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Abstract
A nonlinear generalized Benjamin-Bona-Mahony equation is investigated. Using the
estimates of strong solutions derived from the equation itself, we establish the L1(R)
stability of the solutions under the assumption that the initial value u0(x) lies in the
space H1(R).
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1 Introduction
Benjamin, Bona and Mahony [] established the BBM model

ut + aux – buxxt + k
(
u

)
x = , ()

where a, b and k are constants. Equation () is often used as an alternative to the KdV
equation which describes unidirectional propagation of weakly long dispersive waves [].
As a model that characterizes long waves in nonlinear dispersive media, the BBM equa-
tion, like theKdV equation, was formally derived to describe an approximation for surface
water waves in a uniform channel. Equation () covers not only the surface waves of long
wavelength in liquids, but also hydromagnetic waves in cold plasma, acoustic waves in an-
harmonic crystals, and acoustic gravity waves in compressible fluids (see [, ]). Nonlinear
stability of nonlinear periodic solutions of the regularizedBenjamin-Ono equation and the
Benjamin-Bona-Mahony equation with respect to perturbations of the same wavelength
is analytically studied in []. Unique continuation property and control for the Benjamin-
Bona-Mahony equation on a periodic domain are discussed in []. The Lq (q ≥ ) asymp-
totic property of solutions for the Benjamin-Bona-Mahony-Burgers equations is studied
in [] under certain assumptions on the initial data. The tanh technique is employed in
[] to get the compact and noncompact solutions for KP-BBM and ZK-BBM equations.
Applying the tanh method and the sine-cosine method, Wazwaz [] obtained com-

pactons, solitons, solitary patterns and periodic solutions for the following generalized
Benjamin-Bona-Mahony equation

ut + aux – buxxt + k
(
um

)
x = , ()

where a �= , b >  and k �=  are constants, and m≥  is an integer.
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The objective of this work is to investigate Eq. (). Using the methods of the Kruzkov’s
device of doubling the variables presented in Kruzkov’s paper [], we obtain the L stability
of strong solutions. Namely, for any solutions u(t,x) and u(t,x) satisfying Eq. (), we will
derive that

∥∥u(t,x) – u(t,x)
∥∥
L(R) ≤ cect

∥∥u(,x) – u(,x)
∥∥
L(R), t ∈ [,T], ()

where T is the maximum existence time of solutions u and u and c depends on
‖u(,x)‖H(R) and ‖u(,x)‖H(R). From our knowledge, we state that the L stability of
strong solutions for Eq. () has never been acquired in the literature.
This paper is organized as follows. Section  gives several lemmas and Section  estab-

lishes the proofs of the main result.

2 Several lemmas
Let ηT = [,T]×R for an arbitraryT > .We denote the space of all infinitely differentiable
functions f (t,x) with compact support in [,T] × R by C∞

 (ηT ). We define γ (σ ) to be a
function which is infinitely differentiable on (–∞, +∞) such that γ (σ ) ≥ , γ (σ ) =  for
|σ | ≥  and

∫ ∞
–∞ γ (σ )dσ = . For any number ε > , we let γε(σ ) = γ (ε–σ )

ε
. Then we have

that γε(σ ) is a function in C∞(–∞,∞) and

{
γε(σ )≥ , γε(σ ) =  if |σ | ≥ ε,
|γε(σ )| ≤ c

ε
,

∫ ∞
–∞ γε(σ )dσ = .

()

Assume that the function v(x) is locally integrable in (–∞,∞). We define the approxima-
tion of function v(x) as

vε(x) =

ε

∫ ∞

–∞
γ

(
x – y

ε

)
v(y)dy, ε > .

We call x a Lebesgue point of function v(x) if

lim
ε→


ε

∫
|x–x|≤ε

∣∣v(x) – v(x)
∣∣dx = .

