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Abstract The Thomas–Fermi approach to galaxy struc-
ture determines self-consistently and non-linearly the gravi-
tational potential of the fermionic warm dark matter (WDM)
particles given their quantum distribution function f (E).
This semiclassical framework accounts for the quantum
nature and high number of DM particles, properly describ-
ing gravitational bounded and quantum macroscopic sys-
tems as neutron stars, white dwarfs and WDM galaxies. We
express the main galaxy magnitudes as the halo radius rh ,
mass Mh , velocity dispersion and phase space density in
terms of the surface density which is important to confront
to observations. From these expressions we derive the gen-
eral equation of state for galaxies, i.e., the relation between
pressure and density, and provide its analytic expression.
Two regimes clearly show up: (1) Large diluted galaxies for
Mh � 2.3 × 106 M� and effective temperatures T0 > 0.017
K described by the classical self-gravitating WDM Boltzman
gas with a space-dependent perfect gas equation of state, and
(2) Compact dwarf galaxies for 1.6 × 106 M� � Mh �
Mh,min � 3.10 × 104 (2 keV/m)

16
5 M�, T0 < 0.011 K

described by the quantum fermionic WDM regime with a
steeper equation of state close to the degenerate state. In
particular, the T0 = 0 degenerate or extreme quantum limit
yields the most compact and smallest galaxy. In the diluted
regime, the halo radius rh , the squared velocity v2(rh) and
the temperature T0 turn to exhibit square-root of Mh scal-
ing laws. The normalized density profiles ρ(r)/ρ(0) and the
normalized velocity profiles v2(r)/v2(0) are universal func-
tions of r/rh reflecting the WDM perfect gas behavior in this
regime. These theoretical results contrasted to robust and
independent sets of galaxy data remarkably reproduce the
observations. For the small galaxies, 106 � Mh ≥ Mh,min,
the equation of state is galaxy mass dependent and the density

a e-mail: Norma.Sanchez@obspm.fr

and velocity profiles are not anymore universal, accounting to
the quantum physics of the self-gravitating WDM fermions
in the compact regime (near, but not at, the degenerate state).
It would be extremely interesting to dispose of dwarf galaxy
observations which could check these quantum effects.
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1 Introduction

Dark matter (DM) is the main component of galaxies: the
fraction of DM over the total galaxy mass goes from 95% for
large diluted galaxies till 99.99% for dwarf compact galaxies.
Therefore, DM alone should explain the main structure of
galaxies. Baryons should only give corrections to the pure
DM results.

Warm dark matter (WDM), that is, dark matter formed by
particles with masses in the keV scale receives increasing
attention today ([1–10] and references therein).

At intermediate scales ∼100 kpc, WDM gives the correct
abundance of substructures and therefore WDM solves the
cold dark matter (CDM) overabundance of structures at small
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scales [11–19]. For scales larger than 100 kpc, WDM yields
the same results than CDM. Hence, WDM agrees with all
the observations: small scale as well as large scale structure
observations and CMB anisotropy observations.

Astronomical observations show that the DM galaxy den-
sity profiles are cored till scales below the kpc [20–25]. On
the other hand, N -body CDM simulations exhibit cusped
density profiles with a typical 1/r behavior near the galaxy
center r = 0. Inside galaxy cores, below ∼100 pc, N -body
classical physics simulations do not provide the correct struc-
tures for WDM because quantum effects are important in
WDM at these scales. Classical physics N -body WDM sim-
ulations exhibit cusps or small cores with sizes smaller than
the observed cores [26–29]. WDM predicts correct structures
and cores with the right sizes for small scales (below kpc)
when the quantum nature of the WDM particles is taken
into account [30,31]. This approach is independent of any
WDM particle physics model.

We follow here the Thomas–Fermi approach to galaxy
structure for self-gravitating fermionic WDM [30,31]. This
approach is especially appropriate to take into account quan-
tum properties of systems with large number of particles.
That is, macroscopic quantum systems as neutron stars and
white dwarfs [32,33]. In this approach, the central quantity
to derive is the DM chemical potential μ(r), which is the free
energy per particle. For self-gravitating systems, the poten-
tial μ(r) is proportional to the gravitational potential φ(r),
μ(r) = μ0 − m φ(r), μ0 being a constant, and it obeys the
self-consistent and non-linear Poisson equation,

∇2μ(r) = −4 π g G m2
∫

d3 p

(2 π h̄)3 f

(
p2

2m
− μ(r)

)
.

(1.1)

Here G is Newton’s gravitational constant, g is the number
of internal degrees of freedom of the DM particle, p is the
DM particle momentum and f (E) is the energy distribu-
tion function. This is a semiclassical gravitational approach
to determine self-consistently the gravitational potential of
the quantum fermionic WDM given its distribution function
f (E).

The terminology “Thomas–Fermi approach” is used here
by analogy with the effective quantum mechanical treatement
implying a quantum statistical distribution function. Notice,
however, that the Thomas–Fermi method in atomic physics
does not lead to an integro-differential equation but rather to
a non-linear differential equation.

In the Thomas–Fermi approach, DM dominated galaxies
are considered in a stationary state. This is a realistic situation
for the late stages of structure formation since the free-fall
(Jeans) time t f f for galaxies is much shorter than the age
of galaxies. t f f is at least one or two orders of magnitude
smaller than the age of the galaxy.

We consider spherical symmetric configurations where
Eq. (1.1) becomes an ordinary non-linear differential equa-
tion that determines self-consistently the chemical potential
μ(r) and constitutes the Thomas–Fermi approach [30,31]
(see also Refs. [34–36]). We choose for the energy distribu-
tion function a Fermi–Dirac distribution

f (E) = 1

eE/T0 + 1
,

where T0 is the characteristic one-particle energy scale. T0

plays the role of an effective temperature scale and depends
on the galaxy mass. The Fermi–Dirac distribution function
is justified in the inner regions of the galaxy, inside the halo
radius where we find that the Thomas–Fermi density profiles
perfectly agree with the observations.

The collisionless self-gravitating gas is an isolated sys-
tem which is not integrable. Therefore, it is an ergodic sys-
tem that can thermalize [37]. Namely, the particle trajectories
explore ergodically the constant energy manifold in phase-
space, covering it uniformly according to precisely the micro-
canonical measure and yielding to a thermal situation [37].

Physically, these phenomena are clearly understood
because in the inner halo region r � rh , the density is higher
than beyond the halo radius. The gravitational interaction in
the inner region is strong enough and thermalizes the self-
gravitating gas of DM particles while beyond the halo radius
the particles are too dilute to thermalize, namely, although
they are virialized, they had not enough time to accomplish
thermalization. Notice that virialization always starts before
than thermalization.

The solutions of the Thomas–Fermi equations (1.1) are
characterized by the value of the chemical potential at the
origin μ(0). Large positive values of μ(0) correspond to
dwarf compact galaxies (fermions near the quantum degen-
erate limit), while large negative values of μ(0) yield large
and diluted galaxies (classical Boltzmann regime).

Approaching the classical diluted limit yields larger and
larger halo radii, galaxy masses and velocity dispersions. On
the contrary, in the quantum degenerate limit we get solu-
tions of the Thomas–Fermi equations corresponding to the
minimal halo radii, galaxy masses and velocity dispersions.

The surface density

�0 ≡ rh ρ0 � 120 M�/pc2 up to 10 − 20%, (1.2)

whete rh stand for the halo radius and ρ0 for the density at the
center has the remarkable property of being nearly constant
and independent of luminosity in different galactic systems
(spirals, dwarf irregular and spheroidals, elliptics) spanning
over 14 magnitudes in luminosity and over different Hubble
types [38,39]. It is therefore a useful characteristic scale to
express galaxy magnitudes.
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Our theoretical results follow by solving the self-consistent
and non-linear Poisson equation (1.1) which is solely derived
from the purely gravitational interaction of the WDM par-
ticles and their fermionic nature.

The main galaxy magnitudes as the halo radius rh , mass
Mh , velocity dispersion and phase space density are analyti-
cally obtained and expressed in terms of the surface density,
which is particularly appropriate to confront to observations
over the whole range of galaxies.

