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We present an efficient algorithm for segmentation of audio signals into speech or music. The central motivation to our study
is consumer audio applications, where various real-time enhancements are often applied. The algorithm consists of a learning
phase and a classification phase. In the learning phase, predefined training data is used for computing various time-domain and
frequency-domain features, for speech and music signals separately, and estimating the optimal speech/music thresholds, based
on the probability density functions of the features. An automatic procedure is employed to select the best features for separation.
In the test phase, initial classification is performed for each segment of the audio signal, using a three-stage sieve-like approach,
applying both Bayesian and rule-based methods. To avoid erroneous rapid alternations in the classification, a smoothing technique
is applied, averaging the decision on each segment with past segment decisions. Extensive evaluation of the algorithm, on a database
of more than 12 hours of speech and more than 22 hours of music showed correct identification rates of 99.4% and 97.8%,
respectively, and quick adjustment to alternating speech/music sections. In addition to its accuracy and robustness, the algorithm
can be easily adapted to different audio types, and is suitable for real-time operation.
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1. Introduction

In the past decade a vast amount of multimedia data, such
as text, images, video, and audio has become available.
Efficient organization and manipulation of this data are
required for many tasks, such as data classification for storage
or navigation, differential processing according to content,
searching for specific information, and many others.

A large portion of the data is audio, from resources such
as broadcasting channels, databases, internet streams, and
commercial CDs. To answer the fast-growing demands for
handling the data, a new field of research, known as audio
content analysis (ACA), or machine listening, has recently
emerged, with the purpose of analyzing the audio data and
extracting the content information directly from the acoustic
signal [1] to the point of creating a “Table of Contents” [2].

Audio data (e.g., from broadcasting) often contains
alternating sections of different types, such as speech and
music. Thus, one of the fundamental tasks in manipulating

such data is speech/music discrimination and segmentation,
which is often the first step in processing the data. Such
preprocessing is desirable for applications requiring accurate
demarcation of speech, for instance automatic transcription
of broadcast news, speech and speaker recognition, word
or phrase spotting, and so forth. Similarly, it is useful in
applications where attention is given to music, for example,
genre-based or mood-based classification.

Speech/music classification is also important for applica-
tions that apply differential processing to audio data, such as
content-based audio coding and compressing or automatic
equalization of speech and music. Finally, it can also serve
for indexing other data, for example, classification of video
content through the accompanying audio.

One of the challenges in speech/music discrimination
is characterization of the music signal. Speech is composed
from a selection of fairly typical sounds and as such, can be
represented well by relatively simple models. On the other
hand, the assortment of sounds in music is much broader
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and produced by a variety of instruments, often by many
simultaneous sources. As such, construction of a model to
accurately represent and encompass all kinds of music is very
complicated. This is one of the reasons that most of the
algorithmic solutions developed for speech/music discrimi-
nation are practically adapted to the specific application they
serve. A single comprehensive solution that will work in all
situations is difficult to achieve. The difficulty of the task
is increased by the fact that on many occasions speech is
superimposed on the music parts, or vice versa.

1.1. Former Studies. The topic of speech/music classification
was studied by many researchers. Table 1 summarizes some
of these studies. It can be seen from the table that,
while the applications can be very different, many studies
use similar sets of acoustic features, such as short time
energy, zero-crossing rate, cepstrum coefficients, spectral
rolloff, spectrum centroid and “loudness,” alongside some
unique features, such as “dynamism.” However, the exact
combinations of features used can vary greatly, as well as the
size of the feature set. For instance, [3, 4] use few features,
whereas [1, 2, 5, 6] use larger sets. Typically some long-
term statistics, such as the mean or the variance, and not the
features themselves, are used for the discrimination.

The major differences between the different studies lie in
the exact classification algorithm, even though some popu-
lar classifiers (K-nearest neighbour, Gaussian multivariate,
neural network) are often used as a basis. Finally, in each
study, different databases are used for training and testing
the algorithm. It is worth noting that in most of the studies,
especially the early ones, these databases are fairly small
[6, 7]. Only in a few works large databases are used [8, 9].

1.2. The Algorithm. In this paper we present an efficient algo-
rithm for segmentation of audio signals into speech or music.
The central motivation to our study is consumer audio
applications, where various real-time enhancements are
often applied to music. These include differential frequency
gain (equalizers) or spatial effects (such as simulation of
surround and reverberation). While these manipulations can
improve the perceptive quality of music, applying them to
speech can cause distortions (for instance, bass amplification
can cause an unpleasant booming effect).

As many audio sources, such as radio broadcasting
streams, live performances, or movies, often contain sections
of pure speech mixed between musical segments, an auto-
matic real-time speech/music discrimination system may be
used to allow the enhancement of music without introducing
distortions to the speech.

Considering the application at hand, our algorithm aims
to achieve the following:

(i) Pure speech must be identified correctly with very
high accuracy, to avoid distortions when enhance-
ments are applied.

(ii) Songs that contain a strong instrumental component
together with voice should be classified as music, just
like purely instrumental tracks.

(iii) Audio that is neither speech, nor music (noise,
environmental sounds, silence, and so forth) can be
ignored by the classifier, as it is not important for the
application of the manipulations. We can therefore
assume that a priori the audio belongs to one of the
two classes.

(iv) The algorithm must be able to operate in real time
with a low computational cost and a short delay.

The algorithm proposed here answers all these require-
ments: on one hand, it is highly accurate and robust, and on
the other hand, simple, efficient, and adequate for real-time
implementation. It achieves excellent results in minimizing
misdetection of speech, due to a combination of the feature
choice and the decision tree. The percentage of correct
detection of music is also very high. Overall the results
we obtained were comparable to the best of the published
studies, with a confidence level higher than most, due to the
large size of test database used.