At any Lebesgue point x of the function v(x), we have limε→ vε(x) = v(x). Since the set
of points which are not Lebesgue points of v(x) has measure zero, we get vε(x) → v(x) as
ε →  almost everywhere.
We introduce notations connected with the concept of a characteristic cone. For any

M > , we define N > supt∈[,∞) ‖u‖L∞(R) < ∞. Let � denote the cone {(t,x) : |x| ≤ M –
Nt,  < t < T =min(T ,MN–)}. We let Sτ represent the cross section of the cone � by the
plane t = τ , τ ∈ [,T]. Let Hr = {x : |x| ≤ r}, where r > .

Lemma . ([]) Let the function v(t,x) be bounded and measurable in cylinder � =
[,T]×Hr . If for any δ ∈ (,min[r,T]) and any number ε ∈ (, δ), then the function

Vε =

ε

∫∫∫∫
| t–τ

 |≤ε,δ≤ t+τ
 ≤T–δ,| x–y |≤ε,| x+y |≤r–δ

∣∣v(t,x) – v(τ , y)
∣∣dxdt dydτ

satisfies limε→Vε = .
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In fact, for Eq. (), we have the conservation law

∫
R

(
u + bux

)
dx =

∫
R

(
u(,x) + bux(,x)

)
dx, ()

from which we have

‖u‖L∞(R) ≤ c‖u‖H(R), ()

where c only depends on b.
We write the equivalent form of Eq. () in the form

ut +	–(au + kum
)
x = , ()

where the operator 	–g = 

√
b

∫ ∞
–∞ e–

√
b
|x–y|g(y)dy for any g ∈ L(R).

Lemma . Let u = u(,x) ∈ H(R), Ku(t,x) =	–(au+ kum) and Pu(t,x) = ∂xKu(t,x). For
any t ∈ [,∞), it holds that

∥∥Ku(t,x)
∥∥
L∞(R) < C,

∥∥Pu(t,x)
∥∥
L∞(R) < C,

where the constant C is independent of time t.

Proof We have

Ku(t,x) =



√
b

∫ ∞

–∞
e–

√
b
|x–y|[au(t, y) + kum(t, y)

]
dy ()

and

∣∣Pu(t,x)
∣∣ = ∣∣∣∣∂x 


√
b

∫ ∞

–∞
e–

√
b
|x–y|[au(t, y) + kum(t, y)

]
dy

∣∣∣∣
=

∣∣∣∣– 
b

e–
√
b
x
∫ x

–∞
e

√
b
y[au(t, y) + kum(t, y)

]
dy

+

b

e
√
b
x
∫ ∞

x
e–

√
b
y[au(t, y) + kum(t, y)

]
dy

∣∣∣∣
≤ 

b

∫ ∞

–∞
e–

√
b
|x–y|∣∣au(t, y) + kum(t, y)

∣∣dy. ()

Using ()-(), the integral
∫ ∞
–∞ e–

√
b
|x–y| dy = 

√
b and ()-(), we obtain the proof of

Lemma .. �

Lemma . Let u be the strong solution of Eq. (), f (t,x) ∈ C∞
 (ηT ). Then

∫∫
ηT

{|u – k|ft – sign(u – k)Pu(t,x)f
}
dxdt = , ()

where k is an arbitrary constant.

http://www.journalofinequalitiesandapplications.com/content/2014/1/3
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Proof Let �(u) be an arbitrary twice smooth function on the line –∞ < u < ∞. We mul-
tiply Eq. () by the function �′(u)f (t,x), where f (t,x) ∈ C∞

 (ηT ). Integrating over ηT and
transferring the derivatives with respect to t and x to the test function f , we obtain

∫∫
ηT

{
�(u)ft –�′(u)Pu(t,x)f

}
dxdt = . ()

Let �ε(u) be an approximation of the function |u – k| and set �(u) = �ε(u). Letting
ε → , we complete the proof. �

In fact, the proof of () can also be found in [].