In this paper we derive and analyze the general equation
of state of galaxies which clearly exhibits two regimes: (1)
large diluted galaxies for

Mh � 3.7 106 M�, ν0 ≡ [μ(0)/T0] < −5, T0 > 0.017 K,

(1.3)

described by the classical WDM Boltzmann regime, and (2)
compact dwarf galaxies for

1.6 106 � Mh ≥ Mh,min � 3.10 104
(

2 keV

m

)16
5

M�, ν0 > −4,

T0 < 0.011 K, 133

(
2 keV

m

)8
5

pc � rmin
h � 11.4

(
2 keV

m

)8
5

pc,

(1.4)

described by the quantum fermionic regime close to the
degenerate state.

In particular, the T0 = 0 degenerate or extreme quantum
limit yields the most compact and smallest galaxy: with min-
imal mass Mh,min and minimal radius, and maximal phase
space density.

In Ref. [30] careful estimates of the halo mass and radius
for the degenerate WDM self-gravitating gas were reported.
For clarity, we reproduce and update the estimates here.

For an order-of-magnitude estimate, let us consider a halo
of mass Mh and radius rh of fermionic matter. Each fermion
can be considered inside a cell of size �x ∼ 1/n

1
3 and there-

fore has a momentum

p ∼ h̄

�x
∼ h̄ n

1
3 . (1.5)

The associated quantum pressure Pq (flux of the momentum)
has the value

Pq = n σ p ∼ h̄ σ n
4
3 = h̄2

m
n

5
3 , (1.6)

where σ is the mean velocity given by

σ = p

m
= h̄

m
n

1
3 .

The system will be in dynamical equilibrium if this quantum
pressure is balanced by the gravitational pressure,

PG = gravitational force/area = G M2
h

r2
h

× 1

4 π r2
h

. (1.7)

We estimate the number density as

n = Mh
4
3 π r3

h m
,

and we use p = m σ to obtain from Eq. (1.6)

Pq = h̄2

m r5
h

(
3 Mh

4 π m

) 5
3

. (1.8)

Equating Pq = PG from Eqs. (1.7), (1.8) yields the following
relations between the size rh and the velocity σ with the mass
Mh of the system:

rh = 3
5
3

(4 π)
2
3

h̄2

G m
8
3 M

1
3
h

= 7.8 pc

(
104 M�

Mh

) 1
3

(
2 keV

m

) 8
3

(1.9)

v = √
3 σ = √

3

(
4 π

81

) 1
3 G

h̄
m

4
3 M

2
3
h

= 4.64
km

s

( m

2 keV

) 4
3

(
Mh

104 M�

) 2
3

. (1.10)

These estimates are in agreement with the precise Thomas–
Fermi results in the degenerate limit [see Eq. (1.4)].

One may wonder whether these WDM configurations
could decrease their size rh increasing indefinitely their mass
Mh and velocity σ . We derive from Eq. (1.9) the estimation
for the velocity

v = 3
5
2

4 π

1

G m4 r2
h

= 0.4726 10−3
(

pc

rh

)2 (
2 keV

m

)2

.

(1.11)

For rh < 0.02 pc the velocity reaches the speed of light and
the non-relativistic estimates Eqs. (1.6), (1.9) and (1.11) are
no more valid.

Let us estimate the quantum pressure Pq for ultrarelativis-
tic particles, that is, σ = 1/

√
3. We have from Eqs. (1.5) and

(1.6)

Pq = n σ p ∼ h̄
1√
3
n

4
3 = 1√

3

(
3 Mh

4 π m

) 4
3 1

r4
h

. (1.12)

Equating Pq = PG from Eqs. (1.7)–(1.12) the factor 1/r4
h

cancels out and we find a fixed constant value for the mass
Mh :
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Mmax
h = 3

5
4

2
√

π

1

G
3
2 m2

= 0.45432 1012 M�
(

2 keV

m

)2

,

ultrarelativistic particles. (1.13)

Namely, for decreasing rh the mass Mh increases till a stable
configuration of maximal mass value Mmax

h .
It must be noticed that the estimation Eq. (1.13) only dif-

fers by a factor three from the exact ultrarelativistic Thomas–
Fermi result in the degenerate limit

Mmax, Thomas−Fermi
h = 1.2636 1012 M�

(
2 keV

m

)2

,

ultrarelativistic particles. (1.14)

The Chandrasekhar mass limit [32,33] for neutron stars
formed by a degenerate gas of neutrons is analogous to the
maximal mass Eqs. (1.13), (1.14) for self-gravitating degen-
erate WDM particles. Notice that strong interactions in neu-
tron stars introduce corrections [32,33] to the self-gravitating
degenerate gas of neutrons while the particle physics inter-
actions of WDM are so weak that can be safely neglected.

It is useful the comparison with the estimations Eqs. (1.9),
(1.10) for non-relativistic particles which imply

Mh = 35

(4 π)2

h̄6

G3 m8 r3
h

= 104 M�

(
7.8 pc

r2
h

)3 (
2 keV

m

)8

,

(1.15)

Mh = 3
5
4√

4 π

h̄
3
2

G
3
2 m2

v
3
2 = 104 M�

(
v

4.64 km
s

) 3
2 (

2 keV

m

)2

.

(1.16)

For typical observed values of rh and v, the values for Mh

predicted by this non-relativistic estimation provide minimal
values for Mh while if the WDM particles become ultrarel-
ativistic we obtain the maximum possible value for Mh Eqs.
(1.13), (1.14).

We thus have a whole range of stable WDM configura-
tions ranging from a minimal Mh for non-relativistic WDM
particles as in Eqs. (1.15), (1.16) till the maximal mass Mmax

h
in the ultrarelativistic limit as given by Eqs. (1.13), (1.14).

In fact, observations show that WDM particles are always
non-relativistic and therefore galaxies with high masses near
Mmax

h ∼ 1012 M� in the degenerate ultrarelativistic regime
Eqs. (1.13), (1.14) are not observed. On the contrary, the
WDM non-relativistic estimates Eqs. (1.9), (1.10) and (1.15),
(1.16) are observationally realistic for ultracompact galax-
ies.

As we see below in Sect. 2, observations show that real
galaxies in their whole range of masses, sizes and velocities
turn to be non-degenerate (non-zero temperature) solutions
of the Thomas–Fermi equations and in particular the ultra-
compact galaxies are close to the zero temperature degenerate
state.

A dwarf galaxy with a halo mass Mh � 106 M� arises as
a solution of the Thomas–Fermi approach near the quantum
degenerate regime. We obtain for a halo mass Mh � 106 M�
a halo radius rh � 100 pc as one can see from Fig. 2 and
a galaxy temperature T0 � 0.01 K (see Table 1). As dis-
cussed in Sect. 2, a galaxy solution with mass Mh � 106 M�
exhibits quantum properties: it is near the quantum degener-
ate regime but is not in a zero temperature degenerate state,
dwarf galaxies possessing a small but non-zero temperature.

Dwarf galaxies are macroscopic astrophysical quantum
objects as white dwarf stars and neutron stars [32,33], but
are different from them.

We find that all magnitudes in the diluted regime exhibit
square-root of Mh scaling laws and are universal functions
of r/rh normalized to their values at the origin or at rh . Con-
versely, the halo mass Mh scales as the square of the halo
radius rh as

Mh = 1.75572 �0 r2
h .

Moreover, the proportionality factor in this scaling relation
is confirmed by the galaxy data (see Fig. 2).

We find that the universal theoretical density profile
obtained from the Thomas–Fermi equation (1.1) in the
diluted regime (Mh � 106 M�) is accurately reproduced
by the simple formula (see Fig. 5)

ρ(r)

ρ(0)
= 1[

1 +
(

4
1
α − 1

) (
r
rh

)2
]α , α = 1.5913.

The fit is precise for r < 2 rh .
The theoretical rotation curves and density profiles

obtained from the Thomas–Fermi equations remarkably
agree with observations for r � rh , for all galaxies in the
diluted regime [40]. This indicates that WDM is thermalized
in the internal regions r � rh of galaxies.

