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1 Introduction

Recently the idea of a certain kind of geometry underlying the U-duality symmetries of

toroidal compactifications of 11-dimensional supergravity [1] has gained a lot of attention.

Since the seminal works [2, 3] it has been known that the field content of supergravities

in lower dimensions can be organised into representations of the symmetry groups Ed (for

the T
d compactification) that appear to be the hidden symmetries of the theories.

These symmetries have found their geometrical interpretation in the formalism of ex-

tended geometry, which has grown out from Hitchin’s generalised geometry [4, 5] and

its extension to exceptional symmetry groups [6]. Building upon extended geometry tech-

niques, development of double field theory [7–11] and its extension to exceptional symmetry

groups [12–16] has brought forward the idea that not only the tangent space, but the target

space itself becomes extended by introduction of a set of new coordinates X
M . From the

point of view of string or M-theory these correspond to the winding modes of the extended
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objects, fundamental strings or M-branes. Essentially, construction of the extended geom-

etry underlying the U-duality symmetry group Ed of maximal supergravity compactified

on a torus Td is based on the two simple principles:

• infinitesimal general coordinate transformations are replaced by generalised Lie

derivatives that respect the Ed structure;

• the dynamics is restricted by a differential constraint called the section condition.

The first principle may possibly allow one to consider non-geometric backgrounds, con-

sistent from the point of view of string or M-theory, on the same footing as geometric

ones [17–21]. The local dynamics of the theory is described by the so called generalised

Lie derivative (3.1) [15, 22], which combines the conventional translation term with and a

Ed transformation of a special form, plus a possible weight term. The section condition

appears as a necessary constraint that must be included in order to keep the algebra of

generalised Lie derivatives closed and to make it satisfy the Jacobi identity. This constraint

is an extended geometry analogue of the level matching condition and its solutions cor-

respond to different choices of the U-duality frame. Geometric structure of the extended

space at finite distances is still not known in full detail, although there was certain progress

in this direction [23–27].

This geometrical formalism appears as a basis for building the so-called Exceptional

Field Theories (EFT), where the local duality transformations induced by the generalised

Lie derivative act as gauge symmetries. These were constructed in the series of works [28–

33] for the groups E6,7,8 and SL(2) × SL(3). The EFT’s for the groups E6,7 were further

extended to include fermions in a supersymmetry invariant way in [34–36]. Covariant

gravitational field theory based on the SL(N) extended space was constructed in [37–39].

In this paper we continue building the chain and present the (bosonic) EFT for the group

SO(5, 5) that corresponds to the maximal supergravity in D = 6 spacetime dimensions.

In addition to the EFT generalisation of the true action constructed by Tanii [40] and

used in [41] for maximal gauged supergravity, we construct a manifestly duality invariant

pseudo-action and comment on their relationship.

The full spacetime of a maximal D-dimensional supergravity is enlarged by inclusion

of the extended space and all the fields now live on the full (D+n)-dimensional spacetime.

Because of this natural split, the D coordinates xµ are called external while the remaining

n coordinates X
M are called internal. This is justified by the particular solution of the

section constraint when the fields have no dependence on X
M , which corresponds to the

reduction of 11-dimensional supergravity on a torus T
11−D. However, the structure of

EFT is richer and we show that it gives both 11-dimensional supergravity and Type IIB

supergravity as less trivial solutions of the section constraint.

The central pillar of EFT is the notion of covariant derivative along the external

coordinates that respects the structure of extended geometry. Following the usual Yang-

Mills like approach, the full content of the corresponding maximal supergravity becomes

employed in the construction of covariant field strengths. Certain dual fields have to be

added to the construction to ensure the covariance. We show that dynamics of the scalar
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sector, whose fields are encoded in the generalised metric, is determined by the so-called

scalar potential, which is proven to be duality invariant, although written in a non-covariant

form. Its truncation to the internal space was constructed in a series of works [14, 42, 43]

and its geometrical meaning was investigated in [15, 16, 44–47].

It is worth mentioning that although the duality symmetries of supergravities were

found in toroidal compactifications, the construction of extended geometry, and hence of

EFT’s, is not bound to this class of backgrounds. The torus is considered as a solution

of equations of motion of EFT that preserves all duality symmetries and the full set of

supersymmetries. One may be interested in searching for other solutions of EFT. Certain

progress in this direction has been made in the works [27] and [48].

This paper is structured as follows. In the section 2 we describe the field content of

the maximal D = 6 supergravity, the dualisations necessary for the covariant construction

and the pseudo-action formalism. In the section 3 the structure of extended geometry is

briefly reviewed and basic algebraic identities needed further are provided. In the section 4

we construct the covariant derivative and describe the tensor hierarchy in universal terms.

The corresponding true action and the pseudo-action together with the Einstein-Hilbert

term are presented in the section 5. Finally, in the section 6 we consider the solutions

of the section constraint that give the embedding of the 11-dimensional supergravity and

Type IIB supergravity. Our conventions and notations and details of the most laborious

calculations are collected in the appendix.

2 Field content and dualisations

The ungauged maximal 6-dimensional supergravity theory was originally constructed

in [40]. Under the 6 + 5 decomposition the metric and the 3-form of D = 11 supergrav-

ity give rise to the following fields in the 6-dimensional theory (m,n are internal indices

running from 1 to 5):

{gµν , Aµm, φmn, Cµνρ, Bµν m, Aµmn, φmnp} . (2.1)

It is conventional to replace the 3-form Cµνρ by the 1-form that is its dual in 6 dimensions.

Together with five 1-forms Aµm and ten 1-forms Aµmn this gives a total of sixteen 1-form

fields, which are conveniently organized into a Majorana-Weyl spinor representation of

the duality group SO(5, 5), AM
µ , M = 1, . . . , 16. The 2-form fields Bµν m are in the 5 of

GL(5) ⊂ SO(5, 5). Finally, the 25 scalar fields φmn, φmnp are assembled into a 16 by 16

matrix VM
αα̇, which parameterises the coset SO(5, 5)/ (SO(5)× SO(5)), α, α̇ = 1, . . . , 4.

This can be used to construct the generalised metric MMN defined on the extended space:

MMN = VM
αα̇ VN αα̇, (2.2)

where the inverse scalar matrix is defined by

VM
αα̇ Vαα̇

N = δM
N , VM

αα̇ Vββ̇
M = δαβ δα̇

β̇
. (2.3)
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The SO(5) spinor indices are raised and lowered by the USp(4) invariant tensor Ωαβ which

satisfies ΩαβΩ
βγ = −δγα. This construction justifies calling the scalars VM

αα̇ the gener-

alised vielbein.

In order to be able to account for the different possible gaugings of the D = 6 theory,

we introduce the duals of the 2-forms and the 1-forms as independent fields [41]:

{Bµν
m, CµνρM} . (2.4)

From the point of view of the gauged theory, the additional five 2-forms Bµν
m are added

into the construction to incorporate the magnetic gaugings corresponding to the subgroups

of the duality group G which are not off-shell realised in the ungauged theory. For theories

in D = 4 this was done in [49, 50]. Equations of motion for the magnetic 2-forms, which

are considered independent, give Bianchi identities for the 3-form field strength, while the

3-form potentials give self-duality equations, restoring the correct amount of degrees of

freedom. As it was shown in [41] in the six-dimensional theory this is possible only if

gaugings are turned on. Alternatively, one may consider the exceptional field construction

as it is done further.

