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Abstract Emerging contaminants in wastewater and sew-
age sludge spread on agricultural soil can be transferred to
the human food web directly by uptake into food crops or
indirectly following uptake into forage crops. This study
determined uptake and translocation of the organophos-
phates tris(1-chloro-2-propyl) phosphate (TCPP) (log Kow

2.59), triethyl-chloro-phosphate (TCEP) (log Kow 1.44),
tributyl phosphate (TBP) (log Kow 4.0), the insect repellent
N,N-diethyl toluamide (DEET) (log Kow 2.18) and the plas-
ticiser N-butyl benzenesulfonamide (NBBS) (log Kow 2.31)
in barley, wheat, oilseed rape, meadow fescue and four
cultivars of carrot. All species were grown in pots of agri-
cultural soil, freshly amended contaminants in the range of

0.6–1.0 mg/kg dry weight, in the greenhouse. The biocon-
centration factors for root (RCF), leaf (LCF) and seed (SCF)
were calculated as plant concentration in root, leaf or seed
over measured initial soil concentration, both in dry weight.
The chlorinated flame retardants (TCEP and TCPP) dis-
played the highest bioconcentration factors for leaf and seed
but did not show the same pattern for all crop species tested.
For TCEP, which has been phased out due to toxicity but is
still found in sewage sludge and wastewater, LCF was 3.9 in
meadow fescue and 42.3 in carrot. For TCPP, which has
replaced TCEP in many products and also occurs in higher
residual levels in sewage sludge and wastewater, LCF was
high for meadow fescue and carrot (25.9 and 17.5, respec-
tively). For the four cultivars of carrot tested, the RCF range
for TCPP and TCEP was 10–20 and 1.7–4.6, respectively.
TCPP was detected in all three types of seeds tested (SCF,
0.015–0.110). Despite that DEET and NBBS have log Kow

in same range as TCPP and TCEP, generally lower biocon-
centration factors were measured. Based on the high trans-
location of TCPP and TCEP to leaves, especially TCPP, into
meadow fescue (a forage crop for livestock animals), ongo-
ing risk assessments should be conducted to investigate the
potential effects of these compounds in the food web.
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Introduction

Food safety is an important global issue receiving high
priority worldwide. Transfer of contaminants from soil,
water and air to the food chain is one aspect of food safety,
and identification of sources, transfer pathways and
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environmental residue levels of emerging contaminants are
attracting great attention. For instance, pharmaceuticals,
musk compounds and organophosphates up to micrograms
per liter or milligrams per kilogram dry weight (dw) have
been be found in water or sewage sludge (Calderón-
Preciado et al. 2011; Lee et al. 2010; Muñoz et al. 2009;
Reemtsma et al. 2006). Residue levels in waste water and
sewage sludge for selected emerging contaminants studied
in the present work is summarized in Table 1 (Glassmeyer et
al. 2005; Green et al. 2008; Huppert et al. 1998; Leonards et
al. 2011; Marklund et al. 2005; Nakada et al. 2006; Terzic et
al. 2008).

Contaminants can be transported to soil via several
routes. Manure and sewage sludge are used as fertilisers
and soil conditioner on agricultural soils while effluent from
wastewater treatment plants (WWTPs) is used for irrigation.
In addition, manure and sewage are used to manufacture
commercial mature compost and soil-based growing
mediums, which are commonly used in domestic gardens.
Sewage sludge and wastewater are known to contain a large
mixture of different legacy and emerging contaminants in-
cluding high-volume human pharmaceuticals and personal
care additives, e.g. review by Harrison et al. (2006) and
detected in different screening projects (Calderón-Preciado
et al. 2011; Díaz-Cruz et al. 2009; Duarte-Davidson and
Jones 1996; Kolpin et al. 2002; Muñoz et al. 2009), while
manure can contain residues of veterinary pharmaceuticals
from medication of livestock animals (Campagnolol et al.
2002; Furtula et al. 2010; Kolpin et al. 2002; Zhao et al.
2010). Examples of such compounds which also are found
to be taken up by plants are galaxolide, tonalide, triclosane,
enrofloxacin, carbamazepine, metformin and trimethoprim
(Boxall et al. 2006; Eggen and Lillo 2012; Macherius et al.
2012; Migliore et al. 2003).

