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1 Introduction

The portion of the F-theory [1–3] landscape known to be populated by consistent vacua

has considerably grown in the past year. This is partly due to the realization that F-

theory compactifications do not necessarily require the existence of a section in order to

be fully consistent [4]. Indeed, the typical assertion that F-theory is defined in terms

of an elliptic fibration can be weakened in favor of the requirement that the underlying

Calabi-Yau fourfold need only be genus-one fibered. While it is by now a commonplace
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that F-theory is defined in terms of a torus whose complex structure geometrizes the axio-

dilaton of SL(2,Z)-invariant strongly coupled Type IIB theory (see e.g. [5, 6] for reviews),

the difference between elliptic and genus-one fibrations has been widely appreciated only

recently: an elliptic fibration possesses a section which defines an embedding of the base into

the Calabi-Yau fourfold, while a genus-one fibration only comes with a multi-section which

realizes an embedding of a multi-cover of the base into the fourfold. Amongst the physical

implications of the replacement of a section by an n-section is the appearance of a discrete

Zn gauge group factor in the 4-dimensional effective action [7–13]. Indeed, similarly to the

zero-section of an elliptic fibration, the embedding multi-section of a genus-one fibration

generates a massless U(1) in the 3-dimensional effective action obtained by dimensional

reduction of M-theory on the fourfold [8, 11]. In an elliptic fibration, this Kaluza-Klein

(KK) U(1) becomes part of the 4-dimensional Lorentz group in the F-theory limit. For n-

section models, by contrast, a Zn subgroup of the Kaluza-Klein U(1) survives the F-theory

limit as an extra, independent discrete gauge group factor (see [11, 12] for a detailed account

of the origin of this extra symmetry). Apart from being interesting by itself, this mechanism

is behind the realization of discrete gauge symmetries in particle physics applications [14,

15] of F-theory, the easiest being an R-parity [10, 11]. Such discrete symmetries have been

studied extensively in the weakly coupled Type II regime recently both from a general

point of view [16–21] and with an eye to phenomenological applications [22–25].

The geometric structure underlying discrete gauge groups in F-theory is in fact even

richer. Associated to a genus-one fibration with an n-section is a set of n inequivalent

fibrations with the same Jacobian. These are counted by the Tate-Shafarevich group

associated with this Jacobian [4, 26]. Each of the n fibrations gives rise to a different M-

theory background, which all map to the same F-theory effective action in 4 dimensions [7,

11–13]. Of these the Jacobian fibration takes a distinguished role in that it is the only

one where a discrete symmetry is realized already in the M-theory effective action [12]. It

is also, by definition, the only one which is elliptically fibered. The origin of the discrete

gauge group is here very different and rooted in the appearance of torsional homology [12]

as expected from the general arguments of [17, 27]. The remaining n−1 genus-one fibrations

are related to an underlying elliptic fibration by a topological transition which describes

the Higgsing with a 3-dimensional field of non-trivial KK charge. The resulting background

can equivalently be described in terms of a fluxed S1 reduction [8, 11, 12]. This leads to a

beautiful picture unifying aspects of arithmetic geometry, torsional cohomology and non-

standard KK reductions in a physical framework which, last but not least, has interesting

phenomenological properties.

A natural next step in the investigation of these new F-theory backgrounds is the

inclusion of 4-form background fluxes. In F/M-theory both the ‘closed string’ fluxes and

the gauge fluxes are known to enjoy a unified description in terms of the G4-fluxes of 11-

dimensional supergravity [28]. Our focus here will be on the gauge sector. The explicit

construction of such G4 gauge fluxes in globally defined F-theory compactifications on

elliptic fibrations has been studied in great detail recently, including the works [27, 29–48].

First steps in extending these results to F-theory compactifications without a section have

already been undertaken in [11]. In this article we will systematize the construction of

gauge fluxes in multi-section fibrations.
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The first question is how to generalize the consistency conditions governing the correct

uplift of G4-fluxes from M-theory to purely internal fluxes in F-theory. As we will review in

section 2.1, in elliptic fibrations these conditions are a formalization (see e.g. [30–33, 49]) of

the transversality conditions which go back in essence to the early work of [50]. These admit

an equivalent characterization in the language of 3-dimensional supergravity [33, 38, 51].

We will argue how to generalize the transversality conditions by replacing the embedding

zero-section of an elliptic fibration by the embedding of the multi-cover of the base provided

by the multi-section. This is based on the aforementioned identification of a KK U(1)

associated with the multi-section which parallels the procedure in elliptic fibrations. In

general the class of the embedding multi-section must be corrected such as to suitably

normalize the KK U(1) in comparison with the Cartan U(1) of potential non-abelian gauge

groups. We will then subject this transversality condition to a number of non-trivial tests

by explicitly constructing, in section 2.3, all vertical flux solutions for a bisection fibration

with F-theory gauge group SU(5)×Z2, whose geometry is reviewed from [11] (see also [10])

in section 2.2. We will follow our previous approach [34] and assume that the fibration is

defined over a generic base space B. This way we focus on those flux solutions which are

guaranteed to exist for any such base. In addition we generalize a specific horizontal gauge

flux constructed already in [11]. The vertical flux solutions are shown to be related to the

cohomology classes of the matter surfaces in section 2.4. We explicitly compute the chiral

spectrum in section 2.5 and, as a first consistency check, confirm that the transversality

conditions on the gauge fluxes imply the cancellation of the non-abelian gauge anomalies.

The bisection geometry is related, via a conifold transition, to the elliptic fibration

with gauge group U(1) introduced in [52]. On general grounds, the gauge fluxes on both

sides of the conifold transition must be related in such a way that topological invariants

such as the total induced D3-brane charge and the chiralities with respect to unbroken

gauge groups remain invariant. In section 3 we construct all vertical gauge fluxes for the

SU(5)×U(1) model, employing the same methods as on the bisection side. These are then

shown to dynamically match with the fluxes of the bisection fibration upon performing

a conifold transition between both models. This is another consistency check of the flux

construction. Similar matchings had been demonstrated before for the conifold transition

relating the SU(5)×U(1) restricted Tate model to a generic SU(5) Tate model [30, 34].

Finally, in section 4, we address two subtle and related issues, the quantization condi-

tion [53] for gauge fluxes and the cancellation of discrete gauge anomalies. For the explicit

SU(5)×Z2 and SU(5)×U(1) fibrations under consideration, we derive a certain arithmetic

constraint on the intersection numbers of the base divisor classes defining the fibration

which is necessary and sufficient to obtain an integral chiral spectrum. These constraints

arise by requiring that 1
2c2(M4) must integrate to an integer over every matter surface.

We conjecture that this constraint is automatically satisfied for any smooth fibration of

the considered types. Assuming this condition to hold we show that the discrete Z2 gauge

anomalies are automatically cancelled for any flux which satisfies our modified transversal-

ity condition. This is indeed required [16, 54] because for the type of genus-one fibrations

considered here, the discrete symmetry is non-perturbatively exact [55, 56]. This is the

final non-trivial check for our construction.
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2 Fluxes on a P112[4]-fibration with a bisection

In this section we propose a generalization of the well-known transversality conditions on

G4-fluxes to fibrations with a multi-section only. We will test this general proposal by

constructing all vertical fluxes plus a certain type of horizontal gauge flux on a P112[4]-

fibration X4 with a bisection over a generic base B. In addition we will engineer an

extra SU(5) singularity. Apart from specifying the cohomology groups of the gauge fluxes

as elements of H2,2(X4), we will identify explicit algebraic four-cycles whose associated

rational equivalence classes parametrise the gauge data in the sense described in [44].

For the vertical fluxes these are precisely the matter surfaces corresponding to the SU(5)

charged matter states. We will compute the chiral spectrum in full generality and show

that the fluxes induce no SU(5) anomaly.

2.1 The transversality condition for multi-section fibrations

Our proposal for a modified notion of transversality for gauge fluxes in F-theory compact-

ifications without section will apply to a general genus-one fibration X4 with projection

π : X4 → B (2.1)

over a generic 3-dimensional base space B. A genus-one fibration which is not an elliptic

fibration can in general have several independent multi-sections [4], but no holomorphic

or rational section. Since the transversality conditions on elliptic fibrations make use of

the notion of a zero-section, we first need to review the origin of these conditions for

conventional elliptic fibrations and then extend them to situations without sections.

The flux transversality conditions derive from the behaviour of the 4-form flux G4

in the standard F-theory limit of M-theory compactifications on fourfolds (see e.g. [5] for

a review). By compactifying 11-dimensional supergravity on a T 2-fibered fourfold M4 a

3-dimensional N = 2 field theory is obtained. In the F-theory limit the 3-dimensional

compactification lifts to a 4-dimensional theory. The limit amounts to sending the fiber

volume Vol(T 2) to zero. Denoting the radii of the two one-cycles of the torus by RA and

RB, the limit is taken in two steps. First, the A-cycle is identified with the M-theory

circle, and the limit RA → 0 is the weakly coupled type IIA limit of M-theory. The second

step is a T-duality transformation along the B-cycle, which gives type IIB on a circle of

radius R̃B = l2s
RB

. In the compactification limit RB → 0 the dual circle decompactifies

and one ends up with a (generically strongly coupled) type IIB theory in four dimensions.

Importantly, one of the four large dimensions has its origin in one of the fiber directions

of the fourfold. One immediate consequence is that care must be taken when introducing

fluxes [28, 57]. 4-dimensional Lorentz invariance forbids fluxes with non-trivial VEV along

the circle along which the T-dualization is performed [50].

More precisely, the G4 flux must have one leg in the fiber to meet this requirement.

Indeed, in [50] it was shown that a flux with zero or two legs along the fiber maps to the

self-dual 5-form flux F5 in type IIB string theory. In this case the vacuum expectation value

extends along the non-compact directions and breaks Lorentz invariance. The remaining
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possibility is a flux with one leg in the fiber. These solutions do not lie completely in the

base, nor do they fill the two fiber directions.

This transversality condition [50] is usually expressed in slightly more formal terms as

follows: let us first consider the standard case of an elliptically fibered fourfold

πM : M4 → B (2.2)

with projection πM . By definition, an elliptic fibration has a zero section σ(0) : B → M4

which defines an embedding of the base B as a divisor σ(0)(B) into M4,

ισ : σ(0)(B) ↪→M4. (2.3)

In the presence of several independent sections, i.e. for an elliptic fibration with a Mordell-

Weil group of non-zero rank, the choice of zero-section is not unique [58, 59], but the

different choices all asymptote to the same effective theory in the F-theory limit.

