covariant derivative associated with h̄ab.

For convenience below we will use K to denote the matrix Ka
b and thus K = TrK.

Various components of the Einstein equations in Gaussian normal coordinates (2.8) can

then be written as

−Ea
b = K′ − TrK′ +KTrK − Ric(d)[γ]− 1

2

(

TrK2 +Tr2K
)

+
1

2
R(d)[γ]− Λ = 0 (2.37)

−Euu =
1

2
TrK2 − 1

2
Tr2K +

1

2
R(d)[γ]− Λ = 0 (2.38)

−Eu
a = DaK −DbK

b
a = 0 (2.39)

with Da the covariant derivative associated with γab. As discussed in section 2.2, in order

to not impose conservation of the stress tensor, i.e. leave hydrodynamical modes off-shell,

at the saddle point level we should not impose the momentum constraint (2.39). We only

need to solve the dynamical equations (2.37) for γab and a combination of (2.38)–(2.39) at

ΣIR for τ (see (2.28)).

From now on we will set the AdS radius L = 1.

3 Action for an ideal fluid

In this section we first evaluate explicitly IUV[X
a, ḡ, h̄] defined in (1.5) at zeroth order in

the derivative expansion, assuming that Xa, ḡ, h̄ are slowly varying functions. We then

show that pushing h̄ to a horizon hypersurface and requiring it to be non-dissipative, we

obtain the ideal fluid action of [23, 24].

3.1 Solving the dynamical equations

We will perform the γ integrals (2.17) using the saddle point approximation, i.e. it boils

down to solving the dynamical Einstein equations (2.25) at zeroth order in boundary deriva-

tives. At this order we can neglect boundary derivatives of τ(x), Ja
µ, and γab. The

boundary conditions for γab become

γ(u = τ) = h = h̄, γ(u = u0 → −∞) = e−2u0g, gab =
(

J−1tḡJ−1
)

ab
. (3.1)

For notational simplicity here and below we will often use γ and g to denote the whole

matrix γab and gab. Hopefully the context is sufficiently clear that they will not be confused

with their respective determinants.
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Explicit expressions for the Einstein equations in Gaussian normal coordinates (2.8)

are given in section 2.3. At zeroth order in boundary derivatives, the dynamical part of

the Einstein equations (2.25) (more explicitly (2.37)) becomes

K′ − TrK′ +KTrK − 1

2

(

TrK2 +Tr2K
)

− Λ = 0 (3.2)

which can be rewritten as

d− 1

d

(

K ′ +
1

2
K2

)

= −Λ− 1

2
TrK2, (3.3)

K
′ +KK = 0 (3.4)

where K is the traceless part of K

K = K+
K

d
1, TrK = 0 . (3.5)

From (3.4)
1

2
(TrK2)′ = −K TrK2 . (3.6)

Taking derivative on both sides of (3.3) leads to

d− 1

d

(

K ′′ +KK ′) = K TrK2 . (3.7)

Eliminating TrK2 between (3.6)–(3.7) and using (3.3) we then find an equation for K

K ′′ + 3K ′K +K(K2 − d2) = 0 (3.8)

which is solved by

K = d
α1α2e

2du − 1

(1 + α1edu)(1 + α2edu)
(3.9)

where α1,2 are some constants. Inserting (3.9) into (3.4) we find

K =
b0(α1 − α2)e

du

(1 + α1edu)(1 + α2edu)
(3.10)

with b0 a constant traceless matrix. Plugging (3.10) into (3.7) we find that b0 has to satisfy

Tr b20 = d(d− 1) . (3.11)

Combining (3.9) and (3.10) we then obtain

K =
1

(1 + α1edu)(1 + α2edu)

(

b0(α1 − α2)e
du + (α1α2e

2du − 1)
)

. (3.12)

Now integrating (2.33) and imposing the boundary condition at UV (i.e u = u0 → −∞)

we find that

γ = ge−2u
(

(1 + α1e
du)(1 + α2e

du)
)

2
d
e2k(u)b0 (3.13)
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with

k(u) =
1

d
log

(

1 + α1e
du

1 + α2edu

)

(3.14)

where here and below we will always take α1 > α2.