Emerging contaminants are new substances found or
expected to be found in the environment and which may
have potential toxic effects but yet not regulated due to lack
of persistent, toxicity and bioaccumulation data. Many of
these compounds are additives used widely in everyday
industrial and household products, such as flame retardants
for textiles and other products, surface-active substances
used as detergents or water and oil repellent products, fra-
grances used in hygienic, cosmetic and cleaning products
and plasticisers used in products such as toys and food
containers (Eriksson et al. 2003; Goldman 1998; Marklund
et al. 2003; Slack et al. 2005). Emerging contaminants cover
a wide range of properties, and unlike many legacy organic
hydrophobic contaminants (e.g. persistent organic pollu-
tants), many of these new compounds tend to be more polar
and water-soluble but are still persistent in the environment.

Chemical substances recognised as an environmental or
human threat are phased out and replaced with less hazard-
ous substances. For instance, triethyl-chloro-phosphate

(TECP) has been phased out in Europe (Andresen et al.
2004) due to its toxicity (European Commission 2009;
WHO World Health Organization 1998). However, tris(1-
chloro-2-propyl) phosphate (TCPP), which has replaced
TCEP in many products (Quednow and Püttmann 2009),
is also considered to be potentially carcinogenic and is
undergoing a health and environmental risk assessment
(European Commission 2008). In addition, the detergent
tributyl phosphate (TBP), the insect repellent N,N-diethyl
toluamide (DEET), which is widely used in consumer prod-
ucts such as anti-mosquito agents or certain types of sports-
wear, and the plasticiser N-butyl benzenesulfonamide
(NBBS) are all emerging contaminants that are being eval-
uated for their potential environmental and human health
risks (Aronson et al. 2011; OECD April 2001; Strong et al.
1991).

Transport of water and solutes, including contaminants,
from soil via plant roots to aboveground compartments is
driven by the water potential gradient created by plant
transpiration (McFarlane 1995). It has been shown that
many of the legacy and less hydrophilic organic pollutants,
e.g. polychlorinated biphenyls, dichlorodiphenyltrichloro-
ethane and its metabolites, polyaromatic hydrocarbons and
dioxins, can be taken up from the soil via roots (Inui et al.
2008b; White 2010; Whitfield-Åslund et al. 2008; Zohair et
al. 2006). However, except for some plant species-
dependent difference for instance for Vivica cracca (Ficko
et al. 2010) and certain varieties of Cucurbita pepo ssp
(pumpkin and zucchini) (White 2010; Whitfield-Åslund et
al. 2008), uptake of these compounds via roots is general
low. Due to their higher polarity, the emerging compounds
might have a greater capability to be taken up by plant roots
and further translocated within plants. However, knowledge
of if and how they transfer into the terrestrial food web is
still scarce. Many polar emerging contaminants have a high
potential to pass through treatment processes commonly
used for landfill leachates or in WWTPs and can thus be
detected in effluents and the environment (Nakada et al.
2010). Thus, more knowledge of environment–food web
transfer of such compounds is important.

In recent decades, a number of plant uptake models
ranging in scope from simple steady-state equations with
one input parameter to compartment models containing
several dynamic uptake, intra-plant processes and input
parameters have been established to predict uptake of com-
pounds (Briggs et al. 1982; Chiou et al. 2001; Dettenmaier
et al. 2009; Rein et al. 2011; Ryan et al. 1988; Trapp 2000).
However, in order to verify or adjust existing uptake models
for emerging contaminants, experimental or controlled field
data are needed.