Lemma . Assume that u(t,x) and u(t,x) are two strong solutions of Eq. () associated
with the initial data u = u(,x) and u = u(,x). Then, for any f ∈ C∞

 (ηT ),

∣∣∣∣
∫ ∞

–∞
sign(u – u)

[
Pu (t,x) – Pu (t,x)

]
f dx

∣∣∣∣
≤ c

∫ ∞

–∞
|u – u|dx, ()

where c depends on ‖u‖H(R) and ‖u‖H(R) and f .

Proof Using (), we have

∣∣Pu (t,x) – Pu (t,x)
∣∣

=
∣∣∣∣– 

b
e–

√
b
x
∫ x

–∞
e

√
b
y[au(t, y) + kum (t, y) – au(t, y) – kum (t, y)

]
dy

+

b

e
√
b
x
∫ ∞

x
e–

√
b
y[au(t, y) + kum (t, y) – au(t, y) – kum (t, y)

]
dy

∣∣∣∣
≤ c

∫ ∞

–∞
e–

√
b
|x–y|∣∣au(t, y) + kum (t, y) – au(t, y) – kum (t, y)

∣∣dy
≤ c

∫ ∞

–∞
e–

√
b
|x–y|∣∣u(t, y) – u(t, y)

∣∣dy, ()

in which we have used ‖u‖L∞ ≤ ‖u‖H(R) and ‖u‖L∞ ≤ ‖u‖H(R). Using the Fubini
theorem completes the proof. �

3 Main results
Theorem . Let u and u be two local or global strong solutions of Eq. () with initial
data u(,x) = u ∈H(R) and u(,x) = u ∈H(R), respectively. Let T be themaximum
existence time of solutions u and u. For any t ∈ [,T), it holds that

∥∥u(t, ·) – u(t, ·)
∥∥
L(R) ≤ cect‖u – u‖L(R), ()

where c depends on ‖u‖H(R) and ‖u‖H(R).

http://www.journalofinequalitiesandapplications.com/content/2014/1/3
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Proof For an arbitrary T > , set ηT = [,T] × R. Let f (t,x) ∈ C∞
 (ηT ). We assume that

f (t,x) =  outside the cylinder

⊎
=

{
(t,x)

}
= [δ,T – δ]×Hr–δ ,  < δ ≤min(T , r). ()

We define

g = f
(
t + τ


,
x + y


)
γε

(
t – τ



)
γε

(
x – y


)
= f (· · · )λε(∗), ()

where (· · · ) = ( t+τ
 , x+y ) and (∗) = ( t–τ

 , x–y ). The function γε(σ ) is defined in (). Note that

gt + gτ = ft(· · · )λε(∗), gx + gy = fx(· · · )λε(∗). ()

Taking u = u(t,x) and k = u(τ , y) and assuming f (t,x) =  outside the cylinder
⊎
, from

Lemma ., we have

∫∫∫∫
ηT×ηT

{∣∣u(t,x) – u(τ , y)
∣∣gt

+ sign
(
u(t,x) – u(τ , y)

)
Pu (t,x)g

}
dxdt dydτ = . ()

Similarly, it holds

∫∫∫∫
ηT×ηT

{∣∣u(τ , y) – u(t,x)
∣∣gτ

+ sign
(
u(τ , y) – u(t,x)

)
Pu (τ , y)g

}
dxdt dydτ = , ()

from which we obtain

 ≤
∫∫∫∫

ηT×ηT

∣∣u(t,x) – u(τ , y)
∣∣(gt + gτ )

+
∣∣∣∣
∫∫∫∫

ηT×ηT

sign
(
u(t,x) – u(τ , y)

)(
Pu (t,x) – Pu (τ , y)

)
g dxdt dydτ

∣∣∣∣
=

∫∫∫∫
ηT×ηT

I dxdt dydτ +
∣∣∣∣
∫∫∫∫

ηT×ηT

I dxdt dydτ

∣∣∣∣. ()

We will show that

 ≤
∫∫

ηT

∣∣u(t,x) – u(t,x)
∣∣ft

+
∣∣∣∣
∫∫

ηT

sign
(
u(t,x) – u(t,x)

)[
Pu (t,x) – Pu (t,x)