Introducing

H ≡ g−1h̄, α1c ≡ α1e
dτ , α2c ≡ α2e

dτ (3.15)

from the IR boundary condition γ(u = τ) = h̄ we then find

√
detH = e−dτ (1+α1c)(1+α2c), b0 =

1

2k(τ)
log Ĥ, Tr(log Ĥ)2 =

4(d− 1)

d
log2

1 + α1c

1 + α2c

(3.16)

where Ĥ denotes the unit determinant part of H and the last equation of (3.16) follows

from (3.11). Requiring the metric γab to be regular and non-degenerate between u = −∞
and τ , we need

1 + α1c > 0, 1 + α2c > 0 . (3.17)

Given H and τ , we can use the first and last equations of (3.16) to determine α1,2 and

then the second equation to find b0. Note at this stage τ is not constrained by H and thus

can be chosen independent of h̄. More explicitly,

α1c = (detH)
1
4 e

zc
2 e

dτ
2 − 1, α2c = (detH)

1
4 e−

zc
2 e

dτ
2 − 1 (3.18)

with

zc ≡
(

d

4(d− 1)
Tr(log Ĥ)2

)
1
2

. (3.19)

3.2 Effective action for τ and X
a

At zeroth order in boundary derivatives, the Einstein action (2.32) becomes

S[τ, γ] =

∫

dd+1ξ
√−γ

[

−
(

TrK2 −K2
)

− 2Λ
]

+ Sct (3.20)

and substituting (3.12) into (3.20) we have

I1[τ, h̄, g] = 2(d− 1)

∫

ddx
√−g

[

−e−dτ + e−dΛ + α1α2e
dτ
]

+ Sct (3.21)

with the counterterm action given by

Sct = −2(d− 1)

∫

Λ→−∞
ddx

√−γ = −2(d− 1)

∫

ddx
√−g

(

e−dΛ + α1 + α2

)

. (3.22)

We then find that

I1[τ, h̄, g] = −2(d− 1)

∫

ddx
√−gL1(H, τ) (3.23)

with

L1(H, τ) = e−dτ + α1 + α2 − α1α2e
dτ

= −
√
detH + 4e−

1
2
dτ (detH)

1
4 cosh

zc

2
− 2e−dτ (3.24)

– 12 –



J
H
E
P
0
2
(
2
0
1
6
)
1
2
4

where in the second line we have expressed the integration constants α1,2 in terms of

boundary conditions via (3.18). We notice that at zeroth order, I1 depends on h̄ and g

only through the combination H = g−1h̄. This follows from that I1 must be invariant

under the diffeomorphisms of xa for which h̄ and g transform simultaneously, as noted

in the paragraph before (2.19). At zeroth order TrHn for n = 1, 2, . . . , d are the only

independent invariants.

τ can now be integrated out by extremizing I1 which gives

e−dτ0 =
√
detH cosh2

zc

2
(3.25)

and thus

LUV = L1(H, τ0) =
√
detH cosh zc . (3.26)

Collecting everything together we thus find that2

IUV[X
a; h̄, ḡ] = −2(d− 1)

∫

ddx
√−g

√
detH cosh

(

d

4(d− 1)
Tr(log Ĥ)2

)
1
2

. (3.27)

One can readily check that the same result is obtained by solving instead the Hamiltonian

constraint (2.28) at zeroth order. Also note that with τ = τ0 given by (3.25), equation (3.18)

becomes

α1c = −α2c = tanh
zc

2
. (3.28)

3.3 Horizon limit

Equation (3.28) implies that after integrating out τ , α2 = −α1 is negative. We will now

simply rename α1 as α. It is convenient to introduce

α ≡ e−duh (3.29)

then from (3.28)

uh = τ − 1

d
log tanh

zc

2
> τ . (3.30)

Now if we extrapolate the solution (3.13) beyond u = τ all the way to uh, then
√
− det γ

develops a simple zero at u = uh, which we will refer to as a “horizon.” Since the “horizon”

lies outside the region where our Dirichlet problem is defined, γab does not have to be regular

there, so this does not have to be the horizon in the standard sense. Now let us consider a

sequence of h̄ whose time-like eigenvalue approaches zero. Equivalently, an eigenvalue of H

(which we will denote as h0) goes to zero. At h0 = 0, h̄ describes a null hypersurface and

ΣIR becomes a horizon for the metric between ΣIR and ΣUV. We thus define the h0 → 0

limit as the hydrodynamic limit.