The main objective of the present work was to com-
pare uptake and translocation of selected polar and
semipolar emerging organic contaminants with different
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structures and properties in an experimental growth
study using different high-volume and agriculturally im-
portant crop plants. This is important knowledge related
to human health risk assessments where transfer of
contaminants from soil to edible plant compartments is
included. Verification of the experimental data in dy-
namic plant uptake models was performed in a separate
study (Trapp and Eggen, in press Environmental Science
and Pollution Research). The crop plants included in
the study were cereals (barley, Hordeum vulgare; wheat,
Triticum aestivum), a grass forage (meadow fescue,
Festuca pratense), oily rape seed (Brassica rapa) and
root vegetable (carrot, Daucus carota). The emerging
organic contaminants analysed were: the flame retard-
ants TCPP and TECP, the detergent TBP, the plasticiser
NBBS, and the insect repellent DEET. A summary of
the main structure and chemical and physical properties
of these five substances at relevant pH is presented in
Table 2. In order to compare uptake and translocation of
contaminants in different plant species and organs, it is nec-
essary to apply soil concentration which is analytical

measurable. Thus, clean soil with artificial added contami-
nants was used as experimental approach.

Materials and methods

Plant uptake experiment

The study was a greenhouse pot experiment conducted at
Bioforsk Vest Særheim between December 2008 and April
2009. A detailed description of the experimental procedure
is given elsewhere (Eggen et al. 2011), and it is only briefly
summarised below.

Soil characterisation

Loamy sand soil from an agricultural field in West Norway
was sieved (<4 mm) and mixed with a controlled-release
fertiliser (3 g/kg soil, Multicote 4, (N/K/P) 15:7:15 (2+) TE,
Haifa Chemicals Ltd.) using a cement mixer for approxi-
mately 10 min. The soil had 0.7 gkg−1 total organic carbon,

Table 2 Selected physico-chemical properties of the test compounds used in the present study

Test compound 
and application Structure (at pH 5.5) MW log Kow

Half-life 
in soil 

(d) 

Henry's Law 
constant   
(atm-m3

mole-1)  

Water 
solubility  

(mg/L)

Polaris-
abilityd

(Å3) 

Electron 
Affinityd

(eV) 

Electro-
negativityd

(eV) 

Tris(2-Chloroethyl) 
Phosphate (TCEP). 
Flame retardant 

115-96-8 285.5 1.44 exp a 120 est b 3.29E-06 est 
25°C a

7000 exp 
25°C a 21.72 1.992 6.494

Tris(1-chloro-2-
propyl) phosphate 
(TCPP). 
Flame retardant 

13674-84-5 327.6 2.59 exp a 120 est b 5.96E-08  
est 25°C a 

1200 exp 
25°C a

Tributyl phosphate 
(TBP). 
Detergent 

126-73-8 266.3 4.00 exp a 17 est b 1.41E-06 est 
25°C a

280 exp 
25°C a 26.836 1.242 5.805 

N.N-diethyl 
toluam ide (DEET). 
Insect repellent 

134-62-3  191 2.18 exp a,c 75 est b 2.08E-08 est 
25°C a

912 est 
25°C a

P

O

O

H 3 C

O

CH 3

O

CH 3

P OO

O

O

H 3C

H 3C

H 3C

Cl

Cl

Cl

N-butyl 
benzenesulfon-
amide (NBBS). 
Plasticiser 

3622-84-2  213.3 2.31 est b,c 30 est b  2.17E-06 est 
25°C b

398 est 
25°C b

27.293 1.916 6.394

23.843 0.157 4.63

21.199 0.763 5.451

 CAS-no.

aExp0experimental data and est0estimated data from ChemIDPlus Advanced http://chem.sis.nlm.nih.gov/chemidplus/chemidheavy.jsp
b Estimated values calculated by EpiSuite 4.xr SRC Interactive PhysProp Database Demo http://www.syrres.com/what-we-do/databaseforms.aspx?
id0386
c Compounds are dissociable but at the relevant pH range they exist as neutral compounds
d Calculated properties with the software Cache, Fujitsu Limited
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pH 6.0 (v/v01:2.2) and cation exchange capacity of
46.6 mmolc kg

−1.