We find the WDM galaxy equation of state, that is, the
functional relation between the pressure P and the density ρ

in a parametric way as

ρ = m
5
2

3 π2 h̄3 (2 T0)
3
2 I2(ν), P = m

3
2

15 π2 h̄3 (2 T0)
5
2 I4(ν).

(1.17)

These equations express parametrically, through the param-
eter ν, the pressure P as a function of the density ρ and
therefore provide the equation of state. I2(ν) and I4(ν) are
integrals (2nd and 4th momenta) of the distribution func-
tion. At thermal equilibrium they are given by Eq. (2.15).
For the main galaxy physical magnitudes, the Fermi–Dirac
distribution gives similar results than the out of equilibrium
distribution functions [31]. We plot in Figs. 7 and 8 P as a
function of ρ for different values of the effective temperature
T0.
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Interestingly enough, we provide a simple formula repre-
senting the exact equation of state (1.17) obtained by solving
the Thomas–Fermi equation (1.1)

P = m
3
2 (2 T0)

5
2

15 π2 h̄3

(
1 + 3

2
e−β1 ρ̃

)
ρ̃

1

3
(5 − 2 e−β2 ρ̃ )

,

(1.18)

where

ρ̃ ≡ 3 π2 h̄3

m
5
2 (2 T0)

3
2

ρ = I2(ν), (1.19)

and the best fit to the exact values of P as a function ρ̃ is
obtained for the values of the parameters

β1 = 0.047098, β2 = 0.064492. (1.20)

The fitting formula Eq. (1.18) exactly fulfills the diluted and
degenerate limiting behaviors:

P = T0

m
ρ WDM diluted galaxies,

P = h̄2

5

(
3 π2

m4

)2
3

ρ
5
3 WDM degenerate quantum limit.

We plot in Fig. 9 the exact equation of state obtained by solv-
ing the Thomas–Fermi equation and the empirical equation
of state equation (1.18).

We find that the presence of universal profiles in galaxies
reflect the perfect gas behavior of the WDM galaxy equation
of state in the diluted regime which is identical to the self-
gravitating Boltzman WDM gas.

These theoretical results contrasted to robust and indepen-
dent sets of galaxy data remarkably reproduce the observa-
tions.

For the small galaxies, 106 M� � Mh ≥ Mh,min corre-
sponding to effective temperatures T0 � 0.017 K, the equa-
tion of state is steeper, dependent on the galaxy mass and
the profiles are not anymore universal. These non-universal
properties in small galaxies account to the quantum physics
of the self-gravitating WDM fermions in the compact regime
with high density close to, but not at, the degenerate state.

It would be extremely interesting to dispose of obser-
vations which could check these quantum effects in dwarf
galaxies.

In summary, the results of this paper show the power and
cleanliness of the Thomas–Fermi theory and WDM to prop-
erly describe the galaxy structures and the galaxy physical
states.

This paper is organized as follows. In Sect. 2 we present
the Thomas–Fermi approach to galaxy structure, we express
the main galaxy magnitudes in terms of the solution of the

Thomas–Fermi equation and the value of the surface den-
sity �0. We analyze the diluted classical galaxy magnitudes,
derive their scaling laws and find the universal density and
velocity profiles and their agreement with observations.

In Sect. 3 we derive the equation of state of galaxies and
analyze their main regimes: classical regime which is the
perfect inhomogeneous equation of state, identical to the
WDM self-gravitating gas equation of state, and the quan-
tum regime, which exhibits a steeper equation of state, non-
universal, galaxy mass dependent and describes the quantum
fermionic compact states (dwarf galaxies), close to the degen-
erate limit. Finally, the invariance and dependence on the
WDM particle mass m in the classical and quantum regimes
is discussed.

2 Galaxy structure in the WDM Thomas–Fermi
approach

We consider DM dominated galaxies in their late stages of
structure formation when they are relaxing to a stationary
situation, at least not too far from the galaxy center.

This is a realistic situation since the free-fall (Jeans) time
t f f for galaxies is much shorter than the age of galaxies:

t f f = 1√
G ρ0

= 1.49 × 107

√
M�

ρ0 pc3 year.

The observed central densities of galaxies yield free-fall
times in the range from 15 million years for ultracompact
galaxies till 330 million years for large diluted spiral galax-
ies. These free-fall (or collapse) times are small compared
with the age of galaxies running in billions of years.

Hence, we can consider the DM described by a time-
independent and non-relativistic energy distribution function
f (E), where E = p2/(2m)−μ is the single-particle energy,
m is the mass of the DM particle and μ is the chemical poten-
tial [30,31] related to the gravitational potential φ(r) by

μ(r) = μ0 − m φ(r), (2.1)

where μ0 is a constant.
In the Thomas–Fermi approach, ρ(r) is expressed as a

function of μ(r) through the standard integral of the DM
phase-space distribution function over the momentum

ρ(r) = g m

2 π2 h̄3

∫ ∞

0
dp p2 f

[
p2

2m
− μ(r)

]
, (2.2)

where g is the number of internal degrees of freedom of the
DM particle, with g = 1 for Majorana fermions and g = 2
for Dirac fermions.
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We will consider spherical symmetric configurations.
Then the Poisson equation for φ(r) takes the self-consistent
form

d2μ

dr2 + 2

r

dμ

dr
= −4π G m ρ(r) = −2 g G m2

π h̄3

×
∫ ∞

0
dp p2 f

[
p2

2m
− μ(r)

]
, (2.3)

where G is Newton’s constant and ρ(r) is the DM mass
density.

Equation (2.3) provides an ordinary non-linear differen-
tial equation that determines self-consistently the chemical
potential μ(r) and constitutes the Thomas–Fermi approach
[30,31] (see also Refs. [34–36]). This is a semiclassical
approach to galaxy structure in which the quantum nature
of the DM particles is taken into account through the quan-
tum statistical distribution function f (E).

The DM pressure and the velocity dispersion can also be
expressed as integrals over the DM phase-space distribution
function as

P(r) = g

6 π2 m h̄3

∫ ∞

0
dp p4 f

[
p2

2m
− μ(r)

]
, (2.4)

〈v2〉(r) = 1

m2

∫ ∞
0 dp p4 f

[
p2

2m
− μ(r)

]

∫ ∞
0 dp p2 f

[
p2

2m
− μ(r)

] . (2.5)

Equations (2.2), (2.4), and (2.5) imply the equation of state

P(r) = 1

3
〈v2〉(r) ρ(r) = σ 2(r) ρ(r). (2.6)

It must be stressed that the Thomas–Fermi equation (2.3)
determine σ 2(r) in terms of ρ(r) through Eq. (2.5). There-
fore, the Thomas–Fermi equation determines the equation
of state through Eq. (2.6). Contrary to the usual situation
[41], we do not assume the equation of state, but we derive
it from the Thomas–Fermi equation.

The fermionic DM mass density ρ is bounded at the origin
due to the Pauli principle [30] which implies the bounded
boundary condition at the origin

dμ

dr
(0) = 0. (2.7)

We see that μ(r) fully characterizes the DM halo structure
in this Thomas–Fermi framework. The chemical potential is
monotonically decreasing in r since Eq. (2.3) implies

dμ

dr
= −G m M(r)

r2 , M(r) = 4π

∫ r

0
dr ′ r ′2 ρ(r ′). (2.8)

From Eqs. (2.4) and (2.5) we derive the hydrostatic equilib-
rium equation

dP

dr
+ ρ(r)

dφ

dr
= 0. (2.9)

Eliminating P(r) between Eqs. (2.6) and (2.9) and integrat-
ing on r gives

ρ(r)

ρ(0)
= σ 2(0)

σ 2(r)
e
−

∫ r

0

dr ′

σ 2(r ′)
dφ

dr ′
. (2.10)

Inserting this expression in the Poisson equation yields

d2φ

dr2 + 2

r

dφ

dr
= 4 π G ρ0

σ 2(0)

σ 2(r)
e
−

∫ r

0

dr ′

σ 2(r ′)
dφ

dr ′
.