In this limit, we have

detH → h0SdetH, zc → −1

2
log h0 +

1

2(d− 1)
log SdetH (3.31)

2The overall minus sign has to do with our choice of orientation of bulk manifold.
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where SdetH denotes the non-vanishing subdeterminant of H and can be written as

SdetH = pd−1

(

TrH,TrH2, · · ·
)

(3.32)

where pd−1 is the standard polynomial which expresses the determinant of a non-singular

(d−1)×(d−1) matrix in terms of its trace monomials. From (3.25) and (3.29) we thus find

e−dτ0 → 1

4
(SdetH)

d
2(d−1) , uh − τ → 0 (3.33)

and the action (3.27) becomes

IUV = −(d− 1)

∫

ddx
√−g (SdetH)

d
2(d−1) (3.34)

= −(d− 1)

∫

ddσ
√−ḡ (SdetH)

d
2(d−1) . (3.35)

3.4 Entropy current

Here we discuss the geometric meaning of SdetH and (3.35). Denote the null eigenvector

of h̄ by ℓa, which give rises to a congruence of null geodesics which generate the null

hypersurface. We can then choose a set of coordinates (v, ξi) on ΣIR with v the parameter

along the null geodesics generated by ℓa and ξi remaining constant along geodesics. In this

basis, we then write the metric on ΣIR as

ds2ΣIR
= h̄abdx

adxb = σij(v, ξ)dξ
idξj, h̄ab = σij

∂ξi

∂xa
∂ξj

∂xb
, i = 1, 2, · · ·n, n ≡ d− 1 .

(3.36)

It then follows that

SdetH = det(αijσjk) = detσ detα−1 (3.37)

where α−1 is defined as

(α−1)ij ≡ αij = ḡµνEi
µE

j
ν , Ei

µ ≡ ∂ξi

∂xa
Ja

µdσ
µ =

∂ξi

∂σµ
. (3.38)

We thus find that
√
SdetH can be written as horizon area density

√
σ normalized by the

“area density” of the pull back of boundary metric ḡ to ΣIR.

The physical meaning of
√
SdetH can be better elucidated if instead we pull back all

quantities to the boundary. We now show that it can be interpreted as a definition of

(non-equilibrium) entropy density of the boundary system.3 For this purpose, consider the

area form on the ΣIR which can be written as

a =
√
σ dξ1 ∧ dξ2 ∧ · · · ∧ dξn . (3.39)

Note that the horizon area
√
σ has no physical meaning itself in the boundary theory as its

definition depends on a choice of local basis. It does become a physically meaningful quan-

tity when we pull it back to the boundary via the relative embedding map Ja
µ introduced

in (2.14). More explicitly,

a =
√
σE1 ∧ E2 ∧ · · · ∧ En, Ei = Ei

µdσ
µ . (3.40)

3The construction below is similar to the construction of entropy current in fluid/gravity [12, 27].
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From (3.40) we can define a current which is the Hodge dual of a on the boundary

jµ = ǫµν1···νnaν1···νn =
1

n!
ǫµν1···νnǫi1···inE

i1
ν1 · · ·Ein

νn (3.41)

where ǫµν1···νn is the full antisymmetric tensor for ḡ and ǫi1···in is that for σij. Similarly, it

is natural to pull back the null vector ℓa to the boundary, giving

uµ = (J−1)µaℓ
a, ḡµνu

µuν = −1 (3.42)

and we have chosen a convenient normalization for uµ. By construction, jµ is parallel to

uµ and we can then write

jµ = suµ, s2 = −jµjµ . (3.43)

From (3.41), we find that

s =
√

det(αijσjk) =
√
SdetH . (3.44)

We will interpret uµ as the velocity field of the boundary theory, jµ (divided by 4GN )

as the entropy current, and s (divided by 4GN ) as the local entropy density. All these

quantities are independent of choice of local coordinates on ΣIR. We also stress that their

definitions do not depend on the derivative expansion and thus should apply to all orders.