The algorithm uses various time domain parameters
of the audio signal, such as the energy, zero-crossing rate,
and autocorrelation as well as frequency domain parameters
(spectral energy, MFCC, and others).

The algorithm consists of two stages. The first stage is a
supervised learning phase, based on a statistical approach.
In this phase training data is collected from speech and
music signals separately, and after processing and feature
extraction, optimal separation thresholds between speech
and music are set for each analyzed feature separately.

In the second stage, the processing phase, an input
audio signal is divided into short-time segments and feature
extraction is performed for each segment. The features are
then compared to their corresponding thresholds, which
were set in the learning phase, and initial classification of
the segment as speech or music is carried out. Various post-
decision techniques are applied to improve the robustness of
the classification.

Our test database consisted of 12+ hours of speech and
20+ hours of music. This database is significantly larger than
those used for testing in the majority of the aforementioned
studies. Tested on this database, the algorithm proved to be
highly accurate both in the correctness of the classification
and the segmentation accuracy. The processing phase can
also be applied in a real-time environment, due to low
computation load of the process, and the fact that the
classification is localized (i.e., a segment is classified as speech
or music independently of other segments). A commercial
product based on the proposed algorithm is currently being
developed by Waves Audio, and a provisional patent has been
filed.

The rest of the paper is arranged as follows: in Section
2 we describe the learning procedure, during which the
algorithm is “trained” to distinguish between speech and
music, as well as the features used for the distinction. Next,
in Section 3, the processing phase and the classification
algorithm are described. Section 4 provides evaluation of the
algorithm in terms of classification success and comparison
to other approaches, and is followed by a conclusion
(Section 5).
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Table 1: Summary of Former studies.

Paper
Main
Applications

Features Classification method Audio material Results

Saunders,
1996 [4]

Automatic
real-time
FM radio
monitoring

Short-time energy, sta-
tistical parameters of the
ZCR

Multivariate Gaussian
classifier

Talk, commercials, music
(different types)

95%–96%

Scheirer
and
Slaney,
1997 [6]

Speech/music
discrim-
ination
for automatic
speech
recognition

13 temporal, spectral and
cepstral features (e.g.,
4 Hz modulation energy,
% of low energy frames,
spectral rolloff, spectral
centroid, spectral flux,
ZCR, cepstrum-based
feature, “rhythmicness”),
variance of features
across 1 sec.

Gaussian mixture model
(GMM), K nearest
neighbour (KNN), K-D
trees, multidimensional
Gaussian MAP
estimator

FM radio (40 min):
male and female speech,
various conditions,
different genres of
music (training: 36 min,
testing: 4 min)

94.2% (frame-by-
frame), 98.6% (2.4 sec
segments)

Foote,
1997 [10]

Retrieving
audio
documents
by acoustic
similarity

12 MFCC, Short-time
energy

Template matching of
histograms, created
using a tree-based
vector quantizer,
trained to maximize
mutual information

409 sounds and 255
(7 sec long) clips of
music.

No specific accuracy
rates are provided.
High rate of success
in retrieving simple
sounds.

Liu et al.,
1997 [5]

Analysis
of audio
for scene
classification
of TV
programs

Silence ratio, volume std,
volume dynamic range,
4 Hz freq, mean and
std of pitch difference,
speech, noise ratios, freq.
centroid, bandwidth,
energy in 4 sub-bands

A neural network using
the one-class-in-one-
network (OCON)
structure

70 audio clips from TV
programs (1 sec. long)
for each scene class
(training: 50, testing: 20)

Recognition of some of
the classes is successful

Zhang
and Kuo,
1999 [11]

Audio
segmenta-
tion/retrieval
for video
scene
classification,
indexing
of raw
audio visual
recordings,
database
browsing

Features based on
short-time energy,
average ZCR, short-time
fundamental frequency

A rule-based heuristic
procedure for the coarse
stage, HMM for the
second stage

Coarse stage: speech,
music, env. sounds and
silence. Second stage:
fine-class classification
of env. sounds.

>90% (coarse stage)

Williams
and Ellis,
1999 [12]

Segmentation
of speech
versus
nonspeech
in automatic
speech
recognition
tasks

Mean per-frame
entropy and average
probability “dynamism”,
background-label energy
ratio, phone distribution
match—all derived from
posterior probabilities
of phones in hybrid
connectionist-HMM
framework

Gaussian likelihood ratio
test

Radio recordings,
speech (80 segments,
15 sec. each) and music
(80, 15), respectively.
Training: 75%, testing:
25%.

100% accuracy
with 15 seconds
long segments 98.7%
accuracy with 2.5-
seconds long segments

El-Maleh
et al.,
2000 [13]

Automatic
coding and
content-
based
audio/video
retrieval

LSF, differential LSF,
measures based on the
ZCR of high-pass filtered
signal

KNN classifier and
quadratic Gaussian
classifier (QCG)

Several speakers,
different genres of
music (training: 9.3 min.
and 10.7 min., resp.)

Frame level (20 ms):
music 72.7% (QGC),
79.2% (KNN). Speech
74.3% (QGC), 82.5%
(KNN). Segment
level (1 sec.), music
94%–100%, speech
80%–94%.
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Table 1: Continued.

Paper
Main
Applications

Features Classification method Audio material Results

Buggati
et al.,
2002 [2]

“Table of
Content
description”
of a multi-
media
document

ZCR-based features,
spectral flux, short-
time energy, cepstrum
coefficients, spectral
centroids, ratio of
the high-frequency
power spectrum, a
measure based on
syllabic frequency

Multivariate Gaussian
classifier, neural network
(MLP)

30 minutes of alternat-
ing sections of music and
speech (5 min each)

95%–96% (NN). Total
error rate: 17.7%
(Bayesian classifier),
6.0% (NN).