While the Lagrangian itself is not duality invariant, the corresponding equations of

motion can be recast into a duality covariant form. To this end, the magnetic and the

electric 2-form potentials Bm and Bm are combined into the 10 of SO(5, 5), which we

denote by Bµν i, i = 1, . . . , 10. In what follows it will be convenient to define

Bµν
KL =

1

16
√
2
γiKLBµν i,

Cµνρ
M,KL = − 1

6 · 160γ
iKLγi

MNCµνρN .

(2.5)

The coefficients here were chosen so as to make the normalisation of the fields Bµν i and

CµνρM the same as in [41].

This field content of the SO(5, 5) Exceptional Field Theory is in agreement with the

analysis [51] of decomposition of the E11 representations under dimensional reduction.

Under the 6 + 5 decomposition we find the following representations Rp for p-forms:

R1 = 16, R2 = 10, R3 = 16. (2.6)

The 4-forms are dual to scalars and do not appear as independent fields in the formalism.

The 5-form potentials that live in the 144 of SO(5, 5) are dual to mass deformations and

are encoded in the embedding tensor, which naturally appears in the generalised Scherk-

Schwarz reduction [52–54].

As we are working in even spacetime dimension D = 6, we have to face a common

subtlety when defining the action for the (D2 − 1)-form potential and its dual. Here one

distinguishes between the genuine action and the so-called pseudo-action. The genuine

action is not duality invariant itself, but the equations of motion may be cast into a duality

covariant form by considering them on the same footing with Bianchi identities for the

field strengths. Lagrangians of this kind were used by Tanii in his formulation of D = 6

supergravity [40] as well as in [41] in order to write down the gauged version of the theory.
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In its turn a pseudo-action is written completely in terms of fully SO(5, 5) covariant

objects and is invariant under the duality transformation. However, in order to compare

the equations of motion one has to impose self-duality condition on the SO(5, 5) covariant

3-form field strength dressed up with scalar fields by hands.

Let us start with the kinetic term for the 2-form fields of the Tanii’s action, which can

be written in the following GL(5) covariant form:

LT = − e

2 · 3!K
mnFµνρ

mFµνρn, (2.7)

where e = det eāµ. This is a genuine action and it is written only for the field strengths

of the five electric 2-forms Fµνρm = dBµν m. The matrix Kmn is built up from the scalar

fields of the theory, and we are using the basis introduced in [41]:

Kmn = Vma(Vn
a)−1P+ − Vmȧ(Vn

ȧ)−1P−, (2.8)

where P± = 1/2 (1±∗) is the projector on (anti)self-dual 3-forms and ∗ denotes the Hodge

duality operator. Note, that one should understand the matrix Kmn as an operator, acting

only on 3-forms. The coset representative is written in the following GL(5) ⊂ SO(5, 5)

covariant form:

VM
αα̇ =

[

Vm
a Vm

ȧ

Vma Vmȧ

]

, (2.9)

where a and ȧ are the vector indices of SO(5) × SO(5). Such choice of the basis for the

scalar matrix explicitly breaks SO(5, 5) covariance, preserving only its GL(5) subgroup.

This reflects the fact that the Lagrangian (2.7) is not duality invariant.

Next, let us see how the equations of motion can be unified with the Bianchi identities

in a duality covariant manner. To this end, one defines another 3-form Gµνρ
m which is

on-shell dual to the field strengths Fµνρm (see [55, 56] for reviews):

∗Gm = −3!

e

∂L
∂Fm

= KmnFn; Gm = Kmn ∗Fn. (2.10)

Introducing a 10-plet of the 3-form field strengths as

Gµνρ i =

[

Fµνρm

Gµνρ
m

]

, (2.11)

the field equations and the Bianchi identities for Fµνρm can be written in an SO(5, 5)

covariant form simply as ∗dGi = 0. We stress that the 3-form Gm is defined by the equa-

tion (2.10) and it is not considered as a field strength of some magnetic 2-form potential.

However, the duality covariant equations of motion can be understood as coming from the

following SO(5, 5)-covariant variation

δL̃ = dGi ∧ δBi, (2.12)

where the variations δBm and δBm of the magnetic and electric 2-form potentials are

considered as independent. This is precisely the idea behind the action for D = 6 maximal
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gauged supergravity and the formulation of the true action for SO(5, 5) exceptional field

theory provided here.

To turn to the pseudo-action formulation it is convenient to represent the scalar matrix

Kmn as

Kmn = Kmn
1 +Kmn

2 ∗, (2.13)

whereK1 is symmetric andK2 is antisymmetric. Then, the Lagrangian (2.7) decomposes as

LT = − e

2 · 3!K
mn
1 FµνρmFµνρ

n − 1

2 · 3!3!ǫ
µνρσκλKmn

2 FµνρmFσκλn. (2.14)

Consider now a 10-plet of 3-forms Fi whose components Fm and Fm are completely inde-

pendent on the level of the action and are understood as field strengths of the correspond-

ing potentials

Fµνρ i =

[

Fµνρm

Fµνρ
m

]

. (2.15)

To be able to go back to five physical degrees of freedom one introduces the following

self-duality relation by hands (for a more detailed discussion see [57] and [55]):

Fµνρ i = − 1

3!
e−1ǫµνρσκλ ηijMjkF σκλ

k, (2.16)

where the symmetric matrix Mij is built out of K1 and K2 as blocks in the following way:

M = −
[

K1 −K2K
−1
1 K2 K2K

−1
1

−K−1
1 K2 K−1

1

]

. (2.17)

The SO(5, 5) invariant symmetric tensor ηij is just a flat metric chosen to be

ηij =

[

0 1

1 0

]

. (2.18)

The condition that the self-duality relation (2.16) is invertible gives the following constraint

for the scalar matrix:

Mijη
jkMkl = Mil. (2.19)

Now, the self-duality equation relates the magnetic components Fm to the electric ones

precisely in the same way as (2.10). Indeed, let us work in the matrix notation denoting

Fm and Fm by F1 and F2 respectively. Then (2.16) translates into
[

F1

F2

]

=

[

0 1

1 0

][

K1 −K2K
−1
1 K2 K2K

−1
1

−K−1
1 K2 K−1

1

][

∗F1

∗F2

]

, (2.20)

that is
F1 =−K−1

1 K2 ∗F1 +K−1
1 ∗F2,

F2 =(K1 −K2K
−1
1 K2) ∗F1 +K2K

−1
1 ∗F2.

(2.21)

Multiplying the first equation by K2 from the left and subtracting the second one we obtain

F2 = K2F1 +K1 ∗F1, =⇒ ∗Fm = KmnFn, (2.22)
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where we used that the Hodge start squares to one acting on 3-forms in D = 6 with

Lorentzian signature, ∗2 = +1. Hence, under the self-duality condition (2.16) the magnetic

3-form field strength Fm can be identified with the dual 3-form Gm.

Using the above relations one may show that the field equations of the genuine ac-

tion (2.7) together with the Bianchi identities can be obtained by varying the following

duality invariant pseudo-action:

LT = − 1

2 · 3! M
ijFµνρ iF

µνρ
j , (2.23)

and imposing the constraint (2.16). Indeed, variation of the above action gives the following

covariant equation of motion

∗d ∗MijFj = 0 (2.24)

Imposing the self-duality constraint we obtain ∗dGi = 0, since the magnetic component

Fm becomes equal to the dual field strength Gm. With a more lengthy but straightforward

calculation one can show that the above pseudo-action reproduces field equations for the

scalar fields as well.