With this understanding the action (3.35) can be written as

IUV = −
∫

ddσ
√−ḡ ǫ(s) . (3.45)

where

ǫ(s) = (d− 1)s
d

d−1 (3.46)

has precisely the scaling of the local energy density as a function of entropy density for

a conformal theory. From the perspective of evaluating the bulk action it can also be

understood as follows: the bulk integration in (2.32) can be interpreted as giving the free

energy while the Gibbons-Hawking term at the IR hypersurface becomes equal to entropy

times temperature in the horizon limit. Their sum then gives the energy of the system.

3.5 Hydrodynamical action and volume-preserving diffeomorphism

We now impose that the system is non-dissipative, which amounts to requiring that the

entropy current (3.41) is conserved

∇̄µj
µ = 0. (3.47)

where ∇̄ is the covariant derivative for ḡ. The above equation can also be written equiva-

lently in various different ways in terms of horizon quantities. In terms of the horizon area

form (3.39),

da = 0 (3.48)

or area density

∂v detσ = 0 → detσ = detσ(ξ) . (3.49)
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i.e. the horizon area is independent of the horizon “time” v. Note that the form of the

metric (3.36) is preserved with a v-independent coordinate transformation

ξi → ξ′i(ξ) (3.50)

which can be used to set

detσ = 1 → SdetH = detα−1. (3.51)

We thus see that with non-dissipative boundary condition at zeroth order the horizon

metric completely decouples in the hydrodynamical action, and we find

IUV = −(d− 1)

∫

ddσ
√−ḡ

(

detα−1
)

d
2(d−1) , (α−1)ij = ḡµν∂µξ

i∂νξ
j (3.52)

which is precisely that of [23, 24] applied to a conformal theory.

After fixing (3.51), there are still residual volume-preserving diffeomorphisms in ξi,

which played an important role in the formulation of [23, 24]. Here they arise out of

a subgroup of horizon diffeomorphisms which leave “gauge fixing condition” (3.51) and

the coordinate frame (3.36) invariant. If the non-dissipative horizon condition (3.49) can

be consistently imposed to higher orders in derivative expansion, we should expect the

resulting higher order action to respect the volume-preserving diffeomorphisms. As we

will see in section 4, however, at second order we encounter divergences, which implies

that (3.49) can no longer be consistently imposed for unconstrained integrations of Xa.

3.6 More on the off-shell gravity solution

Here we elaborate a bit further on the off-shell gravity solution (3.13). First let us collect

various earlier expressions. After integrating out τ , with (3.28) and (3.29) the off-shell

metric (3.13) can be written as

γ = ge−2u
(

1− α2e2du
)

2
d
e

z(u)
zc

log Ĥ (3.53)

where we have introduced

z(u) = log

(

1 + αedu

1− αedu

)

= −log tanh
d

2
(uh − u) = tanh−1 αedu . (3.54)

Also recall that

e−dτ =
√
detH cosh2

zc

2
, α = e−duh =

1

2

√
detH sinh zc, ∆ ≡ d(uh−τ) = − log tanh

zc

2
.

(3.55)

With a general regular h̄, the solution when extrapolated to the “horizon” uh is sin-

gular. This is perfectly okay as physically the behavior of the metric outside the region is

of no concern to us. We will now show that if we do require the extrapolated metric to

be also regular at the “horizon” u = uh, i.e. u = uh becomes a genuine horizon, then we

recover the standard black brane solution. Of course this also implies that h̄ has to take a

very specific form.
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We now impose a “regularity” condition: γab has only one eigenvalue approaching

zero as the horizon is approached with the other eigenvalues finite. Near the horizon,

δ ≡ d(uh − u) → 0 with

z(u) → − log
δ

2
→ +∞ . (3.56)

Denoting the eigenvalues of log Ĥ and g−1γ as b̂µ and γµ respectively, from (3.53) we then

have

γµ → e−2uh(2δ)
2
d

(

δ

2

)− b̂µ

zc

. (3.57)

If we denote the time-like eigenvalue of g−1γ by γ0 and the rest by γi, the regularity

condition amounts to that γ0 goes to zero while all γi finite. Requiring γi to be finite

implies that

b̂i =
2zc
d

= −2

d
log tanh

∆

2
≡ b, b̂0 = −2(d− 1)

d
zc = −(d− 1)b (3.58)

where the second equation follows from that log Ĥ is traceless. We thus find that the

system has to be isotropic!

