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Abstract We investigate in detail the circular motion of
test particles in the equatorial plane of the ergoregion in the
Kerr spacetime. We consider all the regions where circular
motion is allowed, and we analyze the stability properties
and the energy and angular momentum of the test particles.
We show that the structure of the stability regions has definite
features that make it possible to distinguish between black
holes and naked singularities. The naked singularity case
presents a very structured non-connected set of regions of
orbital stability, where the presence of counterrotating parti-
cles and zero angular momentum particles for a specific class
of naked singularities is interpreted as due to the presence of
a repulsive field generated by the central source of gravity. In
particular, we analyze the effects of the dynamical structure
of the ergoregion (the union of the orbital regions for differ-
ent attractor spins) on the behavior of accretion disks around
the central source. The properties of the circular motion turn
out to be so distinctive that they allow for the introduction
of a complete classification of Kerr spacetimes, each class
of which is characterized by different physical effects that
could be of especial relevance in observational astrophysics.
We also identify some special black-hole spacetimes where
these effects could be relevant.

1 Introduction

Black holes are very probably the central engines of quasars,
active galactic nuclei, and gamma ray bursts. Consequently,
the mechanism by which energy is extracted from them is
of great astrophysical interest. While the exact form of this
mechanism is not known, it seems that the effects occurring
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inside the ergoregion of black holes are essential for under-
standing the central engine mechanism [1,2].

On the other hand, since the discussion first presented in
[3], the issue of the creation and the stability of naked singu-
larities has been intensively debated with different controver-
sial results [4–7]. For instance, Ref. [8] addresses the issue
of the possible formation of a naked singularity, analyzing
the stability of the progenitor models and investigating the
gravitational collapse of differentially rotating neutron stars
(in full general relativity). These results do not exclude the
possibility that a naked singularity can be produced as the
result of a gravitational collapse, under quite general condi-
tions on the progenitor and considering instability processes.
Since practically all these results are based upon a numerical
integration of the corresponding field equations, their inter-
pretation requires a careful analysis. Indeed, the formation
of black holes (with singularities inside the horizon) is usu-
ally associated with the existence of trapped surfaces. So, the
numerical detection of a singularity without trapped surfaces
is usually considered as a proof that the singularity is naked.
This, however, is not always true. As has been shown in [63],
during the formation of a spherically symmetric black hole
it is possible to choose a very particular slicing of spacetime
such that no trapped surfaces exist. This shows that the non-
existence of trapped surfaces in the gravitational collapse
cannot be considered in general as a proof of the existence of
a naked singularity. A more detailed analysis (further numer-
ical integration) is necessary in order to establish that a naked
singularity can be formed as the end result of a gravitational
collapse. See, for instance, [64] for particular examples. In
any case, it is therefore interesting to investigate the phys-
ical effects associated with the gravitational field of naked
singularities.

In astrophysics, it is particularly interesting to study the
general features of the motion of test particles moving along
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circular orbits around the central source. In fact, one can
imagine a thin disk made only of test particles as a hypothet-
ical accretion disk of matter surrounding the central source.
Although this is a very idealized model for an accretion disk,
one can nevertheless extract some valuable information as
regards the dynamics of particles in the corresponding grav-
itational field and the amount of energy that can be released
by matter when falling into the central mass distribution (see
[9] and [10,14–18]), with the equatorial circular geodesics
being then relevant for the Keplerian accretion disks. More-
over, there is an increasing interest in the properties of the
matter dynamics in the ergoregion, especially as a possible
source of data discriminating between black holes and super-
spinning objects (see [19–24]). In [19,25–28], we studied the
geometric structure of such an idealized accretion disk and
how it can depend on the values of the physical parameters
that determine the gravitational field. This is also an impor-
tant issue, since it could lead to physical effects that depend
on the structure of the accretion disk, with the correspond-
ing possible observational consequences. Indeed, in a series
of previous studies [19,25–28], it was established that the
motion of test particles in the equatorial plane of black-hole
spacetimes can be used to derive information as regards the
structure of the central source of gravitation (see also discus-
sions in [21,29,30] and [31]). In [19] and [28], some of the
characteristics of the circular motion in the Kerr and Kerr–
Newman spacetimes for black holes and naked singularities
were discussed, and the typical effects of repulsive gravity
were revealed in the naked singularity ergoregion (see also
[20–24]). Moreover, it was pointed out that there exists a
dramatic difference in black holes and naked singularities
with respect to the zero and negative energy states in circu-
lar orbits. In this work, we clarify and deepen those results,
providing a classification of attractor sources on the basis
of the properties of this type of dynamics; we focus here
exclusively on the dynamics within the ergoregion, consider-
ing bounded and unbounded unstable orbits, and investigate
the main possible astrophysical implications with particu-
lar attention to the physics of accretion disks. Our aim is to
explore the dynamics within this region from the point of
view of the orbiting matter to enlighten also the instabili-
ties that could give rise to detectable phenomena in astro-
physics. This analysis has two essential features. First, from
the methodological standpoint we introduce the notion of
dynamical structure of the ergoregion, which is essentially
a spacetime region decomposition based on the geometric
properties investigated here, and, secondly, we connect in a
quite natural manner our study to the analysis of configura-
tions of extended toroidal matter in accretion such as accre-
tion disk thick models, where the equilibrium and the unsta-
ble states of the system are mainly governed by the curvature
effects of the geometry. The relevance of these studies in
relation to the (hydrodynamic) relativistic disk models had

been anticipated in [34], where, however, the regions near
the static limit remained unexplored. Here, we revisit these
considerations, analyze the static limit, and focus our atten-
tion on equilibrium configurations as well as on the location
and dynamics of unstable configurations with the associated
accretion or launch of jets.

From the methodological point of view our approach con-
sists in analyzing the behavior of the energy and angular
momentum of the test particles as functions of the radial dis-
tance and of the intrinsic angular momentum of the central
source, which for the sake of brevity will be often referred
as the “spin” of the source. This procedure allows us to
carry out a methodical and detailed physical analysis of all
the regions inside the ergoregion where circular motion is
allowed. We investigate the dynamics inside the ergoregion,
defining and characterizing the regions where there are stable
orbits, bounded or unbounded unstable orbits, and, eventu-
ally, the regions where particles with negative energies are
allowed. The disjoint union of these orbital sections fully cov-
ers the ergoregion and the set of regions defines thedynamical
structure or decomposition of the ergoregion, fully character-
izing indeed the dynamical properties of the orbiting matter.
We study the dynamical structure of the ergoregion and the
behavior of matter in accretion, identifying different scenar-
ios where there may be potentially detectable effects. We dis-
cuss the possible astrophysical implications of this analysis in
terms of the dynamical structure, particularly in relation with
the source evolution and the configuration of the extended
matter. The dynamical structure plays in fact a specific and
fundamental role in the modeling of accretion disks. The
properties of matter in circular configurations, i.e., toroidal
configurations of extended matter in accretion, are in general
governed by several factors such as the pressure, the mag-
netic fields, the dissipative effects, etc., but the properties of
the spacetime structure highlighted by the geodesics motion
are the basis of any disk model. In particular, we refer here to
the relativistic models of pressure supported disks where the
roles of the hydrostatic pressure and the background are cru-
cial for determining both the equilibrium phases and the grav-
itational and hydrostatic instabilities, leading to the accretion
or the launch of jets in funnels of matter from the instability
regions [32–34].

In general, one might look at the entire evolution of a thick
accretion disk, from the formation of a thin ring, its growing
to the unstable phases of the accretion, resulting finally in
the formation of jets of matter from the cusp point, as the
orbiting matter transition in the dynamical structure of the
ergoregion. As the disk equatorial plane of symmetry often
coincides with the symmetric plane of the accretor, by using
the symmetry of the system we can reduce the analysis to
a one-dimensional problem along the radial direction, the
dynamics of the orbiting matter then being regulated entirely
by a couple of model parameters, so that the main features of
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the disk dynamics, stability, and even the accretion are mainly
regulated by the configuration properties on the plane of sym-
metry. We will see that from this analysis different classes of
attractors emerge. Moreover, we will show that there are cer-
tain similarities in the dynamical structure of the ergoregions
of naked singularities with sufficiently high spins, strong
naked singularities, and black holes with sufficiently small
spin, i.e., weak black holes, in the sense that none of them
allow for any stable orbiting matter inside the ergoregion. In
addition, our analysis shows that an increase of the attractor
spin in weak black-hole geometries, or a decrease in strong
and very strong naked singularities, affects positively the pro-
cess of the formation of a toroidal orbiting configuration. We
also perform a detailed classification of these sources, tak-
ing into account the different dynamical structures and the
peculiarities of the limiting geometries defined as the bound-
aries of the different classes. We ultimately conjecture that
these peculiar spacetimes could be involved in spin-up and
-down processes that lead to a radical change of the dynami-
cal structure of the region closest to the source and, therefore,
potentially could give rise to detectable effects.

However, it has been argued, for example in [35], that
the ergoregion cannot disappear as a consequence of a spin
shift, as it could be filled by negative energy matter produced
by a Penrose process [36]. In the case of a naked singular-
ity, this process is combined with the repulsive effects of
the singularity ring. Since a set of particles with negative
energy could exist in the ergoregion, one can argue about
their fate and role in the evolution of the source. These very
peculiar particles differ fundamentally as regards the two
types of singularities from the point of view of the circu-
lar motion and their stability: the very weak naked singu-
larities are distinguished by the existence of counterrotating
orbits. The existence of these very orbits can be seen as a
“repulsive gravity” effect that has been shown to exist also in
other spacetimes with naked singularities [25,26,28]. This is
a characteristic feature of the naked singularity geometries
[37–39]. In this work, we identify the repulsion effect and
its role in the determination of the dynamical structure of the
ergoregion and the extended matter in accretion. This region
creates therefore an “antigravity” sphere bounded by orbits
with zero angular momentum. In a bounded region in the
antigravity sphere, setting a bubble of trapped (bounded or
stable) negative energy particles may form stable or unsta-
ble toroidal configurations, explaining, at least for very weak
naked singularities, the fate of particles with negative ener-
gies formed according to the Penrose process. We evaluate
in detail the orbital extension of this region and the levels of
the energies and angular momentum. This material is obvi-
ously formed inside the ergoregion since it cannot penetrate
from the external region; the static limit would act indeed as a
semi-permeable membrane separating the spacetime region,
filled with negative energy particles, from the external one

filled with positive energy particles, gathered from infinity
or expelled from the ergoregion with impoverishment of the
source energy. In any case, although on the equatorial plane
the ergoregion is invariant with respect to any transformation
involving a change in the source spin (but not with respect to a
change in the mass M), the dynamical structure of the ergore-
gion is not invariant with respect to a change in the spin-to-
mass ratio. We will show the presence of limiting geometries
where the dynamical structure of the ergoregion outlines a
relevant change for a spin shift, where, as a consequence of
the interaction of the surrounding matter, one would expect
consequently a shift of the source from one class to another.
This effect might have relevant consequences as a corollary
of the runaway instability from relativistic thick disks, espe-
cially for (initial) specific geometries [11–13]. In fact, our
analysis enlightens a set of special attractors and particu-
larly the spins a−

b /M ≈ 0.828427 and a2/M ≈ 0.942809,
where a slight change in the attractor spin produces a rel-
evant change in the dynamical structure of the ergoregion,
causing in turn a change in the stability properties of the
orbital matter, and possibly modifying the closed topology
of the orbiting extended matter configuration which passes
from an equilibrium state to the accretion and, finally, to an
open topology with matter jets.