Test compounds

The selected test substances were TCPP, TECP, TBP, DEET
and NBBS. All organophosphates were supplied by Chiron
AS, Trondheim, Norway, and DEET and NBBS by Sigma-
Aldrich, Norway, with purity better than 98 % for all
compounds.

Spiking procedure

Stock solutions of the test compounds (40 mg/mL) were
dissolved in acetone (approximately 5–10 mL). One milli-
litre stock solution was then diluted in 50 mL distilled water
(all test compounds added together), after which it mixed
thoroughly by hand with 4.0 kg dw soil and added to each 4-
L pot. Each pot was prepared separately. The nominal esti-
mated concentration of test compound in each pot was 1 mg/
kg. Soil samples were taken directly after spiking and stored
at 4 °C, approximately 3 weeks, until analysis to determine
the actual initial soil concentration.

Selected plants and growth conditions

The selected plant species are all important crop or forage
plants: barley (H. vulgare cv. Edel) (root, leaf, grain); wheat
(T. aestivum cv. Bjarne) (grain); and meadow fescue (F.
pratense cv. Fure) (root, leaf); oilseed rape (B. rapa cv.
Valo) (seed); and four carrot cultivars (D. carota ssp. sativus
cvs): Napoli (root and leaf), Amagar (root), Nutri-Red (root)
and Rothild (root). Barley, meadow fescue and carrot cv.
Napoli were chosen as model-plants, and all plant compart-
ments were analysed. Only the edible compartments were
analysed in the other plant species.

The solvent (acetone) residues in soil were allowed to
evaporate for 3 days before seeds were sown. The number of
plants per pot, selected based optimal biomass of plants in
4 L pots, was 5, 7, 10, 10 and 20, for carrot, barley, rape,
wheat and fescue, respectively. After germination, growth
conditions were set to 20/14 °C (day/night) and 16 hday
length. The pots (individual trays) were irrigated when
necessary to keep them moist, as least once a day, with
water fertilised to electrical conductivity 1.5 mS/cm and
pH 7.4. Control pots without test compounds were grown
for all plant species. All treatments were conducted in
triplicate.

Harvesting

Both control and exposed plant materials were harvested
when mature or ripe (after 2–3 months). Leaf was cut while

root still was in the pots. Roots were carefully washed in tap
water. All plant materials were dried (1 day at 50ºC, 2 days
at 40 °C) (controls and exposed material in separate ovens to
prevent cross-contamination) immediately after harvesting
and stored in paper bags at room temperature until analysis,
approximately 3 weeks. Biomass of the plant compartments
root and leaf in each pot was weighed before and after
drying. A small test to compare concentration levels in dried
and not-dried seeds (n03) was performed to check for
significant evaporation during the drying processes (data
not shown).

Analytical methods

Sample preparation followed the QuEChERS (quick,
easy, cheap, effective, rugged and safe) method
(Lehotay et al. 2005). In brief, plant and soil samples
were spiked with 2-brom-biphenyl as an internal stan-
dard and extracted with double-distilled water and ace-
tonitrile. All samples were initially cleaned up with
primary–secondary amine. Further clean-up of seeds
(DSC-18 sorbent) and of carrot, meadow fescue and
barley (Envi-Carb) was performed. The extracts were
analysed using an Agilent 6890 N gas chromatograph
(GC) connected to an Agilent 5973 mass spectrometer
with an inert ion source operated in selected ion mon-
itoring mode. The GC was equipped with a Gerstel
Programmable Temperature Vaporising Injector (Mühlheim
Ruhr, Germany). Separation was performed using a
fused silica J&W Scientific HP-5MSI (0.25 mm i.d.×
30 m) with 0.25 μm film thickness. For details of
sample preparation, analysis and information about re-
tention time, quantification ions and recovery, please
see Table S1 and S2 in the Electronic Supplementary
Material. Except for DEET in meadow fescue leaf and
TBP in carrot root and meadow fescue leaf, the limit of
quantification (LOQ) was set to 0.01 μg/g. In meadow
fescue leaf, the LOQ had to be increased to 0.05 μg/g.
Unfortunately, no LOQ was set at 0.01 ug/g for DEET
in meadow fescue leaf and TBP in carrot root due to
interferences. However, in real samples, the concentra-
tions were relative high (DEET≥0.08 μg/g and TBP≥
0.92 μg/g) and the interferences became insignificant.
All results for plant and soil concentrations were cal-
culated based on dry weight.