Let us therefore assume that we have singled out one particular section as our zero-

section and denote by Z its homology class. For simplicity we assume the zero-section

to be holomorphic, but this is not necessary [58, 60]. From the perspective of the 3-

dimensional M-theory effective action, Z generates a U(1) gauge group which is to be

identified with the Kaluza-Klein U(1) obtained by reducing the 4-dimensional F-theory

compactification along a circle S1 (see [51] for a recent discussion in the language of 3-

dimensional supergravity). In the effective action light charged matter states arise from

M2-branes wrapping suitable fibral curves [61–64]. This includes both the non-Cartan

vector bosons and related matter states and extra charged localised matter. More precisely,

each component field Ψ(x, z) of an N = 1 multiplet of the 4-dimensional F-theory action

decomposes, upon circle reduction to three dimensions, to a zero mode plus a full tower of

Kaluza-Klein excitations Ψ(x, z) =
∑

n∈Z ψn(x)einz. Here x denotes external coordinates

in the 3-dimensional M-theory vacuum and z is the KK-circle coordinate. The higher KK

states have KK U(1) charge n =
∫
Cn
Z, where Cn is the fibral curve wrapped by the M2-

brane associated with state ψn(x). Since Z is a section, it has intersection number +1

with a generic non-degenerate fiber. This is still true for split fibers in higher codimension,

but not all components of the fiber will intersect Z. Thus, the zero mode ψ0 is due to

M2-branes wrapping a fibral curve C0 with vanishing intersection with the zero-section Z.

The KK partner of KK charge n is then created by an M2-brane wrapping in addition

the full torus elliptic fiber f n-times such that its associated fibral curve can be written as

Cn = C0 + n f.

At the cohomological level, the transversality condition of [50] on gauge fluxes is that

(e.g. [30–33, 49]) ∫
M4

G4 ∧ Z ∧ π−1
M Da

!
= 0, (2.4)∫

M4

G4 ∧ π−1
M Da ∧ π−1

M Db
!

= 0 (2.5)
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for Da,b any divisor classes on the base.1 The first condition (2.4) guarantees that G4 does

not lie completely in the base because it requires that∫
M4

G4 ∧ Z ∧ π−1
M Da =

∫
σ(0)(B)

ι∗σ(G4 ∧ π−1
M Da)

!
= 0, (2.6)

i.e. the net flux through any four-cycle Da on the base vanishes. The second condition (2.5)

expresses that the solution cannot have two (real) legs along the fiber. This condition can

be rephrased as the constraint that the chiral index of all KK partners equals that of the

zero mode. Indeed the intersection π−1
M Da ∩ π−1

M Db is a four-cycle extending along the full

fiber over a curve Da ∩Db in the base and
∫
π−1
M Da∩π−1

M Db
G4 computes the chiral index of

states associated with M2-branes wrapping the full fiber over Da ∩Db. If the integral over

any four-cycle of this type vanishes, this guarantees in particular that the multiplicities of

the fields ψn are the same for all n. This is the field theoretic way of stating the requirement

of Lorentz invariance. A discussion along these lines can also be found e.g. in [38, 40].

In models with non-abelian gauge symmetries the Cartan generators correspond to the

exceptional divisor classes Ei from the resolution of the singularity. In order to leave the

non-abelian gauge group unbroken in the F-theory limit, we must in addition demand that∫
M4

G4 ∧ Ei ∧ π−1
M Da

!
= 0 . (2.7)

Indeed, M2-branes wrapping combinations of the rational fibers P1
i of the resolution di-

visors Ei give rise to non-abelian massless vector bosons in the F-theory limit [61]. The

condition (2.7) guarantees that the flux induces no chiral index for the associated gauginos.

If one of these conditions fails, the F-theory gauge group will be broken to the commu-

tant of the associated Cartan generator. This is utilized in models with hypercharge GUT

breaking [65, 66], but our focus will be on non-Cartan fluxes in this paper. Note also that

a holomorphic zero-section intersects precisely the affine node of the Kodaira fiber over a

divisor with non-abelian gauge group. Thus the condition (2.4) is fulfilled by all the Cartan

fluxes Ei ∧ π−1
M F for any class F pulled back from the base. Therefore the special case

of (2.4) for G4 = Ei ∧ π−1
M F is the condition that the KK U(1) is chosen ‘orthogonal’ to

the non-abelian gauge group.

We are now in a position to generalize these criteria to F-theory compactifications on

non-elliptic genus-one fibrations. As stressed above in such geometries no (holomorphic or

rational) section exists, but only one or several multi-sections. An n-section is a multi-

valued map assigning to each point in the base locally n-points in the fiber which are

globally exchanged by monodromies. This defines an n-fold branched cover µn(B) of the

base B inside X4 together with an embedding

ιµ : µn(B) ↪→ X4. (2.8)

Let us denote the homology class of the n-section as N . For the purpose of relating the M-

theory reduction to F-theory it is necessary to specify a notion of KK U(1). As pointed out

1For ease of notation we will oftentimes be laid-back and omit the explicit pull-back symbol.
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several times by now, it is still true that a multi-section defines such a KK U(1) similarly to

the case of an elliptic fibration [8, 10–12] because it is possible to expand the M-theory 3-

form C3 as C3 = AKK∧N+ . . .. We therefore need to choose an n-section as the substitute

for the zero-section and define transversality with respect to the associated KK frame.

In terms of this embedding multi-section we then have∫
X4

G4 ∧N ∧ π−1Da =

∫
µn(B)

ι∗n(G4 ∧ π−1Da). (2.9)

Therefore the analogue of (2.4) is∫
X4

G4 ∧N ∧ π−1Da
!

= 0, (2.10)

which guarantees that the net flux vanishes through every base four-cycle. Second, since the

multi-section still defines the notion of a KK U(1), the condition that all elements of the KK

tower should have the same chiral index implies that the analogue of (2.5) must still hold.

In general the n-section intersects more than one of the irreducible curves in the Ko-

daira fiber over a divisor with non-abelian gauge group. This implies that the Cartan fluxes

do not satisfy (2.10) in general. However, as we will see in the explicit example below, one

may construct a divisor class

N̂ = N +
∑
i

aiEi (2.11)

and choose the coefficients ai such that the modified condition∫
X4

G4 ∧ N̂ ∧ π−1Da = 0 (2.12)

is satisfied for Cartan fluxes G4 = Ei ∧ π−1F for any class F ∈ H1,1(B). This is a

linear system of equations for the coefficients ai with a unique solution. This is because

the Cartan matrices for the simple Lie algebras, which appear as intersection numbers

in (2.12) through ∫
X4

Ei ∧ Ej ∧ π−1ω2 = −Cij
∫

Θ
ω2, ω2 ∈ H2(B), (2.13)

are invertible. Here Θ is the divisor supporting non-abelian gauge symmetry in the base.

The choice of N̂ amounts to a redefinition of the KK U(1) symmetry such that it does not

mix with the Cartan U(1) generators Ei associated with the resolution divisors of the non-

abelian singularity. A similar redefinition has been discussed in a different context in [59].

To summarize our proposal for the transversality condition in a genus-one fibration:

fix a multi-section class N defining the embedding of an n-fold cover of the base into X4

and determine N̂ = N +
∑

i aiEi such that∫
X4

Ei ∧ N̂ ∧ π−1Da ∧ π−1Db = 0 ∀Da, Db. (2.14)
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b0,2 b1 b2 c0,4 c1,2 c2,1 c3,1 c4,1

2K̄ − b2 − 2Θ K̄ b2 4K̄ − 2b2 − 4Θ 3K̄ − b2 − 2Θ 2K̄ −Θ K̄ + b2 −Θ 2b2 −Θ

Table 1. Classes of the coefficients entering (2.18).

This N̂ defines the appropriate KK U(1) for the reduction of the 4-dimensional F-theory

vacuum to three dimensions which does not mix with the Cartan generators Ei. The

transversality conditions on the fluxes are then∫
X4

G4 ∧ N̂ ∧ π−1Da
!

= 0, (2.15)∫
X4

G4 ∧ π−1Da ∧ π−1Db
!

= 0. (2.16)

If the gauge fluxes are not to break any of the non-abelian gauge symmetries, we demand

in addition ∫
X4

G4 ∧ Ei ∧ π−1Da
!

= 0. (2.17)

Note in particular that for fluxes satisfying this latter constraint for all Ei, the transversality

condition (2.15) reduces to the same constraint with N̂ replaced by N . This simplifies the

calculations, but obscures the fact that N̂ is the divisor class identified with the Kaluza-

Klein U(1).

2.2 A genus-one fibration with gauge group SU(5) × Z2

We will now briefly review the bisection P112[4]-fibration with gauge group SU(5) × Z2

which will serve as our laboratory to illustrate and test the ideas presented in the previous

section. We will stick to the notation of [11], where this specific geometry was discussed in

detail (see also [10]). The fourfold X4 is given by the hypersurface equation

P
SU(5)
Z2

= e1e2w
2 + b0,2u

2we2
0e

2
1e2e4 + b1uvw + b2v

2we2e
2
3e4 (2.18)

+ c0,4u
4e4

0e
3
1e2e

2
4 + c1,2u

3ve2
0e1e4 + c2,1u

2v2e0e3e4 + c3,1uv
3e0e2e

3
3e

2
4 + c4,1v

4e0e
2
2e

5
3e

3
4

in the toric ambient space specified in table 4 of appendix A. It is a genus-one fibration [4, 7–

12] over a general base B. The fiber coordinates [u : v : w] are homogeneous coordinates

of P112. An SU(5) singularity sits in the fiber over the divisor Θ : {θ = 0} in B. The

hypersurface equation is the proper transform under the resolution of this singularity, with

blow-up coordinates ei, i = 1, . . . , 4, and with π∗θ = e0 · e1 · . . . · e4. The Calabi-Yau

hypersurface comes with the choice of a line bundle on B with first Chern class [b2]. Given

this line bundle on B the coefficients bi and cj transform as sections of the bundles displayed

in table 1, where K̄ is the anti-canonical bundle on the base.