(2.11)

This non-linear equation for non-constant σ 2(r) generalizes
the corresponding equation in the self-gravitating Boltzmann
gas. For constant σ 2(r) Eq. (2.10) reduces to the barotropic
equation.

In this semiclassical framework the stationary energy dis-
tribution function f (E) must be given. We consider the
Fermi–Dirac distribution,

f (E) = �FD(E/T0) = 1

eE/T0 + 1
, (2.12)

where the characteristic one-particle energy scale T0 in the
DM halo plays the role of an effective temperature. The value
of T0 depends on the galaxy mass. In neutron stars, where the
neutron mass is about six orders of magnitude larger than the
WDM particle mass, the temperature can be approximated
by zero. In galaxies, T0 ∼ m < v2 > turns to be non-
zero but small in the range: 10−3 K � T0 � 10 K for halo
galaxy masses in the range 105–1012 M�, which reproduce
the observed velocity dispersions form � 2 keV. The smaller
values of T0 correspond to compact dwarfs and the larger
values of T0 are for large and diluted galaxies.

Notice that, for the relevant galaxy physical magnitudes,
the Fermi–Dirac distribution gives similar results than the
out of equilibrium distribution functions [31].

The choice of �FD is justified in the inner regions, where
relaxation to thermal equilibrium is possible. Far from the
origin, however, the Fermi–Dirac distribution as its classical
counterpart, the isothermal sphere, produces a mass density
tail 1/r2, which overestimates the observed tails of the galaxy
mass densities. Indeed, the classical regime μ/T0 → −∞
is attained for large distances r since Eq. (2.8) indicates that
μ(r) is always monotonically decreasing with r .

More precisely, large positive values of the chemical
potential at the origin correspond to the degenerate fermions
limit which is the extreme quantum case and oppositely, large
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negative values of the chemical potential at the origin gives
the diluted case which is the classical regime. The quan-
tum degenerate regime describes dwarf and compact galax-
ies while the classical and diluted regime describes large
and diluted galaxies. In the classical regime, the Thomas–
Fermi equations (2.3)–(2.7) become the equations for a self-
gravitating Boltzmann gas.

It is useful to introduce dimensionless variables ξ, ν(ξ)

r = l0 ξ, μ(r) = T0 ν(ξ), f (E) = �(E/T0), (2.13)

where l0 is the characteristic length that emerges from the
dynamical equation (2.3):

l0 ≡ h̄√
8G

(
2

g

)1
3

[
9 π I2(ν0)

m8 ρ0

]1
6

= R0

(
2 keV

m

)4
3

(
2

g

)1
3

[
I2(ν0)

ρ0

M�
pc3

]1
6

,

R0 = 7.425 pc, (2.14)

and

In(ν) ≡ (n + 1)

∫ ∞

0
yn dy �FD(y2 − ν),

n = 1, 2, . . . , ν0 ≡ ν(0), ρ0 = ρ(0), (2.15)

where we use the integration variable y ≡ p/
√

2m T0. For
definiteness, we will take g = 2, Dirac fermions in the sequel.
One can easily translate from Dirac to Majorana fermions
changing the WDM fermion mass as

m ⇒ m

2
1
4

= 0.8409 m.

Then, in dimensionless variables, the self-consistent Thomas–
Fermi equation (2.3) for the chemical potential ν(ξ) takes the
form

d2ν

dξ2 + 2

ξ

dν

dξ
= −I2(ν), ν′(0) = 0. (2.16)

We find the main physical galaxy magnitudes, such as the
mass density ρ(r), the velocity dispersion σ 2(r) = v2(r)/3
and the pressure P(r), which are all r -dependent:

ρ(r) = m
5
2

3 π2 h̄3 (2 T0)
3
2 I2(ν(ξ)) = ρ0

I2(ν(ξ))

I2(ν0)
,

ρ0 = m
5
2

3 π2 h̄3 (2 T0)
3
2 I2(ν0), (2.17)

P(r) = m
3
2

15 π2 h̄3 (2 T0)
5
2 I4(ν(ξ)) = 1

5

(
9 π4

)1
3

×
(
h̄6

m8

)1
3

[
ρ0

I2(ν0)

]5/3

I4(ν(ξ)), (2.18)

σ 2(r) = P(r)

ρ(r)
= 2 T0

5 m

I4(ν(ξ))

I2(ν(ξ))
. (2.19)

As a consequence, from Eqs. (2.8), (2.13), (2.14), (2.17), and
(2.19) the total mass M(r) enclosed in a sphere of radius r
and the phase space density Q(r) turn out to be

M(r) = 4 π
ρ0 l30
I2(ν0)

∫ ξ

0
dx x2 I2(ν(x))

= 4 π
ρ0 l30
I2(ν0)

ξ2 |ν′(ξ)| (2.20)

= M0 ξ2 |ν′(ξ)|
(

keV

m

)4
√

ρ0

I2(ν0)

pc3

M�
,

M0 = 4 π M�
(
R0

pc

)3

= 0.8230 × 105 M�, (2.21)

Q(r) ≡ ρ(r)

σ 3(r)
= 3

√
3

ρ(r)

〈v2〉 3
2 (r)

=
√

125

3 π2

m4

h̄3

I
5
2

2 (ν(ξ))

I
3
2

4 (ν(ξ))

.

(2.22)

In these expressions, we have systematically eliminated the
energy scale T0 in terms of the central density ρ0 through Eq.
(2.17). Notice that Q(r) turns to be independent of T0 and
therefore of ρ0.

We define the core size rh of the halo by analogy with the
Burkert density profile as

ρ(rh)

ρ0
= 1

4
, rh = l0 ξh . (2.23)

It must be noticed that the surface density

�0 ≡ rh ρ0 (2.24)

is found to be nearly constant and independent of the lumi-
nosity in different galactic systems (spirals, dwarf irregular
and spheroidals, elliptics) spanning over 14 magnitudes in
luminosity and over different Hubble types. More precisely,
all galaxies seem to have the same value for �0, namely
�0 � 120 M�/pc2 up to 10–20% [38,39,42]. It is remark-
able that at the same time other important structural quanti-
ties as rh, ρ0, the baryon-fraction and the galaxy mass vary
orders of magnitude from one galaxy to another.

The constancy of �0 seems unlikely to be a mere coin-
cidence and probably reflects a physical scaling relation
between the mass and halo size of galaxies. It must be stressed
that �0 is the only dimensionful quantity which is constant
among the different galaxies.

It is then useful to take here the dimensionful quantity
�0 as physical scale to express the galaxy magnitudes in
the Thomas–Fermi approach. That is, we replace the central
density ρ0 in the above galaxy magnitudes Eqs. (2.14)–(2.21)
in terms of �0 Eq. (2.24) with the following results:
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l0 =
(

9 π

29

)1
5

(
h̄6

G3 m8

)1
5

[
ξh I2(ν0)

�0

]1
5

= 4.2557 [ξh I2(ν0)]
1
5

(
2 keV

m

)8
5

(
120 M�
�0 pc2

)1
5

pc,

(2.25)

T0 =
(

18 π6 h̄6 G2

m3

)1
5

[
�0

ξh I2(ν0)

]4
5

= 7.12757 10−3

[ξh I2(ν0)]
4
5

(
2 keV

m

)3
5

(
�0 pc2

120 M�

)4
5

K (2.26)

and

r = 4.2557 ξ [ξh I2(ν0)]
1
5

(
2 keV

m

)8
5

×
(

120 M�
�0 pc2

)1
5

pc , (2.27)

ρ(r) =
(

29 G3 m8

9 π h̄6

)1
5

[
�0

ξh I2(ν0)

]6
5

I2(ν(ξ))

= 18.1967
I2(ν(ξ))

[ξh I2(ν0)]
6
5

( m

2 keV

)8
5

×
(

�0 pc2

120 M�

)6
5 M�

pc3 , (2.28)

M(r) = 4 π

(
9 π h̄6

29 G3 m8

)2
5

[
�0

ξh I2(ν0)

]3
5

ξ2 |ν′(ξ)|

= 27312 ξ2

[ξh I2(ν0)]
3
5

|ν′(ξ)|
(

2 keV

m

)16
5

×
(

�0 pc2

120 M�

)3
5

M� , (2.29)

σ 2(r) = 11.0402

[ξh I2(ν0)]
4
5

I4(ν(ξ))

I2(ν(ξ))

(
2 keV

m

)8
5

×
(

�0 pc2

120 M�

)4
5

(
km

s

)2

, (2.30)

P(r) = 8 π

5
G

[
�0

ξh I2(ν0)

]2

I4(ν(ξ))

= 200.895

[ξh I2(ν0)]2 I4(ν(ξ))

(
�0 pc2

120 M�

)2

×M�
pc3

(
km

s

)2

. (2.31)

For a fixed value of the surface density �0, the solutions
of the Thomas–Fermi equation (2.16) are parametrized by a
single parameter: the dimensionless chemical potential at the
origin ν0. The value of ν0 at fixed �0 can be determined by
the value of the halo galaxy mass M(rh) obtained from Eq.