This paper is organized as follows. In Sect. 2, we present
the Kerr line element and briefly discuss the main physical
properties of the corresponding geometry. We present the
effective potential that governs the dynamics of the test par-
ticle motion on the equatorial plane and, in Sect. 2.1, we
derive the conditions for the existence and stability of circu-
lar orbits. In Sects. 3.1 and 3.2, we explore the relevant orbital
regions in the case of black holes and naked singularities. In
the appendices we include the definitions of the main radii
that determine the dynamical structure of the ergoregion as
well as the analysis of the particular limiting cases of extreme
black holes and the static boundary. Finally, in Sect. 4, we
discuss the results and perspectives of our work.

2 The Kerr geometry

The Kerr spacetime is an exact solution of Einstein’s equa-
tions in vacuum describing an axisymmetric, stationary (non-
static), asymptotically flat gravitational field. In spheroidal
Boyer–Lindquist (BL) coordinates the Kerr line element has
the form

ds2 = −dt2 + ρ2

Δ
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdφ2

+2M

ρ2 r(dt − a sin2 θdφ)2, (1)

where
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Δ ≡ r2 − 2Mr + a2, and ρ2 ≡ r2 + a2 cos2 θ. (2)

Here M and a are arbitrary constants interpreted as the mass
and rotation parameters, respectively. The specific angular
momentum isa = J/M , where J is the total angular momen-
tum of the gravitational source. In this work, we will consider
the Kerr black-hole (BH) case defined by a ∈]0, M[, the
extreme black-hole source a = M , and the naked singularity
(NS) case where a > M . The limiting case a = 0 is the
Schwarzschild solution. The outer and inner ergosurfaces
r±
ε and Killing (outer and inner) horizons r± are determined,

respectively, by the equations gtt = 0, and grr = 0 with

r±
ε ≡ M ±

√
M2 − a2cos2θ, r± ≡ M ±

√
M2 − a2,

where r−
ε ≤ r− ≤ r+ ≤ r+

ε . (3)

On the equatorial plane (θ = π/2), it is ρ = r and the
spacetime singularity is located at r = 0 (a curvature ring-
like singularity only occurs at θ = π/2 for M �= 0, while
generally the metric is singular at ρ = 0, and the space-
time is clearly flat for M = 0). The region Σ+

ε ≡]r+, r+
ε [

for a ≤ M (where gtt > 0) is called ergoregion. In black-
hole spacetimes, the r -coordinate is spacelike in the intervals
r ∈]0, r−[∪r > r+, and timelike in the region r ∈]r−, r+[.
This means that the surfaces of constant r , say1 Σr , are time-
like for Δ > 0, spacelike for Δ < 0, and null for Δ = 0.
On the other hand, for r ∈]r−

ε , r+
ε [ the metric component gtt

changes its sign and vanishes for r = r±
ε and cos2 θ ∈]0, 1],

and also at r = 2M for θ = π/2. As the spin of the attractor
reaches the limiting value a = M of an extreme BH source,
the horizons coincide, r− = r+ = M , and if cos2 θ = 1, i.e.,
on the rotational axis, it is r±

ε = r±. On the other hand, in
naked singularity geometries, the radii r± are not real and the
singularity at ρ = 0 is not covered by a horizon. However,
the ergosurfaces r±

ε are still well defined.2 We can define as
well in the equatorial plane the ergoregion Σ+

ε ≡]0, r+
ε [ for

a > M , and Σ+
ε has a toroidal topology centered on the axis

whose inner circle is the naked singularity. In this work, we
focus on the dynamics inside the ergoregion at θ = π/2,
where r+

ε

∣∣
π/2 = r+|a=0 = 2M and r−

ε = 0, and we com-
pare the dynamical properties of circularly orbiting matter in
Σ+

ε for the BH and NS cases.
The motion of matter in Σ+

ε has very peculiar proper-
ties. We summarize here some of the major characteristics
relevant for this analysis. First, the equatorial (circular) tra-
jectories are confined in the equatorial geodesic plane as a
consequence of the metric tensor symmetry under reflection
through the equatorial hyperplane θ = π/2. A fundamen-
tal property of the ergoregion from the point of view of the

1 ΣQ is the Q = constant surface for any quantity or set of quantities
Q.
2 In particular, we have gtt < 0 in 0 ≤ cos θ2 ≤ M2/a2 for r ∈
]0, r−

ε [∪r > r+
ε and in cos θ2 ∈]M2/a2, 1] for r > 0.

matter and field dynamics is that no matter can be at rest in
Σ+

ε (as seen by a faraway observer or, in other words, from
infinity in a BL coordinate frame) [40]. Then the metric is
no longer stationary. As we have already noted, in the BL
coordinates the surfaces of constant (r, θ, φ), with line ele-
ment ds|Σr,θ,φ

, are spacelike inside the ergoregion, that is, the
“time” interval becomes spacelike, and in terms of BL coordi-
nates this means that t is spacelike and any motion projected
into Σr,θ,φ is forbidden. The outer ergosurface r+

ε is called
the static surface or static limit (also stationary limit surface;
see [41]). This is a timelike surface, except on the axis of a
Kerr source, where it matches the outer horizon; then it is
nulllike. At r > r+

ε particles can follow an orbit of the vector
ξt and eventually cross the static limit (away from the axis).
Moreover, for a timelike particle (with positive energy) it is
possible to cross the static limit and to escape toward infinity.
In the static BH spacetime (a = 0), the region ]0, r+|a=0 [
coincides with the zone inside the horizon; then no particle
can stay at rest (with respect to an observer located at infinity)
neither at r = constant, i.e., any particle is forced to fall down
into the singularity. For the stationary spacetimes (a �= 0) in
Σ+

ε the motion with φ = const is not possible, and all parti-
cles are forced to rotate with the source i.e. φ̇a > 0. Indeed, in
the ergoregion the Killing vector ξat = (1, 0, 0, 0) becomes
spacelike, i.e., gabξat ξbt = gtt > 0. This fact implies in
particular that a static observer, i.e. an observer with four-
velocity proportional to ξat so that θ̇ = ṙ = φ̇ = 0 (the
dot denotes the derivative with respect to the proper time τ

along the curve) cannot exist inside the ergoregion. Therefore
for any in-falling matter (timelike or photonlike) approach-
ing the horizon r+, in the region Σ+

ε , we have t → ∞ and
φ → ∞, meaning that the world-lines around the horizon,
as long as a �= 0, are subject to an infinite twisting. Trajec-
tories with r = const and ṙ > 0 (particles crossing the static
limit and escaping outside to r ≥ r+

ε ) are possible. Another
important point is that for an observer at infinity, the particle
will reach and penetrate the surface r = r+

ε , in general, in
a finite time t . For this reason, the ergoregion boundary is
not a surface of infinite redshift, except for the axis of rota-
tion where the ergoregion coincides with the event horizon.
Indeed, concerning the frequency of a signal emitted by a
source in motion along the boundary of the ergoregion r+

ε , it
is clear that the proper time of the source particle is not null.3

This means that the observer at infinity will see a non-zero
emission frequency. In the spherical symmetric case (a = 0),
however, as gtφ = 0 the proper time interval dτ = √|gtt |dt ,
goes to zero as one approaches r = r+ = r+

ε . Thus, in the
equatorial plane as a → 0 and the geometry “smoothly”
resembles the spherical symmetric case the frequency of the

3 However, as we have gtt (r±
ε ) = 0, it is also named infinity redshift

surface; see for example [41].
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emitted signals, as seen by an observer at infinity, goes to
zero.

2.1 On the particle’s energy and the effective potential

In this section, we discuss some aspects of particle energy
definition and the effective potential for the circular orbits,
which will be used here to analyze the dynamics inside the
ergoregion Σ+

ε . Let ua = dxa/dτ = ẋa be the tangent vector
to a curve xa(τ ), the momentum pa = μẋa of a particle with
mass μ being normalized so that gabẋa ẋb = −k, where k =
0,−1, 1 for null, spacelike, and timelike curves, respectively.
In order to simplify the investigation of the circular dynamics
we use the symmetries of the Kerr geometry: since the metric
tensor is independent of φ and t , the covariant components
pφ and pt of the particle’s four-momentum are conserved
along its geodesic, i.e., the quantities

E ≡ −gabξ
a
t p

b = − (
gtt p

t + gtφ p
φ
)
,

L ≡ gabξ
a
φ pb = gφφ p

φ + gtφ p
t (4)

are constants of motion, where ξφ = ∂φ is the rotational
Killing field and L is interpreted as the angular momentum of
the particle as measured by an observer at infinity. The Killing
field ξt = ∂t represents the stationarity of the spacetime and
we may interpret E , for timelike geodesics, as the total energy
of the test particle coming from radial infinity, as measured
by a static observer located at infinity.

An essential characteristic of the region we are investigat-
ing is to foreseen negative energy states for the matter dynam-
ics, therefore it is convenient here to give a more detailed def-
inition of the energy. In general, the particle’s energy could
be defined as Eτ in terms of ∂S /∂τ or as Et ≡ E in terms
of ∂S /∂t, where S is the particle action. The energy Eτ is
defined with respect to the proper time of the particle syn-
chronized along the trajectory. This quantity is always pos-
itive, but in general it is not conserved. On the other hand,
the definition of Et contains the derivative with respect to the
universal time, taking account of the symmetries of the sta-
tionary spacetime, and consequently it is constant along the
orbit of the timelike Killing vector. This quantity, as defined
in Eq. (4), is conserved, but it can be negative in Σ+

ε , where
t is no more a timelike coordinate [40]. The particle with
negative energy cannot escape to infinity, but its dynamics is
confined in r < r+

ε . Therefore the static limit would act as a
semi-permeable membrane separating the spacetime region
Σ+

ε , filled with negative energy particles, from the external
one filled with particles with positive energy, gathered from
infinity or expelled from the ergoregion with the consequent
impoverishment of source energy. However, in the case of
a naked singularity this phenomenon is combined with the
repulsive effects from the singularity ring r = 0, and conse-
quently the region Σ+

ε will have a more articulated structure

as regards the matter dynamics. Possibly, as pointed out in
[35], a set of negative energy particles will form (from the
Penrose process) in Σ+

ε , so one task is to study what the fate is
of the negative energy particles and what role these particles
play in the evolution of the source. The relevance of the spec-
ulated Penrose process in the eventual formation in Σ+

ε of an
extended configuration of negative energy matter cannot be
ruled by considerations of the geometric properties of space-
time only. However, in this work we address the question of
what would happen to the particle dynamics in Σ+

ε as well
as to the dynamics of the extended object under hydrostatic
pressure, focusing in particular on the energetic properties
of the test particles and on the necessary conditions for the
formation and stability of toroidal, pressure supported accre-
tion disks. As we focus here on the specific case of circular
motion, one could ask if the circular motion (stable or not)
of particles with negative energy is possible for some kind of
sources.