Lu,
Zhang,
and Jiang,
2002 [9]

Audio
content
analysis in
video parsing

High zero-crossing rate
ratio (HZCRR), low
short-time energy ratio
(LSTER), linear spectral
pairs, band periodicity,
noise-frame ratio (NFR)

3-step classification:
1. KNN and linear
spectral pairs-vector
quantization (LSP-VQ)
for speech/nonspeech
discrimination. 2.
Heuristic rules for
nonspeech classification
into music/background
noise/silence. 3. Speaker
segmentation

MPEG-7 test data set,
TV news, movie/audio
clips. Speech: studio
recordings, 4 kHz and
8 kHz bandwidths,
music: songs, pop
(training: 2 hours,
testing: 4 hours).

Speech 97.5%, music
93.0%, env. sound
84.4%. Results of
only speech/music
discrimination: 98.0%

Ajmera
et al.,
2003 [14]

Automatic
transcription
of broadcast
news

Averaged entropy
measure and
“dynamism” estimated
at the output of a
multilayer perceptron
(MLP) trained to emit
posterior probabilities
of phones. MLP input:
13 first cepstra of a
12th-order perceptual
linear prediction filter.

2-state HMM with
minimum duration
constraints (threshold-
free, unsupervised, no
training).

4 files (10 min. each):
alternate segments of
speech and music,
speech/music interleaved

GMM: Speech
98.8%, Music 93.9%.
Alternating, variable
length segments
(MLP): Speech 98.6%,
Music 94.6%.

Burred
and Lerch,
2004 [1]

Audio
classification
(speech/
music/back-
ground
noise), music
classification
into genres

Statistical measures
of short-time frame
features: ZCR, spectral
centroid/rolloff/flux,
first 5 MFCCs,
audio spectrum
centroid/flatness,
harmonic ratio, beat
strength, rhythmic
regularity, RMS energy,
time envelope, low
energy rate, loudness,
others

KNN classifier, 3-
component GMM
classifier

3 classes of speech, 13
genres of music and
background noise: 50
examples for each class
(30 sec each), from CDs,
MP3, and radio.

94.6% /96.3%
(hierarchical approach
and direct approach,
resp.)

Barbedo
and
Lopes,
2006 [15]

Automatic
segmentation
for real-time
applications

Features based on ZCR,
spectral rolloff, loudness
and fundamental
frequencies

KNN, self-organizing
maps, MLP neural
networks, linear
combinations

Speech (5 different
conditions) and music
(various genres)more
than 20 hours of
audio data, from CDs,
Internet radio streams,
radio broadcasting, and
coded files.

Noisy speech 99.4%,
Clean speech 100%,
Music 98.8%, Music
without rap 99.2%.
Rapid alternations:
speech 94.5%, music
93.2%.

Muñoz-
Expósito
et al.,
2006 [3]

Intelligent
audio coding
system

Warped LPC-based spec-
tral centroid

3-component GMM,
with or without fuzzy
rules-based system

Speech (radio and TV
news, movie dialogs, dif-
ferent conditions); music
(various genres, differ-
ent instruments/singers)
-1 hour for each class.

GMM: speech 95.1%,
music 80.3%. GMM
with fuzzy system:
speech 94.2%, music
93.1%.
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Table 1: Continued.

Paper
Main
Applications

Features Classification method Audio material Results

Alexandre
et al, 2006
[16]

Speech/music
classification
for musical
genre
classification

Spectral centroid/rolloff,
ZCR, short-time
energy, low short-
time energy ratio
(LSTER), MFCC, voice-
to-white

Fisher linear
discriminant, K nearest-
neighbour

Speech (without
background music),
and music without
vocals. (training: 45 min,
testing: 15 min)

Music 99.1%, speech
96.6%. Individual
features: 95.9%
(MFCC), 95.1%
(voice to white).

2. The Learning Phase

2.1. Music and Speech Material. The music material for
the training phase was derived mostly from CDs or from
databases, using high bitrate signals with a total duration
of 60 minutes. The material contained different genres and
types of music such as classical music, rock and pop songs,
folk music, etc.

The speech material was collected from free internet
speech databases, also containing a total of 60 minutes. Both
high and low bitrate signals were used.

2.2. General Algorithm. A block diagram of the main algo-
rithm of the learning phase is depicted in Figure 1. The train-
ing data is processed separately for speech and for music,
and for each a set of candidate features for discrimination
is computed. A probability density function (PDF) is then
estimated for each feature and for each class (Figure 1(a)).
Consequently, thresholds for discrimination are set for each
feature, along with various parameters that characterize
the distribution relative to the thresholds, as described in
Section 2.5. A feature ranking and selection procedure is then
applied to select the best set of features for the test phase,
according to predefined criteria (Figure 1(b)). A detailed
description of this procedure is given in Section 2.6.

2.3. Computation of Features. Each of the speech signals
and music signals in the learning phase is divided into
consecutive analysis frames of length N with hop size
h f , where N and h f are in samples, corresponding to
40 milliseconds and 20 milliseconds, respectively. For each
frame, the following features are computed:

Short-Time Energy. The short-time energy of a frame is
defined as the sum of squares of the signal samples normal-
ized by the frame length and converted to decibels.