The smooth geometry is constructed via a top [67, 68], denoted τ4,3 in [69], and the

exceptional divisors are Ei : {ei = 0}, i = 1, . . . , 4. Furthermore E0 = π∗Θ −
∑

iEi. The

Stanley-Reisner ideal for our choice of resolution phase is generated by

SR-i : {v e0, v e1, v e2, w e0, w e4, u e3, e0 e3, e1 e3, u e2, e1 e4, v w u} . (2.19)
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θ

10(0)

5
(1)
A

5
(0)
B

1̄0(0) 5
(1)
A 5

(1)
A

1(1) 5
(1)
A 5̄

(0)
B

1̄0(0) 5
(0)
B 5

(0)
B

10(0) 10(0) 5
(0)
B

Figure 1. The matter curves on the SU(5) divisor {θ = 0} and the Yukawa couplings involving

the SU(5) charged matter in codimension three.

The intersection of the ambient divisor U : {u = 0} with the hypersurface gives a repre-

sentative of the homology class of the bisection, which intersects each generic fiber in two

points exchanged globally by a monodromy. From our previous discussion we would like to

associate with U the notion of a KK U(1) in the 3-dimensional M-theory compactification

on X4. It is here that the shift (2.11) becomes important because the bisection locally

intersects both E0 and E1 in one point in the fiber. The (up to normalization) unique

solution to the constraints (2.14) is given by

Û = U +
1

5
(4E1 + 3E2 + 2E3 + E4). (2.20)

If we fix the (a priori arbitrary) overall normalization to achieve integer intersections with

all fibral curves by defining

wZ2 = 5 Û , (2.21)

then the intersection numbers of wZ2 with the irreducible split fiber components consis-

tently assign Z2 charges to the corresponding states modulo 2 in the F-theory limit. Indeed,

a Z2 subgroup of the KK U(1), normalised as in (2.21), survives in the F-theory limit as

an independent discrete gauge group — a full explanation can be found in [11, 12] (see

also [7–10]).2 The discriminant of the hypersurface equation takes the form

∆ ∼ θ5[b41(b21c0,4 − b0b1c1,2 + c2
1,2)(b22c2,1 − b1b2c3,1 + b41c4,1) +O(θ)], (2.22)

which indicates three matter curves on the SU(5) divisor Θ. Away from Θ there is one more

matter locus [4], describable as an ideal which defines an irreducible curve on B [11]. This

2Apart from an extra shift in terms of base divisors this agrees with the Z2 generator as presented

in [9–11]). This shift does not change the notion of fibral curves and is therefore not of importance for us.
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locus in base irrep SU(5) Z2 charge

θ ∩ b1 10, 1̄0 [0]

θ ∩ {b21c0,4 − b0b1c1,2 + c2
1,2} 5A, 5̄A [1]

θ ∩ {b22c2,1 − b1b2c3,1 + b41c4,1} 5B, 5̄B [0]

C2 1 [1]

Table 2. Matter spectrum in the SU(5) × Z2 model.

complicated codimension-two locus C2 over which the fiber is of type I2 hosts singlet states

that carry Z2 charge. These states originate from singly charged states in the SU(5)×U(1)

model related to this geometry by a conifold transition. The matter spectrum and the

associated Z2 charges are summarized in table 2. The intersection structure of the matter

curves along the SU(5) divisor Θ is shown in figure 1, which we reproduce from [11] for

convenience. The indicated Yukawa couplings are all consistent with the Z2 charges.

2.3 Horizontal and all vertical fluxes in the SU(5) × Z2 model

We can finally analyze the proposed transversality conditions for consistent G4-fluxes,∫
X4

G4 ∧ Û ∧ π−1Da = 0,∫
X4

G4 ∧Da ∧ π−1Db = 0,∫
X4

G4 ∧ Ei ∧ π−1Da = 0 ,

(2.23)

in the SU(5)×Z2 geometry, where the last condition only applies if we require the flux solu-

tion G4 to leave a full SU(5) gauge group unbroken in the F-theory limit. As noted before,

this eliminates the correction terms in Û and reduces the system to the usual transversality

conditions with respect to the unshifted bisection U . Before explicitly solving these con-

straints, let us note that consistent G4-fluxes are in addition subject to the quantization

condition [29, 35, 53]

G4 +
1

2
c2(X4) ∈ H4(X4,Z) ∩H2,2(X4). (2.24)

We will come back to the subtle question of how to properly quantize the fluxes in section 5

and for now focus on solving (2.23) without fixing the overall normalization.

Our first such flux is an example of a horizontal gauge flux which generalizes the hori-

zontal G4 flux constructed in [11] for the bisection model without further non-abelian gauge

enhancement. The flux is associated with a special algebraic four-cycle which appears on

the sublocus in complex structure moduli space where c4 = ρ τ . This is modeled after a sim-

ilar construction in the context of a Tate model [30]. In the presence of an SU(5) singularity

the same type of fluxes exists, mutatis mutandis, on the sublocus in moduli space where

c4,1 = ρ τ . In this case the two algebraic four-cycles described as the complete intersections

σ0 = (u,w, ρ), (2.25)
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σ1 = (u,we1 + b2v
2e2

3e4, ρ) (2.26)

in the ambient space X5 of X4 automatically lie on X4. This notation indicates that

the four-cycles should be thought of as the algebraic varieties associated with the ideal

generated by the polynomials in brackets.

The two four-cycles each define one of the two intersection points of the bisection U

with the fiber, fibered over the divisor P : {ρ = 0} in the base. The dual cohomology classes

[σ0] and [σ1] are candidates for a flux. To obtain a well-defined flux we add an ansatz of

correction terms
∑
aiDi∧P where Di runs over a basis of divisors in the fourfold. Solving

for the coefficients ai yields the flux solutions

G4(P, σ0) = 5[σ0] +
1

2
(−5U + (4E1 + 3E2 + 2E3 + E4)− 2θ) ∧ P, (2.27)

G4(P, σ1) = 5[σ1]− 1

2
(5U + (4E1 + 3E2 + 2E3 + E4)− 2θ) ∧ P, (2.28)

where, for now, the overall normalization is chosen to give manifestly integral chiral indices

as will be discussed later. Both flux solutions are not independent on the hypersurface so

that we can stick to, say, G4(P, σ0) for definiteness.

We next address the problem of describing all independent vertical fluxes on the

SU(5)×Z2 fibration which exist over a generic base B. We follow the strategy in [34], where

the first such classification of vertical gauge fluxes has been undertaken for (U(1) restricted)

Tate models with gauge groups SU(N)(×U(1)) for N = 2, 3, 4, 5 over a generic base B.

See [40, 45, 46] for classifications for other types of fibrations. To this end we first compute a

basis for the vertical (2, 2)-forms in the ambient space X5 of X4. To simplify the notation we

will from now on omit the pull-back symbol ‘π∗’ whenever there is no ambiguity about a di-

visor coming from the base. Due to relations between the divisors from the Stanley-Reisner

ideal SR given in (2.19) and from homology relations in the fiber ambient space, not all

products of divisors are linearly independent. With the help of the computer-algebra system

Singular we can take these relations into account and compute a basis for the quotient ring

H(∗,∗)(X5) ∼=
C[Di]

SR+HOM
, (2.29)

where C[Di] is the formal polynomial ring with all divisors of X5 as variables.3 The ho-

mology relations HOM , which can be read off from the top, are encoded in the scaling

relations in table 4 and take the form

W = 2U + 2K̄ − [b2]− E1 − 2E2 − 2E3 − E4 ,

V = U + K̄ − [b2]− E2 − 2E3 − E4 ,

Θ = E0 + E1 + E2 + E3 + E4 .

(2.30)

3Strictly speaking this construction only gives the vertical part — i.e. linear combinations of products

of divisors — of the ambient space cohomology H(∗,∗)(X5), which however suffices for all the computations

we perform here. See [70] for a more careful discussion of the vertical cohomology for fibrations over a

generic base.
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This basis is then used to make an ansatz for the most general flux. The transversality con-

ditions (2.23) become a set of equations expressed in intersection numbers on the ambient

5-fold, e.g. ∫
X4

G4 ∧ π−1Da ∧ π−1Db =

∫
X5

[P
SU(5)
Z2

] ∧G4 ∧ π−1Da ∧ π−1Db .

Intersection numbers like these can be reduced to intersection numbers on the base

by employing the Stanley-Reisner ideal and the homology relations, thereby eliminating

redundancies due to the known homology relations in the fiber ambient space. The Stanley-

Reisner ideal trivially sets many intersections to zero. Likewise, due to the fibration struc-

ture, any intersection number with more than 3 divisor classes pulled back from the base

will vanish. Let Fi denote all divisor classes related to the fibration, both the toric classes Ti
associated with the homogeneous coordinates of the original fiber ambient space P112 and

exceptional divisors Ei. For i, j, k distinct, and Da,b,c base divisor classes, the non-vanishing

intersections (omitting the wedges) are∫
X5

TiTjDaDbDc =
1

V (i, j)

∫
B
DaDbDc ,∫

X5

EiFjFkDaDb =
1

V (i, j, k)

∫
B

ΘDaDb .

(2.31)

Here V (i, j), (V (i, j, k)) is the lattice volume of the cell spanned by the fan vectors

fi, fj , (fk). For the top used here, all cell volumes are one, except the one spanned by

fu and fv corresponding to the divisors U and V , which has volume 2. When the i, j, k are

non-distinct, we are dealing with a self-intersection of fibral divisor classes. These can be

reduced to transversal intersections by using the homology relations in the ambient fiber

space. As an example, consider the reduction∫
X5

W 2DaDbDc =

∫
X5

W (2U + 2K̄ − [b2]− E1 − 2E2 − 2E3 − E4)DaDbDc

=

∫
X5

W (2U + 2K̄ − [b2]− E1 − 2E2 − 2E3)DaDbDc = 2

∫
B
DaDbDc .

(2.32)

This way also (self-)intersections of 3,4 or 5 fibral divisor classes may be computed itera-

tively and reduced to the cases (2.31). Singular automatically applies this method and

reduces the transversality conditions to a system of linear combinations of intersection

numbers on the base.

As discussed above, if we demand orthogonality with respect to the Cartan generators,

i.e. (2.17), this effectively replaces Û by U in the modified transversality condition (2.15).