We start our analysis noting that, using the definitions
given in Eq. (4), the investigation of the circular motion of
test particles in the equatorial plane can be reduced to the
study of the motion in the effective potential V , defined from
the normalization condition of the particle’s four-velocity

gtt ṫ
2 + gφφφ̇2 + 2gφt ṫ φ̇ + grr ṙ

2 = −k, (5)

where the condition θ̇ = 0 has been used as geodesics starting
in the equatorial plane are planar. Using Eq. (4) for a particle
in circular motion, i.e. ṙ = 0, we obtain from Eq. (5) the
effective potential

V± =
−gφt L ±

√(
g2
φt − gtt gφφ

) (
L2 + gφφkμ2

)

gφφ

, (6)

which represents the value of E/μ that makes r into a “turn-
ing point” (V = E/μ); in other words, it is the value of E/μ

at which the (radial) kinetic energy of the particle vanishes.
The (positive) effective potential can be written explicitly as

V ≡ V+

μ
= − β

2α
+

√
β2 − 4αγ

2α
, (7)

where [42,43]

α ≡
(
r2 + a2

)2 − a2Δ, β ≡ −2aL
(
r2 + a2 − Δ

)
,

γ ≡ a2L2 −
(
M2r2 + L2

)
Δ. (8)

The behavior of the effective potential V− can be studied
by using the following symmetry V+(L) = −V−(−L).
The Kerr metric (1) is invariant under the application of
any two different transformations: PQ : Q → −Q, where
Q is one of the coordinates (t, φ) or the metric parame-
ter a, a single transformation leads to a spacetime with an
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opposite rotation respect to the unchanged metric. Thus, we
fix a ≥ 0 and we note that the potential function (7) is
invariant under the mutual transformation of the parameters
(a, L) → (−a,−L). We will restrict the analysis to the case
of positive values of a for corotating (L > 0) and coun-
terrotating (L < 0) orbits. For (timelike) circular orbits we
have

ṙ = 0, V = E

μ
,

dV

dr
= V ′ = 0 (9)

(see also [19]). Solving the equation V ′ = 0 with respect to
the angular momentum, we find

L±
μM

≡
∣∣∣ a2

M2 ± 2 a
M

√
r
M + r2

M2

∣∣∣
√

r2

M2

( r
M − 3

) ∓ 2 a
M

√
r3

M3

. (10)

Any particle moving along a circular orbit in these spacetimes
has an angular momentum of a magnitude of either L+ ≥
0 or L− ≥ 0. Introducing Eq. (10) into (7), we find the
energies E± ≡ E(L±) and E−± ≡ E(−L±). The orbits with
angular momentum L = ∓L± are allowed in different orbital
regions for different attractors, depending on the corotating
or counterrotating nature of the motion.

The energies E ≡ {E±, E−±} and the angular momenta
L ≡ {L±,−L±} are functions of the spacetime spin–mass
ratio and, therefore, we use them in this work to characterize
different attractors with different spin–mass ratios. In gen-
eral, depending on the context, by E or L we shall mean,
if not otherwise specified, either the set of the respective
quantities or a generic element of the set, which will be spec-
ified when necessary. The boundaries of these regions are
determined by a set ri ∈ R, different for BH and NS config-
urations, and include the radii {rγ , rb, rlsco} as given in Table
1. These radii are defined through different expressions for
corotating (−) and counterrotating orbits (+) in a naked sin-
gularity or in black-hole geometries, respectively (see also
Appendix A). The physical importance of these radii can
be explained as follows: Timelike circular orbits can fill the
spacetime region r > rγ , and the orbits at rγ , as defined
in Eq. (A.1), are photon orbits (lightlike orbits), known as
marginally circular orbits or also last circular orbits. It should
be noted, however, that orbits with radius rγ are not time-
like, but they are limiting values for timelike free particles and
matter where the angular momentum diverges. Thus no cir-
cularly orbiting (timelike) matter can be formed in the region
Σ∅ ≡]r+rγ ], because the energy and angular momentum of
the particle diverge as the photonlike orbit is approached.

Stable orbits are in the region Σs ≡]rlsco,+∞[, and the
orbits at rlsco, defined in Eqs. (A.2) and (A.3), are named,
accordingly, marginally stable circular orbits or also, quite
improperly, last stable circular orbits (see, for example, [44,
45]), respectively, for BH and NS sources and for different

types of orbits, as specified in Appendix A. While it should
be kept in mind that rlsco does not correspond to a stable
orbit, as it is indeed a saddle point for the effective potential,
that is, dr V |rlsco = d2

r V
∣∣
rlsco

= 0, the marginally stable
orbits correspond to the minimum of the energy and angular
momentum of the particle [19]).

The instability region Σu ≡]rγ , rlsco] is split by the radius
rb, where E (rb) = 1, generally into two regions Σu =
�≥

u ∪ Σ<
u where rb, defined in Eqs. (A.5) and (A.6), deter-

mines themarginally bounded orbit or the last bounded orbit.
For Σ≥

u ≡]rγ , rb] we have E ≥ 1 and for Σ<
u ≡]rb, rlsco]

we have E < 1. In Sect. 3.2.1, we will discuss the spe-
cial case where the energy parameter can be negative. The
explicit expressions of the radii R for black holes are given,
for example, in [19]. In this work, we focus on the case of
naked singularities, specifying the exact form of ri ∈ R for
different classes of super-spinning objects (a > M).

The parameters p ≡ {L ,E }, and the radii R deter-
mine the main properties of test particles moving along
circular orbits. These are the main quantities that will be
used below to explore the physical properties of spacetimes
described by the Kerr metric. We investigate the dynam-
ics in the ergoregion Σ+

ε through the study of the regions
Σ ≡ {Σs, �u,Σ∅}, which are characterized by the geomet-
ric properties Σ+

ε = ⋃
Σi and Σ j

⋂
Σi = ∅, ∀i, j . The

dynamical structure of the ergoregion is important because
it fully characterizes the dynamical properties of the orbiting
matter inside Σ+

ε .
The properties of matter in circular configurations, as well

as toroidal configurations of extended matter in accretion
disks, are in general governed by several factors such as the
pressure, the magnetic fields, the dissipative effects and so
on; however, the properties of the spacetime structure, regu-
lated by the radii R, are the basis on which to build any disk
model [32], especially in thick pressure supported relativis-
tic accretion disks where the background curvature strongly
affects the equilibrium and the disk instability. The disk equa-
torial plane of symmetry is often aligned with the symmetric
plane of the accretor. By using the symmetry of the system,
the geometric symmetries of the background and of the mat-
ter configuration, we are capable to reduce the analysis to
an one-dimensional problem along the radial direction r , the
dynamics of the orbiting matter being regulated entirely by
the couple of model parameters p, which are constant along
the geodesics because they are associated with the orbits of
the Killing vector fields. Then the main features of the disk
dynamics, stability and accretion, are mainly regulated by the
properties of the disk as projected on the plane of symmetry
θ = π/2. Moreover, the region Σ+

ε is closely involved in the
evolutionary processes of the accretor, resulting in a shift of
the intrinsic spin. As a consequence of the interaction of the
surrounding matter in Σ+

ε , one would expect a change of the
source spin, resulting in a change of the corresponding class
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Table 1 Set of spins A and radii R for the black-hole (BH) and the
naked singularity (NS) geometries, respectively. The radii RBH =
{r−

γ , r−
b , r−

lsco} set the photon orbit (or also last circular orbit), the
marginally bounded orbit, and the last stable circular orbit, respec-
tively (for corotating orbits) in black-hole geometries. See also Figs.
1 and 4, and the discussions in Sect. 3.1 for the BH case, and Sect.
3.2 for the NS case. For the naked singularity case the radii RNS =

{r±
υ , r̂±, r (NS)−

lsco , r (NS)
b } set the outer (r+

υ ) and inner (r−
υ ) effective ergo-

surfaces, where the orbital energies E = 0 (see Sect. 3.2), and the radii
r̂± (zero angular momentum radii), whereL (r̂±) = 0. Moreover, r (NS)

b

and r (NS)−
lsco are the marginally bounded orbit and the last stable circular

orbit, respectively, for the NS geometries. The explicit expression of
the radii can be found in Appendix A

Black-hole classes: A = ABH ≡ {0, a1, a
−
b , a2, M}, R = RBH ≡ {r−

γ , r−
b , r−

lsco}
a1/M ≡ 1/

√
2 ≈ 0.707107; a−

b /M ≡ 2(
√

2 − 1) ≈ 0.828427; a2/M ≡ 2
√

2/3 ≈ 0.942809

a1 : r−
γ (a1) = r+

ε ; a−
b : r−

b (a−
b ) = r+

ε ; a2 : r−
lsco(a2) = r+

ε

BHI : [0, a1[ BHIIa : [a1, a
−
b [; BHIIb : [a−

b , a2[; BHIII : [a2, M]
Naked singularity classes: A = ANS ≡ {aμ, a3, a4, aNS

b }, R = RNS ≡ {r±
υ , r̂±, r (NS)−

lsco , r (NS)
b }

aμ/M = 4
√

2/3/3 ≈ 1.08866; a3/M ≡ 3
√

3/4 ≈ 1.29904; a4/M ≡ 2
√

2 ≈ 2.82843: aNS
b /M ≈ 4.82843

aμ : r+
υ (aμ) = r−

υ (aμ); a3 : r̂+(a3) = r̂−(a3); a4 : r (NS)−
lsco (a4) = r+

ε ; aNS
b : r (NS)

b (aNS
b ) = r+

ε

NSIa : ]M, aμ]; NSIb : ]aμ, a3]; NSII :]a3, a4]; NSIIIa : ]a4, aNS
b ]; NSIIIb : ]aNS

b ,+∞]

or subclass of the attractor, with potentially relevant phe-
nomenological implications [11–13]. Furthermore, in [35] it
is argued that the ergoregion (in any plane θ ) cannot disap-
pear as a consequence of a spin shift as it is supposed to be
filled by the negative energy matter; in fact, the limiting case
corresponds to r+ = r+

ε = 2M . On the equatorial plane,
the ergoregion (for a �= 0) is invariant with respect to any
transformation involving a change in the source spin (but not
with respect to a change in the mass M), but the dynamical
structure of Σ+

ε is not invariant under changes of the ratio
a/M ; in other words, the limit r+

ε /M
∣∣
θ=π/2 = 2 is indepen-

dent of the central attractor, but not of its dynamical structure
Σ . We will show the presence of limiting geometries from
the point of view of the structure of Σ+

ε , where the dynam-
ical structure of the ergoregion can change significantly as
a consequence of a small shift of the attractor spin (see also
Appendix B).