Note that the self-duality constraint has to be imposed after writing the field equation

for pseudo-action. One may check that the pseudo-action itself as well as its variation vanish

identically upon the self-duality condition. Thus, the pseudo-action is not a reformulation

of the true action but rather is a duality-invariant way to encode the equations of motion.

3 Extended geometry

The transformation of tensors that is consistent with the structure of extended geometry

is given by

δΛV
M = (LΛV )M = (LΛV )M + Y MN

KL ∂NΛKV L ≡ [Λ, V ]MD , (3.1)

where [, ]D denotes the Dorfman bracket. Here both the transformation parameter ΛM

and the vector V M are functions of the extended coordinate X
M . Capital Latin indices

run from 1 to n, which depends on the U-duality group under consideration. The tensor

Y MN
KL , which is an invariant tensor of the corresponding U-duality group, is essentially a

projector [15]:

O(d, d)strings : Y MN
KL = ηMNηKL, n = d,

SL(5) : Y MN
KL = ǫαMN ǫαKL, n = 10,

SO(5, 5) : Y MN
KL =

1

2
(γi)MN (γi)KL , n = 16,

E6(6) : Y MN
KL = 10 dMNRdKLR , n = 27,

E7(7) : Y MN
KL = 12 cMN

KL + δ
(M
K δ

N)
L +

1

2
ǫMN ǫKL n = 56.

(3.2)

Here the Greek indices α, β, γ = 1, . . . , 5 label the representation 5 of SL(5) and the index

i labels the 10 of SO(5, 5).1 The invariant metric on O(d, d) is denoted by ηMN , ǫαMN =

1These notations are for this section only. For global notations see appendix A.
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ǫα,βγ,δǫ is the SL(5) alternating tensor, the matrices γiMN are 16×16 off-diagonal blocks of

the SO(5, 5) gamma-matrices in the Majorana-Weyl representation, and the tensors dMNK

and cMN
KL are symmetric invariant tensors of E6 and E7 respectively.

The invariant tensor Y MN
KL is subject to several algebraic relations that ensure closure

of the algebra [22]:

Y
(MN
KL Y

R)L
PQ − Y

(MN
PQ δ

R)
K = 0 , for d ≤ 5,

Y MN
KL = −αd PK

M
L
N + βd δ

M
K δNL + δML δNK ,

Y MA
KB Y BN

AL = (2− αd)Y
MN
KL + (Dβd + αd)βd δ

M
K δNL + (αd − 1) δML δNK .

(3.3)

Here d = 11−D is the number of compact dimensions and PA
B
C
D is the projector on the

adjoint representation of the corresponding duality group. It is defined as PA
B
C
DPD

C
K

L =

PA
B
K

L and PA
B
B
A = dim(adj). The coefficients αd and βd depend on the duality group

and for the cases in question take numerical values (α4, β4) = (3, 15), (α5, β5) = (4, 14),

(α6, β6) = (6, 13). The last line in (3.3) with n = δAA is a direct consequence of the second

relation and the properties of the projector. In addition for the tensor Y MN
KL to be invariant

the following identity must hold

Y KL
(PQδ

R
N) − Y KL

S(PY
RS
QN) = 0. (3.4)

Using the expressions above it is useful to rewrite covariant derivative of a generalised

vector in the following form

δΛV
M = (LΛV )M = ΛN∂NV M − αdP

M
L
N

K∂NΛKV L + βd(∂KΛK)V M . (3.5)

Here the last term plays the role of a weight term, which could be added to any transfor-

mation. For a generalised vector that transforms as in (3.1) the weight is equal to βd. In

general for a tensor with k indices each transforming as in (3.1) the weight will be kβd.

However, one may consider generalised tensors of any weight and, as we will see later, these

are necessary for the EFT construction.

The second term in the expression above represents a projection of the term ∂NΛK

on the U-duality algebra, since in general it does not belong to the structure group Ed(d).

This in contrast to General Relativity where any non-degenerate matrix belongs to the

structure group GL(D) and one does not need a projector.

In addition one introduces a differential constraint on all fields in the theory that

restricts the dependence on the extended coordinate X
M

Y MN
KL ∂M ⊗ ∂N = 0. (3.6)

This extra condition in particular implies the existence of trivial generalised transforma-

tions given by Λ0
M = Y MN

KL ∂NχKL, for any χKL. Indeed, the generalised Lie deriva-

tive (3.1) of a vector field V M along the trivial vector field Λ0
M reads

δΛ0V
M = Y NK

PQ

(

∂NχPQ∂KV M +
1

2
∂NKχPQV M

)

− 1

2
Y NP

KLY
MK
RS ∂NPχ

RSV L. (3.7)
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It is straightforward to check that the parameter Λ0
M itself transforms as a generalised

vector. Closure of the algebra and the Jacobi identity hold up to a trivial transformation

as well. Hence for the Jacobiator of generalised transformations we have

[δΛ1 , δΛ2 , δΛ2 ] = δΛ0 , (3.8)

where the r.h.s. acts on any extended vector trivially up to section condition. For closure

of the algebra we have

[LΛ1 ,LΛ2 ] = L[Λ1,Λ2]E , (3.9)

which may be viewed as a definition of the E-bracket [, ]E . Explicitly this is given by

E = 2Λ[1
N∂NΛ2] + Y MN

KL ∂NΛ[1
KΛ2]

L,

[Λ1,Λ2]E = [Λ1,Λ2]D − 1

2
Y MN

KL ∂N (Λ1
KΛ2

L).

(3.10)

It is important to note that the E-bracket is antisymmetric while the Dorfman bracket is

not. This will play a crucial role in the construction of tensor hierarchy starting from the

covariant derivative to be defined in the next section. In what follows one finds important

the following Jacobi identity for the E-bracket

[

[

Λ[1,Λ2

]

E
,Λ3]

]

E

M =
1

6
Y MN

KL ∂N
(

[Λ[1,Λ2]E
KΛ3]

L
)

. (3.11)

4 Covariant derivative for the D-bracket and tensor hierarchy

In the section 3 we have presented the algebra of generalised Lie derivatives that closes on

the E-bracket. In this construction the fields and the generalised diffeomorphism parameter

ΛM depend only on the extended coordinates X
M . We now regard these coordinates

as internal in the spirit of Kaluza-Klein compactification. The fields and all the gauge

parameters are now allowed to depend on the external spacetime coordinates, which we

denote by xµ. However, the corresponding derivative ∂µ is not a generalised scalar

δΛ∂µV
M 6= LΛ

(

∂µV
M
)

. (4.1)

In order to fix this we introduce a long spacetime derivative, covariant with respect to the

D-bracket as in the ordinary Yang-Mills construction:

Dµ = ∂µ − LAµ
= ∂µ − [Aµ, • ]D , (4.2)

where the generalised vector field AM
µ plays the role of the gauge connection. We identify

this gauge connection with the vector field of the corresponding maximal supergravity that

always has exactly the desired number of degrees of freedom.