Denoting the time-like eigenvector vector of Ĥ as ℓa, from (3.58) we can write Ĥ as

Ĥa
b = (d− 1)bℓaℓb + b(δab + ℓaℓb) (3.59)

where we have defined

ℓa = gabℓ
b, ℓaℓa = −1 . (3.60)

Plugging (3.59) into (3.53) we then find that

γab = Cρ
4
d

(

gab + ρ−2ℓaℓb
)

(3.61)

with

C = e−2uh2
4
d , ρ(u) = cosh

d(uh − u)

2
. (3.62)

This is precisely the black brane metric and ℓa is the null vector of the horizon hypersurface.

Consider an arbitrary basis of vectors Eia which are orthogonal to ℓa, we can expand

gab = −ℓaℓb + αijEiaEjb (3.63)

h̄ab = −h0ℓaℓb + σijEiaEjb (3.64)

then equation (3.59) implies that

σikαkj = cδi
j (3.65)

where αij is the inverse of αij and c is some constant. In other words, regularity condition

fixes h̄ in terms of g up to two constants c and h0. uh and τ can be expressed in terms of

c and h0 as

eduh =
4c1−

d
2

c− h0
, edτ =

4c1−
d
2

(
√
c+

√
h0)2

. (3.66)

Given that ℓa is the null vector of the horizon and we can choose basis Eia in (3.63) to

be that in (3.36) (with i index raise and lowered by α) and then αij of (3.63) then coincides

that in (3.38), and thus the same notations. Similarly in the horizon limit h0 → 0, and σij

of (3.64) is related to σij in (3.36) by raising and lowering using α.
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4 Generalization to higher orders

In this section we discuss computation of IUV to higher orders in the derivative expansion.

We first briefly outline the general structure of higher order calculations and then mention

some results at second order.

4.1 Structure of derivative expansions to general orders

Assuming h̄, ḡ and Xa are slowly varying functions of boundary spacetime variables, we

can expand γab, the extrinsic curvature K, and τ in the number of boundary derivatives, i.e.

γ = γ0 + γ2 + · · · , K = K0 +K2 + · · · , τ = τ0 + τ2 + · · · . (4.1)

where γ0,K0, τ0 (which we already worked out) contain zero boundary derivatives of

ḡ, h̄, Ja
µ = ∂µX

a, whereas γ2,K2, τ2 contain two boundary derivatives, and so on. One

can readily see that there is no first order contribution, as the equations for the saddle

point (2.37) and (2.38) do not have first order terms, and neither does the action (2.32).

The final hydrodynamical action (1.7) will receive first order contributions as the IR

contribution ΨIR will contain first order terms, which will communicate via matching to

ΨUV at the stretched horizons through equations for h̄1 and h̄2.

Let us first look at the dynamical equations (2.37) which under decomposition (3.5)

can be written as

d− 1

d

(

K ′ +
1

2
K2

)

= −Λ− 1

2
TrK2 +

d− 2

2d
(d)R, (4.2)

K
′ +KK = R− 1

d
(d)R (4.3)

where R denotes the matrix of mixed-index Ricci tensor (d)R
a
b. Taking the u derivative

on (4.2) and using (4.2)–(4.3) we find that

K ′′ + 3K ′K + (K2 − d2)K = (d)RK +
d− 2

2(d− 1)
(d)R

′ − d

d− 1
TrRK . (4.4)

Plugging (4.1) into these equations we find at n-th order

K ′′
n + 3K0K

′
n + (3K ′

0 + 3K2
0 − d2)Kn = Sn (4.5)

K
′
n +K0Kn +KnK0 = Pn (4.6)

where sources Sn and Pn contain only quantities which are already solved at lower orders.