3 Analysis and discussion of the dynamics

In this section, we discuss the particle dynamics circularly
orbiting in Σ+

ε , and characterizing the different attractors
in terms of the dynamical structure Σ of the ergoregion.
The case of BH geometries is addressed in Sect. 3.1, and
the NS case is considered in Sect. 3.2. A similar analysis
for the region r > r+

ε was discussed in [19]. Our results
lead to the identification of different classes of attractors,
defined by the spin–mass ratios in the regions of the r − a
plane with boundaries in R ⊗ A , where A is the set of
spins defined at the crossings of the radii (ri , r j ) in R and
r+
ε in Σ+

ε (see Table 1). We identify four classes of black-
hole sources (a ≤ M) and five classes of naked singularities
(a > M), defined in Table 1. The classes of geometries have
boundaries inA = ABH andR = RBH for black holes, and

A = ANS and R = RNS for naked singularities (details
are given in Table 1). The geometries with spin ai ∈ ABH ∪
ANS are limiting cases with respect to the structure of Σ+

ε .
Particularly relevant is the extreme case a = M , which marks
also the limit between black holes and naked singularities;
this case will be addressed in particular in Appendix B. Close
to the boundary spacetimes, in particular, as discussed in
Appendix B, at a = a2 ≈ 0.942809M and a = M , the
properties around the limiting spin value are rather subject
to a sort of fine-tuning, i.e. at a fixed radial distance from
the source, the dynamical properties modify significantly as
consequence of a slight change in the spin (see Appendix B).
For this reason, the geometries with the spin in A are likely
to give rise to rather relevant phenomena for the geometrical
properties of the matter configurations orbiting in regions
very close to the source; see also Appendix B.

Photonlike circular orbits in Σ+
ε are a feature of BHII and

BHIII sources only; there are no photonlike orbits inside the
ergoregion Σ+

ε in NS spacetimes. In NS spacetimes, there is
no last circular orbit for corotating particles with L = L−,
indicating that circular orbits can theoretically be up to the
singularity. In other words, in this case there is at least one
circular orbit for any r > 0 as long as the particle’s angular
momentum assumes certain values. On the other hand, coun-
terrotating orbits (L = −L−), characteristic of NSI sources,
can exist only in a bounded orbital region. Stability regions
Σs ⊂ Σ+

ε are present only in the classes BHIII, NSI, and
NSII (see Table 1; Figs. 1 and 4).

We will investigate the structure Σ of Σ+
ε , providing a

characterization of the regions of Σ and, in particular, the
length or extension of each orbital region in which Σ+

ε is
decomposed, where the extension μ+

ε = 2M of Σ+
ε is the

sum of the lengths of all regions of Σ . To understand the
physical implications of this analysis, we will focus our dis-
cussion on two different orbiting configurations: the case of
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Fig. 1 Arrangement of the radii ri ∈ RBH ∪ RNS determining the
properties of circular orbits around a rotating central mass and classes
of attractors for black-hole (BH) (upper and bottom panels) and naked
singularity (NS) sources (bottompanel), as given in Table 1. (r−

b , r (NS)
b )

are the marginally bounded orbits, (r−
lsco, r

(NS)−
lsco ) are the marginally

stable orbits, r−
γ is the photon (last circular) orbit. The region outside

the static limit r > r+
ε is in gray, and the one with r < r+ is in black.

The bottom panel shows in light gray a neighborhood of the geometry
a = M between the BHIII and NSIa classes. The orbital stability in
each region is analyzed and explicitly shown: the angular momentum
is quoted with its stability property as |s for stable and |u for unstable
orbits. Radii r̂± are zero angular momentum orbits (L = 0), and the
radii r±

υ , zero energy circular orbits, are counterrotating (L = −L−)
orbits with E = 0. The region ]r−

υ , r+
υ [ contains only counterrotating

orbits with E < 0

Keplerian (dust) disks and the pressure supported accretion
thick disk models [15,32,34,38,46,47]. We discuss the phys-
ical meaning of the regions Σs �u and Σ∅ in relation to these
astrophysical models.

The region Σs consists of stable geodesic orbits and, in the
case of a dust disk, the length μs of Σs indicates the amount
of dust that can be in equilibrium inside the ergoregion Σ+

ε .
According to the current accretion disk models, the upper
bound for the inner edge of the disk is actually located in
a region r ≤ rlsco; then the length μs of the orbital region
Σs ⊆ Σ+

ε provides the maximum elongation, in the equa-
torial plane inside the ergoregion, of a hypothetical accre-

tion disk with inner edge in Σ+
ε . Then the disk penetrates

the ergoregion, crossing the static limit (see, for example,
[34]), or it is totally included in Σ+

ε . If the disk is thick,
one can use the Boyer model (see [48]) for a pressure sup-
ported thick accretion disk, where the center of the config-
uration rc, which locates the maximum of the hydrostatic
pressure, is inside the stable region, i.e., rc ∈ Σs ⊆ Σ+

ε .
However, the inner edge r iK of the disk, in the case of a
thick disk in equilibrium as established by the Paczynski–
Wiita (P–W) mechanism [32], can also be located in a region
rb < rmax < r iK < rlsco < rmin < roK , where roK denotes
the outer edge and (rmax, rmin) are the maximum and mini-
mum points of the effective potential, respectively.

The instability region Σu , filled with unstable circular
orbits, is generally split into two regions (which may be con-
nected or not) as Σu = �≥

u ∪ Σ<
u . In the instability region,

there could be a decay phenomenon in which a particle may
either escape, spiraling into the outer region and therefore
possibly becoming observable, or be captured by the source,
changing its spin-to-mass ratio (see, for example, [42]). This
phenomenon, in turn, could also may give rise to jets of mat-
ter. The instability region has indeed an important role for
the relativistic thick accretion disk model as it is essential
for the modeling of associated non-equilibrium phenomena
related either to the accretion or to the jet production. When
the inner edge of the disk is in r iK ∈ Σ<

u (on a maximum
point of the effective potential) while rc ∈ Σs , this can give
rise to a limiting situation, and then r iK represents an unsta-
ble point, a cusp in which matter grows on the attractor, or,
as also occurs in some geometries, a point of excretion out-
wardly. In any case, the material presents a lobe closed to and
centered around the maximum pressure point rc, while the
cusp point represents the overflow point of the material. Then
the length μs +μ<

u , where μ<
u is the length of Σ<

u , provides
the maximum elongation in the equatorial plane of the dis-
tance rc−r iK for an accretion disk in Σ+

ε . If the disk is thick,
then the density is constant and one could evaluate, in terms
of the length μs + μ<

u , the total mass contained in the con-
figuration with maximum elongation. In Σ≥

u , where E ≥ 1,
circular geodesics are unstable and unbounded. According
to the Boyer model [48], the extended matter configurations
with a minimum point of pressure located in Σ≥

u can open
in jets with funnels along the axis. More precisely, the max-
imum extension λ for a pressure supported thick accretion
disk (see, for example, [32]) is the elongation λx in the equa-
torial plane of its critical configuration, i.e., in accretion.
Then the inner edge r iK is located exactly at the maximum
of the effective potential and precisely r iK = rmax ∈ Σ<

u
and the outer edge is also uniquely fixed by rmax. For suffi-
ciently large angular momenta, such that the disk is entirely
included in Σ+

ε , then the upper bound of its elongation
λ ≡ roK − r iK is sup λx = roKx

− r iKx
≈ μ<

u + r+
ε − rb
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Table 2 Dynamical structure of the ergoregion Σ+
ε and length μ of its

sections in the black-hole geometries. The label ()∅ refers to the region
where circular orbits are not allowed, ()s refers to the regions where
stable circular orbits are possible, ()<u is for regions where the orbits are
unstable with energy E < 1 (in units of the mass particle), and finally
()≥u is for the regions where unstable circular orbits are with E > 1. The

corresponding length is denoted by μ(). The extremes of the ranges for
the lengths μ() are evaluated for the extreme geometries of each space-
time class. The regions are ordered according to the decreasing orbital
distance from the source, that is, from the more distant from the source
to the closest. The lengths are in units of mass M . See also Fig. 1

Black-hole geometries:

BHI: Σ+
ε = Σ∅

Length of the sections: μ+
ε = 2M

BHIIa: Σ+
ε = Σ≥

u (L−) ∪ Σ∅

Length of the sections: μ≥
u ∈ [0, 0.253841]

BHIIb: Σ+
ε = Σ<

u (L−) ∪ Σ≥
u (L−) ∪ Σ∅

Length of the sections: μ<
u ∈ [0, 0.464516], μ≥

u ∈ [0.253841, 0.120867], μ∅ ∈ [0.771974, 0.417721]
BHIII: Σ+

ε = Σs(L−) ∪ Σ≥
u (L−) ∪ Σ<

u (L−) ∪ Σ∅

Length of the sections: μs ∈ [0, 1], μ<
u ∈ [0.464516, 0], μ≥

u ∈ [0.120867, 0], μ∅ ∈ [0.417721, 0]

(this is because we are considering in this work the region
r < r+

ε only and rlsco > rb > rγ ; we could equivalently say
that sup λ = μ<

u +μs). The elongation of the disk in equilib-
rium, centered in rc = rmin, must be lower than this critical
value and its inner and outer edges are included in the range
]r iK , roK [⊂]r iKx

, roKx
[. Then, for example, in BHIII space-

times we have sup λ ≤ M (recall that in BHIII spacetime
we have ∂aμs > 0). However, even if the evaluation of λ

depends on the adopted angular momentum, for the equilib-
rium configuration we have rmax < rlsco < rmin = rc < roK ,
while for the accretion configuration we have rmax = r iKx

<

rlsco < rmin < roK < roKx
, with r iKx

< r iK ; thus, for
instance, in the case of BHIIb sources, where the accretion
of even jets can occur, the supremum of the distance rc−r iKx
is sup μ<

u .
In general, one might look at the entire evolution of a thick

accretion disk, from the formation of a thin ring, its con-
sequent growing to the unstable phases of accretion which
results finally in the formation of jets of matter from the cusp
point, as the transition of orbiting matter through the regions
Σu → Σ<

u → Σ≥
u . Finally, the analysis of the dynamics in

the region Σ+
ε allows us to consider, from the starting con-

dition, the extraction of energy and angular momentum of a
black hole with the consequent release of particles (or matter
jets), that could eventually induce a shift of the attractor from
one class to another.