Covariance of the derivative Dµ with respect to the generalised Lie derivative implies

the following transformation law of the gauge field AM
µ :

δΛA
M
µ = ∂µΛ

M − [Aµ,Λ]D
M = DµΛ

M . (4.3)
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Since D- and E-brackets differ by a trivial transformation (see (3.10)) the above choice is

a matter of convention. Here we take the transformation in this form to keep the analogy

with the conventional Yang-Mills construction.

As usual, the commutator of covariant derivatives defines the field strength of the

gauge field:

[Dµ,Dν ] = −LFµν
, Fµν

M = 2 ∂[µA
M
ν] − [Aµ, Aν ]E

M − Y MN
KL ∂NBµν

KL. (4.4)

Here the extra term with the field Bµν was added since the first two terms do not form a

generalised vector under the gauge transformations. Note that this term does not contribute

to the generalised Lie derivative in (4.4) as it is a trivial transformation.

As in the maximal gauged supergravity, field strength for the 2-form potential Bµν
KL

is defined by the Bianchi identity for the covariant field strength Fµν
M :

3D[µFνρ]
M =− Y MN

KL ∂NFµνρ
KL,

Fµνρ
KL = 3D[µBνρ]

KL +
3

D(1− 2βd)
Y KL

PQ

(

A
(P
[µ ∂νA

Q)
ρ] − 1

3
[A[µ, Aν ]E

(PAρ]
Q)

)

− 3
(

∂NCµνρ
N,KL − Y KL

PQ ∂NCµνρ
Q,PN

)

,

(4.5)

where again the terms in the last line were added to make sure that the 3-form field strength

is indeed covariant, i.e. δΛFµνρ
KL = LΛFµνρ

KL. This term will be constructed out of the

next field in the tensor hierarchy, which is the 3-form Cµνρ
M,KL. As above, these terms do

not contribute to the Bianchi identity since they vanish identically under the appropriate

contraction with the Y tensor.

Finally, we will find useful the Bianchi identity that gives the 4-form field strength:

4D[µFνρσ]
KL =

3

D(1− 2βd)
Y KL

PQ F[µν
PFρσ]

Q − 3
(

∂NFµνρσ
N,KL − Y KL

PQ ∂NFµνρσ
Q,PN

)

.

(4.6)

Substituting the explicit form of the fields into this expression we obtain the 4-form:

Fµνρσ
M,KL = 4D[µCνρσ]

M,KL +
(

2B[µν
KLFρσ]

M −B[µν
KLY MN

PQ ∂NBρσ]
PQ

)

+
4

3D(1− 2βd)
Y KL

PQ

(

AM
[µA

P
ν ∂ρA

Q
σ] −

1

4
AM

[µ [Aν , Aρ]E
PAQ

σ]

)

.
(4.7)

Here one does not need to add any extra fields to covariantise the expression since it

does not appear in the Lagrangian. Moreover, all possible extra terms should disappear

from the Bianchi identity as well and hence do not show up at all. Due to the duality

relation between Fµν and Fµνρσ to be derived later as the field equation of the magnetic 2-

form potential Bµν
m, one can also write down the external diffeomorphisms for the 3-form

potential Cµνρ using the 2-form field strength, rather than the 4-form.
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Under arbitrary variations of the p-form potentials the covariant field strengths trans-

form as follows:

δFµν
M = 2D[µ∆AM

ν] − Y MN
KL ∂N∆Bµν

KL,

δFµνρ
KL = 3D[µ∆Bνρ]

KL +
3

D(1− 2βd)
Y KL

PQ F[µν
P∆AQ

ρ]

− 3
(

∂N∆Cµνρ
N,KL − Y KL

PQ ∂N∆Cµνρ
Q,PN

)

,

δFµνρσ
M,KL = 4D[µ∆Cνρσ]

M,KL +
1

3D(1− 2βd)

(

3

8
F[µν

M∆Bρσ]
KL − 1

4
F[µνρ

KLδAM
σ]

)

(4.8)

where it proves useful to define “covariant” transformations

∆AM
µ = δAM

µ ,

∆Bµν
KL = δBµν

KL − 1

D(1− 2βd)
Y KL

MNAM
[µ δA

N
ν] ,

∆Cµνρ
N,KL = δCµνρ

N,KL − δAN
[µBνρ]

KL − 1

3D(1− 2βd)
Y KL

RS A
N
[µA

R
ν δA

S
ρ].

(4.9)

Identifying the field Bµν
KL with the 2-form B-field of the maximal D = 6 supergravity, we

may expect its own gauge variation with a 1-form parameter Ξµ
KL to appear in the trans-

formation law as ∆Bµν
KL = 2D[µΞν]

KL +other terms. This will make the variations (4.8)

covariant. Apparently, the gauge variation of AM
µ would also be affected, and the same

is true for the 3-form potential. Hence, requiring that the field strengths transform co-

variantly leads to the following gauge transformations of the fields corresponding to the

SO(5, 5) duality group:2

∆AM
µ = DµΛ

M + Y MN
KL ∂NΞµ

KL,

∆Bµν
KL = 2D[µΞν]

KL − 1

D(1− 2βd)
Y KL

MNΛMFµν
N

+ 3
(

∂NΨµν
N,KL − Y KL

PQ∂NΨµν
P,NQ

)

,

∆Cµνρ
M,KL = 3D[µΨνρ]

M,KL −F[µν
MΞρ]

KL +
2

3D(1− 2βd)
Y KL

PQΛ
PFµνρ

QM .

(4.10)

In what follows we explicitly determine the relation between the field Cµνρ
N,KL in the for-

malism above and the 3-form potentials of the corresponding gauged supergravities. These

have different structures of the indices and will be related by the SO(5, 5) invariant tensors.

In order to compare with [41], one has to use the identity for SO(5, 5) gamma-matrices

γi(MNγi
K)L = 0. (4.11)

2It is important to note a subtlety that arises in even dimensions. For the off-shell formulation of the

theory the field Fµνρ
KL in the last line of (4.10) should be replaced by Gµνρ

KL.
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Then it is possible to rewrite the above relations in terms of the fields Bµν i and CµνρM :

∆AM
µ = DµΛ

M +
1

2
√
2
γiMN∂NΞµ i,

∆Bµν i = 2D[µΞν]i −
√
2 γiMNΛMFµν

N −
√
2

4
γiMN∂MΨµν N ,

∆CµνρM = 3D[µΨνρ]M + 3
√
2 γiMNF[µν

NΞρ]i +
√
2 γiMNΛNFµνρ i.

(4.12)

For the Bianchi identities we obtain:

3D[µFνρ]
M = − 1

2
√
2
γiMN∂MFµνρ i,

4D[µFνρσ]i = 3
√
2F[µν

MFρσ]
NγiMN +

√
2

4
γi

MN∂MFµνρσN .

(4.13)

The covariant gauge transformation δΛFµνρ
KL implies that the 3-form field strength

is a rank 2 generalised tensor of weight λ(F(3)) = 1/2. Indeed, decomposing the Y -tensor

in terms of the projector one obtains

δΛFµνρ
KL = ΛN∂NFµνρ

KL − 8Fµνρ
Q(L

P
K)

Q
N

P ∂NΛP +
1

2
∂NΛNFµνρ

KL. (4.14)

In what follows we will need the gauge transformation of the corresponding 10-plet Fµνρ i,

which takes the following suggestive form:

δΛFµνρ i = ΛN∂NFµνρ i −
1

2
(ti

j)M
N ∂NΛMFµνρ j +

1

2
∂NΛNFµνρ i, (4.15)

where (tij)M
N = γ[iMPγj]

PN represents the generators of SO(5, 5) in terms of the gamma-

matrices. Here we have used the following identity

P
K

L
P
Q γiQRγj RP = (tij)

K
L, (4.16)

which is true since the left hand side is traceless with respect to 10-dimensional indices.