E = 10 log10

⎛
⎝ 1

N

N−1∑

n=0

x2 [n]

⎞
⎠ . (1)

Zero-Crossing Rate. The zero-crossing rate of a frame is
defined as the number of times the audio waveform changes
its sign in the duration of the frame:

ZCR = 1
2

N−1∑

n=1

∣∣sgn (x [n])− sgn (x [n− 1])
∣∣ . (2)

Band Energy Ratio. The band energy ratio captures the
distribution of the spectral energy in different frequency
bands. The spectral energy in a given band is defined as
follows: Let x[n] denote one frame of the audio signal
(n = 0, 1, . . . , N − 1), and let X(k) denote the Discrete
Fourier Transform (DFT) of x[n]. The values of X(k) for
k = 0, 1, . . . , �K/2� − 1 correspond to discrete frequency bins
from 0 to π, with π indicating half of the sampling rate Fs.
Let f denote the frequency in Hz. The DFT bin number
corresponding to f is given by

f̂ =
⌊
f

Fs
· K

⌋
. (3)

For a given frequency band [ fL, fH] the total spectral
energy in the band is given by

EfL, fH =
f̂H∑

k= f̂L

|X (k)|2. (4)

Finally, if the spectral energies of the two bands B1 =
[ f 1

L , f 1
H] and B2 = [ f 2

L , f 2
H] are denoted EB1 and EB2 ,

respectively, the ratio is computed on a logarithmic scale, as
follows:

Eratio = 10 log10

(
EB1

EB2

)
. (5)

We used two features based on band energy ratio—the low
energy ratio, defined as the ratio between the spectral energy
below 70 Hz and the total energy, and the high energy ratio,
defined as the ratio between the energy above 11 KHz and the
total energy, where the sampling frequency is 44 KHz.

Autocorrelation Coefficient. The autocorrelation coefficient is
defined as the highest peak in the short-time autocorrelation
sequence and is used to evaluate how close the audio signal
is to a periodic one. First, the normalized autocorrelation
sequence of the frame is computed:

Â (m) = A (m)
A (0)

=
∑N−m−1

n=0 x [n] x [n + m]∑N−1
n=0 (x [n])2 . (6)

Next, the highest peak of the autocorrelation sequence
between m1 and m2 is located, where m1 = �3 ·
Fs/1000� and m2 = �16 · Fs/1000� correspond to periods
between 3 milliseconds and 16 milliseconds (which is the
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Figure 1: A block diagram of the training phase. (a) Feature extraction and computation of probability density functions for each feature.
(b) Analysis of the distributions, setting of optimal thresholds, and selection of the best features for discrimination.

expected fundamental frequency range in voiced speech).
The autocorrelation coefficient is defined as the value of this
peak:

AC = max
m=m1,...,m2

{
Â (m)

}
. (7)

Mel Frequency Cepstrum Coefficients. The mel frequency
cepstrum coefficients (MFCCs) are known to be a compact
and efficient representation of speech data [17, 18]. The
MFCC computation starts by taking the DFT of the frame
X(k) and multiplying it by a series of triangularly shaped
ideal band-pass filters Vi(k), where the central frequencies
and widths of the filters are arranged according to the mel
scale [19]. Next, the total spectral energy contained in each
filter is computed:

E (i) = 1
Si

Ui∑

k=Li
(|X (k)| ·Vi (k))2, (8)

where Li and Ui are the lower and upper bounds of the filter
and Si is a normalization coefficient to compensate for the
variable bandwidth of the filters:

Si =
Ui∑

k=Li
(Vi (k))2. (9)

Finally, the MFCC sequence is obtained by computing
the Discrete Cosine Transform (DCT) of the logarithm of the
energy sequence E(i):

MFCC (l) = 1
N

N−1∑

i=0

log (E (i)) · cos
(

2 · π
N

(
i +

1
2

)
· l
)
.

(10)

We computed the first 10 MFC coefficients for each
frame. Each individual MFC coefficient is considered a
feature. In addition, the MFCC difference vector between
neighboring frames is computed, and the Euclidean norm of
that vector is used as an additional feature:

ΔMFCC (i, i− 1) =
√∑10

l=1
|MFCCi (l)−MFCCi−1 (l)|2,

(11)

where i represents the index of the frame.

Spectrum Rolloff Point. The spectrum rolloff point [6] is
defined as the boundary frequency fr , such that a certain
percent p of the spectral energy for a given audio frame is
concentrated below fr :

fr∑

k=0

|X (k)| = p ·
K−1∑

k=0

|X (k)| . (12)

In our study p = 85% is used.
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Spectrum Centroid. The spectrum centroid is defined as the
center of gravity (COG) of the spectrum for a given audio
frame and is computed as

Sc = k ·∑K−1
k=0 |X (k)|∑K−1

k=0 |X (k)| . (13)

Spectral Flux. The spectral flux measures the spectrum
fluctuations between two consecutive audio frames. It is
defined as

S f =
K−1∑

k=0

(|Xm(k)| − |Xm−1(k)|)2, (14)

namely, the sum of the squared frame-to-frame difference of
the DFT magnitudes [6], where m − 1 and m are the frame
indices.

Spectrum Spread. The spectrum spread [1] is a measure
that computes how the spectrum is concentrated around
the perceptually adapted audio spectrum centroid, and
calculated according to the following:

Ssp =

√√√√√√
∑K−1

k=0

([
log2

(
f (k)/1000

)− ASC
]2 · |X(k)|2

)

∑K−1
k=0 |X(k)|2 ,

(15)

where f (k) is the frequency associated with each frequency
bin, and ASC is the perceptually adapted audio spectral
centroid, as in [1], which is defined as

ASC =
∑K−1

k=0 log2

(
f (k) /1000

) · |X(k)|2∑K−1
k=0 |X(k)|2 . (16)

2.4. Computation of Feature Statistics. Each of the above
features is computed on frames of duration N, where N is
in samples, typically corresponding to 20–40 milliseconds of
audio. In order to extract more data to aid the classification,
the feature information is collected over longer segments of
length S (2–6 seconds). For each such segment and each
feature the following statistical parameters are computed:

(i) Mean value and standard deviation of the feature
across the segment.