Statistical analysis

Differences in concentrations of the compounds between
species were tested using the software PROC GLM in
SAS 9.0 (SAS Institute, Cary, NC, USA) with Ryan or
Ryan–Einot–Gabriel–Welsch Q multiple-comparison test.
For all the tests, the significance level was set at p<0.05.
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Results and discussion

The nominal initial soil concentration was 1 mg/kg, but the
actual measured initial soil concentration (n04, average ±
standard deviation) for TBP, TCEP, TCPP, DEET and NBBS
was 0.62±0.05, 0.85±0.11, 0.72±0.12, 1.00±0.12 and 1.03
±0.12 mg/kg, respectively. The present study sought to
compare root uptake and translocation of different potential
contaminants to leaves and seeds, so it was important to
select an initial soil concentration that was realistic for
detection of the contaminants in plant material, although
potentially higher than a realistic exposure situation. The
initial soil values selected are comparable to those used in
other studies, and spiking of soil is also a commonly used
technique (Boxall et al. 2006; Gao et al. 2005; Winker et al.
2010; Wu et al. 2010). Data on residual levels of emerging
contaminants in sewage sludge, particularly regarding
DEET and NBBS, are scarce, and the concentrations in
sewage sludge can vary widely (Harrison et al. 2006;
Clarke and Smith 2011). Therefore, realistic concentrations
in agricultural soil are actually not known. However, while
many previous studies have been short-term, e.g. hydropon-
ic cultures with incubation commonly up to a few weeks
(Briggs et al. 1982; Murano et al. 2010), the present study
involved plant growth over 17 weeks, providing a more
realistic picture that accounted for concentration dilution
during growth, soil degradation and possible in planta me-
tabolism (Schröder et al. 2007).

Plant uptake and translocation

The bioconcentration factors for root (RCF), leaf (LCF) and
seed (SCF) were calculated as concentration in plant com-
partments (milligrams per kilogram dry weight) over actual
measured initial soil concentration (milligrams per kilogram
dry weight). Despite high variations between species and
cultivars, the concentrations in roots were generally lower
than those in leaves for all test compounds except TBP (log
Kow04) in carrots (Fig. 1a–c). For roots (Fig. 1a), a general
higher uptake in carrots than in barley and meadow fescue
was observed, with TCPP showing particularly high uptake
in carrot (RCF010–20). RCF for TBP and DEET in carrot
was in the range 1.7–4.6 and 0.4–2.3, respectively, while it
was even lower (range, 0.2–0.7) in NBBS and TCEP.

Comparison of RCF between the four cultivars of carrot
revealed a significant (p<0.05) difference for TBP, with
higher levels in cv. Napoli and cv. Nutri Red (RCF, 4.4–
4.6) than those of cv. Amagar and cv. Rothild (1.6–2.5) and
for DEET where cv. Nutri Red was higher than Amagar
(Fig. 1a). However, there was a general trend for the highest
average RCF for all compounds tested to be found in cv.
Napoli and the lowest in cv. Amagar (Fig. 1a). In contrast,
an opposite trend is reported for metformin (a cationic

pharmaceutical) which showed lower RCF in carrot cv.
Napoli than in cv. Amagar, RCF 2 and 10, respectively
(Eggen et al. 2011). The highest measured RCF in barley
and meadow fescue was 1.4 for TBP in barley and 0.9 for
TCPP in meadow fescue, respectively (Fig. 1a). The con-
centration was below the LOQ for NBBS in both plant
species and for TCEP in meadow fescue.