Note that the expression (4.15) again has the form of a translational term plus weight plus

an SO(5, 5) local duality rotation.

5 Covariant exceptional field theory

In this section we present the invariant Lagrangian for the SO(5, 5) Exceptional Field

Theory, which has the following schematic structure:

LEFT = LEH(R̂) + Lsc(DµMMN ) + LV (Fµν
M ) + LT (Fµνρ

KL)

+ Ltop − eV (MMN , gµν).
(5.1)

Here the Einstein-Hilbert term LEH, the kinetic term for the scalar fields Lsc and the

vector fields potential LV can be written in a duality covariant form. In contrast, the

kinetic term for the rank 2 tensor potential LT as well as the topological Lagrangian Ltop

should be considered on a separate basis. Due to the usual subtlety with (k − 1)-forms in
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even D = 2k dimensions, writing the Lagrangian for the 2-form potential in D = 6 in a

fully duality covariant manner is nontrivial. This can be achieved by giving up manifest

Lorentz invariance [58], or by introducing extra scalar fields [59, 60]. However, for our needs

only the variation of the corresponding kinetic and topological Lagrangians is enough. As

will be shown here, the extended geomtery allows to write this variation in a duality and

Lorentz covariant way.

Finally, one should include the potential term eV (MMN , gµν) for the scalar fields,

which depends on derivatives along X
M and transforms as a density under the generalised

Lie derivative, leaving the action invariant.

5.1 Universal kinetic Lagrangian

For the curvature of the external metric Rµνρσ to be a scalar of weight zero under the

gauge transformations induced by the generalised Lie derivative, the corresponding spin-

connection ωµ
āb̄ should have weight zero as well. To ensure this we set the external vielbein

to be a scalar of weight λ(eāµ) = βd. The usual equation that determines the spin-connection

can be written in the following covariant form:

D[µeν]
ā − 1

4
ω[µ

abeν]b = 0. (5.2)

In addition, since all the fields are dependent on the extended coordinates, so are the

parameters Λa
b of Lorentz rotations. The corresponding Lorentz-invariant Riemann scalar

then differs from the usual expression and has the same form as in [30]:

R̂µνāb̄ = Rµνāb̄ + Fµν
M eρā ∂Meρ b̄. (5.3)

Hence, the full covariant Einstein-Hilbert term takes the following form:

SEH = −1

2

∫

dnx dDX eR̂ = −1

2

∫

dnx dDX e eµāe
ν
b̄
R̂µν

āb̄. (5.4)

For the scalar degrees of freedom parameterised by the matrix MMN one writes the

general form of the Lagrangian as

Lsc =
1

4αd
e gµν DµMMN DνMMN . (5.5)

This expression is explicitly covariant with respect to the local gauge transformation gen-

erated by the generalised Lie derivative. Since we have for the weight of the vielbein

λ(eāµ) = βd, the total weight counting gives (d − 2)βd = 1, which is in precise corre-

spondence with the pattern for βd noticed in [22]. Indeed, if an expression T has weight

λ(T ) = 1, then its transformation can be written as a full derivative:

δΛT = ΛN∂NT + λ(T ) ∂NΛNT = ∂N (ΛNT ). (5.6)

This will prove useful in the verification of gauge invariance of the potential term

eV (MMN , gµν).
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The kinetic term for the 1-form potential AM
µ takes the following universal form:

LV = −1

4
eMMN Fµν

MFµν
N . (5.7)

One can substitute (2.2) for the scalar matrix MMN . Again, counting of weights gives the

total weight of 1.

Hence, altogether we have for the kinetic terms that can be written in a universal form:

L(U)
kin = −1

2
e R̂[g,F ] +

1

4αd
e gµν DµMMN DνMMN − 1

4
eMMN Fµν

MFµν
N . (5.8)

Because of the dualisation in even dimensions one has to consider the kinetic term for

the 2-form potential separately. This term together with the corresponding topological

Lagrangian is considered in the next two sections.

5.2 Kinetic and topological action for the p-forms

Comparing the transformation of the 2-form field (B.8) with that of [41] we define the

following fields in the 10 and 5̄ representations:

Bµν
KL =

1

16
√
2
γiKLBµνi,

Cµνρ
M,KL = − 1

6 · 160γ
iKLγi

MNCµνρN .

(5.9)

In analogy with the prescription of the gauged maximal D = 6 supergavity we do the

following replacements:
Fµνρm → Fµνρm,

Fµν
M → Fµν

M .
(5.10)

It is important to note that the replacement Fµνρm → Fµνρm only refers to the 5 of the 10

components of the field Fµνρ i. The remaining dual components will be restricted by the

field equation of the 3-form field CµνρM . Hence, as was described in section 2 the covariant

on-shell 10-plet field strength becomes

Gµνρ i =

[

Gm

Gm

]

µνρ

=

[

Fm

∗KmnFn

]

µνρ

. (5.11)

Now we are able to write the full variation of the kinetic and topological Lagrangians

for the p-forms with respect to variations of the p-form potentials (4.10) as follows

δ(Lkin + Ltop) = − e

2
MMNFµν MδFµν

N − κ

3!
ǫµνρσκλ ηijGµνρ iDσ∆Bκλ j

−
√
2κ

3!
ǫµνρσκλ Gµνρ i γ

i
MNFσκ

MδAλ
N

+

√
2κ

8
ǫµνρσκλFµν

M γiMN Fρσ
N ∆Bκλi

+

√
2κ

3 · 4! ǫ
µνρσκλ (Fµνρ i − Gµνρ i) γ

iMN∂M∆CσκλN .

(5.12)
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Although we are working with the true action that is not duality invariant, this variation

gives duality covariant equations of motion for the p-form field potentials. Note, that

variations of the magnetic and electric 2-form potentials are considered to be independent,

while the field strength Gµνρ i contains only electric degrees of freedom. This is done to

obtain the duality-covariant equations of motion with the correct number of physical fields.

The magnetic degrees of freedom are encoded in the field strength Fi defined as

Fµνρ i =

[

Fµνρm

Fµνρ
m.

]

(5.13)

The duality relation restricting Fm will follow from the equations of motion of the 3-form

potential CµνρM .

The above variation is constructed in the following way. One starts with the first two

terms above with an arbitrary relative coefficient κ. These simply correspond to variations

coming from the kinetic terms for the 1- and 2-form potentials. Next, one adds the necessary

contributions to make the expression invariant under the gauge transformations generated

by Ξµ i and Ψµν M . The most straightforward way to see this invariance is to rewrite the

above expression using the equation (B.20) as follows:

δ(Lkin + Ltop) =− e

2
MMN Fµν M δFµν

N − κ

3 · 3! ǫ
µνρσκλ ηijGµνρ i δFσκλ i

+

√
2κ

8
ǫµνρσκλFµν

M γiMN Fρσ
N ∆Bκλ i

−
√
2κ

3 · 4! ǫ
µνρσκλFµνρ i γ

iMN∂M∆CµνρN ,

(5.14)

The first two terms are trivially invariant under the variations Ξµν i and ΨµνρM of the 2-

and 3-forms respectively. To see that the Ξµν i variations of the other two terms cancel,

one integrates by parts ∂M in the second term and uses the Bianchi identity (B.30). This

gives a full derivative of the form D(FF Ξ) and hence vanishes. Cancellation of ΨµνρM

variations works in the very same way. Note that Ξµν i is a generalised 10-plet of weight

λΞ = 1/2 (cf. (4.15)).