(ii) Mean value and standard deviation of the difference
magnitude between consecutive analysis points.

In addition to that, for the zero-crossing rate, the
skewness (third central moment, divided by the cube of
the standard deviation) and the skewness of the difference
magnitude between consecutive analysis frames are also
computed.

For the energy we also measure the low short time energy
ratio (LSTER, [9]). The LSTER is defined as the percentage
of frames within the segment whose energy level is below one
third of the average energy level across the segment.

2.5. Threshold Setting and Probability Density Function
Estimation. In the learning phase, training data is collected
for speech segments and for music segments separately. For
each feature and each statistical parameter the corresponding
probability density functions (PDFs) are estimated—one for
speech segments and one for music segments. The PDFs are
computed using a nonparametric technique with a Gaussian
kernel function for smoothing.

Five thresholds are computed for each feature, based on
the estimated PDFs (Figure 2).

(1) Extreme speech threshold—defined as the value
beyond which there are only speech segments, that
is, 0% error based on the learning data.

(2) Extreme music threshold—same as 1, for music.

(3) High probability speech threshold—defined as the
point in the distribution where the difference
between the height of the speech PDF and the height
of the music PDF is maximal. This threshold is
more permissive than the extreme speech threshold:
values beyond this threshold are typically exhibited
by speech, but a small error of music segments is
usually present. If this error is small enough, and
on the other hand a significant percentage of speech
segments are beyond this threshold, the feature may
be a good candidate for separation between speech
and music.

(4) High probability music threshold—same as 3, for
music.

(5) Separation threshold—defined as the value that
minimizes the joint decision error, assuming that the
prior probabilities for speech and for music are equal.

For each of the first four thresholds the following
parameters are computed from the training data:

(i) inclusion fraction (I)—the percentage of correct
segments that exceed the threshold (for the speech
threshold this refers to speech segments, and for the
music threshold this refers to music segments);

(ii) error fraction (Er)—the percentage of incorrect
segments that exceed the threshold. For speech
thresholds these are the music segments, and for
music thresholds these are the speech segments. Note
that by the definition of the extreme thresholds, their
error fractions are 0.

2.6. Feature Selection. With a total of over 20 features
computed on the frame level and 4–6 statistical parameters
computed per feature on the segment level, the feature space
is quite large. More importantly, not all features contribute
equally, and some features may be very good in certain
aspects, and bad in others. For example, a specific feature
may have a very high value of I for the extreme speech
threshold, but a very low value of I for the extreme music
threshold, making it suitable for one feature group, but not
the other.
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Figure 2: Probability density function for a selected feature (stan-
dard deviation of the short-time energy). Left curve: music data;
right curve: speech data. Thresholds (left to right): music extreme,
music high probability, separation, speech high probability, speech
extreme.

The main task here is to select the best features for each
classification stage to ensure high discrimination accuracy
and to reduce the dimension of the feature space.

The “usefulness” score is computed separately for each
feature and each of the thresholds. The feature ranking
method is different for each of the three threshold types
(extreme speech/music, high probability speech/music, and
separation).

For the extreme thresholds, the features are ranked
according to the value of the corresponding inclusion
fraction I. When I is large, the feature is likely to be
more useful for identifying typical speech (resp., music)
frames.

For the high probability thresholds, we define the
“separation power” of a feature as I2/Er. This particular
definition is chosen due to its tendency, for a given inclu-
sion/error ratio, to prefer features with higher inclusion
fraction I. Since independence of features cannot be assumed
a priori, we adjusted the selection procedure to consider
the mutual correlation between features as well as their
separation power. In each stage, a feature is chosen from
the pool of remaining features, based on a linear combi-
nation of its separation power and its mutual correlation
with all previously selected features. This is formalized
as follows:

(i) let C be the separation power (for the extreme
thresholds we set C = I, whereas for the high
probability thresholds we use C = I2/Er);

(ii) in the first stage select the first feature that maximizes
C: i1 = argmax j{C( j)};

(iii) the second feature xi2 is computed so that

i2 = argmax j

{
α · C ( j)− β ·

∣∣∣ρi1, j

∣∣∣
}

, j /= i1, (17)

where α and β are weighting factors (typically α = β = 0.5),
determining the relative contributions ofC and of the mutual
correlation ρi, j :

ρi, j =
∑N

n=1xni · xnj√∑N
n=1(xni)

2∑N
n=1

(
xnj
)2

(18)

(iv) the kth feature xik is computed using

ik = argmax j

⎧⎨
⎩α · C

(
j
)− β

k − 1

k−1∑

r=1

∣∣∣ρir , j

∣∣∣
⎫⎬
⎭

j /= ir , r = 1, 2, . . . , k − 1.

(19)

For the separation threshold we originally tried the Fisher
Discriminant Ratio (FDR, [20]) as a measure of the feature
separation power:

Fd =
(
μS − μM

)2

σS2 + σM2
, (20)

where μS, μM are the mean values and σS, σM are the standard
deviations, for speech and music, respectively. As in the
first two stages, the features were selected according to a
combination of the FDR and the mutual correlation.

A small improvement was achieved by using the sequen-
tial floating (forward-backward) selection procedure detailed
in [20, 21]. The advantage of this procedure is that it
considers separation power of entire feature vector as a
whole, and not just as combination of individual features.

To measure the separation power of the feature vectors,
we computed the scatter matricesSw and Sm. Sw is the within-
class scatter matrix, defined as the normalized sum of the
class covariance matrices SSPEECH and SMUSIC:

Sw = SSPEECH + SMUSIC

2
. (21)

Sm is the mixture scatter matrix, defined as the covariance
matrix of the feature vector (all samples, both speech and
music) around the global mean.