Note that Pn is a traceless matrix. Parallel to earlier zeroth order manipulations, the

integration constants in Kn will need to satisfy a constraint from (4.2)

d− 1

d

(

K ′
n +K0Kn

)

+TrK0Kn = Bn (4.7)

where Bn again contains only quantities solved at lower orders. Thus once we have solved

the nonlinear equations at the zeroth order, higher order corrections can be obtained by

solving linear equations. In particular, at each order the homogeneous part of the linear
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equations are identical with only difference being the sources. This aspect is very similar

to the structure of equations in the fluid/gravity approach [10]. For completeness we give

explicit expressions of various sources Sn, Pn, Bn in appendix B.

Similarly at n-th order the τ equation of motion (2.28) becomes

TrK0Kn −K0Kn = Yn (4.8)

where the left hand side should be evaluated at zeroth order solution τ0 and Yn again

depends only on lower order terms. For example at 2nd order it can be written as

Y2 = −1

2
(d)R2 +

(

DaK0 −DbKba
0

) ∂τ0

∂xa
. (4.9)

Note that τn does not appear in (4.8) as ∂u(Eu
u)0 = 0.

4.2 Non-dissipative action at second order?

We have carried out the evaluation of IUV to second order. The full results are rather com-

plicated and will be presented elsewhere. Here we will only mention results relevant for

the following question: can we find boundary conditions for h̄ at the horizon which allow

us to derive a non-dissipative hydrodynamical action to 2nd order in boundary deriva-

tives? Mathematically this requires that in taking h̄ to be null, IUV[h̄, ḡ, X
a] should have

a well-defined limit and furthermore h̄ will either decouple (as in the zeroth order) or be

determined in terms of ḡ and Xa, with Xa unconstrained. There are many reasons not to

expect this to happen. After all, the holographic system we are working with has a nonzero

shear viscosity, and things will eventually fall into horizon after waiting long enough time.

Nevertheless it is instructive to work this out explicitly. Note that ideal fluid action of [23]

has been generalized to second order in derivatives in [24, 28] based on volume-preserving

diffeomorphisms.

For simplicity we will take ḡµν = ηµν . We find that in taking the horizon limit ∆ ≡
d(uh − τ) → 0, IUV develops various levels of divergences in terms of dependence on ∆:

1. The most divergent terms have the form

L(2)
UV ∼ tr log2 σ̂

∆3

(

1

log2∆
+

1

log3∆
+ · · ·

)

(4.10)

where σ̂ is traceless part of σi
j = αikσkj, and we have suppressed other finite constant

coefficients. Interestingly all these divergences go away if we impose the regularity

condition (3.65) at the horizon which is equivalent to

tr log2 σ̂ = 0 . (4.11)

2. The next divergent terms are of the form

L(2)
UV ∼ ∂µj

µ

(

1

∆2
+

1

∆

)

(4.12)

where jµ is the entropy current (3.43). Thus they vanish if we impose the non-

dissipative condition

∂µj
µ = 0 . (4.13)
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3. Finally, we have the logarithmic divergence of the form

L(2) = −1

d
23−

4
d e(2−d)uhΣ2 log∆ +O(∆0) (4.14)

where

Σµν = PµρPνσ∂
(ρuσ) − 1

d− 1
∂ρu

ρPµν , Pµν = ηµν + uµuν . (4.15)

For this divergence to disappear, one then needs

Σ2 = 0 (4.16)

i.e. the system is shear free. Note that the divergence in (4.14) is proportional to Σ2,

which is precisely the rate of increase of the horizon area.4

If we want to have unconstrained Xa, the shear-free condition (4.16) cannot be con-

sistently imposed. Thus it appears not possible to generalize the non-dissipative horizon

condition to obtain a second order non-dissipative action. As mentioned at the beginning

of this subsection, this is hardly surprising. In particular, the specific divergence structure

of (4.14) implies that we must take account of dissipation.