3.1 Black holes

The dynamical structure of Σ+
ε in BH spacetimes is deter-

mined by the radii ri ∈ RBH ∈ Σ+
ε , as shown in Table 1. The

properties of circular orbits outside the ergoregion of black-
hole geometries are sketched in Fig. 1, and they have been
analyzed in detail in [19]. In the ergoregion, BH-sources
are characterized by a unique family of corotating orbits

with L = L−. We summarize the results obtained from
the analysis of Σ by discussing the three classes of BH
geometries: BHI : a ∈ [0, a1], BHII = BHIIa ∪ BHIIb :
a ∈]a1, a2], where the subclasses BHIIa ≡]a1, a

−
b ] and

BHIIb ≡]a−
b , a2], and finally BHIII : a ∈]a2, M] (see also

Table 2).

3.1.1 The class BHI : a ∈ [0, a1]

The class BHI is bounded by the Schwarzschild static space-
time and the spacetime with spin a = a1 ≈ 0.707107M .
No circular motion can occur for r < r+

ε , we have then
Σ+

ε = Σ∅: the orbital amplitude of this region reaches its
maximum in the limit geometry a = a1, the static limit in
this spacetime coincides with the photon orbit (see Fig. 1
and the discussion in Appendix C). There is no solution for
Eq. (9), because the effective potential is always increasing
(V ′ > 0) in this region. A particle penetrating the ergoregion
with θ̇ = 0 and ṙ < 0 must move along the radial direction
with a twisting along φ. There is a belt, with boundary at r−

γ ,
surrounding the static limit (in r > r+

ε ) where no inner edge
for a thin disk (P–W point of accretion) and no cross point for
the origin of matter jets can exist in the (outer) neighboring
regions of the static limit. This forbidden region, however,
decreases in extension as the spin–mass ratio approaches the
upper limit of this class; its maximum value is in the limiting
static geometry where its length is equal to the mass M of the
attractor. For spin values close to a = a1 the forbidden belt
decreases in length, until the launching point of the matter
jet approaches the static limit at r � r+

ε .

3.1.2 The class BHII : a ∈]a1, a2]

The dynamical structure of the ergoregion in the case ofBHII
geometries is shown in Table 2. The instability region con-
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tains the orbit r−
b ; it is therefore convenient to consider sep-

arately the subclass BHIIa : a ∈]a1, a
−
b ] and BHIIb : a ∈

]a−
b , a2]. For a spacetime with a−

b = 0.828427M we have
r−
b = r+

ε .
For BHIIa geometries with a �= a−

b we have Σu(L−) =
Σ≥

u (L−), which is a region with unstable unbounded (E− >

1) orbits whose energy increases as the orbit approaches the
photon orbit at r−

γ . These orbits are unstable and under a per-
turbation they can eventually escape with ṙ > 0 and φ̇ > 0,
crossing the ergoregion at a certain finite time τ̄ : r(τ̄ ) = r+

ε

and ṙ(τ̄ ) > 0 and φ̇(τ̄ ) > 0. The particle might run away
to infinity, because the energy to decay into a lower circular
orbit is higher than the energy required for spiraling outward
to an exterior orbit. This could give rise to the ejection of pos-
itive energy particles outside the static limit. If we consider a
thick accretion disk model, we could say that in the regions
adjacent to the static limit or ]r+

ε , r−
b ] there can be only open

configurations with a cross point in that region (or even in the
static limit; see Appendix C), where there is a (critical) min-
imum pressure value, with the consequent launch of funnels
of matter along the axis of symmetry. In fact, the cross point
of an open configuration, i.e. the origin point of (corotating)
matter jets, can occur in the ergoregion of BHIIa geometries
in Σ≥

u (L−) ∈ Σ+
ε , where the matter, twisting with the source

(i.e. with initial angular momentum L = L−), will be aligned
with the rotation axis, while a part of the trapped particles
in the ergoregion can be expelled to outside, without falling
into the singularity. As shown in Table 2, the orbital extension
μ≥
u is less than μ≥

u = 0.26M and the horizon is then covered
by the orbit of the photon at r−

γ . However, the static limit
crosses the smaller region of instability as the attractor spin
approaches the boundary of the class BHIIa, where close
to the static limit, as a = a−

b , there are accretion points of
closed surfaces according to the P–W accretion mechanism.

In BHIIb spacetimes, the region Σ<
u ⊂ Σ+

ε locates the
instability points of the toroidal thick configuration of coro-
tating matter in accretion. The hydrostatic pressure on the
cusps is minimum, and these points can be even in the static
limit (see Appendix C). No toroidal equilibrium disk can
be inside the ergoregion due to the gravitational and hydro-
static instability in Σ<

u . The point of accretion can also be
very close to the static limit. Only open funnels are possible
from a point in Σ≥

u , where the launch of a jet is possible.
The length of Σ≥

u decreases, as the rotation of the attrac-
tor increases, approaching the horizon and creating therefore
a gorge whose extension decreases from the maximum of
μ≥
u ≈ 0.12M (see Table 2). In the proximity of the static

limit (r � r+
ε ) in BHIIb spacetimes, closed configurations

in equilibrium are possible as a � a2. The situation becomes
critical as the attractor spin increases up to the upper limit
of the BHIIb class with a = a2. Then the closed config-
urations in equilibrium approach their center of maximum
hydrostatic pressure, until the center coincides with the static

Fig. 2 Black-hole case: energies E− (upper panel) and the angular
momentum L− (bottom panel) as functions of the spin–mass ratio a/M
of the black hole. The energies are in units of particle mass μ and the
angular momentum in units of Mμ. The spins a−

b = 0.828427M , a2 ≡
2
√

2/3M are denoted by dashed lines. The curves are the energies and
the angular momentum, respectively, for the specific orbits represented
in square brackets next to the curves. r+

ε is the static limit (black curve),
r−
b is the marginally bounded orbit (gray curve), r−

lsco is the last stable
circular orbit (dashed curve)

limit in the spacetime with a = a2. Then the inner edge of
the disk would be within the region Σ≥

u . The energy E− > 0
and orbital angular momentum L− > 0 increase, approach-
ing the limiting value at r−

γ (see also Fig. 3). On the other
hand, at a fixed orbit r , the energy decreases as the attrac-
tor spin increases. As shown in Fig. 2, the minimum energy
extractable during an orbital decay in BHIIa geometries is
E = μ for the orbit r−

b . The maximum extractable energy
from an initial decay by a particle in Σ≥

u does not exceed the
value E = 1.6μ corresponding to a particle that decays from
an orbit very close to the static limit. In BHIIb spacetimes,
the minimum extractable energy is not less than E = 0.8μ

as shown in Fig. 2.

3.1.3 The class BHIII : a ∈]a2, M]

In BHIII spacetimes, there can be stable orbits in the ergore-
gion Σ+

ε (see Fig. 1; Table 2). As we have r+
ε ∈ Σs , the

static limit can correspond to a stable orbit, according to the
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Fig. 3 The energy E− and the corresponding angular momentum L−
(inside panel) as functions of r/M and for different values of the spin-
to-mass ratio of BHII sources

discussion of Sect. 2.1 (see also Appendix C). There may
exist a stable thin ring of dust orbiting very close around r+

ε

(r = r+
ε ± ε with ε � 0). The inner edge and the center

(maximum of the hydrostatic pressure) of the thin disk can
be in Σs ⊂ Σ+

ε . The length μs of this region increases as
a � M . A thick corotating accretion disk in BHIII space-
times can be entirely inside Σ+

ε , dynamically including the
ring formation in equilibrium up to the accretion and the jet
launch. Thus the point of launch of the jet, according to the
P–W mechanism, can be located in a region very close to the
horizon, as the attractor spin increases. A slightly change in
the attractor spin would produce a transition from a section to
another inside the ergoregion, causing a change in the stabil-
ity properties of the orbital matter. However, the maximum
length μs of the region of stability is μs = M ; therefore, the
elongation of a thin disk entirely contained in Σ+

ε cannot be
greater than M .

As the largest section for a fixed attractor is Σ<
u , one could

say that closed stable configurations are favored in BHIII
spacetimes, jets in BHIIa sources, and the accretion disks
in BHIIb and BHIII attractors. The behavior of the energy
and angular momentum in these spacetimes is shown in Fig.
2. The maximum energy can be extracted from a particle
that decays from an orbit close to the static limit and slightly
greater than E ≈ 0.8μ, while the angular momentum does
not exceed the value L ≈ 2Mμ.

3.2 Naked singularities

We distinguish three classes of naked singularity sources:
NSI : a ∈]1, a3], split into NSIa: a ∈]1, aμ] and NSIb:
a ∈]aμ, a3], the classNSII : a ∈]a3, a4], and finally the class
NSIII : a ∈]a4,∞], split into NSIIIa : a ∈]a4, aNS

b ] and
NSIIIb : a ∈]aNS

b ,∞[ (see also Table 1). A characterization
of the orbital energy in r > r+

ε can be found with some details
in [19]. In contrast with BH, in NS spacetimes the singularity

is always covered by the region Σ≥
u (L−), with unstable and

unbounded circular orbits.

3.2.1 The class NSI : a ∈]1, a3]

Naked singularities of the NSI class present a rather rich
and articulated dynamical structure of the ergoregion, as
shown in Table 3. As they limit with the extreme-BH case at
a = M , NSI spacetimes could be involved in the hypothet-
ical transitions between the BH and NS classes. In contrast
with the BH spacetimes, these geometries are characterized
by two types of circular orbits: the corotating orbits with
momentum L = L−, which extend to the regions r > r+

ε ,
and the counterrotating ones with L = −L−, confined in
a bounded orbital region Σ(−L−) ⊂ Σ+

ε with bound-
aries at r = r̂±, as defined in Eq. (A.7), corresponding to

Table 3 Dynamical structure of the ergoregion Σ+
ε and length μ of

its sections in naked singularity geometries: the label ()∅ refers to the
regions where circular orbits are not allowed, ()s to regions with stable
circular orbits, ()<u to regions with unstable orbits with energy |E | < 1
(in units of the mass particle), and finally ()≥u is for the regions where
unstable circular orbits exist with |E | > 1. The corresponding lengths
are denoted by μ(). The boundaries of the ranges for the length μ() cor-
respond to values of the boundary geometries of each spacetime class.
The regions �Σ , and the corresponding lengths �μ, refer to orbits with
negative energy. The regions are ordered according to the decreasing
orbital distance from the source, that is, from the more distant from the
source to the closest. The lengths are in units of mass M . For details,
see Fig. 4. The angular momentum characterizing the possible orbits
are in round brackets. There are no regions with both corotating (L−)

and counterrotating (−L−) angular momenta. The two kinds of orbits
are confined in disjoint regions

Naked singularity geometries:

NSIa: Σ+
ε = Σ−

u (L−) ∪ Σs(−L−) ∪ �Σs(−L−) ∪ �Σ<
u (−L−) ∪

Σ<
u (−L−) ∪ Σ<

u (L−) ∪ Σ≥
u (L−)

Length of the sections: μ<
u (L−) ∈ [1, 1.00873], μs(−L−)

∈ [0, 0.324601], �μs(−L−) ∈ [0, 0],
�μu(−L−) ∈ [0.618034, 0], μu(−L−) ∈ [0.0863683, 0.298875],

μ<
u (L−) ∈ [0.124025, 0.16957],

μ≥
u (L−) ∈ [0.171573, 0.198221].