Finally, the separation criterion is defined as

J2 = |Sm|
|Sw|

. (22)

This criterion tends to take large values when the within-class
scatter is small, that is, the samples are well-clustered around
the class mean, but the overall scatter is large, implying that
the clusters are well-separated. More details can be found in
[20].

2.7. Best Features for Discrimination. Using the above selec-
tion procedure, the best features for each of the five thresh-
olds were chosen. The optimal number of features in each
group is typically selected by trying different combinations in
a cross-validation setting over the training set, to achieve the
best detection rates. Table 2 lists these features in descending
order (best is first). Note that it is possible to take a smaller
subset of the features.

As can be seen from the table, certain features, for
example, the energy, the autocorrelation, and the 9th MFCC
are useful in multiple stages, while some, like the spectral
rolloff point, are used only in one of the stages. Also it can be
noticed that some of the features considered in the learning
phase were found inefficient in practice and were eliminated
from the features set in the test phase. As the procedure
is automatic, the user does not even have to know which
features are selected, and in fact very different sets of features
were sometimes selected for different thresholds.
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Table 2: Best features for each of the five thresholds.

Threshold type Features

Extreme speech

(1) 9th MFCC (mean val. of diff. mag.)

(2) Energy (std)

(3) 9th MFCC (std of diff. mag.)

(4) LSTER

Extreme music

(1) High Band Energy Ratio (mean value)

(2) Spectral rolloff point (mean value)

(3) Spectral centroid (mean value)

(4) LSTER

High probability
speech

(1) Energy (std)

(2) 9th MFCC (mean val. of diff. mag.)

(3) Energy (mean val. of diff. mag.)

(4) Autocorrelation (std)

(5) LSTER

High probability
music

(1) Energy (mean val. of diff. mag.)

(2) Energy (std)

(3) 9th MFCC (std of diff. mag.)

(4) Autocorrelation (std of diff. mag.)

(5) ZCR (skewness)

(6) ZCR (skewness of diff. mag.)

(7) LSTER

Separation

(1) Energy (std)

(2) Energy (mean val. of diff. mag.)

(3) Autocorrelation (std)

(4) 9th MFCC (std of diff. mag.)

(5) Energy (std of diff. mag.)

(6) 9th MFCC (mean val. of diff. mag.)

(7) 7th MFCC (mean val. of diff. mag.)

(8) 4th MFCC (std)

(9) 7th MFCC (std of diff. mag.)

(10) Autocorrelation (std of diff. mag.)

(11) LSTER

3. Test Phase and Speech/Music Segmentation

The aim of the test phase is to perform segmentation of a
given audio signal into “speech” and “music”. There are no
prior assumptions on the signal content or the probabilities
of each of the two classes. Each segment is classified
separately and almost independently of other segments.
A block diagram describing the classification algorithm is
shown on Figure 3.

3.1. Streaming and Feature Computation. The input signal is
divided into consecutive segments, with segment size S. Each
segment is further divided into consecutive and overlapping
frames with frame size N (as in the learning phase) and
hop size h f , where typically h f = N/2. For each such
frame, the features that were chosen by the feature selection
procedure (Section 2.6) are computed. Consequently, the
feature statistics are computed over the segment (of length

S) and compared to the predefined thresholds, which were
also set during the learning phase. This comparison is used
as a basis for classification of the segment either as speech or
as music, as described below.

In order to provide better tracking of the changes in
the signal, the segment hop size hs, which represents the
resolution of the decision, is set to a small fraction of the
segment size (typically 100–400 ms).

For the evaluation tests (Section 4) the following values
were used: N = 40 milliseconds, h f = 20 milliseconds, S = 4
seconds.

3.2. Initial Classification. The initial decision is carried out
for each segment independently of other segments. In this
decision each segment receives a grade between −1 and 1,
where positive grades indicate music and negative grades
indicate speech, and the actual value represents the degree of
certainty in the decision (e.g., ±1 means speech/music with
high certainty).

For each of the five threshold types computed in the
learning phase (see Section 2.5) a set of features is selected,
that are compared to their corresponding thresholds. The
features for each set are chosen according to the feature
selection procedure (see Section 2.6). After comparing all
features to the thresholds, the values are computed as shown
in Table 3 .

A segment receives a grade of Di = −1 if one of the
following takes place:

(i) SX > 0 and MX = MH = 0 (i.e., at least one of the
features is above its corresponding extreme speech
threshold; whereas no feature surpasses the extreme
or the high probability music thresholds);

(ii) SX > 1 and MX = 0 (we allow MH > 0 if SX is at least
2);

(iii) SH > α|AS| and MH = 0, where α ∈ (0.5, 1), AS is
the set of all features used with the high probability
speech threshold (i.e., if a decision cannot be made
using the extreme thresholds, we demand a large
majority of the high probability thresholds to classify
the segment as speech with high certainty).

The above combination of rules allows classifying a
segment as speech in cases where its feature vector is located
far inside the speech half-space along some of the feature
axes, and at the same time, is not far inside the music half-
space along any of the axes. In such cases we can be fairly
certain of the classification. It is expected that if the analyzed
segment is indeed speech, it will rarely exhibit any features
above the extreme or high probability music thresholds.

Similarly, a segment gets a grade of Di = 1 (that
is considered as music with high certainty) if one of the
following takes place:

(i) MX > 0 and SX = SH = 0,

(ii) MX > 1 and SX = 0,

(iii) MH > α|AM|, and SH = 0, where α ∈ (0.5, 1), AM is
the set of all features used with the high probability
speech threshold.
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Table 3

SX(MX) No. of features in the extreme speech (music) set that surpass their thresholds

SH(MH) No. of features in the high probability speech (music) set that surpass their thresholds

SP(MP) No. of features in the separation set that are classified as speech (music)

SX SH SP MX MHMP

DI(t) DS(t)

TDB(t)

DB(t)

Segmentation
(segment = 4 s,
hop = 100 ms)

Framing
(frame = 40 ms,

hop = 20 ms)

Feature
computation

Statistics
computation

Comparison to
thresholds

Initial
classification

Smoothing

h

Audio
segment

Audio
signal

Features

Statistical features Threshold
adaptation
mechanism

Discretization
and final

classification

Audio
frame

Figure 3: General block diagram of the classficication algorithm.