The concentrations in leaves were generally higher than
those in roots and also showed a different pattern for differ-
ent compounds (Fig. 1b). TCEP demonstrated high translo-
cation to leaves, with LCF ranging from 3.9 in meadow
fescue to 26 and 42 in barley and carrot, respectively, while
the RCF was <1 for all three plant species. Ratio leaf/root
TCPP, also with RCF<1 for barley and meadow fescue,
showed significantly higher uptake to leaves of meadow
fescue than barley (LCF 25.6 and 6.4, respectively)
(Fig. 1b). In leaves of carrot cv. Napoli, the concentration
of TCPP was comparable to that in roots (RCF and LCF in
range 10–20). The LCF for DEET ranged from 2.3 to 7.4
(RCF 0.1–2.6), and barley leaves showed significant higher
uptake than meadow fescue and carrot (Fig. 1b). Uptake of
TBP to leaves was low, LCF<1.2, for all three plant species
with no significant differences. NBBS which was not mea-
surable in roots of barley or meadow fescue was detected in
leaves of both barley and carrot cv. Napoli (LCF 0.08–0.5).
The high difference between leaf (average 3.3 mg/kg) and
root (<0.05 mg/kg) for TCEP in meadow fescue (ratio>
1,000 if concentration in root is estimated to half of
LOQ00.025 mg/kg) is the highest root–leaf translocation
in this study. High root–leaf ratio was also observed for
TCEP in barley and carrot (range of 45–75), TCPP in
meadow, barley and carrot and DEET in meadow fescue
(range, 20–30).

The translocation of test compounds to seeds was low,
with only TCPP being detected in wheat, barley and rape
and TCEP in barley and rape (Fig. 1c). The concentration of
TCPP was significantly higher in barley and rape seeds than
in wheat, with SCF 0.110, 0.085 and 0.015, respectively.
The TCEP concentration in rape seeds was significantly
higher than that in barley, with SCF 0.097 and 0.034,
respectively (Fig. 1c).

The control pots were standing close to the exposed pots,
but none of the test compounds were detected above the
LOQ in the control plants except for TCPP in control rape
seeds, in which had concentrations of 0.010–0.014 mg/kg
(compared with 0.060–0.120 mg/kg in exposed pots). TCPP
and TCEP can both occur in indoor and outdoor air samples
(Marklund et al. 2003; Reemtsma et al. 2008), but analysis
of leaves and seeds from control plants showed that the
greenhouse air atmosphere was not a significant source in
the present study. In addition, the Henry’s law constant
values are low for the test compounds (Table 2), and evap-
oration from soil to leaves is not expected. Thus, the results
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for control leaves and seeds support the assumption that root
uptake and translocation was the main transport pathway to
aboveground plant compartments.

A high plant species variation was observed in our study,
e.g. general higher uptake in carrot roots than meadow
fescue and barley, lower uptake of TCEP and DEET in

leaves of meadow fescue than barley, and the opposite
pattern, higher in meadow fescue than barley leaves was
measured for TCPP. A high variation in uptake between
species, or even between cultivars, is not unlikely and has
previously been reported in several studies (Gonzalez et al.
2005; Inui et al. 2008a; Lunney et al. 2004; White 2002;
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Zhang et al. 2009). Suggested explanations for such varia-
tions are differences in quantity and quality of root exudates,
plant composition, root structure, biomass, endophytes pop-
ulations and multi-species interaction (Kelsey and White
2005; Mattina et al. 2006; White et al. 2003a, b) (Khan
and Doty 2011; Li et al. 2012). While the focus in food
safety is to avoid high uptake and translocation to edible
plant compartments, the opposite is the case for phytoreme-
diation. The high translocation of chlorinated organophos-
phates to leaves of carrot, meadow and barley indicate that
species from these plant families might be particularly suitable
for phytoremediation for such compounds (Fig. 1, Table 3).
High translocation to leaves is also reported for sulfolane
(estimated by EPISuit, log Kow −0.24, water solubility
292.8 g/L) to cattail, Typha latifolia, with leaf/root ratio>
150 (Doucette et al. 2005) and for carbamazepine (estimated
by EPISuite, log Kow 2.25, water solubility 17.7 mg/L) to
ryegrass, Lolium perenne (Winker et al. 2010). Since there is
a clear plant species variance for uptake and translocation for
different contaminants, it is necessary to investigate which
plant species is most optimal in each case.