The solution to all transversality conditions, expressed in a chosen basis, takes the form

G4 = (2.33)

z1

(
5E1E2 + 4E2

2 + 2E3E4 +
1

2
UΘ + Θ2 + (−1,−3, 0, 1)iEi[b2] + (1, 8, 0,−2)iEiK̄

+
1

2
(−4,−19,−2, 3)iEiΘ

)
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+z2

(
5E1E2+

5

2
E2

2 +K̄Θ+

(
0,−5

2
, 0, 0

)
i

Ei[b2]+
1

2
(−4, 7,−2,−1)iEiK̄+(0,−5, 0, 0)iEiΘ

)
+z3(5E1E2 + 2E2

2 + E3E4 − UΘ + [b2]Θ + (0,−3,−1, 0)iEi[b2] + (−2, 4, 0,−1)iEiK̄
+ (0,−4, 0, 1)iEiΘ)

+z4(E2E4 − E4K̄) .

However, the last term is a trivial solution on the hypersurface as can be verified by wedging

it with the hypersurface class and employing the homology relations. Furthermore, the

terms with coefficients z2 and z3 are identical when restricted to the fourfold, again easily

seen using the SR-ideal and homology relations. The most general solution for vertical

fluxes is thus expressed as

G4 = z1G
z1
4 + z2G

z2
4 = (2.34)

z1

(
5E1E2 + 4E2

2 + 2E3E4 +
1

2
UΘ + Θ2 + (−1,−3, 0, 1)Ei[b2] + (1, 8, 0,−2)iEiK̄

+
1

2
(−4,−19,−2, 3)iEiΘ

)
+ z2

(
5E1E2+

5

2
E2

2 +K̄Θ+

(
0,−5

2
, 0, 0

)
Ei[b2]+

1

2
(−4, 7,−2,−1)iEiK̄+(0,−5, 0, 0)iEiΘ

)
.

Note again that the normalizations for Gz14 and Gz24 is chosen to give manifestly integer

chiralities.

2.4 Fluxes from matter surfaces

So far we have constructed the most general vertical fluxes by systematically implement-

ing the transversality conditions on a basis of H2,2
vert(X5) and pulling these fluxes back to

X4. From a conceptual point of view, the gauge data can be encoded in rational equiva-

lence classes of four-cycles [44] whose homology class is dual to G4 viewed as an element

of H2,2(X4). The transversality conditions suggest that natural building blocks for the

construction of such four-cycles are the matter surfaces. This approach was, for instance,

taken in [41] to construct non-Cartan vertical gauge fluxes. In this section we will analyse

the matter surfaces associated with states in the antisymmetric and fundamental represen-

tations of SU(5) and relate their cohomology classes to the general vertical flux solution

found in the previous section.

As a general remark, recall that the fiber over the 10-curve in the base — see table 1

— splits into a collection of rational curves intersecting like the nodes of the affine Dynkin

diagram of SO(10). Suitable combinations of fibral curves are associated with each of the

ten entries of the weight vector of the 10-representation, and the curves with opposite

orientation give rise to the conjugate weights. In the sequel, when we talk about ‘the 1̄0

surface’ we have one particular such fibral cycle fibered over the base curve in mind. Since

different weights differ only by combinations of simple roots, different such four-cycles differ

by suitable combinations of resolution divisors restricted to the base curve and we will not

need to consider all different choices independently. Similar remarks apply to the 5A and

5B representations and their associated matter surfaces.
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2.4.1 The 1̄0 surface

A representative of the matter surface [C1̄0] is given by the complete ambient intersection

(e0, e2, b1). By employing the SR-ideal we find that restricting the hypersurface to (e0, e2)

implies b1 = 0, and hence we can represent the matter surface by E0 ∧ E2 in the ambient

vertical cohomology. This combination is however not orthogonal to the Cartan divisors,

and we have to add correction terms to arrive at a valid flux. An ansatz for the correction

term of the form
∑
aiEiK̄ + λK̄Θ turns out to be sufficient. This results in the flux

G4(1̄0) = E0E2 −
1

5
K̄Θ− 1

5
(−2, 1,−1,−3)iEiK̄

= −E1E2 −
1

2
E2

2 −
1

5
K̄Θ +

1

2
E2[b2]− 1

10
(−4, 7,−2,−1)iEiK̄ + E2Θ,

(2.35)

where we have rewritten the first line in the chosen vertical basis. Up to a factor of −5 the

flux agrees exactly with the flux solution with coefficient z2 in (2.34).

2.4.2 The 5̄A surface

The homology class of the 5̄A matter surface is not straightforwardly given. Over the

matter curve Θ∩{b21c0,4− b0,2b1c1,2 + c2
1,2 = 0} the rational fiber of the exceptional divisor

E3 splits. This can be seen by solving the second polynomial rationally for c0,4 and inserting

this together with e3 = 0 into the hypersurface equation. This locally valid approach is

enough for computing the weight of the state in the representation, but in order to construct

a global flux the homology class of the rationally fibered surface has to be determined. Using

Singular we compute the intersection of the hypersurface with the exceptional divisor E3

and the matter curve in the base as the ideal

(P
SU(5)
Z2

, e3, b
2
1c0,4 − b0,2b1c1,2 + c2

1,2) . (2.36)

This ideal prime decomposes into two components, corresponding to states in the funda-

mental and anti-fundamental representations, respectively. The anti-fundamental surface

C5̄A is given as the non-transversal intersection

C5̄A = (e3, b
2
1c0,4 − b0,2b1c1,2 + c2

1,2, e
2
0e1e4u

2c1,2 + wb1,

e2
0e1e4u

2b1c0,4 + wb0,2b1 − wc1,2, e
4
0e

2
1e

2
4u

4c0,4 + e2
0e1e4u

2wb0,2 + w2) .
(2.37)

To make sense of the matter surface as a transversal intersection of three equations in the

ambient 5-fold we employ a trick. By prime decomposing the ideal given by the first three

polynomials of the above ideal, i.e. (e3, b
2
1c0,4 − b0,2b1c1,2 + c2

1,2, e
2
0e1e4u

2c1,2 + wb1), two

irreducible components are revealed. The first one is the matter surface (2.37) itself, and

the second is the ideal (e3, b1, c1,2) with multiplicity two. In homology we can ‘solve’ for

the matter surface in terms of the two transversal intersections as

[C5̄A ] = E3 ∧ 2[c1,2] ∧ (W + [b1])− 2 · E3 ∧ [b1] ∧ [c1,2] . (2.38)

Having obtained the homology class we may construct a transversal flux solution by making

an ansatz of correction terms. However, to compare with the previously obtained vertical
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flux solutions we would like to represent the matter surface as a vertical (2,2)-form in the

ambient space which, when restricted to the hypersurface, gives the class [C5̄A ]. To obtain

the solution in this form we make the ansatz

[C5̄A ] = E3 ∧

(∑
i

aiDi

)
∧ [P

SU(5)
Z2

] (2.39)

where the Di is a basis for the divisors on X4. By expanding both sides in a basis for

H3,3(X5) in Singular we solve for the ai and obtain that

E3

(∑
i

aiDi

)
= E3(E3 + 2E4 − [b2] + 3K̄ − 3Θ) (2.40)

=
1

2
E2

2 +E3E4+

(
0,

1

2
,−1, 0

)
i

Ei[b2]+

(
0,−1

2
, 3,

1

2

)
i

EiK̄+(0, 0,−2, 0)iEiΘ

restricts to the 5̄A matter surface on the hypersurface. On the righthand side the solution

is given in the chosen basis for H2,2
vert.

At this point we are ready to construct a well-defined flux by adding a linear combi-

nation of terms with at least one factor coming from the base such that the transversality

conditions are satisfied. The result is

G4(5̄A) = [C5̄A ] + {correction terms}

=
1

2
E2

2 + E3E4 +
1

5
[b2]Θ− 3

5
K̄Θ +

2

5
Θ2

+
1

10
(−4,−3,−2, 4)iEi[b2] +

1

10
(12, 19, 6,−14)iEiK̄ +

1

5
(−4,−8,−2, 4)iEiΘ

=
2

5
(Gz14 −G

z2
4 ). (2.41)

The last line relates this flux to one combination of vertical fluxes constructed in the

previous section.

2.4.3 The 5̄B surface

By the same technique, we construct a flux from the 5̄B surface. The homology class,

obtained by prime decomposition, is

[C5̄B ] = E1 ∧ (2[b2] + [c2,1]) ∧ (K̄ + U)− 2E1 ∧ K̄ ∧ [b2]. (2.42)

By making a suitable ansatz we find that the element

E1(E1 + 2E2 + [b2]−Θ) (2.43)

in the ambient vertical cohomology reproduces [C5̄B ] when restricted to the hypersurface.

Using this representative we construct the transversal flux as

G4(5̄B) = [C5̄B ] + {correction terms}

= E1E2 − E2
2 + E3E4 − 2UΘ +

9

5
[b2]Θ− 6

5
K̄Θ− 2

5
Θ2
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+
1

5
(2,−6,−9,−2)iEi[b2] +

1

5
(−8,−1, 6,−2)iEiK̄ +

1

5
(4, 13, 2, 6)iEiΘ

=
1

5
(−2Gz14 + 3Gz24 ), (2.44)

where the second term is expanded in the chosen basis, and the last line gives the flux as

a linear combination of the vertical flux solutions in (2.34).

2.5 Chiralities and non-abelian anomalies

With the explicit flux solutions and also representatives of the homology classes of the

matter surfaces at hand, it is straightforward to compute the induced chiralities for all

SU(5) representations. The net chirality χ of a state in representation R of SU(5) induced

by a flux G4 is given by

χ(R) =

∫
[CR]

G4 . (2.45)

These integrals lift to intersection numbers in the ambient space upon multiplication

with the hypersurface class. Using the techniques described above all these intersec-

tions are reduced to intersection numbers on the base. The induced chiralities from the

three flux solutions described above are, with respect to the general flux combination

G4 = aG4(P, σ0) + z1G
z1
4 + z2G

z2
4 ,

χ(10) =
[
−aP + z1(−2[b2] + 12K̄ − 9Θ) + z2(6K̄ − 5Θ)

]
K̄Θ,

χ(5̄A) =
[
−aP + z1(−2[b2]− 8K̄ + Θ)− 4z2K̄

]
([b2]− 3K̄ + 2Θ)Θ,

χ(5̄B) =
[
aP ([b2]− 4K̄ + 2Θ) + z1(2[b2]2 + 3[b2]Θ− 2(6K̄2 − 5K̄Θ + Θ2))

+ z2(4[b2]− 6K̄ + 3Θ)K̄
]

Θ,

(2.46)

where we have suppressed integration over the base. It is easily checked that the SU(5)

anomaly condition

χ(10) = χ(5̄A) + χ(5̄B) (2.47)

is satisfied without further restrictions on a, z1 and z2. In fact, this follows directly from the

four-cycle class [1̄0]+[5̄A]+[5̄B]: due to the homology relations (2.30) and SR-ideal (2.19)

this combination is equal to

[PSU(5)]∧
{

2[b2] ∧ (E1 + E2) + K̄ ∧ (−E2 + 3E3 + E4) + Θ ∧ (E2 − 2E3 − E4)−Θ ∧ [b2]
}
.