If none of the above applies, the decision is based on the
separation threshold as follows:

Di = MP − SP
|AP|

, (23)

where AP is the set of features used with the separation
threshold. Note that 0 ≤MP , SP ≤ |AP|, andMP+SP = |AP|,
so the received grade is always between −1 and 1, and in
some way reflects the certainty with which the segment can
be classified as speech or music.

This procedure of assigning a grade to each segment is
summarized in Figure 4.

3.3. Smoothing and Final Classification. In most audio sig-
nals, speech-music and music-speech transitions are not very
common (for instance, musical segments are usually at least
one minute long, and typically several minutes or longer).
When the classification of an individual segment is based
solely on data collected from that segment (as described
above), erroneous decisions may lead to classification results
that alternate more rapidly than normally expected. To
avoid this, the initial decision is smoothed by a weighted
average with past decisions, using an exponentially decaying
“forgetting factor,” which gives more weight to recent
segments:

Ds (t) = 1
F

K∑

k=0

Di (t − k) e−k/τ , (24)

where K is the length of the averaging period, τ is the time
constant, and F = ∑K

k=0e
−k/τ is the normalizing constant.

Alternatively, we tried a median filter for the smoothing.
Both approaches achieved comparable results.

Following the smoothing procedure, discretization to a
binary decision is performed as follows: a threshold value 0 <
T < 1 is determined. Values above T or below −T are set to
1 or −1, respectively, whereas values between −T and T are
treated according to the current trend of Ds(t), that is, if Ds(t)
is on the rise, Db(t) = 1 and Db(t) = −1 otherwise, where
Db(t) is the binary desicion.

Additionally, a four-level decision is possible, where
values in (−T ,T) are treated as “weakly speech” or “weakly
music.” The four-level decision mode is useful for mixed
content signals, which are difficult to firmly classify as speech
or music.

To avoid erroneous transitions in long periods of either
music or speech, we adapt the threshold over time as follows:
let Th(t) be the threshold at time t, and Db(t), Db(t − 1) be
the binary decision values of the current and the previous
time instants, respectively. We have the following:

if Db (t) = Db (t − 1) ,

then Th (t) ⇐ max (M · Th (t) ,Tmin)

else Th (t) ⇐ Tinit,

, (25)

where 0 < M < 1 is a predefined multiplier, Tinit is the
initial value of the threshold, and Tmin is a minimal value,
which is set so that the threshold will not reach a value of
zero. This mechanism ensures that whenever a prolonged
music (or speech) period is processed, the absolute value of
the threshold is slowly decreased towards the minimal value.
When the decision is changed, the threshold value is reset to
Tinit.
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Figure 4: A schematic flowchart of the initial decision made for each segment in the test phase.

Table 4: Total correct identification rate for music and for speech.

Duration (seconds) correct %

Music 78028 97.8%

Speech 42430 99.4%

4. Evaluation and Results

4.1. Speech and Music Material. The speech material for the
evaluation was collected from various free internet speech
databases, such as the International Dialects of English
Archive (http://www.ku.edu/∼idea/), the World Voices Col-
lection (http://www.world-voices.com/), the Indian institute
of scientific heritage (http://www.iish.org/), and others. The
test set contained both clean speech and noisy speech. Most
of the data were MP3 files at bitrates of 128Kbps and higher
or uncompressed PCM WAV files.

The music material for the test set contained music of
different genres, such as classical, folk, pop, rock, metal, new
age, and others. The source material was either in cd audio
format (uncompressed) or mp3 (64 kbps and higher).

4.2. Evaluation of Long Tracks. The evaluation was per-
formed on approximately 12 hours of speech and 22 hours of
music from the above material. The results are summarized
in Table 4. For music, the correct identification rate is 97.8%
(98.9% excluding the electronic music). A breakdown of
music detection rates into different genres is summarized in
Table 5. It can be noticed that in electronic music and pop,
the scores are lower than those of the other genres. For speech
an identification rate of 99.4% has been achieved.

4.3. Evaluation of Alternating Sections. In this test, a signal
was constructed from 80 alternating sections of speech (40
sections) and music (40 sections), each 30 seconds long. The
proportion of correct detection is shown in Table 6. Since
the first six seconds of each section are defined as transition
time, only the steady-state portion of the signal is taken into
account, that is, 960 seconds of each type, speech and music.

Table 5: Breakdown of identification rates for different musical
genres.

Music genres Duration (sec) % correct

Classical 16732 99.77%

Folk 2475 98.55%

Pop 5999 93.37%

Rock 17932 99.17%

Metal 6827 99.53%

New age 5143 99.86%

Electronic 17526 93.94%

Misc. 5394 99.96%

Table 6: Correct identification rates for alternating sections.

Signal Speech Music

Total duration(sec) 960 seconds 960 seconds

Total error(sec) 7.01 13.73

Correct identification 98.8% 98.6%

Average latency 4.01 (std = 0.51) 5.13 (std = 0.71)

Most of the sections were identified perfectly. Among the
speech sections only 2 out of 40 sections were problematic,
where in one case the speech was excerpted from a TV
soundtrack with background music, and the other contained
strong background noise. Among the music, only 3 out of
40 sections had errors, 2 of them containing a strong vocal
element. The high success rates are even more satisfying
considering the fact that most of the speech sections were
with a background noise.