The experimental bioconcentration factors found in this
study indicate that there is not a clear relationship between
log Kow and plant uptake and translocation. Generally, LCF
was higher (20–42) for TCEP (log Kow 1.44) and TCPP (log
Kow 2.59) than for DEET and NBBS (log Kow 2.18 and 2.31,
respectively) (Fig. 1b). Biodegradation influences the envi-
ronmental fate of contaminant compounds and TCEP and
TCPP, both chlorinated compounds, showed the highest
estimated half-lives (Table 2). Thus, since soil biodegrada-
tion rates also influence a compounds’ potential for transfer
to plants, plant uptake models should include degradation
kinetic parameters. In theoretical structure–activity studies,
the polarisability (Å3) of contaminants has been shown to
have a good correlation with various physico-chemical
properties, including bioconcentration factors (Hong et al.
2009; Papa et al. 2007; Staikovaa et al. 2004) and chemico-
biological interactions (Hansch et al. 2003; Karelson and
Lobanov 1996; Verma et al. 2005). The passage of
xenobiotics through endodermic pores in plant roots is
reported to be dependent on chemical polarity and molecular

configuration (van Leeuwen and Vermeire 2007). TCEP and
TCPP also have higher water solubility, electronegativity and
electronaffinity (Heimstad et al. 2001) than the other com-
pounds studied here (Table 2). However, the species-
dependent differences seen in the present study and in several
other studies (Collins and Willey 2009; Eggen and Lillo 2012;
Zhang et al. 2009) indicate complex biological effects that are
not yet understood. For instance, several studies show that both
hydrophobic organic compounds and hydrophilic dissociable
organic compounds can be present in higher concentrations in
roots than in leaves (Herklotz et al. 2010; Migliore et al. 1996),
and a hydrophilic cationic pharmaceutical can be accumulated
in oily rape seeds (Eggen and Lillo 2012). It is important to
reveal regulation of contaminants or emerging contaminants
with potential to high uptake and translocation to edible plant
compartments like carrot, seeds or forage grasses. Today, it is
no regulation or guidelines for emerging contaminants content
in food items.

Growth effects

Plant growth and mortality were visually and quantitatively
measured in terms of decline of plant biomass per pot
(Fig. 2). Comparison of biomass of root and leaf (given as
grams dry weight per pot) grown in control pots and in pot
exposed to a mixture of the investigated emerging contam-
inants is shown in Fig. 2a. Under optimal plant growth
conditions, the root–shoot ratio is quite specific for each
plant species, but a number of external factors, e.g. nutrient
and water supply, can alter this ratio (Marschner 1995). In
the present experiment, no difference in the root/leaf ratio
was observed for exposed meadow fescue and barley com-
pared with the control (Fig. 2b). However, for the carrot cvs.
Napoli and Amagar, the root–leaf ratio was higher in exposed
plants (5.6 and 3.0, respectively) than in control plants (1.6).
No clear differences were seen for the other two carrot cvs.
Rothild and Nutri-Red. The same pattern of higher root–leaf
ratio in cvs. Napoli and Amagar exposed to metformin, cipro-
floxacin and narasin has been reported in a recently published
plant uptake study (Eggen et al. 2011). In addition, root
vegetables, e.g. carrot and radish, have been found to be more

Table 3 Summary of measured bioconcentration factor trends in root (RCF), leaf (LCF) and seed (SCF) for the different test compounds
independent of statistical significance is shown

RCFBarley TBPa>DEETa>TCPPa>TCEPa LCFBarley TCEPa>DEETb>TCPPb~TBPb>NBBSb SCFBarley TCPPa>TCEPb

RCFMeadow TCPPa>TBPb>DEETb LCFMeadow TCPPa>TCEPb>DEETc> ~TBPd,NBBSd SCFWheat TCPP