NSIb: Σ+
ε = Σ−

u (L−) ∪ Σ<
u (−L−) ∪ Σs(−L−) ∪ Σ<

u (L−)

∪ Σ≥
u (L−)

Length of the sections: μ<
u (L−) ∈ [1.00873, 1.25],

μs(−L−) ∈ [0.324601, 0],
μu(−L−) ∈ [0.298875, 0], μ<

u (L−) ∈ [0.16957, 0.483478],
μ≥
u (L−) ∈ [0.198221, 0.266522]

NSII: Σ+
ε = Σs(L−) ∪ Σ<

u (L−) ∪ Σ≥
u (L−)

Length of the sections: μs ∈ [1.25, 0], μ<
u ∈ [0.483478, 1.08485],

μ≥
u ∈ [0.266522, 0.915154]

NSIIIa: Σ+
ε = Σ<

u (L−) ∪ Σ≥
u (L−)

Length of the sections: μ<
u ∈ [1.08485, 0], μ≥

u ∈ [0.915154, 2]
NSIIIb: Σ+

ε = Σ≥
u (L−)

Length of the sections: μ≥
u = 2
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Fig. 4 Arrangement of the radii ri ∈ RNS determining the proper-
ties of circular orbits around a rotating naked singularity (NS) in the
region Σ+

ε . The orbital stability in each region is analyzed and explic-
itly shown. The angular momentum is quoted with its stability property
as |s for stable and |u for unstable orbits. r (NS)

b corresponds to the

marginally bounded orbits, r (NS)−
lsco to the marginally stable orbits. On

r̂±, the orbits have zero angular momentum (L = 0). The radii r±
υ corre-

spond to counterrotating (L = −L−) orbits with zero energy (E = 0).
The region ]r−

υ , r+
υ [ contains only counterrotating orbits with E < 0

circular orbits with zero angular momentum L = 0. The
orbital region Σ(−L−) is split by the radius r (NS)−

lsco so that
Σ(−L−) = Σ<

u (−L−) ∪ Σs(−L−). These regions do not
intersect each other, i.e., Σ(−L−)∩Σ(L−) = ∅, in contrast
to the region r > r+

ε , where it is possible to have, in the
same orbital region, corotating and counterrotating matter.
The regions Σ(−L−) and Σ(L−) are completely disjointed
in Σ+

ε , although the presence of circular orbits with L = 0 at
r̂± suggests a continuous transition between the two regions.
For orbits with L = 0 at r = r̂±, the particle energy is pos-
itive and increases with the source spin, with the condition
E(r̂−) > E(r̂+) (see Figs. 5 and 6). The existence of coun-
terrotating orbits can be seen as a “repulsive gravity” effect
that has been detected also in other naked singularity space-
times [25,26,28], creating therefore an “antigravity” sphere
bounded by orbits with zero angular momentum. The stabil-

ity of these orbits would suggest the presence of a belt of
counterrotating material covering the singularity.

In Σ(−L−), there is a class of naked singularitiesNSIa ≡
a ∈]M, aμ] where circular counterrotating orbits are possi-
ble with negative energy, �Σ = �Σs(−L−) ∪ �Σ<

u (−L−). The
energy of the particles in these orbits is always less than μ

in magnitude. The region �Σ is bounded by the orbits r±
υ ,

zero energy orbits (see Fig. 4). Counterrotating particles are
confined inside the closed region Σs(−L−) ∪ Σ<

u (−L−) in
NSIa ∪ NSIIb with a section of negative energy particles
�Σs(−L−) ∪ �Σ<

u (−L−) in NSIa. The symbol �Σ is used in
relation with the regions of negative energy orbits and, unless
otherwise specified, Σ will be considered for positive energy
orbits, while the labels (≥) and (<) are to be understood, in
the case of negative energies, as related to the energy mag-
nitude.

The existence of stable and unstable circular orbits with
L < 0 and E < 0, although located in an orbital region
far from the source, can be important for the phenomena of
accretion from the equatorial plane, because it would imply
dropping “test” material into the singularity with a negative
contribution to the total energy and momentum. The region
of stable orbits is disconnected in the sense discussed previ-
ously in [19,25–28], i.e., if we imagine a hypothetical accre-
tion disk made of test particles only, the disconnected stabil-
ity regions form a ringlike configuration around the central
object [25–27].

The existence of the region �Σ is an intrinsic character-
istic of NS-sources that has also been highlighted for other
axisymmetric exact solutions of the Einstein equations, in
particular, for the electrovacuum spacetime described by the
Reissner–Nordström (RN) solution.4 In this spacetime, the
radii where E = 0 define the effective ergoregion of the RN
solution [43] or ]rRN+ , rε

eff [, where rRN+ ≡ M +√
M2 − Q2

is the outer horizon in the RN geometry and rε
e f f ≡ M +√

M2 − Q2(1 − q2/μ2), where Q is the source charge and q is
the test particle charge. The existence of such a region is due
to the attractive electromagnetic interaction between the two
charges (Qq < 0), resulting in negative energy states for test
particles [26,27]. However, since the RN solution is static,
there is no ergoregion in this spacetime.

The definition of an effective ergoregion is introduced in
the description of the energy extraction phenomena of black
holes, and can be extended also to the case of naked singulari-

4 In general, even if the global structure of the Kerr spacetime is θ-
dependent, in the equatorial plane these two axisymmetric solutions
have some remarkable similar geometrical features; for instance, in the
expressions for the outer and inner horizons r±, where the horizons of
the one solution can be fit into the outer by replacing the spin parameter
a/M of the Kerr spacetime with the electric charge parameter Q/M of
the RN solution. Finally, in the equatorial plane the conformal diagram
for the maximally extended Kerr (BH and NS) spacetimes is identical
to that of the RN solution [41].

123



Eur. Phys. J. C (2015) 75 :234 Page 13 of 20 234

�Fig. 5 The naked singularity case: the energies E and angular
momenta L as functions of the spin–mass ratio a/M of the naked sin-
gularity. The energies and the angular momenta are in units of the
particle mass μ. The spins a3/M ≡ 3

√
3/4, aμ/M ≡ 4

√
2/3/3,

aNS
b /M ≡ 2

(
1 + √

2
)

≈ 4.82843, and a4/M = 2
√

2 are denoted

by dashed lines. The curves represent the energies and the angular
momenta, respectively, for specific orbits marked in square brackets
next to the curves. r+

ε is the static limit, r (NS)
b is the marginally bounded

orbit, r (NS)−
lsco is the last stable circular orbit. At r̂±, we have L(r̂±) = 0,

and at r±
υ (effective ergosurfaces), we have E(r±

υ ) = 0

ties. Therefore, one can define also for the NSIa singularities
the radii r±

υ (a), where E = 0, as the outer effective ergo-
surface r+

υ and an inner effective ergosurface r−
υ . Then the

region ]r−
υ , r+

υ [ would correspond to an effective ergoregion,
where the spin–orbit coupling terms in the Kerr source play
the role of the electrodynamic interaction between the test
charge q and the intrinsic charge of the source in the defini-
tion of the effective ergoregion in the RN geometry. However,
in the Kerr spacetimes, the radii r±

υ (a) are independent of the
orbital angular momentum.

3.2.2 The class NSII : a ∈]a3, a4]

The dynamical structure of Σ+
ε in the NSII geometries is

shown in Table 3 and in Figs. 1 and 4. There are only coro-
tating orbits with L = L− > 0, which can be stable or
unstable, bounded and unbounded, so that the structure of
Σ+

ε is similar to the case of BHIII as given in Table 2. In the
NSII class, the region Σ≥

u (L−) extends up to the singularity
and there is no region Σ∅. A further difference with BHIII
spacetimes is that the length μs of Σs in NSII decreases
with the attractor spin. This can be interpreted as follows:
while higher spins in the BH geometries favor the orbital
stability, an increase of the attractor spin in the NS space-
times acts in the opposite direction, favoring the instability
of the (unbounded) orbits. A pressure supported accretion
disk can then be entirely contained in Σ+

ε , and eventually
evolve toward the instability, moving the inner edge of the
disk toward the region Σ<

u , and eventually toward Σ≥
u , giv-

ing raise to funnels of materials launched outward from the
minimum point of the hydrostatic pressure. The length of the
region where the center of the closed configuration can be
located does not exceed μs = 1.25M , while it decreases to
zero as the singularity spin reaches the upper limit a4 of this
class of sources. Moreover, in the wider region, where a fixed
attractor is in Σ<

u with a minimum length of μ<
u ≈ 0.48M

and a maximum of μ<
u ≈ 1.085M , there are toroidal sur-

faces close around the maximum of the pressure and points
of instability in Σ<

u from which there could be an overflow
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�Fig. 6 NSI sources with a ∈]M, a3]. The energy E−− ≡ V (−L−)

(black curves) and E− ≡ V (L−) (gray curves), in units of the particle
mass μ, of the circular orbits for different spacetime spins. The last
stable circular orbit r (NS)−

lsco il also plotted and the minimum of the

energy is marked with a point. At a = a3 we have r̂± = r (NS)−
lsco . The

potential V (−L−) is plotted for the entire range r ∈]0, r+
ε ], but the only

counterrotating orbit is located at the boundary point r̂± = r (NS)−
lsco . For

spacetimes with a ∈]M, aμ[ the energy of the circular orbit is negative,
and for a source with a = aμ ≡ (4

√
2/3)/3M the energy vanishes,

E−−(r (NS)−
lsco , aμ) = 0

of matter. As shown in Fig. 5, the orbit energies and the angu-
lar momenta increase with the spin of the source, and they
can reach a minimum in the static limit (see Appendix C). In
order to set test particles in circular orbits in these spacetimes
we should provide a specific energy that increases with the
attractor spin.

3.2.3 The class NSIII : a ∈]a4,+∞[

In NSIII geometries, as in the BHII class of attractors, the
marginally bounded orbit r (NS)

b crosses the static limit as

the spacetime spin is a = aNS
b ≡ 2

(
1 + √

2
)
M ∈ NSIII

(see Table 3 and Fig. 4). It is therefore convenient to intro-
duce a further decomposition of this class into two sub-
classes, namely NSIIIa where a ∈]a4, aNS

b ] and NSIIIb
where a > aNS

b . In allNSIII spacetimes, the stable orbits are
suppressed forNSIIIa attractors, but bounded unstable orbits
are still possible. In the NSIIIb spacetimes the ergoregion
can be filled only by unbounded orbits up to the singular-
ity, and the dynamical structure of the ergoregion reduces to
Σ+

ε = Σ≥
u . In the Σu regions, the particle orbits are unstable

and, correspondingly, extended pressure supporting toroidal
matter orbiting around these attractors, have instability points
located in Σ<

u , where an overflow of matter is possible from a
closed configuration. Moreover, there can also be jet launches
with funnels of materials in Σ≥

u , which characterizes in par-
ticular the whole ergoregion of the NSIIIb spacetimes.