]
f dxdt

∣∣∣∣. ()

We note that the first term in the integrand of () can be represented in the form

Yε = Y
(
t,x, τ , y,u(t,x),u(τ , y)

)
λε(∗). ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/3
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By the choice of g , we have Yε =  outside the region

{
(t,x; τ , y)

}
=

{
δ ≤ t + τ


≤ T – δ,

|t – τ |


≤ ε,
|x + y|


≤ r – δ,
|x – y|


≤ ε

}
()

and ∫∫∫∫
ηT×ηT

Yε dxdt dydτ

=
∫∫∫∫

ηT×ηT

[
Y

(
t,x, τ , y,u(t,x),u(τ , y)

)
– Y

(
t,x, t,x,u(t,x),u(t,x)

)]
λε(∗)dxdt dydτ

+
∫∫∫∫

ηT×ηT

Y
(
t,x, t,x,u(t,x),u(t,x)

)
λε(∗)dxdt dydτ = J(ε) + J. ()

Considering the estimate |λ(∗)| ≤ c
ε

and the expression of function Yε , we have

∣∣J(ε)∣∣ ≤ c
[

ε

∫∫∫∫
| t–τ

 |≤ε,δ≤ t+τ
 ≤T–δ,| x–y |≤ε,| x+y |≤r–δ

∣∣u(t,x)
– u(τ , y)

∣∣dxdt dydτ

]
, ()

where the constant c does not depend on ε. Using Lemma ., we obtain J(ε) →  as
ε → . The integral J does not depend on ε. In fact, substituting t = α, t–τ

 = β , x = η,
x–y
 = ξ and noting that

∫ ε

–ε

∫ ∞

–∞
λε(β , ξ )dξ dβ = , ()

we have

J = 
∫∫

ηT

Yε

(
α,η,α,η,u(α,η),u(α,η)

){∫ ε

–ε

∫ ∞

–∞
λε(β , ξ )dξ dβ

}
dηdα

= 
∫∫

ηT

Y
(
t,x, t,x,u(t,x),u(t,x)

)
dxdt. ()

Hence

lim
ε→

∫∫∫∫
ηT×ηT

Yε dxdt dydτ = 
∫∫

ηT

Y
(
t,x, t,x,u(t,x),u(t,x)

)
dxdt. ()

Since

I = sign
(
u(t,x) – u(τ , y)

)(
Pu (t,x) – Pu (τ , y)

)
f λε(∗) ()

and ∫∫∫∫
ηT×ηT

I dxdt dydτ =
∫∫∫∫

ηT×ηT

[
I(t,x, τ , y) – I(t,x, t,x)

]
dxdt dydτ

+
∫∫∫∫

ηT×ηT

I(t,x, t,x)dxdt dydτ = K(ε) +K, ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/3
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we obtain

∣∣K(ε)
∣∣ ≤ c

(
ε +


ε

∫∫∫∫
| t–τ

 |≤ε,δ≤ t+τ
 ≤T–δ,| x–y |≤ε,| x+y |≤r–δ

∣∣Pu (t,x)

– Pu (τ , y)
∣∣dxdt dydτ

)
. ()

By Lemmas . and ., we have K(ε) →  as ε → . Using (), we have

K = 
∫∫

ηT

I
(
α,η,α,η,u(α,η),u(α,η)

){∫ ε

–ε

∫ ∞

–∞
λε(β , ξ )dξ dβ

}
dηdα

= 
∫∫

ηT

I
(
t,x, t,x,u(t,x),u(t,x)

)
dxdt

= 
∫∫

ηT

sign
(
u(t,x) – u(t,x)

)(
Pu (t,x) – Pu (t,x)

)
f (t,x)dxdt. ()

From () and (), we prove that inequality () holds.
Let

w(t) =
∫ ∞

–∞

∣∣u(t,x) – u(t,x)
∣∣dx. ()