RCFCarrot-Napoli
and Amagar

TCPPa>TBPb>DEETb>TCEPb≈NBBSb LCFCarrot TCEPa>TCPPb>DEETc SCFRape TCEPa>TCPPa

RCFCarrot-Rothild TCPPa>TBPb>DEETb>TCEP≈NBBSb

RCFCarrot-Nutri Red TCPPa>TBPb>DEETc>TCEPd≈NBBSd

Results of multiple comparison is shown by superscripted letters

Significant differences (p<0.05) are marked
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sensitive to phytotoxins (EuropeanFoodSafetyAuthorities
2008; Migliore et al. 2003). The results of the present study
confirm that there can be variation between different species
and even cultivars of the same species after exposure to these
emerging contaminants.

Environmental and food safety relevance

There is an increasing number of emerging contaminants in
the environment, including pharmaceuticals and different
kinds of additives used in everyday products. These com-
pounds can reach the terrestrial or aquatic food web through
transfer from consumer products into wastewater from homes,
hospitals and industries or by leaching into groundwater when
disposed of in municipal landfills (Table 1). WWTPs dis-
charge to lakes and seas and thus influence the aquatic food
web, while sewage sludge is applied to soil or soil mixtures
used for cultivation of crops. Organophosphates have been
found in marine and freshwater biota (mussels, crab, fish)
(Evenset et al. 2009; Leonards et al. 2011; Sundkvist et al.
2010), human milk (Sundkvist et al. 2010) and drinking water

(Galassi et al. 1989 TCPP, which in the present study shows
high uptake in carrot root and forage grass, has been detected
in fish muscles in capelin and in milk and plasma in harbour
seal (Sagerup et al. 2011; Sundkvist et al. 2010).

A TCEP risk assessment from 2009 claimed that “since
there is no indication that TCEP may show a bioaccumula-
tion potential, a risk characterization for exposure via the
food chain is not necessary” (European Commission 2009).
Similarly, a risk assessment for TCPP states that owing to
“… lack of any significant bioaccumulation potential of
TCPP, it is reasonable to conclude that there are no risks”
(European Commission 2008). Based on the experimental
bioconcentration factors for TCEP and TCPP, the high var-
iation between species found in the present study and the
relatively long half-life in soil and a persistency potential,
there is reason to investigate the transfer and possible bio-
accumulation of these compounds in food webs more
deeply.

More generic knowledge about the relationship between
the chemical properties of various compounds, uptake
mechanisms into crops and plant composition is necessary

A

B   

Fig. 2 Biomass of control and
exposed plants given in dry
weight (a) and root–leaf ratio
based on dry weight (b).
Biomass data from plants
exposed to emerging
contaminants in a previous
experiment (Eggen et al. 2011)
are marked with an asterisk.
Average and standard deviation
shown for three or more pots.
‘Mixture’ is results from the
present study where test
compounds were added in a
mixture cocktail of TBP, TCEP,
TCPP, DEET and NBBS.
Published data of metformin,
narasin and ciprofloxacin were
tested in separate pots
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in order to perform health risk assessments where soil–plant
transfer is part of the exposure route. Such knowledge is
also important for identification and prediction of com-
pounds with potentially high transfer to human and live-
stock food webs. Regulatory authorities should pay special
attention to these compounds, and measures to reduce or
remove sources should be introduced in an early phase. This
is also valuable knowledge for food authorities devising
restrictions or recommendations for cultivation of certain
crops in areas with enhanced levels of organic compounds.

Conclusions

In this 17-week pot experiment, the organophosphates
TCEP and TCPP generally exhibited higher uptake and
translocation in crop plants than TBP, the insect repel-
lent DEET and the plasticiser NBBS, despite DEET and
NBBS having comparable log Kow values as TCEP.
Although TCEP and TCPP had similar properties, there
were clearly species-specific uptake patterns in meadow
fescue, barley and carrot. The surprisingly high translo-
cation of TCPP into leaves of meadow fescue, a live-
stock forage species, is of particular concern and
highlights the necessity for further studies investigating
the effects of these compounds in the food web, to
improve regulatory guidelines.
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