On the other hand, only in the NSIIIa geometries the disk
center can be located in the region r > r+

ε close to the static
limit. In this respect, the dynamical structure ofΣ+

ε inNSIIIa
and NSIIIb spacetimes is similar to the BHIIb and BHIIa
classes, respectively.

We can conclude that naked singularities with sufficiently
high spins, strong naked singularities of the NSIIIa class,
and black holes with sufficiently small spin within theBHIIb
class do not allow for any stable orbiting matter in the
ergoregion. The orbital energy and angular momentum of
the circular orbits in NSIII spacetimes increase with the sin-
gularity spin, as shown in Fig. 5. Bounded orbits are not
allowed in very strong naked singularities of the NSIIIb
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class, but they can exist in weak black holes of the BHIIa
class with lower spin (see Fig. 1). An increase of the attrac-
tor spin in weak black-hole geometries, or a decrease in
strong and very strong naked singularities, affects posi-
tively the process of the formation of a circular orbiting
configuration.

4 Conclusions

In this work, we have performed a complete analysis of the
properties of circular motion inside the ergoregion of a Kerr
spacetime. From the physical point of view, the ergosurface
is a particularly interesting surface, because it represents the
limit at which an observer can stay at rest. In the ergore-
gion, an observer is forced to move due to the rotation of the
gravitational source.

The dynamics inside the ergoregion is relevant in astro-
physics for the possible observational effects, as the matter
can eventually be captured by the accretion, increasing or
removing part of its energy and angular momentum, prompt-
ing a shift of its spin, and inducing an unstable phase where
the intrinsic spin changes (spin-down and spin-up processes
with the consequent change in the causal structure). A discus-
sion of the ergoregion stability can be found in [49,50]. For
further consideration of a possible destruction of the horizon
and naked singularity formation, see, for example, [6,51–55].
It is therefore possible that, during the evolutionary phases of
the rotating object, the interaction with orbiting matter could
lead to evolutionary stages of spin adjustment, in particular,
for example, in the proximity of the extreme Kerr solution
(with a � M) where the speculated spin-down case of the
BH can occur, preventing the formation of a naked singular-
ity with a � M (see also [5,7,10,44,56–61,65]). On the
other hand, the accreting matter can even get out, giving
rise, for example, to jets of matter or radiation [1]. How-
ever, it is important to emphasize that different processes can
lead to jet emission from black-hole accretion disks; in gen-
eral, it is widely believed that a crucial role is played by the
electromagnetic field, giving rise to magnetically driven jets.
Another possibility is the extraction of energy from a rotating
black hole through the Blandford–Znajek mechanism. See,
for example, [66–75] for general discussions of the role of
magnetic fields in the formation of jets. A possible general-
ization of the present work to include this mechanism would
imply a thorough study of the effects of the electromagnetic
field on the particle acceleration in the spacetime of a rotat-
ing black hole. Several aspects of this problem have been
addressed in the literature, for example, in [76–79] where it
was investigated how the magnetic field affects the motion of
test particles in the vicinity of a black hole. Further discus-
sions of the role of the electromagnetic fields in black-hole
physical processes can be found for example in [80,81].

In our analysis, we limit ourselves to the study of circular
orbits located in the equatorial plane of the Kerr spacetime.
On the equatorial plane, the static limit does not depend on
the source spin, but for any Kerr spacetime it is r+

ε = 2M
and it coincides with the event horizon of the Schwarzschild
spacetime. This is a simple setting that allows for an imme-
diate comparison with the limiting case a = 0. Furthermore,
matter configurations in accretion are typically axially sym-
metric and many of the geometrical and dynamical charac-
teristics of the disk are determined by the properties of the
configuration in the accretion equatorial section.

Our approach consists in rewriting the geodesic equa-
tions in such a form that the motion along circular orbits is
governed by one single ordinary differential equation whose
properties are completely determined by an effective poten-
tial. The conditions imposed on the effective potential for
the existence of circular motion allow us to derive explicit
expressions for the energy and angular momentum of the
test particle. The behavior of these physical quantities deter-
mines the main properties of the circular orbits in terms of the
radial distance which, in this case, coincides with the radius
of the orbit, and the intrinsic angular momentum of the grav-
itational source. We performed a very detailed investigation
of all the spatial regions inside the ergoregion where circular
motion is allowed. In addition, we investigate the stability
properties of all the existing circular orbits.

The distribution of circular orbits inside the ergoregion
turns out to depend very strongly on the rotation parameter a
of the source, and this makes it necessary to split the analysis
into two parts: black holes and naked singularities. In addi-
tion, the behavior of the effective potential in the ergoregion
in terms of the rotational parameter suggests an additional
split by means of which black holes become classified in four
classes, namely, BHI, BHIIa, BHIIb, and BHIII, whereas
naked singularities are split into five classes, namely, NSIa,
NSIb, NSII, NSIIIa, and NSIIIb. We then investigate in
detail for each class the behavior of the energy and angular
momentum of the test particle, as well as the properties of
the effective potential. In this manner, the analysis of circular
motion allows us to derive physical information as regards
entire sets of black holes and naked singularities.

Circular motion is possible inside the ergoregion in black
holes and naked singularities as well. However, there are fun-
damental differences if we consider the stability properties.
In the case of black holes, only the set BHIII can support a
spatial region with particles moving along circular corotating
stable orbits. The BHIII class includes all the black holes
whose rotation parameter is contained within the interval
a/M ∈]2√

2/3, 1], i.e., rapidly rotating black holes includ-
ing the extreme black hole. The spatial region with stable par-
ticles extends from the radius of the ergoregion (r+

ε = 2M)

to the radius of the last stable circular orbit, so that the maxi-
mum radial extension of this region is M for an extreme black
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hole, and the minimum extension is zero for a black hole with
a = 2

√
2/3M . The last case corresponds to particles moving

in the last stable circular orbit. If we imagine a hypothetical
accretion disk made of test particles only, then we conclude
that black holes can support inside the ergoregion only one
corotating disk with a maximum extension of M . Introducing
the concept of dynamical structure of the ergoregion, we have
discussed also the properties of toroidal extended configura-
tions (pressure supported hydrodynamic accretion disk mod-
els) in the regions that determine the dynamical structure.
This structure is formed by a (uniquely defined) collection
of disjoint regions of the orbit plane whose union recomposes
the ergoregion. A change in the orbit, at fixed spin, can lead to
a shift in the dynamical structure, while a change of the attrac-
tor spin can lead to a transition between the regions; more-
over, a shift in the boundary spins is equivalent to a transition
between classes and sometimes the regions of the structure.
The stability analysis, with respect to a change in the spin of
the source, has led to the identification of special BH sources
(with a = a−

b /M ≈ 0.828427 and a = a2/M ≈ 0.942809),
where a possible change in the value of the spin, in the mar-
gins between the different regions of the dynamical structure,
affects appreciably the properties of the toroidal structures,
indicating that this kind of structures is more sensitive to a
change of the source.

The case of naked singularities is more complex. In fact,
one of the interesting features is that inside the ergoregion
there can exist particles moving along counterrotating stable
orbits. As a consequence, the location and structure of the
regions with stable particles is much more complex than in
the case of black holes. In particular, it was shown that there
can exist several stability regions, separated by instability
regions. This implies a discontinuous structure of the stabil-
ity regions so that, if certain energy conditions are satisfied,
an accretion disk made of test particles would show a ringlike
structure. This makes naked singularities essentially differ-
ent from black holes. The characteristics of the rings and
their extensions depend on the explicit value of the rotation
parameter. Finally, we found that there exists a maximum
value of the spin for which no more stable configurations
can exist, namely, a = 2

√
2M ≈ 2.828M where the radius

of the last stable circular orbit coincides with the radius of
the ergoregion. Naked singularities with spins greater than
this critical value do not support any stable disklike or ring-
like configurations entirely contained in the ergoregion. In
NSI spacetimes, there are both stable and unstable counter-
rotating orbits inside the ergoregion. This fact can be under-
stood as the effect of repulsive gravity, but it is interesting
to note that this phenomenon can occur only in sufficiently
slowly rotating naked singularities with spin values close to
the value of the extreme BH case. In NSII spacetimes, there
can exist stable corotating orbits; this is the major differ-
ence with the BH case and it represents also the main dif-

ference with the other NS sources. We have introduced the
concepts of inner and outer effective ergosurfaces defined by
the radii r−

υ and r+
υ , where E = 0. The effective ergoregion

(at r ∈]r−
υ , r+

υ [) is defined for supercritical configurations
with a ∈]M, 1.08866M] in NSI spacetimes, where E < 0.
Our results show that the complex stability properties of cir-
cular orbits inside the ergoregion of naked singularities is due
to the presence of effects that can be interpreted as generated
by repulsive gravitational fields. The nature of this type of
fields is not known. We expect to investigate this problem
in future work by using certain invariant properties of repul-
sive gravity [62]. For the sake of completeness, we have also
investigated all the properties of circular orbits in the limit-
ing case of extreme black holes, classifying all the sources
that allow for circular orbits at the radius of the static limit.
In both cases, we used the available physical parameters to
perform a detailed analysis confirming the rich structure of
the gravitational sources described by the Kerr spacetime.
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Appendix A: Stability of circular orbits and notable radii

The last circular orbits, rγ ∈ {r−
γ , r+

γ }, are located at

r∓
γ ≡ 2M

(

1 + cos

[
2 arccos

(∓ a
M

)

3

])

, (A.1)

where r−
γ ∈ Σ+

ε in the BH geometries. The stability prop-
erties of the particle circular dynamics are regulated by the
second radial derivative of the effective potential: the saddle
points of the function V , given by the conditions V ′ = 0
and V ′′ = 0, define the radii of the last stable circular orbits
rlsco ∈ {r∓

lsco, r
(NS)
lsco , r (NS)−

lsco }, where

r∓
lsco ≡M

(
3 + Z2 ∓ √

(3−Z1)(3+Z1+2Z2)
)

, (A.2)

r−
lsco for BH : L = L−, r+

lsco for BH/NS : L = −L+.