(2.48)

In this form, it is obvious that any valid G4 yields zero upon integration over this cycle. In

particular, the cancellation of the pure SU(5) anomaly only requires conditions (2.16) (G4

does not have two legs along the fiber) and (2.17) (G4 does not break gauge symmetry) since

the four-cycle class (2.48) only involves terms of the form π−1Da∧Ei and π−1Da∧π−1Db.

The missing condition (2.15) will become relevant in the context of the discrete Z2 anomaly

to be discussed in section 5.

In addition to the SU(5) charged states, there are localised states with Z2 charge 1

mod 2 which transform as singlets under SU(5). These states are localised on the curve
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called C2 in table 2, which, as we recall, can be described by an ideal generated by 15 non-

transversely intersecting elements [11]. The I2-fiber over C2 splits into two rational curves

A and B with [A] = [B] in homology. Indeed, both curves are exchanged by a global

monodromy over C2 provided the intersection of the monodromy locus of the bisection

with C2 is non-empty, as is generically the case [11] (see [55, 56] for a discussion of the

implications of the absence of this monodromy point on C2 in non-generic models). The

states associated with an M2-brane wrapping A and B have the same quantum numbers.

In order to count the number of N = 1 chiral multiplets of the 4-dimensional F-theory

vacuum with Z2 charge 1, we must therefore add the zero modes from M2-branes wrapping

both fibral curves [12]. One can separately compute the overlap of G4 with the four-cycle

CA or CB given by fibering A or B over C2, and e.g. the flux G4(P, σ0) indeed gives a

non-zero result for both individual surfaces [12]. However, in total

χ(1) =

∫
CA
G4 +

∫
CB
G4 = 0 (2.49)

by the transversality condition (2.16) because A and B sum up to the total fiber class.

This is the geometric manifestation of the statement that an SU(5) singlet carrying only

Z2 charge does not admit a notion of chirality, of course.

3 All vertical fluxes on a Bl1P112[4]-fibration

The bisection P112[4]-fibration X4 is related, via a conifold transition [7–12], to the elliptic

Bl1P112[4]-fibration with Mordell-Weil group of rank 1 of [52]. In general, in a conifold tran-

sition between F/M-theory fourfolds conservation of M2-brane charge dynamically relates

the 4-form fluxes on both sides [30, 34, 71]. For the specific transition between the P112[4]-

fibration and the Bl1P112[4]-model without extra non-abelian gauge groups, the U(1) flux

and the Z2 flux (2.27) have been successfully matched along these lines in [11]. In section 4

we will extend this match to the full set of fluxes constructed in the previous section. This

will serve as an additional non-trivial check on the consistency of our construction. As a

preparation we need to construct, in this section, the complete set of vertical fluxes on the

U(1) side of the transition with which we will compare the flux solutions in the bisection

model.

Let us briefly recap the properties of the Bl1P112[4]-fibration of [52], but including an

extra SU(5) factor following [11] (see also [10]). We start from the model (2.18) and by a

complex structure deformation set c4,1 ≡ 0. This introduces a singularity in codimension

2, which is resolved by a blow-up in the ambient space. The proper transform describing

an elliptically fibered fourfold Y4 reads

P
SU(5)
U(1) = e1e2sw

2 + b0,2s
2u2we2

0e
2
1e2e4 + b1suvw + b2v

2we2e
2
3e4

+ c0,4u
4e4

0e
3
1e2e

2
4 + c1,2u

3ve2
0e1e4 + c2,1u

2v2e0e3e4 + c3,1uv
3e0e2e

3
3e

2
4,

(3.1)

where s is the blow-up coordinate. The divisor class S : {s = 0} is the class of an extra

rational section, and U : {u = 0} is the holomorphic zero-section of the elliptic fibration.
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locus in base irrep SU(5)U(1)

θ ∩ b1 10−2, 1̄02

θ ∩ b2 5−6, 5̄6

θ ∩ {b1c3,1 − b2c2,1} 54, 5̄−4

θ ∩ {b21c0,4 − b0,2b1c1,2 + c2
1,2} 5−1, 5̄1

C1 = b2 ∩ c3,1 1±10

C2 1±5

Table 3. Matter curves in the SU(5) ×U(1) model.

The structure of the exceptional coordinates ei is identical to its counterpart in the bisection

model because the toric description of P112 and Bl1P112 admit the construction of the same

top [68]. For the chosen triangulation we obtain the Stanley-Reisner ideal generators

{uw, vs, ve1, ve2, we0, we4, ue1, ue2, ue3, ue4, se2, se3, se4, e0e3, e1e3, e1e4} . (3.2)

The U(1) generator is determined by the Shioda map as

wU(1) = 5(S − U − K̄ − [b2]) + 4E1 + 3E2 + 2E3 + E4. (3.3)

The discriminant

∆ ∼ θ5[ b41b2(b1c3,1 − b2c2,1)(b21c0,4 − b0,2b1c1,2 + c2
1,2) +O(θ)] (3.4)

indicates four matter curves with SU(5) charged matter. In addition there are two singlet

curves, only intersecting the SU(5) divisor Θ in points. The first one is the curve C1 :

(b2, c3,1) of conifold singularities which got resolved in the conifold transition. M2-branes

wrapping the irreducible fiber components give rise to states of U(1) charge ±10 (in the

normalization (3.3)), called doubly charged states. The second one is a more complicated

locus, denoted C2, over which the fiber is of type I2, similarly as in the bisection model.

The states localized along this curve have U(1) charge ±5 and are referred to as singly

charged. In table 3 we summarize the matter spectrum for this model.

The matter curves intersect at a number of loci, giving rise to 6 different Yukawa

couplings involving SU(5) charged fields. These are shown in figure 2. In addition there

is one coupling that is localized outside the GUT divisor. This is the coupling 1−101515

together with its conjugate, and it exists regardless of the SU(5) enhancement.

3.1 All vertical fluxes

We now construct all vertical flux solutions to the — in presence of a section — standard

transversality conditions∫
Y4

G4 ∧ U ∧ π−1Da = 0,

∫
Y4

G4 ∧Da ∧ π−1Db = 0,

∫
Y4

G4 ∧ Ei ∧ π−1Da = 0. (3.5)
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As always in the presence of a U(1) gauge group, the U(1) generator wU(1) in (3.3)

gives rise to a vertical flux solution

G4(F ) = wU(1) ∧ π−1F, (3.6)

which satisfies the transversality conditions for any choice of base divisor class F .

To find more vertical solutions we make a general ansatz, as in the previous section,

expressed in a basis for the vertical cohomology of the ambient space Y5. Subjecting this

ansatz to the transversality conditions and reducing all terms to intersection numbers in

the base we find a family of solutions valid over a generic base B,

G4 = G4(F ) + u1G
u1
4 + u2G

u2
4 + u3G

u3
4

= wU(1) ∧ F
+ u1(−15E1E2 + 5E2

2 + 25E3E4 + (−10, 0,−5, 10)iEi[b2]

+ (36, 37, 18,−16)iEiK̄ + (−20,−25,−10, 20)iEiΘ)

+ u2(−10E1E2−5E2
2 +(0, 5, 0, 0)iEi[b2]+(4,−7, 2, 1)iEiK̄+(0, 10, 0, 0)iEiΘ)

+ u3(5E1E2 + 5E2
2 − 5E3E4 + 10UΘ + 10K̄Θ + (0, 0, 5, 0)iEi[b2]

+ (−2, 1,−6, 2)iEiK̄ + (−4,−13,−2,−6)iEiΘ).

(3.7)

The normalization is chosen such as to give manifestly integral chiralities, as presented in

the following sections. By restricting the solution to the hypersurface and expanding it in

a basis for H3,3
vert(Y5), it is shown that the three solutions Gui4 are independent.

3.2 Fluxes from matter surfaces

As in the bisection model, it is possible to express all fluxes originating from SU(5) charged

matter surfaces in terms of the general vertical flux solution above. In the sequel we derive

the map between the two representations of the fluxes.

3.2.1 The 1̄02 surface

One possible representative for the matter surface [C1̄02
] is given by the complete am-

bient intersection (e0, e2, b1), which agrees with the corresponding representation of the

10-surface considered in the SU(5)× Z2 model. To find the flux associated with this mat-

ter surface, we start from an ansatz E0 ∧ E2 in the ambient space cohomology and add a

linear combination of correction terms of the form U ∧Da, S∧Da, Ei∧Da and Da∧Db, for

Da,b pullback divisors from the base and solve for the coefficients. Up to the addition of an

arbitrary U(1) flux, which we set to zero, the transversality conditions fix the correction

terms such that

G4(1̄02) = E0E2 +
1

10
(4,−2, 2, 6)iEiK̄

= −E1E2 −
1

2
E2

2 +
1

2
E2[b2] +

1

10
(4,−7, 2, 1)iEiK̄ + E2Θ ,

(3.8)

where we have rewritten the first line in the chosen vertical basis. Up to a scaling factor

the flux agrees exactly with the flux solution Gu24 in (3.7).
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θ

54

10−2

5−6

10−210−254

10−25̄65̄−4

155−65̄1

1−5545̄1

1̄025−15−1

5−1

1−105̄654

Figure 2. The matter curves in the SU(5) divisor {θ = 0} and the Yukawa couplings involving the

SU(5) charged matter in codimension three.

3.2.2 The 5−6 surface

A representative of the 5−6 surface is given by the complete intersection of (e0, s) with

the hypersurface. Indeed this implies b2 = 0 and thus reproduces the curve in the base

over which the 5−6 matter is localized. Repeating verbatim the steps performed for the

1̄02-flux we arrive at,

G4(5−6) = E0S − SΘ + UΘ + K̄Θ +
1

5
(4, 3, 2, 1)iEi[b2]− 1

5
(4, 3, 2, 1)iEiΘ

= −E1E2 + UΘ + K̄Θ +
1

5
(−1, 3, 2, 1)iEi[b2] + E1K̄ −

1

5
(4, 3, 2, 1)iEiΘ

=
1

50
(Gu14 + 6Gu24 + 5Gu34 ).