Let us look at the equations of motion for the 3-form potential CµνρM which give a

relation between the covariant field strength Fµνρ i and Gµνρ i:

γm
MN ∂N (Fµνρ

m − Gµνρ
m) = 0. (5.15)

This is the EFT analogue of the equation

g θMm (Fm − ∗KmnFn) = 0, (5.16)

which constrains the dual component Fµνρ
m. The above equation can be obtained from

its EFT analogue by means of Scherk-Schwarz reduction, which expresses the components

of the embedding tensor θM i = (θM m, θMm ) in terms of twist matrices. Covariance of the

equation (5.15) in the extended geometry sense follows from the identity

δΛ

(

∂NΨN
QR − Y KL

P (Q∂R)Ψ
P
KL

)

= LΛ

(

∂NΨN
QR − Y KL

P (Q∂R)Ψ
P
KL

)

, (5.17)

which is true for any generalised tensor ΨP
KL = ΨP

LK .
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Using the Bianchi identity (4.6), the bosonic field equation of the magnetic 2-form

potential Bµν
m can be written in the following form

γm
KL ∂K

(

Fµνρσ L +
1

4κ
ǫµνρσκλ eMLN FκλN

)

= 0. (5.18)

This is the EFT analogue of the on-shell duality relation between the 3-forms and the

1-forms (see the section 2). This equation will prove useful for establishing invariance of

the Lagrangian under external d = 5 + 1 diffeomorphisms, that will fix all the remaining

freedom in choosing relative coefficients in (5.12).

The relative factor κ can not be fixed by gauge invariance and remains undetermined

here. Further we will see that in order to have the Lagrangian invariant under the external

(5 + 1)-dimensional diffeomorphisms generated by the shift xµ → xµ + ξµ(x), one should

set κ = 1/2.

5.3 Field equations and pseudo-action

In the previous section the true action has been constructed. In its general form it repeats

the action of maximal D = 6 gauged supergravity, however with additional subtleties due

to dependency on the extended coordinates. However, in order to provide a fully duality-

covariant formulation of the theory one has to construct a pseudo-action.

The kinetic term for 1- and 2-form potentials has its usual form and can be easily

written as

Lkin = − e

2 · 3!Fµνρ iMijFµνρ
j −

e

4
Fµν

MFµν NMMN , (5.19)

where Mij is the 10× 10 duality covariant scalar matrix constructed of the matrices Kmn
1

and Kmn
2 as blocks (see section 2 and the lectures [57] for more details). Here we have

already set κ = 1/2 for convenience. In addition, to obtain equations of motion consistent

with the first order self-duality equations and Bianchi identities one should add a topological

term, that is a term that does not contain the spacetime metric gµν as well as the scalar

matrices MMN or Mij . As in the gauged case the easiest way to do this is to construct

its variation, since the topological Lagrangian itself is not covariant. Hence, we have

δLtop = e−1ǫµνρσκλ
(

− 1

3!
DσFµνρi∆Bκλ

i +
1

3
√
2
FµνρiFσκγ

iδAλ

− 1

8
√
2
Fµνγ

iFρσ∆Bκλ i +
1

4!3
√
2
Fµνρ iγ

iMN∂M∆CµνρN

)

,

(5.20)

where we have used the spinor notation for Fµν
M and δAM

µ . Given the expressions (4.12) it

is straightforward to show that the above variation vanishes on the gauge transformation.

Hence, the corresponding pseudo-action is duality invariant. Note, that this topological

term has very similar structure to the one obtained in [61, 62].

Now using the general variations of the field strengths (4.8) the above variation can

be recast in the following nice covariant form

δLtop = e−1ǫµνρσκλ
(

1

36
Fµνρ i δFσκλ

i +
1

48
FµνρσM δFκλ

M

)

= F i ∧ δFi + FM ∧ δFM ,

(5.21)
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where we define a p-form ω as

ω =
1

p!
ωµ1...µpdx

µ1 ∧ · · · ∧ dxµp . (5.22)

Using the explicit form of the variations (4.8) together with Bianchi identities (4.13) after

a lengthy but straightforward calculation one shows that the variation δ(Lkin+Ltop) gives

the same equations of motion as the true action (5.12) upon the self-duality condition that

is imposed by hands.

It is a common situation for Exceptional Field Theories that the topological term is

most conveniently written as an integral of a full derivative over a higher-dimensional space

whose boundary is the 6-dimensional spacetime.3 With some abuse of notation this can be

written as

Stop =

∫

d6x d16XLtop

=

∫

d7X d16X

(

2 ηijFi ∧ DFj −
1√
2
F ∧ γiF ∧ Fi

) (5.23)

where we used the following differential form notation

FM =
1

2
Fµν

MdXµ ∧ dXν ,

Fi =
1

3!
Fµνρ i dX

µ ∧ dXν ∧ dXρ.

(5.24)

Again the above expression is very similar to the structure of the topological action

of [61, 62].

The particular form of the topological Lagrangian Ltop is not manifestly covariant and

therefore is not very useful for our further discussion. Invariance of the topological action

as well as equivalence of the variation of (5.23) to (5.20) goes precisely in the same way as

for the E7(7) and SL(2)× SL(3) exceptional field theories [31, 33]. Note that each term in

the topological action (5.23) is of weight 1. Given that each of the field strengths employed

here are gauge covariant, this ensures gauge invariance.

Hence, the full duality invariant formulation of the theory is given by the

following action

L =− 1

2
e R̂[g,F ] +

1

4αd
e gµν DµMMN DνMMN − e

2 · 3!Fµνρ iMijFµνρ
j

− e

4
Fµν

MFµνNMMN − eV + Ltop,
(5.25)

with the topological Lagrangian given by (5.23). In addition one has to impose the following

self-duality condition by hands

Fµνρ i = − 1

3!
e−1ǫµνρσκλ ηijMjkFσκλ

k. (5.26)

Note, that here we use the fully-covariant field strengths. It is important to mention, that

equations of motion for the 3-form potential give this self-duality relation only under the

derivative γiMN∂N . To return to the true action and the GL(5) formulation one has to fix

the form of the SO(5, 5) invariant matrix Mij as in (2.17).

3Note, that this is just a convenient way to encode the topological term and to reproduce its variation.

There is no physical meaning of the D = 7 spacetime in this setting.
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5.4 The invariant potential

Scalar fields of the theory are encoded in the generalised metric MMN , which transforms

as a tensor of weight λ(M) = 0. Recall the expression for the transformation law of a

tensor of weight λ:

δΛT
M = ΛN∂NTM − αd P

M
N

K
L ∂KΛLTN + λ(∂KΛK)TM . (5.27)

Although a generalised vector on extended space transforming as (3.1) has the weight

λ = βd, in this section we will need a more general class of fields with a different weight.