We should note that in the full Schwinger-Keldysh program (1.7) outlined in the intro-

duction, there is no need to impose any of the above conditions (4.11), (4.13) and (4.16).

The divergences will cancel with those from ΨIR after we do a consistent matching at

the stretched horizons. Also, the divergences mentioned above are not due to the use of

Gaussian normal coordinates, which of course become singular themselves at the horizon.

Similar divergences also occur in Eddington-Finkelstein coordinates. Being off-shell means

that there are necessarily both in-falling and out-going modes at the horizon (which will

further be magnified by nonlinear interactions) which will lead to divergences also in the

Eddington-Finkelstein coordinates.

Finally, for completeness, let us mention that if we do impose all of (4.11), (4.13)

and (4.16), we obtain a simple result

L(2) = 21−
4
d e(2−d)uh

[

2

d− 1
θ2 − (d− 2)β2 − 2aµβµ

]

, (4.17)

where

θ = ∂µu
µ, βµ = Pµν∂

νuh, aµ = uν∂νu
µ. (4.18)

The second order Lagrangian (4.17) is subject to the ambiguity in the field redefinition

ξi → ξi + δξi (4.19)

which we fix by using the zeroth order equation of motion

Pµν∂νuh = uν∂νu
µ. (4.20)

4To see this explicitly, one need to study the Raychaudhuri equation associated with the null congruence

ℓ
a on the horizon. In particular, one may need to put on shell the contraction of the Einstein equation with

ℓ
a at this order. See [29] for details.
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to express βµ in terms of aµ. Eq. (4.17) can then be simplified to

L(2) = 21−
4
d e(2−d)uh

[

2

d− 1
θ2 − da2

]

. (4.21)

We should emphasize that due to various conditions imposed at the horizon, the nature

of the above “action” is not clear at the moment. To derive a genuine off-shell action

for one patch we should first compute the full action for both segments of the Schwinger-

Keldysh contour, and then integrate out modes of the other patch. At second order this

“integrating-out” procedure likely does not make sense in the presence of dissipation. Even

if this procedure makes sense after suppressing dissipation, it is not clear how our current

prescription of imposing regularity and non-dissipative conditions relates to that.

5 Conclusion and discussions

In this paper we outlined a program to obtain an action principle for dissipative hydrody-

namics from holographic Wilsonian RG, and then developed techniques to compute IUV, as

defined in (1.5), at full nonlinear level in the derivative expansion. The “Goldstone” degrees

of freedom envisioned in [22] arise naturally from gravity path integrals, and the ideal fluid

action of [23] emerges at zeroth order in derivative expansion when non-dissipative condition

is imposed at the horizon. The volume-preserving diffeomorphisms of [23] appear here as a

subgroup of horizon diffeomorphisms. We also found that a direct generalization of the non-

dissipative condition to higher orders does not appear compatible with the action principle.

An immediate generalization of the results here is to compute ΨIR of (1.3) which will

enable us to take into account of dissipations.

In our discussion we have ignored possible corrections from Jacobian in the change

of variables in going from (2.2) to (2.8), as well as higher order corrections in the saddle

point approximation of gravity path integrals. Such corrections are suppressed at leading

order in the large N limit of boundary systems. Nevertheless, they may be important for

understanding the general structure of the hydrodynamical action, thus it would be good

to work them out explicitly and explore their physical effects.

It would be interesting to generalize the results to more general situations, such as

charged fluids, fluids with more general equations of state (for example [30]), systems with

anomalies (such as those considered in [31–33]), or higher derivative gravities.
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A Boundary term

A.1 Boundary compatible with foliation

Consider a spacetime M with a boundary ∂M . Suppose ∂M is a slice of a foliation of M by

hypersurfaces Σu. We denote the outward normal vector to Σu by nM . The Gauss-Codazzi

relation gives

R = (d)R+ (K2 −KMNKMN )− 2∇M (nM∇NnN − nN∇NnM ) (A.1)

where (d)R is the intrinsic scalar curvature of Σu and KMN is the extrinsic curvature for

Σu with

K = ∇MnM . (A.2)

Now let us consider

S =

∫

M

dd+1x
√−g (R− 2Λ) +

∫

∂M

ddx
√
−h 2K (A.3)

and apply the Stokes theorem to the last term of (A.1)