(2.29) at r = rh . We have

Mh ≡ M(rh) = 27312 ξ
7
5
h

[I2(ν0)]
3
5

|ν′(ξh)|
(

2 keV

m

)16
5

×
(

�0 pc2

120 M�

)3
5

M�. (2.32)

Also, at fixed surface density �0, the effective temperature
T0 is only a function of ν0.

It is useful to introduce the rescaled dimensionless vari-
ables

r̂h ≡ rh
( m

2 keV

)8
5

(
�0 pc2

120 M�

)1
5

,

M̂h ≡ Mh

( m

2 keV

)16
5

(
120 M�
�0 pc2

)3
5

T̂0 ≡ T0
2 keV

m

(
120 M�
�0 pc2

)4
5

ν̂0 ≡ ν0 + 4 ln
( m

2 keV

)
,

σ̂ 2(r) ≡ σ 2(r)
( m

2 keV

)8
5

(
120 M�
�0 pc2

)4
5

. (2.33)

We display in Table 1 the corresponding values of the halo
mass M̂h , the effective temperature T̂0 and the chemical
potential at the origin ν0 in the whole galaxy mass range,
from large diluted galaxies till small ultracompact galaxies.

The circular velocity vc(r) is defined through the virial
theorem as

vc(r) ≡
√
G M(r)

r
, (2.34)

and it is directly related by Eq. (2.8) to the derivative of the
chemical potential as

vc(r) =
√

− r

m

dμ

dr
=

√
−T0

m

dν

d ln ξ
.

Expressing T0 in terms of the surface density �0 using Eq.
(2.26) we have for the circular velocity the explicit expression

vc(r) = 5.2537

√−ξ ν′(ξ)

[ξh I2(ν0)]
2
5

(
2 keV

m

)4
5

(
�0 pc2

120 M�

)2
5 km

s

(2.35)

and the rescaled circular velocity

v̂2
c (r) ≡ v2

c (r)
( m

2 keV

)8
5

(
120 M�
�0 pc2

)4
5

.

Two important combinations of galaxy magnitudes are
r ρ(r ′) and M(r)/[4 π r2]. From Eqs. (2.13), (2.20), (2.25),

123



Eur. Phys. J. C (2017) 77 :81 Page 9 of 19 81

and (2.28) we obtain

r ρ(r ′) = �0
ξ I2(ν(ξ ′))
ξh I2(ν0)

,
M(r)

4 π r2 = �0
|ν′(ξ)|

ξh I2(ν0)
.

(2.36)

In particular, it follows that rh ρ(0) = �0 reproducing the
surface density as it must. At a generic point r Eq. (2.36)
provide expressions for a space-dependent surface density.
They are both proportional to �0 and differ from each other
by factors of order one. Notice that h̄, G and m canceled out
in these space-dependent surface densities Eq. (2.36).

2.1 Galaxy properties in the diluted Boltzmann regime

In the diluted Boltzmann regime, ν0 � −5, the analytic
expressions for the main galaxies magnitudes are given by

Mh = 1.75572 �0 r2
h , rh = 68.894

√
Mh

106 M�
120 M�
�0 pc2 pc,

(2.37)

T0 = 8.7615 10−3

√
Mh

106 M�
m

2 keV

√
�0 pc2

120 M�
K,

(2.38)

ρ(r) = 5.19505

(
Mh

104 M�
�0 pc2

120 M�

)3
4 ( m

2 keV

)4
eν(ξ) M�

pc3 ,

(2.39)

σ 2(r) = 33.927

√
Mh

106 M�
�0 pc2

120 M�

(
km

s

)2
,

(2.40)

v2
c (r) = 33.9297

√
Mh

106 M�
�0 pc2

120 M�

∣∣∣∣dν(ξ)

d ln ξ

∣∣∣∣
(

km

s

)2
,

v2
c (rh) = 62.4292

√
Mh

106 M�
�0 pc2

120 M�

(
km

s

)2

(2.41)

M(r) = 7.88895

∣∣∣∣dν(ξ)

d ln ξ

∣∣∣∣ r

pc

√
Mh

106 M�
�0 pc2

120 M�
. (2.42)

In addition, Mh and T0 scale as functions of the fugacity at
the center z0 = eν0 :

Mh ≡ M(rh) = 67014.6

z
4
5
0

(
2 keV

m

)16
5

(
�0 pc2

120 M�

)3
5

M�,

(2.43)

T0 = 2.2681 10−3

z
2
5
0

(
2 keV

m

)3
5

(
�0 pc2

120 M�

)4
5

K. (2.44)

Therefore, all these galaxy magnitudes scale as functions of
each other.

For the equation of state and the phase space density we
find the expressions

P(r) = 5.57359 103
(

Mh

106 M�
�0 pc2

120 M�

)5
4

×
( m

2 keV

)4
eν(ξ) M�

pc

3 (
km

s

)2

,

(2.45)

P0 ≡ P(0) = 59.097

(
�0 pc2

120 M�

)2
M�
pc3

(
km

s

)2

,

(2.46)

Q(r) = 2.031796
( m

2 keV

)4
eν(ξ) keV4,

Q(0) = 1.2319

(
105 M�

Mh

)5
4 (

�0 pc2

120 M�

)3
4

keV4 .

(2.47)

These equations are accurate for Mh � 106 M�. We see that
they exhibit a scaling behavior for rh, T0, Q(0), σ 2(0) and
v2
c (rh) as functions of Mh .

We see from Eqs. (2.37) and (2.40) that T0 and m σ 2(0)

only differ by purely numerical factors reflecting the equipar-
tition of kinetic energy. More precisely, it follows from Eqs.
(2.37) and (2.40) that

m

2
〈v2(0)〉 = 3

2
m σ 2(0) = 3

2
T0, (2.48)

which shows that in the diluted regime the self-gravitating
WDM gas behaves as an inhomogeneous perfect gas as we
will discuss in the next section.

We plot in Figs. 1 and 2, the dimensionless effective tem-
perature T̂0, the chemical potential at the origin ν̂0 and the
normalized halo radius r̂h as functions of the halo mass
M̂h as defined by Eq. (2.33). We also depict in Fig. 2 the
galaxy observations from different sets of data from Refs.
[20,21,43–50]. All data are well reproduced by our theo-
retical Thomas–Fermi results. The errors of the data can be
estimated to be about 10–20%.

The characteristic temperature T̂0 monotonically grows
with the halo mass M̂h of the galaxy as shown by Fig. 1 and
Eq. (2.43) following with good precision the square-root of
M̂h equation (2.37).

We see that the whole set of scaling behaviors of the
diluted regime Eqs. (2.37)–(2.43) are very accurate except
near the degenerate regime for halo masses M̂h < 3 ×
105 M�. The deviation from the diluted scaling regime for
M̂h < 3 × 105 M� accounts for the quantum fermionic
effects in the dwarf compact galaxies obtained in our
Thomas–Fermi approach (Figs. 1, 2, 3).