Now we would like to construct a potential for the scalar fields MMN that is gauge

invariant and includes derivatives with respect to X
M of the generalised metric as well as

the external metric gµν and its determinant g = det gµν . The desired expression turns out

to be:

V =− 1

4αd
MMN∂MMKL∂NMKL +

1

2
MMN∂MMKL∂LMNK

− 1

2
(g−1∂Mg)∂NMMN − 1

4
MMN (g−1∂Mg)(g−1∂Ng)− 1

4
MMN∂Mgµν∂Ngµν ,

(5.28)

where the terms in the first line are precisely those of [42], while the rest of the terms

are needed to ensure gauge invariance. One should note the determinant
√−g in the

action (5.1).

The most convenient way to check that the above potential is invariant under the trans-

formations induced by generalised Lie derivative is to introduce a non-covariant variation:

∆Λ = δΛ − LΛ, (5.29)

which measures how much the variation δ of an non-covariant expression differs from its

covariant variation. Then it is sufficient to check only the variations of non-covariant terms,

e.g. for the first term in the potential we have:

δΛ(MMN∂MMKL∂NMKL)

= δΛMMN∂MMKL∂NMKL +MMNδΛ(∂MMKL)∂NMKL

+MMN∂MMKLδΛ(∂NMKL)

= LΛ(MMN∂MMKL∂NMKL)+MMN∆Λ(∂MMKL)∂NMKL

+MMN∂MMKL∆Λ(∂NMKL).

(5.30)

The first term in the last line above automatically gives a gauge-covariant expression and

we are left only with the last two terms.

Let us now explicitly calculate the non-covariant variation of the term ∂MMKL and

then list the corresponding variations for the other relevant expressions. Thus, we write:

δΛ(∂MMKL) = ∂M

(

ΛN∂NMKL − 2αd P
P
Q
(K

N ML)N∂PΛ
Q
)

,

LΛ(∂MMKL) = ΛN∂N∂MMKL − 2αd P
P
Q
(K

N ∂MML)N∂PΛ
Q

+ αd P
P
Q
N

M ∂PΛ
Q∂NMKL + λ(∂M) ∂NΛN∂MMKL,

(5.31)
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where we added a non-zero weight for ∂MMKL. We simplify the last line by using the

section constraint and by setting the weight to be λ(∂M) = −βd, which leads to:

∆Λ(∂MMKL) = −2αd P
R
P
(K

QML)Q∂MRΛ
P . (5.32)

This choice of the weight λ(∂M) can be motivated by the fact that a geometric generalised

vector, i.e. an object transforming as (3.1), has a weight βd. Hence, a derivative with

respect to the coordinate X
M should add a weight −βd to any expression.

Following the same steps one constructs non-covariant variations for the other relevant

expressions and obtains:

∆Λ(∂NMKL) = + 2αd P
R
P
Q
(K ML)Q∂NRΛ

P ,

∆Λ(g
−1∂Mg) = 2 d βd ∂MNΛN ,

∆Λ(∂Mgµν) =− 2βd ∂MNΛNgµν ,

∆Λ(∂Mgµν) = 2βd ∂MNΛNgµν .

(5.33)

Note that the weight λ(eāµ) = βd for the vielbein derived in the previous section implies

the following values:

λ(g−1∂Mg) = −βd, λ(∂Mgµν) = −3βd, λ(∂Mgµν) = βd. (5.34)

With these conventions the total weight of each term in the potential together with the

prefactor of e = det eāµ is precisely 1.

Putting all of this together we get for the variation (5.30) of the first term in the

potential:

δΛ

(

− e

4αd
MMN ∂MMKL ∂NMKL

)

→ eMMN
P
P
Q
(K

R ML)R ∂NMKL ∂MPΛ
Q

= eMMNMKL ∂MMKP ∂LNΛP .

(5.35)

In the second line we used the fact that the matrix MMN parameterises the coset G/K

with G being the U-duality group. Then one is able to construct a current

(JM )PQ := MPR∂MMRQ, (5.36)

that belongs to the algebra g of the group G and is invariant under the action of the

projector on the adjoint. Hence, we write

P
P
Q
K

L(JN )LK = (JN )PQ. (5.37)

For the non-covariant part of the variation of the second term in the potential we

obtain

δΛ

(

e

2
MMN∂MMKL∂LMNK

)

→

→ −e

2
αd

(

P
R
P
(K

QML)QMMN∂LMNK∂MRΛ
P

− P
R
P
Q
(N MK)QMMN∂MMKL∂LRΛ

P
)

= −e αdMMN
P
R
P
Q
N (JM )LQ ∂LRΛ

P + e βd ∂KMKL∂LPΛ
P

+ e ∂PMKL ∂KLL
P ,

(5.38)
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where the section condition was used in the third line. To cancel the variation of the first

term in the potential (5.35) one has to modify the first term in the last line above. Using

the property (5.37) of the current me rewrite this term as

e αdMMN
P
R
P
Q
N (JM )LQ ∂LRΛ

P = e αdMMN
P
R
P
Q
N P

Q
L
U
V (JM )V U ∂LRΛ

P . (5.39)

Next, expressing the projectors back in terms of the tensor Y MN
KL and using the invariance

condition in the first line of (3.3) we obtain for this term:

e βdMMN
P
L
N

U
V (JM )V U ∂LPΛ

P + eMMN
P
L
P
U
V (JM )V U ∂LNΛP

= −e βd ∂MMLM ∂LPΛ
P + eMMNMLK ∂MMKP ∂LNΛP .

(5.40)

Hence, in total for the non-covariant part of the variation of the second term in the potential

we have:

δΛ

(

e

2
MMN ∂MMKL∂LMNK

)

→

→ −eMMNMLK ∂MMKP ∂LNΛP + 2βd ∂KMKL ∂LPΛ
P + e ∂PMKL ∂KLΛ

P ,

(5.41)

and the variation (5.35) is successfully cancelled. The remaining terms linear in ∂M are

cancelled with the terms coming from the second line in the potential (5.28).

Indeed, consider the contraction

∆Λ(∂NMMN ) = −(2βd + 1) ∂NPΛ
PMMN −MNK ∂NKΛM , (5.42)

where the section constraint was taken into account. Then, the non-covariant variations of

the terms 3, 4 and 5 in the potential can be written as

∆Λ(3) =− d βd e ∂MPΛ
P ∂NMMN + 2βd ∂M e ∂NPΛ

P MMN +MNK ∂Me ∂NKΛM ,

∆Λ(4) =− 2 d βdMMN ∂Me ∂NPΛ
P ,

∆Λ(5) = 2βdMMN ∂Me ∂NPΛ
P .

(5.43)

Altogether, combining these with the remaining pieces from (5.41) we obtain for the total

variation

δΛ(e V ) = ∂N (eΛNV ) + e∆ΛV

= ∂N (eΛNV )− e ∂MPΛ
P ∂NMMN + e ∂PMKL ∂KLΛ

P

− ∂MeMMN ∂NPΛ
P +MKL ∂P e ∂KLΛ

P

= ∂N
(

eΛNV − e ∂PQΛ
P MQN + eMKL ∂KLΛ

N
)

→ 0,

(5.44)

where we used the identity g−1∂Mg = 2 e−1 ∂Me.