4.4. Gradual Transitions. In radio and TV broadcasts,
gradual speech-music and music-speech transitions are
often present, for example between songs and the voice
of the announcer. Because our algorithm supports soft
speech/music classifications, it can recognize such gradual
transitions. Figure 5 shows a transition between music and
speech at the end of a song. After the first 8 seconds the music
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Figure 5: Gradual transition between music and speech. (a) The
audio section (17 seconds). (b) The continuous speech/music
classification curve.

fades out and the announcer starts speaking over it, and for
the last 4 seconds there is only the announcer’s voice.

4.5. Comparison with Other Approaches. In order to evaluate
the algorithm in the context of existing work, we compared
it to traditional approaches, such as the Support Vector
Machine (SVM, [22, 23]) and the Linear Discriminant
Analysis (LDA, [20]). For the training, our original training
databases were used, and for the testing we chose the
Scheirer-Slaney database, provided to us by Dan Ellis. The
database consists of radio recordings, with 20 minutes of
speech and 20 minutes of music. This allows us to compare
our results directly with past studies that used the same
database such as [6, 12, 16].

In our comparative tests, the optimal feature sets for
each classifier (the proposed algorithm, SVM and LDA)
were chosen using the automatic feature selection procedure
detailed in Section 2.6. For the SVM the Gaussian (radial
basis function) kernel was used, as it has some advantages
compared to the linear SVM and others. The data for the
SVM training was automatically scaled to zero mean and unit
variance, and the free parameters were selected using grid
search, and evaluated through cross-validation [24, 25].

The SVM and LDA algorithms were tested individually,
as stand-alone classifiers, as well as in the general framework
of our decision tree, replacing the separation stage of the
initial classification (Section 3.2), that is, Di was assigned
according to the output of the classifier, and the postpro-
cessing techniques described in Section 3.3 were applied
to it. Additionally, we tested a combination of the two
techniques—with LDA being used for feature selection, and
SVM for the classification.

The best results achieved for each classifier are shown in
Figure 6. It can be seen that in all cases, the results are very
good, and that the success rates attained by our algorithm
are comparable and slightly better, with 99.07% correct
detection. We further see that the usage of the full three-level
decision tree, and the decision postprocessing techniques
slightly improve the success rates of both SVM and LDA.
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Figure 6: Comparison of five approaches: the proposed decision
tree algorithm (TREE), Linear Discriminant Analysis (LDA), Sup-
port Vector Machine (SVM), and a combination of the SVM/LDA
classifiers with the decision tree, in which the classifiers take the
place of the separation stage. The best detection rates achieved with
each classifier are shown, for speech, music and overall.

Table 7: Effect of number of features on performance of SVM
classifier.

Number of features Correct identifaction rate

9 96.94%

28 95.90%

The overall error rate of our decision tree algorithm (0.93%)
is comparable, and somewhat surpasses the 1.3–1.5% rates
reported in [6, 12, 16], although it should be noticed that,
unlike in those studies, here the database was solely for
testing, whereas the training was done on different data.

4.6. The Importance of Feature Selection. To verify the contri-
bution of the feature selection procedure to the performance
of the classifier, we conducted two experiments with the SVM
classifier, using a base feature set of 28 different features.
In the one experiment, the best 9 features were selected,
and in the other one, all features were used. The results are
summarized in Table 7. It can be seen that feature selection
allows higher performance to be achieved.

5. Conclusion

In this paper we presented an algorithm for speech/music
classification and segmentation, based on a multistage sta-
tistical approach. The algorithm consists of a training stage
with an automatic selection of the most efficient features and
the optimal thresholds, and a processing stage, during which
an unknown audio signal is segmented into speech or music
through a sieve-like rule-based procedure.

Tested on a large test set of about 34 hours of audio from
different resources, and of varying quality, the algorithm
demonstrated very high accuracy in the classification (98%,
and over 99% under certain conditions), as well as fast
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response to transitions from music to speech and vice versa.
The test database is among the largest used in similar studies
and suggests that the algorithm is robust and applicable in
various testing conditions.

The algorithm was tested against standard approaches
such as SVM and LDA, and showed comparable, often
slightly better, results. On the other hand, the decision
tree uses simple heuristics, which are easy to implement
in a variety of hardware and software frameworks. This
together with its fast and highly localized operation makes it
suitable for real-time systems and for consumer-grade audio
processing applications. A commercial product based on the
presented algorithm is currently being developed by Waves
Audio, and a provisional patent has been filed.

Another advantage of the presented algorithm is the
generic training procedure, which allows testing any number
of additional features and selecting the optimal feature set
using an automatic and flexible procedure.

One possible direction for improvement of the algorithm
is increasing the segmentation accuracy in speech-music
and music-speech transitions. In an offline application this
could be achieved, without harming the overall identification
rate, by postprocessing the boundary regions using smaller
segments.

Acknowledgments

The authors would like to thank I. Neoran, Director of R&D
of Waves Audio, for his valuable discussions and ideas, and
Y. Yakir for technical assistance. They also thank D. Ellis
for providing them the database they used in part of the
experiments. Finally, they would like to thank the reviewers
for many good remarks which helped them improve the
paper.

References

[1] J. J. Burred and A. Lerch, “Hierarchical automatic audio signal
classification,” Journal of the Audio Engineering Society, vol. 52,
no. 7-8, pp. 724–739, 2004.

[2] A. Bugatti, A. Flammini, and P. Migliorati, “Audio classifica-
tion in speech and music: a comparison between a statistical
and a neural approach,” EURASIP Journal on Applied Signal
Processing, vol. 2002, no. 4, pp. 372–378, 2002.
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