(3.9)

In the second line we have used that E0S − SΘ = −E1(E2 − K̄ + [b2]) in the ambient

cohomology.

3.2.3 The 5̄−4 surface

The cohomology class of a representative of C5̄−4
can be obtained by an ideal decomposition

in Singular and is given in the ambient space as

C5̄−4
= E1(2K̄2 + S[b2] + 2SK̄ − SΘ− K̄Θ) . (3.10)

Out of this class a transversal flux may be constructed by adding possible correction terms

and solving the transversality conditions. As in the previous section we aim at comparing
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the matter surface to the vertical flux solution. By making the analogous ansatz as in

section 2.4.2, we find that

C5̄−4
= E1 ∧ (E1 + 2E2 + [b2]−Θ) ∧ [PSU(5)] . (3.11)

The factor of E1 reflects the fact that it is the fiber component of this divisor which splits

into weights over the curve. We use this solution to make an ansatz for a well-defined flux

in the form of G4 = E1(E1 +2E2 +[b2]−Θ) + vertical correction terms. As in the previous

case, the solution allows for an arbitrary U(1)-flux contribution which can be subtracted.

There is also a U(1)-flux with fixed coefficient appearing and after rewriting the flux in the

chosen vertical basis we find the solution

G4(5̄−4) = −E2
2 + E3E4 − 3UΘ− 3K̄Θ

+
1

5
(1,−3,−7,−1)iEi[b2]+

1

5
(−3,−1, 6,−2)iEiK̄+

1

5
(8, 16, 4, 7)iEiΘ−

1

5
wU(1)Θ

=
1

50
(−Gu14 − 6Gu24 − 15Gu34 )− 1

5
wU(1)Θ. (3.12)

3.2.4 The 5̄1 surface

By the same method we find that

C5̄1
= E3 ∧ (E3 + 2E4 + 3K̄ − [b2]− 2Θ) ∧ [PSU(5)] . (3.13)

By adding correction terms we get a well-defined, transversal flux which takes the form

G4(5̄1) =
1

2
E2

2 − E3E4 +
1

10
(−4,−3,−2, 4)iEi[b2] +

1

10
(12, 19, 6,−7)iEiK̄ +

1

5
(−4,−8,−2, 4)iEiΘ

=
2

50
(Gu1

4 −
3

2
Gu2

4 ). (3.14)

We conclude with a summary of the full relation between the vertical flux solutions on one

side and the matter surface fluxes on the other,

G4(1̄02) =
1

10
Gu24 ,

G4(5̄1) =
2

50
(Gu14 −

3

2
Gu24 ),

G4(5̄−4) =
1

50
(−Gu14 − 6Gu24 − 15Gu34 )− 1

5
wU(1)Θ,

G4(5−6) =
1

50
(Gu14 + 6Gu24 + 5Gu34 ) .

(3.15)

3.3 Chiralities and non-abelian anomalies

The chiralities induced by the general vertical flux solution G4(F )+
∑

i uiG
ui
4 are computed

as

χ(10−2) = −2[b1]FΘ +
[
u1(−20[b2] + 42K̄ − 25Θ) + u2(−12K̄ + 10Θ) + u3(6K̄ − 3Θ)

]
K̄Θ,

χ(5̄1) = 2[c1,2]FΘ + 2
[
u1(−10[b2]− 14K̄ + 5Θ) + 4u2K̄ + u3(−2K̄ + Θ)

]
([b2 − 3K̄ + 2Θ])Θ,
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χ(5̄−4) = [−4([b2] + [c2,1])F + u1(10[b2]2 − 16[b2]K̄ − 42K̄2 + 10[b2]Θ + 61K̄Θ− 20Θ2)

+ 2u2K̄(−2[b2] + 6K̄ − 3Θ) + u3(2[b2]K̄ − 6K̄2 + 4[b2]Θ + 11K̄Θ− 4Θ2)]Θ,

χ(5̄6) = 2
[
3F + u1(5[b2]− 18K̄ + 10Θ)− 2u2K̄ + u3(K̄ − 3Θ)

]
[b2]Θ , (3.16)

where integration over the base is understood. Consistently, the SU(5) anomaly cancellation

condition

χ(10−2) = χ(5̄1) + χ(5̄−4) + χ(5̄6) (3.17)

holds for all choices of the coefficients ui and for arbitrary base class F . As in the Z2

model, we can directly see the SU(5) anomaly cancellation in the geometry because

[1̄02] + [5̄1] + [5̄−4] + [5̄6] = (3.18)

[PSU(5)] ∧
(
2[b2] ∧ (E1 + E2) + K̄ ∧ (−E2 + 3E3 + E4) + Θ ∧ (−[b2] + E2 − E3 − E4)

)
.

Again this is of the schematic form Ei ∧ π−1Da + π−1Da ∧ π−1Db, which yields zero when

integrating a valid G4-flux over it.

4 Comparison via conifold transition

In this section we compare the flux solutions in the bisection P112[4]-fibration X4 and in

the related elliptic Bl1P112[4]-fibration Y4 upon performing a topological transition between

both sides. Since the construction of fluxes in F-theory models on elliptic fibrations is well

established, as is the topology change in the conifold transition, we will interpret this as

another test of our flux construction for the genus-one fibration. In particular, we will

construct an explicit map between the flux solutions in both models and show that all

fluxes in the bisection model are accounted for by a corresponding flux in the U(1) model

upon performing the conifold transition. This map has already been established in [11] in

absence of additional non-abelian gauge data.

In order to find a map between the general flux solutions, we look for quantities that

are preserved under the conifold transition. The first such quantity is the total D3-brane

charge. Recall that the number of D3-branes is related to the flux and curvature induced

D3-charge as [57]

nD3 =
χ(X4)

24
− 1

2

∫
X4

G4 ∧G4. (4.1)

We are interested in transitions without explicit participation of D3-branes, and for such

transitions nD3 must match on both sides of the transition [72]. We therefore demand that

∆nD3 ≡ nD3|X4
− nD3|Y4

!
= 0 . (4.2)

The topological transition from Y4 toX4 proceeds by first creating a conifold singularity

in the fiber over the curve C1 ⊂ B given in table 3 and then deforming [7–12]. The resulting

change [30, 34, 71]

∆χ = χ(X4)− χ(Y4) = −3χ(C1) (4.3)
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of the Euler number allows us to rephrase (4.2) in terms of the flux-induced D3 tadpoles as

1

2

∫
X4

G4 ∧G4
!

= −1

8
χ(C1) +

1

2

∫
Y4

G̃4 ∧ G̃4 . (4.4)

Here G4 and G̃4 denote the fluxes on X4 and Y4, respectively.

The chiral spectra of the two models are topological quantities as well and must be

conserved under the transition. This applies to the notion of chirality with respect to

the unbroken gauge subgroups on both sides of the transition. In the case at hand, this

is the non-abelian SU(5) factor. From the field theory perspective this is clear because

the Higgsing of the U(1) gauge symmetry to a Z2 subgroup does not change the SU(5)

chiralities of the states. However, the number of individual matter curves as such is not

equal. By comparing the discriminants (2.22) for c4,1 6= 0 and (3.4) for c4,1 = 0, we confirm

that the matter curves in the base relate as [10, 11]

X4 Y4

C10 ↔ C10−2

C5̄A ↔ C5̄1

C5̄B ↔ C5̄−4
+ C5̄6

.

(4.5)

Since the chiral indices are linear in the matter surface classes, we arrive at the following

matching condition for the chiral spectra,

χ(10)
!

= χ(10−2),

χ(5̄A)
!

= χ(5̄1),

χ(5̄B)
!

= χ(5̄−4) + χ(5̄6) .

(4.6)

To derive the map between the flux solutions recall first that C1 = (b2, c3,1) is the

doubly charged curve along which the Higgsing is performed. The Euler number of this

singlet curve is given by

χ(C1) =

∫
C1

c1(C1) (4.7)

and with help of the adjunction formula

c(C1) =
c(B)

1 + [(b2, c3,1)]
⇒ c1(C1) = c1(B)−[b2]−[c3,1] = K̄−[b2]−([K̄+[b2]−Θ]) = −[c4,1]

(4.8)

the Euler number contribution is found as

− 1

8
χ(C1) = −1

8

∫
B
c1(C1) ∧ [c3,1] ∧ [b2] =

1

8

∫
B

[b2] ∧ [c3,1] ∧ [c4,1]. (4.9)

To gain some intuition, let us first consider a flux configuration on Y4 where the flux

is simply given by the U(1)-flux (3.6), i.e. G4 = G4(F ). The tadpole contribution on the

righthand side of (4.4) can then be evaluated as

−1

8
χ(C1)+

1

2

∫
Y4

G4(F )∧G4(F ) =
1

8

∫
B

[b2]∧[c3,1]∧[c4,1]−
∫
B
F∧F∧

(
K̄+[b2]−2

5
Θ

)
. (4.10)
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From the corresponding transition in [11] without SU(5) gauge factor, and also from the

general considerations in [71], we expect that we must allow, possibly amongst other fluxes,

for non-vanishing Z2-flux aG4(P, σ0) on X4, with a coefficient a to be determined. Part

of the contribution of such aG4(P, σ0) to the lefthand side of (4.4) is given by the square
1
2

∫
X4

(aG4(P, σ0))2 (in addition to cross-terms with the other fluxes). This expression

requires in particular the calculation of the self-intersection of [σ0]. The computation

proceeds using the normal bundle of σ0 embedded in the hypersurface [30] and closely

follows the steps spelled out in [11]. The intersection numbers of [σ0] with the vertical

correction term in (2.27) are straightforwardly computed in the ambient space, as is the self-

intersection of the vertical correction terms. After reducing everything to base intersection

numbers we obtain

1

2

∫
X4

(aG4(P, σ0))2 =
25 a2

4

∫
B

(
−P ∧ P ∧

(
K̄ + [b2]− 2

5
Θ

)
+ 2P ∧ [b2] ∧ [c3,1]

)
. (4.11)

Let us first see if it is sufficient to only invoke aG4(P, σ0) in order to reproduce (4.10)

on the Z2 side, i.e. whether we can match (4.10) and (4.11). As seen from (4.10), for a

general choice of F the U(1)-tadpole has a quadratic term in Θ from the singlet curve

(hidden in the classes [c3,1] and [c4,1]), and a linear term in Θ from the flux contribution.