It must be stressed that the scaling relations Eqs. (2.37)–
(2.47) are a consequence solely of the self-gravitating interac-
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Fig. 1 Upper panel the
common logarithm (base 10) of
the effective temperature T̂0
(vertical axis) versus the
common logarithm of the halo
mass M̂h . We see that T̂0 grows
with M̂h following with
precision the square-root of M̂h
law as in the diluted regime Eq.
(2.37) of the Thomas–Fermi
equations, except for
M̂h < 3 × 105 M�, ν0 >

−1.8, T̂0 < 0.005 K, which is
near the quantum degenerate
regime and corresponds to
compact dwarf galaxies. The
deviation from the scaling
diluted regime is due to the
quantum fermionic effects
which become important for
dwarf compact galaxies. Lower
panel the dimensionless
chemical potential at the origin
ν̂0 versus the common (base 10)
logarithm of M̂h . We see that ν0
follows with precision the
(5/4) log M̂h law as in the
diluted regime equation (2.37)
of the Thomas–Fermi equations
except near the degenerate
regime for
M̂h < 3 × 105 M�, ν0 >

−1.8, T̂0 < 0.005 K
corresponding to compact dwarf
galaxies
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tion of the fermionic WDM. Galaxy data verify the exponent
and the amplitude factor in these scaling as shown in Fig. 2
for the square-root scaling relation Eq. (2.37).

It is highly remarkable that our theoretical results repro-
duce the observed DM halo properties with good precision.

The opposite limit, ν0 � 1, is the quantum regime cor-
responding to compact WDM fermions. In particular, in the
degenerate limit ν0 → ∞, the galaxy mass and halo radius
take their minimum values

rmin
h = 11.3794

(
2 keV

m

)8
5

(
120 M�
�0 pc2

)1
5

pc,

Mmin
h = 30,998.7

(
2 keV

m

)16
5

(
�0 pc2

120 M�

)3
5

M�, (2.49)

while the phase-space density Q(r) takes itsmaximum value

Qmax
h = 16

√
125

3 π2

( m

2 keV

)4
keV4

= 6.04163
( m

2 keV

)4
keV4. (2.50)

From the minimum value of the galaxy mass Mmin
h we derive

a lower bound for the WDM particle mass m

m ≥ mmin ≡ 1.387 keV

(
105 M�

Mh

)5
16 (

�0 pc2

120 M�

)3
16

.

(2.51)

From the minimal known halo mass Mh = 3.9×104 M� for
Willman I (see Table 1 in [31]) we obtain the lower bound

m ≥ 1.86 keV for Dirac fermions,

m ≥ 2.21 keV for Majorana fermions.
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Fig. 2 The common logarithm
(base 10) of the halo radius

r̂h = rh
( �0 pc2

120 M�
)1
5 (vertical

axis) vs. the common logarithm
of the halo mass
M̂h = Mh

( 120 M�
�0 pc2

)3
5 . We see

that rh follows with precision
the square-root of Mh law as in
the diluted regime equation
(2.37) of the Thomas–Fermi
equations. In addition, the
galaxy data confirm the
proportionality factor in this
scaling relation. The
observational galaxy data for
Mh and rh are taken from Table
1 in [31] based on Refs.
[20,21,43–50]. The data are
very well reproduced by the
theoretical Thomas–Fermi
curve. The errors of the data can
be estimated to be about
10–20%

 1
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Table 1 Corresponding values of the halo mass M̂h , the effective tem-
perature T̂0 and the chemical potential at the origin ν0 for WDM galaxies
covering the whole range from large diluted galaxies till small ultracom-
pact galaxies

M̂h T̂0 ν0 = μ(0)
T0

6.56 × 1012 M� 22.4 K −23

6.45 × 1011 M� 7.04 K −20.1

6.34 × 1010 M� 2.21 K −17.2

4.9 × 109 M� 0.613 K −14

2.16 × 108 M� 0.129 K −10.1

1.55 × 107 M� 0.0344 K −6.8

3.67 × 106 M� 0.0168 K −5

1.66 × 106 M� 0.0112 K −4

1.21 × 105 M� 0.00278 K −0.4

9.73 × 104 M� 0.00241 K 0

6.31 × 104 M� 0.00173 K 1

4.06 × 104 M� 0.00101 K 3

3.48 × 104 M� 6.82 × 10−4 K 5

3.19 × 104 M� 3.63 × 10−4 K 10

3.12 × 104 M� 1.84 × 10−4 K 20

M̂min
h = 3.10 × 104 M� 0 +∞

3 Density and velocity dispersion: universal and
non-universal profiles

It is illuminating to normalize the density profiles as
ρ(r)/ρ(0) and plot them as functions of r/rh . We find
that these normalized profiles are universal functions of
x ≡ r/rh in the diluted regime as shown in Fig. 4. This
universality is valid for all galaxy masses M̂h > 105 M�.

No analytic form is available for the profile ρ(r) obtained
from the resolution of the Thomas–Fermi equations (2.16).
The universal profile F(x) = ρ(r)/ρ(0) can be fitted with
precision by the simple formula

Fα(x) = 1[
1 +

(
4

1
α − 1

)
x2

]α , x = r

rh
, α = 1.5913.

(3.1)

The value α = 1.5913 provides the best fit. We plot in Fig. 5
ρ(r)/ρ(0) from the Thomas–Fermi equations (2.16) and the
precise fitting formula Fα=1.5913(x). The fit is particularly
precise for r < 2 rh .

Our theoretical density profiles and rotation curves obtained
from the Thomas–Fermi equations remarkably agree with
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Fig. 3 Upper panel the
common logarithm (base 10) of
the velocity dispersion at the
origin v̂2(0) = 3 σ̂ 2(0) and the
common logarithm of the
circular velocity at the halo
radius v̂2

c (rh) versus log10 T̂0.
Lower panel the common
logarithm (base 10) of the
velocity dispersion at the origin
v̂2(0) = 3 σ̂ 2(0) and the
common logarithm of the
circular velocity at the halo
radius v̂2

c (rh) versus log10 M̂h .
Notice the unit slope in the
upper panel curves as functions
of T̂0 according to Eq. (3.3) in
the diluted regime, and the
one-half slope in the lower
panel curves as functions of M̂h
following Eqs. (2.40) and (2.41)
in the diluted regime. The
deviation from the diluted
scaling regime near the
degenerate regime is manifest as
a function of T̂0 (upper panel)
while it is imperceptible as a
function of M̂h (lower panel)
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observations for r � rh , for all galaxies in the diluted regime
[40]. This indicates that WDM is thermalized in the internal
regions r � rh of galaxies.

The theoretical profile ρ(r)/ρ(0) and the precise fit
Fα=1.5913(x) cannot be used for x � 1 where they decay
as a power �3.2, which is a too large number to reproduce
the observations.

The universal density profile ρ(r)/ρ(0) is obtained theo-
retically in the diluted Boltzmann regime. In such regime the
density profile decreases for large x � 1 as ∼1/x2. More
precisely, we find the asymptotic behavior

F(x) x�1= Fasy(x) ≡ 0.151869

x2

[
1 + O

(
1√
x

)]
. (3.2)

We plot in Fig. 5 F(x) and its asymptotic behavior Fasy(x) vs.
x . We see that Fasy(x) becomes a very good approximation

to F(x) for x � 3. When F(x) behaves as ∼ 1/x2 the cir-
cular velocity for these theoretical density profiles becomes
constant as shown in [40].

For galaxy masses M̂h < 105 M�, near the quan-
tum degenerate regime, the normalized density profiles
ρ(r)/ρ(0) are not anymore universal and depend on the
galaxy mass.

As we can see in Fig. 4 the density profile shape changes
fast when the galaxy mass decreases only by a factor seven
from M̂h = 1.4 × 105 M� to the minimal galaxy mass
M̂h,min = 3.10 × 104 M�. In this narrow range of galaxy
masses the density profiles shrink from the universal pro-
file till the degenerate profile as shown in Fig. 4. Namely,
these dwarf galaxies are more compact than the larger diluted
galaxies.