−2

∫

M

dd+1x
√−g∇M (nM∇NnN − nN∇NnM )

= −2

∫

∂M

ddx
√
−hnM (nM∇NnN − nN∇NnM )

= −2

∫

∂M

ddx
√
−h∇MnM (A.4)

which then directly cancels the Gibbons-Hawking term. In this case we thus find that

S =

∫

M

dd+1x
√−g

[

(d)R+ (K2 −KMNKMN )
]

. (A.5)

A.2 Boundary incompatible with foliation

Here we will consider an explicit example with a spacetime metric

ds2 = du2 + γab(u, x
a)dxadxb . (A.6)

We further consider a foliation of the spacetime by hypersurfaces Σu specified by u = const.

Denote the normal vector field to Σu by nM , which can be written as

nM = (1, 0), nM = (1, 0) . (A.7)

The extrinsic curvature for Σu can be written as

Kab =
1

2
∂uγab, K =

1

2
γab∂uγab . (A.8)

The Gauss-Codazzi relation gives

R = (d)R+ (K2 −KMNKMN )− 2∇M (nM∇NnN − nN∇NnM ) (A.9)
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where (d)R is the intrinsic scalar curvature of Σu. Now suppose the spacetime region M has

a boundary ∂M which does not coincide with one of Σu. More explicitly, we specify ∂M by

u = τ(xa) (A.10)

for some function τ(xa). The outward normal vector to ∂M can thus be written as

ℓM = n(1,−∂aτ), ℓM = n(1,−∂aτ), n =
1√

1 + ∂aτ∂aτ
, ∂aτ ≡ γab∂bτ . (A.11)

The extrinsic curvature of ∂M is given by

K|∂M =
1√−γ

∂u(n
√−γ)− 1√−γ

∂a(n
√−γ∂aτ)

= nK + n
3Kab∂

aτ∂bτ − nD2τ + n
3∂aτ∂bτDaDbτ (A.12)

where we have used (A.8) and all indices and covariant derivatives are defined with respect

to hab = γab(τ(x), x
a).

The induced metric on ∂M is given by

h̄ab = hab + ∂aτ∂bτ . (A.13)

Note the relations

hab = h̄ab +
1

n
2
∂̄aτ ∂̄bτ, ∂̄aτ ≡ h̄ab∂bτ = n

2∂aτ,
√
−h = n

√

−h̄, n =
√

1− ∂̄aτ∂aτ

(A.14)

and (A.12) can also be written as

K|∂M = nK +
1

n

Kab∂̄
aτ ∂̄bτ − 1

n

D̄2τ . (A.15)

Now combining the boundary term in (A.1) and the Gibbons-Hawking term we find

that

Sbd = 2

∫

∂M

ddx
√

−h̄K|∂M − 2

∫

∂M

ddx
√
−hK

= 2

∫

ΣIR

ddx
√

−h̄
1

n

((

h̄ab(∂̄τ)2 − ∂̄aτ ∂̄bτ
)

Kab − D̄2τ
)

. (A.16)

B Explicit expressions of sources

Here we give explicit expressions of various sources introduced in section 4.1

Bn =
d− 2

2d
(d)Rn − 1

2

n−2
∑

i=2

TrKiKn−i −
d− 1

2d

n−2
∑

i=2

KiKn−i (B.1)

Pn = Rn − 1

d
(d)Rn −

n−2
∑

i=2

KiKn−i (B.2)

Sn = Jn − 3
n−2
∑

i=2

K ′
iKn−i −

n−2
∑

i,j=0′

KiKjKn−i−j (B.3)

Jn =
n−2
∑

i=0

Ki
(d)Rn−i +

d− 2

2(d− 1)
(d)R

′
n − d

d− 1

n−2
∑

i=0

TrKiRn−i . (B.4)
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Note that in the last term of (B.3), the sum should not include the term with i = j = 0

(which is denoted using a prime). Also note the relation

Sn =
d

d− 1

(

B′
n + 2K0Bn − TrK0Pn

)

. (B.5)
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