On the other hand, the class P on the Z2 side may a priori be dependent or independent of

Θ. If it carries no multiple of Θ, then the induced tadpole is only linear in the SU(5) divisor

class, which can be excluded. If P = . . .+ kΘ (which we expect, since c4,1 = ρ τ), then the

induced tadpole will have a cubic term in Θ, which has to be cancelled in order to match

the U(1)-tadpole and the singlet curve term. We thus conclude that some other flux has

to be turned on in order to satisfy the constraint. In order to see what flux contribution is

needed we make the general ansatz

G4 = aG4(P, σ0) +
2∑
i=1

ziG
zi
4 (4.12)

for the flux on the Z2-side, with i running over the two solutions (2.34). We furthermore

make an ansatz for the class P = k F+α [b2]+β K̄+γΘ as a multiple of F plus a correction

expanded in the base classes which are generically available on any choice of base B. The

resulting matching equations of induced tadpoles (4.4) and chiral indices (4.6) are quite

lengthy and we do not display them explicitly here. For our ansatz above and ui = 0, there

is one solution given by

P = 10F +
1

2
c4,1, a =

1

5
, z1 = − 1

10
, z2 =

1

5
. (4.13)

This confirms that it is not enough to turn on only G4(P, σ0), but that it is also required

to allow for the other vertical fluxes to find a matching configuration. This is in agreement

with similar findings in [32, 34] for a transition from an SU(5) × U(1) elliptic fibration to

an SU(5) elliptic fibration.

Computing the D3-tadpole contributions for a general linear combination of fluxes on

both sides of the conifold transition is tedious, but straightforward. We keep the general
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flux (4.12) in the bisection model and since we are searching for the most general solution,

we make the ansatz P = kF + α[b2] + βK̄ + γΘ. In the U(1) model we add the linear

combination

G4 = G4(F ) +

3∑
i=1

uiG
ui
4 (4.14)

of all vertical flux solutions. The reduction of all intersection numbers in (4.4) and (4.6)

to intersection numbers of base divisors results in a system of equations for the coefficients

a, zi, ui, k, α, β and γ. The result is that both constraints (4.4) and (4.6) can be solved by

P = 10F+
1

2
c4,1−10u3Θ, a =

1

5
, z1 =

1

10
(−1+100u1), z2 =

1

5
(1−65u1−10u2 +5u3)

(4.15)

and we further note the Θ-term contribution to the class P : {ρ = 0}.
It is reassuring that the possible range 0 ≤ P ≤ c4,1 of the divisor class P = [ρ] with

c4,1 = ρ τ is in beautiful agreement with the observation that fluxes on the U(1) side may

obstruct the topological transition provided they induce a purely chiral spectrum of Higgs

states [34, 71]. The Higgs fields are the charged singlets localised on the curve C1. The

formalism of [44] suggests that these are counted by the cohomology groups of a line bundle

L⊗K1/2
C1

with deg(L) =
∫
C1

(10F−10u3Θ). This is in agreement with a direct computation

of the chiral spectrum of these states, starting from the general flux ansatz (4.14). A neces-

sary condition for the existence of vectorlike pairs of Higgs fields, and thus for the existence

of a flat direction for the conifold transition, is that 1
2c1(C1) ≤ deg(L) ≤ −1

2c1(C1). With

c1(C1) = −c4,1|C1 this is in agreement, for the solution P = 10F + 1
2c4,1− 10u3Θ, precisely

with the inequality 0 ≤ P ≤ c4,1 — see the analogous discussion [11] in absence of an SU(5)

factor. For us, this serves as an additional consistency check of the whole construction.

5 Flux quantization and discrete anomalies

All results so far have been independent of the overall normalization of the constructed

fluxes and tested only the transversality conditions as such. The proper normalization

becomes crucial for instance when it comes to detecting discrete anomalies such as the

ones scrutinized in [53, 73]. In particular, the total number of D3-branes as determined by

the tadpole equation (4.1) must be integer, and this is guaranteed [53] for a flux satisfying

the quantization condition (2.24). Furthermore the chiral indices must be integer in a

consistent theory and this should follow from the quantization condition as well. Indeed,

as exemplified in previous sections, we can write the homology classes of all matter surfaces

CR in terms of complete intersections on the hypersurface and so the [CR] are integer classes

themselves. Hence ∫
CR

(
G4 +

1

2
c2(M4)

)
= χ(R) +

1

2

∫
CR
c2(M4) ∈ Z (5.1)

if the flux is quantized according to (2.24). Thus, as stressed in [34, 35], if 1
2

∫
CR c2(M4) is

integer by itself for every matter surface, then the quantization condition ensures integrality

of the chiral indices. To the best of our knowledge, it has not been proven from first
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principles in the literature that c2(M4) automatically satisfies these constraints in any

smooth Calabi-Yau genus-one fibration. In the sequel will analyze this constraint for the

two fibrations X4 and Y4, and relate it to the cancellation of Z2 anomalies.

5.1 c2(M4) and an arithmetic constraint

To compute c2(M4) for M4 either the P112[4]-fibration X4 or the Bl1P112[4]-fibration Y4 we

use the standard adjunction formula

c(M4) =
c(M5)

1 + [P ]
(5.2)

with P the respective hypersurface equation. The answer is expressed in the chosen vertical

basis as

c2(X4) = 5U2 − E1E2 +
7

2
E2

2 − 6E3E4 +
1

2
(−4, 9, 20, 4)iEi[b2] +

1

2
(0,−19,−34,−3)iEiK̄

+ (0,−6, 4,−5)iEiθ − 5U [b2] + 11UK̄ + 7Uθ

− 6[b2]θ − 5[b2]K̄ + 7K̄θ + [b2]2 + 5K̄2 + c2(B), (5.3)

c2(Y4) = −7U2 + E2
2 − E3E4 + (−1, 2, 5, 2)iEi[b2] + (−1,−7,−12,−4)iEiK̄

+ (0,−1, 4, 0)iEiθ + U [b2]− UK̄ + 2Uθ − S[b2] + 6SK̄ + Sθ

− [b2]θ − 5[b2]K̄ + 2K̄θ + [b2]2 + 5K̄2 + c2(B) . (5.4)

Recall that the change in Euler characteristic between the two geometries is given by the

Euler number of the doubly charged singlet curve. This provides a cross-check of the Chern

classes computed above. The arithmetic genus χ0 = 1 + h1,0 − h2,0 + . . . is given by the

integral of the Todd class over the fourfold,

χ0 =

∫
M4

Td(M4) =
1

720

∫
M4

3c2
2 − c4 =

1

720

[∫
M4

3c2
2 − χ(M4)

]
. (5.5)

For a Calabi-Yau fourfold the arithmetic genus is χ0 = 2, from which one gets a relation

between the squared second Chern class and the Euler characteristic. In particular, for the

change in Euler characteristic we have

1

3
∆χ =

∫
X4

c2(X4)2 −
∫
Y4

c2(Y4)2 . (5.6)

In the conifold transition we have the relation (4.3), which in terms of the second Chern

classes reads ∫
X4

c2(X4)2 −
∫
Y4

c2(Y4)2 = −χ(C1) =

∫
B

[b2] ∧ [c3,1] ∧ [c4,1] . (5.7)

Given the second Chern classes above it is straightforward to check that (5.7) indeed holds.

Note furthermore that for the quantization condition only c2(M4) modulo even forms

is relevant. In [29] it was shown that c2(B) − K̄2 is an even class for smooth complex

threefolds so that the terms 5K̄2 + c2(B) in c2(X4) and c2(Y4) can be eliminated mod 2. In
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principle the quantization condition can now be checked by demanding that the integral

of G4 + 1
2c2(M4) over every integer four-cycle be integer. This requires finding an integral

basis of H4(M4), which we do not attempt here.

However, we make a curious observation: for the elliptic fibration Y4, the integral of

c2(Y4) over the matter surfaces can be evaluated as

1

2

∫
C1̄02

c2(Y4) =
1

2

∫
B

Θ2K̄, (5.8)

1

2

∫
C5−6

c2(Y4) =
1

2

∫
B

(−K̄[b2]Θ + [b2]2Θ + [b2]Θ2), (5.9)

1

2

∫
C5̄−4

c2(Y4) =
1

2

∫
B

(2K̄2Θ + 3K̄[b2]Θ + [b2]2Θ− K̄Θ2 − [b2]Θ2), (5.10)

1

2

∫
C5̄1

c2(Y4) =

∫
B

(12K̄2Θ− 10K̄[b2]Θ + 2[b2]2Θ− 12K̄Θ2 + 5[b2]Θ2 + 3Θ3). (5.11)

Note that the first three expressions are not automatically integer. However, in this case

also the chiral indices would be non-integer as a result of (5.1). Similar expressions can be

derived for the singlets.4 A similar problem arises in the bisection model X4, where the

potentially non-integer pairings are

1

2

∫
C1̄0

c2(X4) =
1

2

∫
B

Θ2K̄ ,

1

2

∫
C
5̄A

c2(X4) =

∫
B

2[b2]2Θ + 2K̄[b2]Θ− [b2]Θ2 + K̄2Θ− 1

2
K̄Θ2 .

(5.12)

Physical consistency therefore requires the expressions (5.8), (5.9), (5.10) (and also

the expressions for the singlet surfaces) as well as (5.12) to be integer. Note that inte-

grality of (5.8) and (5.9) of the U(1) model implies integrality of the other expressions

including (5.12) on the Z2 side, but integrality of (5.12) alone is not enough to guarantee

integrality on the U(1) side. We will resolve this puzzle momentarily.

In principle, the above observation could hint at an additional physical constraint such

as a previously unnoticed anomaly which could require this. A more likely option is that

these constraints are automatically satisfied for every smooth Calabi-Yau space Y4 or X4

described as the respective toric tops. In other words, integrality of the above expressions

is most likely a necessary condition for a specific base B, together with a choice of Θ and

[b2], to give rise to a well-defined Calabi-Yau fibration Y4 or X4. It would be interesting,

but certainly challenging to prove in full generality that in every geometrically consistent

fibration c2(M4) automatically satisfies these arithmetic properties.