We display in Fig. 6 the normalized velocity dispersion
profiles σ 2(r)/σ 2(0) as functions of x = r/rh . Again,
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Fig. 4 Normalized density
profiles ρ(r)/ρ(0) as functions
of r/rh . We display in the upper
panel the profiles for galaxy
masses in the diluted regime
1.4 × 105 M� < M̂h <

7.5 × 1011 M�, −1.5 > ν0 >

−20.78, which all provide the
same universal density profile.
We display in the lower panel
the profiles for galaxy masses
Mmin

h =
30,999 (2 keV/m)

16
5 M� ≤

M̂h < 3.9 × 104 M�, 1 < ν0 <

∞, which are near the quantum
degenerate regime and exhibit
shrinking density profiles for
decreasing galaxy mass. For
comparison, we also plot in the
lower panel the universal profile
in the diluted regime  0
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we see that these profiles are universal and constant, i.e.
independent of the galaxy mass in the diluted regime for
M̂h > 2.3 × 106 M�, ν0 < −5, T0 > 0.017 K. The con-
stancy of σ 2(r) = σ 2(0) in the diluted regime implies that
the equation of state is that of a perfect but inhomogeneous
WDM gas. Indeed, from Eq. (2.48)

σ 2(r) = σ 2(0) = T0

m
, (3.3)

and Eq. (2.6) implies for the WDM diluted galaxies the per-
fect gas equation of state (4.3) where both the pressure P(r)
and the density ρ(r) depend on the coordinates.

For smaller galaxy masses 1.6 × 106 M� > M̂h >

M̂h,min, the velocity profiles do depend on r and yield
decreasing velocity dispersions for decreasing galaxy masses.
Namely, the deviation from the universal curves appears for

M̂h < 106 M� and we see that it precisely arises from the
quantum fermionic effects which become important in such
range of galaxy masses.

4 The equation of state of WDM galaxies: classical
diluted and compact quantum regimes

The WDM galaxy equation of state is by definition the func-
tional relation between the pressure P and the density ρ.

From Eqs. (2.17) and (2.18) we obtain separately P and
ρ at a point r as

ρ = m
5
2

3 π2 h̄3 (2 T0)
3
2 I2(ν), P = m

3
2

15 π2 h̄3 (2 T0)
5
2 I4(ν).

(4.1)
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Fig. 5 Upper panel the
universal density profile
ρ(r)/ρ(0) obtained from the
Thomas–Fermi equations
plotted versus x = r

rh
and its

fitting formula (3.1) for the best
fit value α = 1.5913. Lower
panel the universal density
profile F(x) obtained from the
Thomas–Fermi equations versus
x = r/rh and its asymptotic
form Fasy(x) given by Eq. (3.2)
versus x = r/rh . For
x � 3, Fasy(x) becomes a very
good approximation to F(x)
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These equations express parametrically, through the param-
eter ν, the pressure P as a function of the density ρ and
therefore provide the WDM galaxy equation of state.

For fermionic WDM in thermal equilibrium I2(ν) and
I4(ν) are given as integrals of the Fermi–Dirac distribution
function in Eq. (2.15). For WDM out of thermal equilib-
rium Eq. (4.1) is always valid but I2(ν) and I4(ν) should
be expressed as integrals of the corresponding out of equi-
librium distribution function. In the out of equilibrium case
T0 is just the characteristic scale in the out of equilibrium
distribution function fout(E) = �out(E/T0). For the rele-
vant galaxy physical magnitudes, the Fermi–Dirac distribu-
tion gives similar results to the out of equilibrium distribution
functions [31].

In the two WDM galaxy regimes, classical diluted regime,
and degenerate quantum regime, we can eliminate ν in Eq.
(4.1) and obtain P as a function of ρ in close form. Let us

take the ratios P/ρ and P/ρ
5
3 in Eq. (4.1):

P

ρ
= 2

5

T0

m

I4(ν)

I2(ν)
,

P

ρ
5
3

= h̄2

5

(
3 π2

m4

)2
3 I4(ν)

I
5
3

2 (ν)

. (4.2)

In the diluted limit ν � −1 we have

I4(ν)

I2(ν)

ν�−1= 5

2
,

and therefore we obtain for WDM in the diluted limit the
local perfect gas equation of state:

P(r) = T0

m
ρ(r), WDM diluted galaxies. (4.3)
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Fig. 6 Normalized velocity
dispersion profiles σ 2(r)/σ 2(0)

as functions of x = r/rh . All
velocity profiles in the diluted
regime for galaxy masses
M̂h > 2.3 × 106 M�, ν0 < −5
fall into the same constant
universal profile corresponding
to a perfect but inhomogeneous
self-gravitating WDM gas
describing large and diluted
galaxies. The velocity profiles
for smaller galaxy masses
1.6 × 106 M� > M̂h >

M̂h,min = 3.10 × 104 M� do
depend on x and yield
decreasing velocity dispersions
for decreasing galaxy masses,
accounting for the quantum
fermionic effects which become
important in this range of galaxy
masses (WDM compact dwarf
galaxies)
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The local perfect WDM gas equation of state (4.3) is precisely
the equation of state of the Boltzmann self-gravitating gas
[51].

In the degenerate limit ν � 1 we have

I4(ν)

I
5
3

2 (ν)

ν�1= 1

and therefore P/ρ
5
3 in Eq. (4.2) becomes the degenerate

fermionic equation of state at T0 = 0,

P = h̄2

5

(
3 π2

m4

)2
3

ρ
5
3 , WDM degenerate quantum limit.

(4.4)

Making explicit the dimensions, the WDM galaxy equa-
tion of state (4.1) becomes

ρ = 4.68591 × 104
(
T0

K

)3
2

I2(ν)
( m

2 keV

)5
2 M�

pc3 ,

P = 0.807603 10−3
(
T0

K

)5
2

I4(ν)
( m

2 keV

)3
2 M�

pc3 . (4.5)

The galaxies being non-relativistic systems, P turns out to
be much smaller than ρ when both are written in the same
units where the speed of light is taken to be unit.

It is useful to introduce the rescaled dimensionless vari-
ables

ρ̄ ≡
(

2 keV

m

)5
2 pc3

M�
ρ = 4.68591 104

(
T0

K

)3
2

I2(ν)

P̄ ≡
(

2 keV

m

)3
2 pc3

M�
P = 0.807603 10−3

(
T0

K

)5
2

I4(ν).

(4.6)

We plot in Fig. 7 the common (base 10) logarithm of P̄ vs.
the common logarithm of ρ̄ for different values of T0. For
small density and for growing effective temperature, the self-
gravitating ideal WDM gas behavior Eq. (4.3) of the diluted
regime is obtained. On the contrary, for large density and
for decreasing temperature the fermionic quantum behavior
close to the degenerate state Eq. (4.4) shows up. That is, the
straight lines with unit slope in Fig. 7 describe the perfect
WDM gas behavior Eq. (4.3), while the steeper straight lines
with slope 5/3 describe the degenerate quantum behavior
Eq. (4.4). We see that the diluted classical and degenerate
regimes are interpolated smoothly by the quantum behavior.
For increasing T0 the curves in Fig. 7 move up. The larger T0

is, the larger is the value of the density ρ̄ where the quantum
behavior is attained.

We plot in Fig. 8 the pressure normalized to its value at
the origin as a function of the density normalized to its value
at the origin according to Eq. (4.1):
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Fig. 7 The equation of state of WDM galaxies. Logarithmic plot [in
common (base 10) logarithm] of the galaxy pressure P̄ versus the
density ρ̄ as defined by Eq. (4.6) for different values of the effective
temperature T0. For small density and growing T0, the self-gravitating
ideal WDM gas behavior is obtained exhibiting straight lines with
unit slope; this describes the physical state of large diluted galaxies
M̂h > 2.3 × 106 M�, ν0 < −5, T0 > 0.017 K. For large density and
decreasing temperature the fermionic quantum behavior close to the

degenerate state equation (4.4) shows up as the steeper straight lines
with slope approaching 5/3. In particular, the degenerate T0 = 0 state
exhibits the slope 5/3 for all densities. The diluted classical regime and
the degenerate regime are interpolated smoothly by the quantum behav-
ior corresponding to compact dwarf galaxies with 1.6 × 106 M� >

M̂h ≥ M̂h,min = 3.10 × 104 M�, ν0 > −4, T0 < 0.011 K. For
increasing T0 the curves move up. The larger is T0, the larger is the
value of the density ρ̄ where the quantum behavior is attained

P

P0
= I4(ν)

I4(ν0)
vs.