We define the following increasing function

θε(ρ) =
∫ ρ

–∞
γε(σ )dσ

(
θ ′
ε(ρ) = γε(ρ)≥ 

)
()

and choose two numbers τ and τ ∈ (,T), τ < τ. In (), we choose

f =
[
θε(t – τ) – θε(t – τ)

]
χ (t,x), ε <min(τ,T – τ), ()

where

χ (t,x) = χh(t,x) =  – θh
(|x| +Nt –M + h

)
, h > . ()

When h is sufficiently small, we note that function χ (t,x) =  outside the cone � and
f (t,x) =  outside the set

⊎
. For (t,x) ∈�, we have the relation

χt +N |χx| = ,

which derives

χt ≤ . ()

Applying (), ()-() and the increasing properties of θε , we have the inequality

 ≤
∫∫

ηT

{[
γε(t – τ) – γε(t – τ)

]
χh

∣∣u(t,x) – u(t,x)
∣∣}dxdt

+
∣∣∣∣
∫∫

ηT

[
θε(t – τ) – θε(t – τ)

][
Pu (t,x) – Pu (t,x)

]
B(t,x)χh(t,x)dxdt

∣∣∣∣, ()

where B(t,x) = sign[u(t,x) – u(t,x)].

http://www.journalofinequalitiesandapplications.com/content/2014/1/3
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From (), we obtain

 ≤
∫∫

ηT

{[
γε(t – τ) – γε(t – τ)

]
χh

∣∣u(t,x) – u(t,x)
∣∣}dxdt

+
∫ T



(
θε(t – τ) – θε(t – τ)

)∣∣∣∣
∫ ∞

–∞

[
Pu (t,x) – Pu (t,x)

]
B(t,x)χh(t,x)dx

∣∣∣∣dt. ()

Using Lemma ., we have

 ≤
∫∫

ηT

{[
γε(t – τ) – γε(t – τ)

]
χh

∣∣u(t,x) – u(t,x)
∣∣}dxdt

+ c
∫ T



(
θε(t – τ) – θε(t – τ)

)∫ ∞

–∞
|u – u|dxdt, ()

where c is defined in Lemma ..
Letting h→  in () and lettingM → ∞, we have

 ≤
∫ T



{[
γε(t – τ) – γε(t – τ)

] ∫ ∞

–∞

∣∣u(t,x) – u(t,x)
∣∣dx}dt

+ c
∫ T



(
θε(t – τ) – θε(t – τ)

)(∫ ∞

–∞
|u – u|dx

)
dt. ()

By the properties of the function γε(σ ) for ε ≤min(τ,T – τ), we have

∣∣∣∣
∫ T


γε(t – τ)w(t)dt –w(τ)

∣∣∣∣ =
∣∣∣∣
∫ T


γε(t – τ)

[
w(t) –w(τ)

]
dt

∣∣∣∣
≤ c


ε

∫ τ+ε

τ–ε

∣∣w(t) –w(τ)
∣∣dt →  as ε → , ()

where c is independent of ε.
Set

L(τ) =
∫ T


θε(t – τ)w(t)dt =

∫ T



∫ t–τ

–∞
γε(σ )dσw(t)dt. ()

Using the similar proof of (), we get

L′(τ) = –
∫ T


γε(t – τ)w(t)dt → –w(τ) as ε → , ()

from which we obtain

L(τ) → L() –
∫ τ


w(σ )dσ as ε → . ()

Similarly, we have

L(τ)→ L() –
∫ τ


w(σ )dσ as ε → . ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/3
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Then we get

L(τ) – L(τ) →
∫ τ

τ

w(σ )dσ as ε → . ()

Letting ε → , τ →  and τ → t, from (), () and (), for any t ∈ [,T], we have

∫ ∞

–∞

∣∣u(t,x) – u(t,x)
∣∣dx ≤

∫ ∞

–∞

∣∣u(,x) – u(,x)
∣∣dx

+ c
∫ t



∫ ∞

–∞

∣∣u(t,x) – u(t,x)
∣∣dxdt, ()

from which we complete the proof of Theorem . by using the Gronwall inequality. �
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