4A related puzzle was also observed in [34] for the integral of 1
2
c2 over the 101-matter surface in the

vanilla SU(5)×U(1) restricted Tate model. Interestingly, existence of a smooth type IIB limit of the latter

model implies that this equation is integer, reproducing the known result that the Freed-Witten anomaly

cancellation in Type IIB guarantees integer chiralities [35, 74].
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5.2 Cancellation of Z2 anomalies

The quantization condition is also crucial in order to investigate possible Z2 anomalies in

the bisection model and their interplay with the G4-flux. Due to the charge assignments

the possible Z2 anomalies [75] are given by the chiral index of the 5̄A states modulo 2,

AZ3
2

=
∑
R

(qZ2
R )3 dim(R)χ(R) = χ(5̄A) mod 2, (5.13)

AZ2−SU(5)2 =
∑
R

qZ2
R c(R)χ(R) = χ(5̄A) mod 2, (5.14)

AZ2−grav. =
∑
R

qZ2
R dim(R)χ(R) = χ(5̄A) mod 2 (5.15)

with c(R) the index of the representation. In general, discrete field theoretic anomalies

need not vanish by themselves provided they are cancelled by a suitable discrete version

of the Green-Schwarz mechanism [54]. This happens when an anomalous U(1) is Higgsed

to a discrete subgroup which is also anomalous. In this case, the anomalous discrete sub-

group is not preserved at the non-perturbative level because instantons can violate it. In

our case, however, the Z2 symmetry is exact at the non-perturbative level. Potential non-

perturbative effects would be M2-brane instantons or fluxed M5-instantons. The effect of

such instantons in the present model has been studied in detail in [55, 56], where it has been

shown that they respect the Z2 symmetry. This result is in agreement with the general anal-

ysis of [16, 17] because the Z2 symmetry in question arises from a non-anomalous U(1) via

Higgsing [7, 9–11]. In such cases, string instantons do not break the discrete symmetry fur-

ther [16, 17]. Therefore the mixed Z2 symmetries must vanish by themselves. Consistently,

we can adapt the analysis of [38] of the Green-Schwarz mechanism for (mixed) abelian

anomalies. The potential Green-Schwarz counter-terms would then be proportional to∫
X4

G4 ∧ Û ∧ π−1Da. (5.16)

As a result of the transversality condition (2.15) this vanishes identically, confirming once

more that the Z2 anomalies must vanish by themselves.

We would like to see the manifestation of this field theoretic argument in the geometry.

To this end, we use the homology relations (2.30) and the SR-ideal (2.19) to rewrite the

homology class [C5̄A ] as

[PSU(5)] ∧
(
2E3 ∧ E4 − U ∧Θ + E3 ∧ (4 K̄ − 2 [b2]) + Θ ∧ ([b2] + E2 − 2E3 + E4 − K̄)

)
.

(5.17)

In this representation we see that if we impose the transversality conditions (2.15), (2.16)

and the gauge symmetry condition (2.17) on G4, then we simply have

χ(5̄A) =

∫
X4

G4 ∧ (2E3 ∧ E4) . (5.18)

The question now is whether
∫
X4
G4∧E3∧E4 ∈ Z since this would imply that the chirality

is even and therefore the discrete Z2 anomalies vanish. For a well-quantized flux satisfying
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the quantization condition G4 + 1
2c2(X4) ∈ H4(X4,Z), with c2(X4) given in (5.3), Z2

cancellation would follow from 1/2
∫
X4
c2∧E3∧E4 ∈ Z, since E3∧E4 is manifestly integer.

A direct calculation reveals that∫
X4

c2(X4)

2
∧ E3 ∧ E4 = (5.19)∫

B
Θ ∧

(
1

2
(c2(B)− K̄2)− K̄2 −Θ2

)
− 1

2

(
[b2]2 Θ− 3 K̄ [b2] Θ + 3 [b2]Θ2 − 5 K̄Θ2

)
.

While the first term is integer (using the result cited above that c2(B) − K̄2 is even), the

latter part is not guaranteed to be integer without any further input. However, if we

assume integrality of all chiral indices in the U(1) model, i.e. integrality of (5.8), (5.9)

and (5.10), then also (5.19) is integral and therefore the discrete Z2-anomalies vanish by

themselves. On the other hand, if we impose integrality of chiral indices (5.12) as well

as the absence of anomalies in the Z2 model, the arithmetic constraints on the fibration

guarantee a consistent (i.e. integral) chiral spectrum of the U(1) model.

Therefore we see that physical consistency conditions on both the U(1) and the Z2

model pose exactly the same constraints on the geometry. Since the Z2 and the U(1)

model are related by a conifold transition, it is not surprising that cancellation of the

Z2 anomalies requires not only integrality of (5.12), but of the corresponding expressions

in the U(1) model. We know that any consistent Z2 fibration defined by [b2] and Θ on

the base B originates via Higgsing from a U(1) model over the same base with the same

fibration data [b2] and Θ. Now if the U(1) model is consistent, the chiralities and therefore

also (5.8), (5.9) and (5.10) must be integer. These intersection properties of B of course still

hold in the Z2 model and lead to integrality of (5.12) as well as the vanishing of the discrete

anomaly. From a field theoretic perspective, cancellation of the discrete anomalies is tied

to a consistent embedding of the discrete symmetry into a gauged continuous symmetry at

high energies. This underlying gauge symmetry is precisely the U(1) symmetry of the model

on Y4 and the relation between consistency of the latter and discrete anomaly cancellation

is also expected from this point of view.

Finally, note that the crucial relation (5.18) depends not only on the conditions (2.16)

and (2.17), as does the proof for cancellation of the non-abelian cubic anomaly, but also

on (2.15), where the bisection appears explicitly. This is our final consistency check of the

transversality conditions.

6 Conclusions

In this work we have initiated a systematic investigation of gauge fluxes in F-theory com-

pactifications without section. Such geometries have received considerable attention in the

past year [4, 7–13] because they significantly extend the landscape of consistent F-theory

vacua beyond the space of elliptic fibrations with a crepant resolution. As one of their

attractive features, multi-section fibrations give rise to discrete gauge symmetries upon

compactification of M-theory in the F-theory limit.

Our starting point has been a generalization of the known transversality conditions

on 4-form fluxes in F-theory models on elliptic fourfolds to compactifications on genus-one
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fibrations. The role of the zero-section in these conditions is replaced by the available

multi-section which defines an embedding of a multi-cover of the base into the fourfold.

We have then put our proposal for the flux consistency conditions to test by constructing

all vertical fluxes available for a bisection fibration including an extra non-abelian gauge

factor, which for definiteness we have taken to be SU(5). The total gauge group in F-

theory is thus SU(5)×Z2. We have focused on those fluxes which exist over a generic base

B without imposing further conditions on the intersection numbers. For a concrete choice

of such a base, additional solutions to the transversality conditions may of course arise. We

have derived general expressions for the chiral indices of all matter states and confirmed

that the transversality conditions automatically imply cancellation of the cubic non-abelian

anomalies. As a further test we have dynamically related the constructed fluxes to a basis

of vertical fluxes in an F-theory model with gauge group SU(5) × U(1) which is related

to the SU(5) × Z2 model via a conifold transition [7–12]. We have found a perfect match

between both sets of fluxes in such a way that a dynamical transition implies a change

in the flux quantum numbers without changing the induced M2/D3-brane charge and the

chiral indices. This parallels earlier studies performed in [11, 30, 34, 71].

A typical challenge in the construction of gauge fluxes is the proper quantization in the

sense of [29, 35, 53]. We have shown that a smooth fibration of the type considered must

necessarily satisfy a set of arithmetic constraints on certain intersection numbers in the

base which guarantee that, independently of the concrete choice of fluxes, all chiral indices

are integer. It would be very interesting to prove in full generality that these arithmetic

constraints automatically hold on smooth fibrations solely based on geometric arguments.

With the help of these relations we have been able to exemplify that the discrete Z2

anomalies vanish by themselves. This is in agreement with [16] and the fact that in this

geometry non-perturbative effects respect the Z2-symmetry [55, 56].

An obvious next step would be to apply the same reasoning also to genus-one fibrations

with higher-degree multi-sections such as the trisection (Z3) model studied in [9, 13]. From

a phenomenological point of view, discrete symmetries are known to be crucial ingredients

in MSSM and GUT model building. A systematic search for 3-generation models e.g. with

gauge group SU(5) × Z2 (with Z2 playing the role of R-parity, as exemplified in [10, 11])

can now be undertaken, along the lines of the global 3-generation examples [32, 47, 70]

based on elliptic fibrations with other gauge groups.

Finally, recall that in general, the gauge data associated with the 3-form potential C3

and its 4-form field strength G4 in F/M-theory is encoded [76, 77] in the Deligne cohomology

group H4
D(Ŷ ,Z(2)). A useful parametrization of this rather abstract object can be given

in terms of algebraic four-cycles, up to rational equivalence [44]. When speaking of fluxes,

it is typically only the cohomology class that one specifies, but one should keep in mind

that this data is sufficient only for the computation of topological quantities such as chiral

indices or flux-induced charges. A more refined analysis also of the vector-like spectrum,

possibly along the lines of [44] (or, alternatively, [78]), would be desirable and important

also for fibrations without section. We hope to address these challenges in the future.
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u v w e0 e1 e2 e3 e4

K̄ · 1 2 · · · · ·
[b2] · −1 −1 · · · · ·
θ · · · 1 · · · ·
U 1 1 2 · · · · ·
E1 · · −1 −1 1 · · ·
E2 · −1 −2 −1 · 1 · ·
E3 · −2 −2 −1 · · 1 ·
E4 · −1 −1 −1 · · · 1

Table 4. Scaling relations for the toric coordinates in the Z2-model.

u v w s e0 e1 e2 e3 e4

K̄ · 1 2 · · · · · ·
[b2] · −1 −1 · · · · · ·
θ · · · · 1 · · · ·
U 1 1 2 · · · · · ·
S · 1 1 1 · · · · ·
E1 · · −1 · −1 1 · · ·
E2 · −1 −2 · −1 · 1 · ·
E3 · −2 −2 · −1 · · 1 ·
E4 · −1 −1 · −1 · · · 1

Table 5. Scaling relations for the toric coordinates in the U(1)-model.
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A Scalings and divisor classes

In this appendix we present the scaling relations for the coordinates in the two geome-

tries discussed in the paper. For the bisection model described by the hypersurface equa-

tion (2.18) the toric coordinates scale as presented in table 4. For the model with an extra

section with hypersurface equation (3.1) the scaling relations are collected in table 5.
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[22] L.E. Ibáñez, A.N. Schellekens and Á.M. Uranga, Discrete gauge symmetries in discrete

MSSM-like orientifolds, Nucl. Phys. B 865 (2012) 509 [arXiv:1205.5364] [INSPIRE].
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