ρ

ρ0
= I2(ν)

I2(ν0)
. (4.7)

The diluted and degenerate gas behaviors Eqs. (4.3) and (4.4)
of WDM galaxies are explicitly seen in Fig. 8. The diluted
perfect gas behavior appears for galaxy masses M̂h > 2.3 ×
106 M�, ν0 < −5, T0 > 0.017 K. The degenerate gas
behavior shows up for the minimal mass galaxy M̂h,min =
3.10 × 104 M�, T0 = 0.

Besides the two limiting regimes, diluted and degenerate,
we see from Fig. 8 that the equation of state does depend
on the galaxy mass for galaxy masses in the range 1.6 ×
106 M� > M̂h ≥ M̂h,min, ν0 > −4, T0 < 0.011 K. This is
a quantum regime, close to but not at, the degenerate limit.
The equation of state in this quantum regime is steeper than
in the degenerate limit.

We find that WDM galaxies exhibit two regimes: clas-
sical diluted and quantum compact (close to degenerate).
WDM galaxies are diluted for M̂h > 2.3 × 106 M�, ν0 <

−5, T0 > 0.017 K and they are quantum and compact for

1.6 × 106 M� > M̂h ≥ M̂h,min, ν0 > −4, T0 < 0.011
K. The degenerate limit T0 = 0 corresponds to the extreme
quantum situation yielding a minimal galaxy size r̂h,min and
mass M̂h,min given by Eq. (2.49). The equation of state cov-
ering all regimes is given by Eq. (4.1).

We therefore find an explanation for the universal density
profiles and universal velocity profiles in diluted galaxies
(M̂h � 106 M�): these universal properties can be traced
back to the perfect gas behavior of the self-gravitating WDM
gas summarized by the WDM equation of state (4.3). Notice
that all these universal theoretical profiles well reproduce the
observations for r � rh [40].

For small galaxy masses, 106 M� � M̂h ≥ M̂h,min =
3.10 × 104 M�, which correspond to chemical potentials at
the origin ν0 � −5 and effective temperatures T0 � 0.017
K, the equation of state is galaxy mass dependent (see Fig.
8) and the profiles are not anymore universal. These proper-
ties account for the quantum physics of the self-gravitating
WDM fermions in the compact case close to the degenerate
state.
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Fig. 8 The galaxy pressure
P/P0 versus the density ρ/ρ0,
where P0 and ρ0 are the
pressure and the density at the
origin, respectively defined by
Eq. (4.7). We see the WDM
ideal gas behavior (unit slope) in
the diluted regime, that is, for
galaxy masses
M̂h > 2.3 × 106 M�, ν0 <

−5, T0 > 0.017 K. For smaller
galaxy masses, 1.6 × 106 M� >

M̂h ≥ M̂h,min =
3.10 × 104 M�, ν0 > −4, the
equation of state depends on the
galaxy mass and becomes
steeper corresponding to the
quantum fermionic regime of
dwarf galaxies. In the
degenerate limit ν0 = ∞ we
obtain a 5/3 slope straight line.
We see that the diluted and
degenerate regimes are
interpolated smoothly by the
quantum behavior
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Indeed, it will be extremely interesting to dispose of obser-
vations which could check these quantum effects in dwarf
galaxies.

A useful empirical fit of the exact equation of state follows
by expressing the pressure given by (4.1),

P = m
3
2 (2 T0)

5
2

15 π2 h̄3 P̃ where P̃ ≡ I4(ν), (4.8)

as a function of

ρ̃ ≡ 3 π2 h̄3

m
5
2 (2 T0)

3
2

ρ = I2(ν). (4.9)

We represent P̃ as a function ρ̃ through the simple function

P̃ =
(

1 + 3

2
e−β1 ρ̃

)
ρ̃

1

3
(5 − 2 e−β2 ρ̃ )

, (4.10)

which exactly fulfills the diluted and degenerate limiting
behaviors (4.3) and (4.4), respectively. Equation (4.10) best
fits the exact values of P̃ as a function ρ̃ obtained by solving
the Thomas–Fermi equation (2.3) for

β1 = 0.047098, β2 = 0.064492. (4.11)

In summary, we represent the equation of state as

P = m
3
2 (2 T0)

5
2

15 π2 h̄3

(
1 + 3

2
e−β1 ρ̃

)
ρ̃

1

3
(5 − 2 e−β2 ρ̃ )

where ρ̃ is expressed in terms of ρ by Eq. (4.9). We plot
in Fig. 9 P̃ vs. ρ̃ obtained by solving the Thomas–Fermi
equation (2.3) and the empirical fit equation (4.10). One can
see that the fit turns out to be excellent.

5 The dependence on the WDM particle mass in the
diluted and quantum regimes

In the diluted limit the velocity dispersion is constantσ 2(r) =
σ 2(0), and Eq. (2.11) and Eq. (3.3) lead to

d2μ

dr2 + 2

r

dμ

dr
= −4π G m ρ(r) (5.1)

ρ(r) = 1

4

(
2 T0

π m

)3
2

m4 exp

[
μ(r)

T0

]
. (5.2)

In this diluted limit, the Thomas–Fermi equations (2.3)
become the equations for a self-gravitating Boltzmann gas
in thermal equilibrium.
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Fig. 9 The equation of state P̃
versus ρ̃ obtained by solving the
Thomas–Fermi equation (2.3)
and the empirical fit equations
(4.9), (4.10). The exact equation
of state and the fitting formula
cannot be distinguished at this
resolution
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Equation (5.2) combined with the chemical potential
equation (2.1) becomes the barotropic equation,

ρ(r) = ρ0 e
− m

T0
[φ(r) − φ(0)]

.

It is instructive to discuss from Eq. (5.1) the dependence
on the mass m of the WDM particle.

In the diluted regime, T0 and μ(r) depend on m, while the
other magnitudes as ρ(r), M(r), σ 2(r), P(r), Q(r), and
φ(r) do not depend on m. This means that a change in m,
namely

m ⇒ m′,

must leave Eq. (5.1) invariant, which implies

T0

m
= invariant, m4 exp

[
μ(r)

T0

]
= invariant.

That is,

T0(m
′) = m′

m
T0(m), μ(m′, r)

= m′

m

[
μ(m, r) + 4 T0(m) ln

( m

m′
)]

. (5.3)

A change in the WDM particle mass m implies that the tem-
perature T0 and the chemical potential μ(r) transform as
given by Eq. (5.3). These transformations leave the Boltz-
mann gas equations (5.1) and (5.2) invariant.

Under changes of m the dimensionless variables ξ and
ν(ξ) transform as

m ⇒ m′, ξ ′ = ξ

(
m′

m

)2

,

ν(ξ ′,m′) = ν(ξ,m) + 4 ln
( m

m′
)

. (5.4)

We see that all the diluted regime relations Eqs. (2.37)–(2.47)
are invariant under the changem ⇒ m′ implemented through
Eqs. (5.3), (5.4).

Indeed, this invariance is restricted to the diluted regime
(M̂h � 106 M�).

For galaxy masses M̂h < 105 M�, namely in the quan-
tum regime of compact dwarf galaxies, all physical quan-
tities do depend on the DM particle mass m as explicitly dis-
played in Eqs. (2.17)–(2.35). It is precisely this dependence
on m that leads to the lower bound m > 1.91 keV from the
minimum observed galaxy mass [31]. Moreover, for m > 2
keV, an overabundance of small structures appears as solu-
tion of the Thomas–Fermi equations, which do not have an
observed counterpart. Therefore, m between 2 and 3 keV is
singled out as the most plausible value [31].

In summary, we see the power of the WDM Thomas–
Fermi approach to describe the structure and the physical
state of galaxies in a clear way and in very good agreement
with observations.
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