Here r−
lsco is for corotating with L = L− orbits in a black-

hole geometry and r+
lsco is for counterrotating orbits with
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L = −L+ in black-hole and naked singularity spacetimes,
respectively, and

r (NS)-
lsco ≡ M

[
3−Z2+√

(3−Z1)(3+Z1−2Z2)
]

for a/M > 1.28112 and L = L−, (A.3)

r (NS)-
lsco ≡ M

[
3−Z2−√

(3−Z1)(3+Z1 − 2Z2)
]

for a/M ∈]1, 1.28112[ and L = −L−, (A.4)

where a = 1.28112M ∈ NSI5 and Z2 ≡
√

3(a/M)2 + Z2
1

where

Z1 ≡ 1+
[
1−(a/M)2

]1/3 [
(1+a/M)1/3+(1−a/M)1/3

]
.

We have (r−
lsco, r

(NS)−
lsco ) ∈ Σ+

ε .

The marginally bounded orbits, rb ∈ {r±
b , r (NS)−

b }, are
located at

r±
b ≡ 2M ± a + 2

√
M

√
M ± a,

r−
b for BH :L=L−, r+

b for BH/NS : L=−L+
(A.5)

for particles corotating with angular momentum L = L−
around a black-hole attractor, and for counterrotating parti-
cles with momentum L = −L+ in black-hole and naked
singularity geometries, respectively, and

r (NS)−
b ≡ 2M + a − 2

√
M

√
M + a for NS : L = L−

(A.6)

for particles with L = −L− orbiting in a naked singularity
geometry. We have {r−

b , r (NS)−
b } ∈ Σ+

ε .
The radii r̂± ∈ Σ+

ε , introduced in Sect. 3.2, for the circu-
lar orbits with zero angular momentum, are solutions of the
equation V ′ = 0 with L = 0:

r̂± ≡ 1√
6

⎡

⎣S ±
√

6
√

6a2M

S
− S2 − 6a2

⎤

⎦ ,

S ≡
√

4a4

s1/3 + s1/3 − 2a2,

s ≡
(

27M2a4 − 8a6 + 3M
√

81M2a8 − 48a10
)

, (A.7)

in the naked singularity geometries of NSI-class (see also
[19]). In the case of NSIa spacetimes, there are also orbits

5 The spin a = 1.28112M in Eq. (A.3) is introduced only for conve-

nience in the definition of the functions r (NS)-
lsco , which can be matched

for continuity in a = 1.28112M .

r±
υ ∈ Σ+

ε of counterrotating particles with L = −L− and
zero energy E = 0:

r+
υ ≡ 4

3
M

(
1 + sin

[
1

3
arcsin

(
1 − 27a2

16M2

)])
,

r−
υ ≡ 8

3
M sin

[
1

6
arccos

(
1 − 27a2

16M2

)]2

. (A.8)

Appendix B: Spacetime classes and limiting spins

Interacting with the surrounding matter and fields, an attrac-
tor can pass, during its evolution, through stages of adjust-
ment of its spin—spin-down or spin-up processes; see also
[5,7,10,44,56–61]. These phenomena will involve also the
interaction of the accretor with matter and fields in the ergore-
gion (see, for example, [1]). Questioning the possible disrup-
tion or formation of a horizon and the consequent formation
and existence of a NS spacetime, it is obviously important
to consider the possibility of a transition, through the BHIII
and NSIa classes that could lead to a disruption of the event
horizon. In this case, the matter dynamics in the BHIII and
NSIa geometries with spins a ≈ M is especially relevant.
For a = M the effective potential is an increasing function
of the radius orbits with L ≤ 0 [6,51]. There are circular
orbits with L = L− ∈]2/

√
3, 1.68707[μM . Figure 7 shows

the analogies and differences between the orbits in the BH-
geometry with a/M = 1 − ε and in the NS-geometry with
a/M = 1 + ε and ε = 10−5. The radius r̂+ for naked singu-
larities can be defined at any value a = M + ε with ε > 0;
the black-hole counterpart r̂+ = M+ f (ε), where f (ε) < 0,
can easily be evaluated and is of the order of (a − M)2. The
orbital structures in the two cases a � M and a � M are
completely different. Moreover, the radius r+

υ has a maxi-
mum at a = M . In Fig. 7, we show the angular momenta and
energies of the orbits in two different regions. Figure 8 shows
the effects of a transition of the black-hole geometries among
the classes defined in Table 1 for a shift of the source spin in
ai ∈ ABH of ±ε = ±0.01M . The more significant change
is in the structure of Σ+

ε , a consequence of a shift ±εa of
the spins a−

b = 0.828427M and a2 = 0.942809M . An anal-
ogous plot can be made for the case of a naked singularity;
however, as can easily be seen in Fig. 4, the most relevant
transitions between the sections of the dynamic structure of
Σ+

ε occur between NSIa and NSIb classes for a change in
the geometry at a = aμ, with the resulting shift of the region
�Σ(−L−) into Σ(L−) (for an increase of the attractor spin),
between the classesNSIb andNSII for a change in the geom-
etry at a = a4, and the transition from Σ(−L−) to Σ(L−)

and from Σ<
u (L−) to Σs(L−). A thorough study of these

sources will be the subject of further work.
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Fig. 7 Orbital energies and angular momenta in the BH-case, with
a/M = 1 − ε, and the NS-case, with a/M = 1 + ε and ε = 10−5. To
simplify the plots, we adopted a notation distinguishing explicitly the
NS and BH cases: E−NS− ≡ E(−L−) and ENS− ≡ E(L−) for the naked
singularity, EBH− and LBH− for the black hole. The marginally stable
orbits are denoted (r BHlsco, r

N S
lsco). The orbit r̂−, where L = 0, is shown

with a dashed line. We have r BHlsco = 1.03523M , r N S
lsco = 0.966815M ,

and r̂+ = M , r̂− = 0.295605M ; inside the plots are zooms for the
region close to the BH horizon

5 Appendix C: The static limit

We consider here in more detail the role of the static limit in
the determination of the dynamical structure of the ergore-
gion, especially in the NS sector. In particular, we will ana-
lyze the behavior of the circular motion in the regions very
close to r+

ε , varying the spin of the attractor to determine its
influence on the determination of the phases of equilibrium
of the orbiting configurations. Particular attention is given
to the analysis of the energy and momentum of the particle
in orbit in those regions, as they are relevant for the orbital
decay. We will show that both conserved quantities do not
have a monotonous trend with spin, as the source evolves,
implying the decay of the orbiting matter. This may favor
those geometries where the energy or the orbital momentum
is at a minimum.

The effective potential function V (r; L , a) given in Eq.
(7) is well defined and positive at r = r+

ε for a > 0, it has

Fig. 8 Black-hole geometries in the region Σ+
ε . TheBH spin a and the

radius r are in units of mass M . The BHIIa, BHIIb and BHIII classes
are explicitly shown. Dotted lines represent the spins ai ∈ {a1, a

−
b , a3}.

The points correspond to the couples (r−
γ (a1), a1), where r−

γ (a1) = r+
ε ,

(r−
γ (a−

b ), a−
b ) and (r−

b (a−
b ), a−

b ), where r−
b (a−

b ) = r+
ε , (r−

γ (a2), a2),

(r−
b (a2), a2), and (r−

lsco(a2), a2), where r−
lsco(a2) = r+

ε . The horizontal
black lines crossing the points areai±εa , where εa = 1/100M . The ver-
tical black lines are ri (a j +εa) and the red vertical lines are ri (a j −εa).
The curves ri ∈ {r−

γ , r−
b , r−

lsco} in the ranges ai ± εa are plotted. Close

to the limiting couples (r−
γ (a1), a1), (r

−
b (a−

b ), a−
b ), and (r−

lsco(a2), a2),
we show explicitly the transitions between different sections of Σ+

ε .
The relevant transitions are for a change at a−

b = 0.828427M and
a2 = 0.942809M

an extreme point in the static limit, according to Eq. (9), for
all Kerr geometries, except for BHI spacetimes. Therefore,
at r = r+

ε there is a circular orbit with angular momentum
L+

ε ≡ L−(r+
ε ) > 0 and energy E+

ε ≡ V (r+
ε , L+

ε ) > 0, but
in the spacetime with a = a1 we have r−

γ = r+
ε , that is, the

static limit coincides with the photon orbit. The timelike par-
ticle orbit r+

ε is stable, i.e. r+
ε ∈ Σs , in the BHIII, NSI, and

NSII geometries. Then the static limit is a marginally stable
circular orbit in spacetimes with spins a = a2 and a = a4,
while r+

ε ∈ Σ≥
u inBHIIa andNSIIIb spacetimes. Moreover,

in the geometries in a = a−
b and a = aNS

b we have r−
b = r+

ε

and r (NS)
b = r+

ε , respectively. On these orbits, the particle
energy is E = E− = μ, and the static limit coincides with
the marginally bounded orbit. These special orbits should be
interpreted as the limit of an orbit that approaches r+

ε from
Σ+

ε or the outer region. An observer at infinity will verify
that a particle moving along an unstable orbit will eventu-
ally cross the static limit and fall into the source or escape,
depending on the attractor. The static limit in the equato-
rial plane is independent of the spacetime spin and there-
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r 2M
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a
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E
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Fig. 9 Angular momentum and energy in the static limit r+
ε = 2M .

Bottom panel the orbital angular momentum L− (gray curve) and the
energy E− (black curve) as functions of a/M . The minima are marked
with points. The different BH and NS regions are also marked. We have
L− > E−. Upper panel plot of L� (gray curve) and L− (black curve)
versus the spin a/M . The asymptote at a� ≡ √

2M is plotted with a
dashed line. The spin a� ≡ (4

√
2)/3M ≈ 1.88562M is also plotted. At

L = L� the effective potential V+
ε is constant with respect to a change

of the attractor spin

fore it can be considered as invariant with respect to a slow
change of the source spin (at constant M), but the constants
of motion E and L , instead, depend on the spin–mass ratio
of the attractor and do not have a monotonically increasing
behavior in the static limit with respect to a variation of the
source spin; instead, they reach a minimum, as a function of
a/M , in the NSII class of geometries. The energy function
in the static limit decreases with the source spin for a > a�
and the particle angular momentum L > L�, where the rota-
tion parameter is a� ≡ √

2M ≈ 1.41421M ∈ NSII and the
angular momentum

L�
μM

≡ 2
√

2

√
M2

a2 − 2M2 (C.9)

increases as the spacetime rotation decreases, and it diverges
at a = a�, as shown in Fig. 9. When L = L�, the poten-
tial V+

ε is constant, independently of the source spin. For

lower spins,a < a�, regardless of the orbital angular momen-
tum, the energy function increases with the spin of the BH-
or NS-sources. In the spacetime with a = a�, the particle
energy in the static limit reaches a minimum value and, there-
fore, the particle energy increases as the spacetime rotation
increases, until it reaches its asymptotic value for a → a1

(upper extreme of BHI sources), where we have indeed
r+
ε = r−

γ (see Fig. 9). The particle orbital angular momen-
tum has a minimum, as a function of the spin–mass ratio, in
a� ≡ 2a2 ≈ 1.88562M ∈ NSII, where a3 < a� < a� < a4.
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