Hence, it has been explicitly shown that the potential for the scalar fields (5.28) is

invariant under the transformations induced by the generalised Lie derivative up to bound-

ary terms, which drop from the corresponding action. Remarkably, all the coefficients are

fixed by the gauge invariance, up to an overall prefactor. Moreover, weight counting for
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the terms in the potential together with the invariance of the Einstein-Hilbert term give

the correct pattern for βd. It is interesting to note, that although the invariance condition

for the Y -tensor looks differently for the E6(6), the scalar potential is given by the same

expression (5.28).

Finally, in precise analogy with the E7(7) case [31], to compare with the previous

results [42] for the potential for MMN one uses the truncation gµν = e2∆ηµν and rescales

the generalised metric as MMN → eγ∆MMN . To ensure the U-duality invariance the field

∆ = ∆(X) must be an independent degree of freedom.

5.5 External D = 5 + 1 diffeomorphisms

We have seen that invariance of the Lagrangian with respect to gauge transformations

generated by the generalised Lie derivative fixes the relative coefficients of different terms

inside the potential. Same as in the EFT’s for the other duality groups, the relative coef-

ficients of different terms within (5.1) are fixed by imposing invariance with respect to the

external diffeomorphisms. For a diffeomorphism generated by a parameter ξµ that does

not depend on the extended coordinates X
M , each term in the Lagrangian is manifestly

invariant. However, the situation becomes more subtle if one considers a general depen-

dence of the parameter on extended coordinates. In close analogy with the other EFT’s

we consider the following transformations:

δeāµ = ξµDνe
ā
µ +Dµξ

νeāν = Lξ
Deāµ,

δMMN = ξµDµMMN = Lξ
DMMN ,

δAM
µ = ξνFνµ +MMNgµν∂Nξν = Lξ

DAM
µ + . . . ,

∆Bµν i = ξρGρµν i = Lξ
DBµν i + . . . ,

∆CµνρN =
e

4κ
ǫµνρσκλξ

σFκλMMMN .

(5.45)

Here Lξ
D denotes the conventional Lie derivative along ξµ built from the covariantised

derivatives Dµ. Transformation of the 3-form potential is required to be of this particular

form by invariance of the Lagrangian. Note however, that this is equal to the conven-

tional form ∆CµνρN = ξσFσµνρM on the equations of motion of the “magnetic” 2-form

potential (5.18) for any κ.

In what follows we will focus mainly on the terms that contain the derivative ∂Mξµ,

referring to them as new terms. By contrast, cancellation of the other contributions works

in a way similar to the maximal gauged supergravity and hence does not require a detailed

analysis.

Let us start first with transformation of the kinetic term for the scalar fields MMN ,

whose cancellation with the kinetic term for vector fields is universal. Hence, we write

δξ(DµMMN ) = Lξ
D(DµMMN ) + 2αdMP (MPN)

P
R
S Fµν

R ∂Sξ
ν

−MKP∂KMMN ∂P ξ
νgµν − 2αdMP (MPN)

P
R
S ∂S(MRQgµν ∂Qξ

ν).

(5.46)
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Substituting this into the variation of the kinetic term for scalars and keeping only the

relevant terms we obtain:

1

4αd
δξ(e g

µνDµMMN DνMMN )

= e gµρDρMMNMNK Fµν
K∂Mξν

+ e

(

MNL∂MMLK − 1

2αd
MKL∂LMMN

)

DµMMN∂Kξµ

+ . . . .

(5.47)

Here the dots denote the omitted part of the variation which is not relevant for setting up

the relative coefficients between the terms of (5.1). The first term above will be cancelled by

a corresponding contribution from the variation of the kinetic term of the 1-form potential.

In order to cancel the second term in the expression above we consider the variation of

the scalar potential V , which enters the Lagrangian with negative sign. Again, following

only the most indicative terms we write (cf. [30]):

δξV = δξ

(

1

2
MNL ∂MMLK − 1

4αd
MKL ∂LMMN

)

∂KMMN + . . .

=

(

MNL ∂MMLK − 1

2αd
MKL ∂LMMN

)

DµMMN∂Kξµ + . . . .

(5.48)

We observe that this variation successfully cancels the variation (5.47), in line with what

appears to be a common behaviour of every EFT.

To see the other cancellations, let us turn to the vector-tensor sector of the model. The

corresponding variation is given in the duality covariant form (5.12). In what follows we

will drop variations of the density e and the external metric gµν , which as usual complete

the variations of the other terms to full derivatives. Hence, for the terms in (5.12) we have:

(1) = −1

2
eMMN Fµν MδFµν

N ,

(2) = − κ

3!
ǫµνρσκλ Gµνρ iDσ∆Bκλ j η

ij ,

(3) =

√
2κ

8
ǫµνρσκλFµν

MγiMNFρσ
N ∆Bκλ i,

(4) = −
√
2κ

3!
ǫµνρσκλ Gµνρ i γ

i
MNFσκ

M ∆Aλ
N ,

(5) = −
√
2κ

3 · 4! ǫ
µνρσκλ (Gµνρ i −Fµνρ i) γ

iMN ∂M∆CσκλN ,

(5.49)

where in the last term we have traded the field Cµνρ
M,KL for CµνρM for convenience.

Let us start with the terms (3) and (4), which upon substitution of the explicit ex-

pressions for the variation (5.45) give:

(3) + (4) = −
√
2κ

3!
ǫµνρσκλ Gµνρ iγ

i
MN Fσκ

MFϕλ
Nξϕ

−
√
2κ

3!
ǫµνρσκλ Gµνρ iγ

i
MN Fσκ

MMNKgλϕ∂Kξϕ

+

√
2κ

8
ǫµνρσκλ ξϕGϕκλ iγ

i
MN Fµν

MFρσ
N .

(5.50)
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The first and the last terms together can be organised into an expression with seven indices

{µνρσκλϕ} antisymmetrised and hence vanish.

To see further cancellations consider the variation of the 2-form field strength:

δξFµν
M = 2D[µ∆Aν]

M − 1

2
√
2
γiMN ∂NBµν i

= 2D[µ(ξ
ρF|ρ|ν]

M ) + 2D[µ(MMN gν]ρ ∂Nξρ)− 1

2
√
2
∂N (ξρ Gµνρ i)γ

iMN

= Lξ
DFµν

M − 1

2
√
2
∂N

(

Gµνρ i −Fµνρ i

)

ξργiMN − 1

2
√
2
∂Nξρ Gµνρ iγ

iMN

+ 2D[µ(MMN gν]ρ ∂Nξρ),

(5.51)

where we have used the Bianchi identity for the field Fµν
M to organise the conventional

Lie derivatives Lξ
D everywhere. One should note the remark at the end of the section 4.

The last term in the variation above being substituted into (1) cancels the corresponding

term coming from variation of the modified Einstein-Hilbert term precisely in the same

way as it takes place in the other EFT’s. The term Lξ
DFµν

M above forms a full derivative

together with the variation of the determinant e and the generalised metric MMN . The

remaining piece in the variation (1) together with (5) gives:

(1) + (5) =
1

4
√
2
eMMNFµν M ∂K

(

Gµνρ i −Fµνρ i

)

ξργiNK

+
e

4
√
2
MMNFµν MGµνρ iγ

iNK ∂Kξρ

−
√
2κ

16

(

Gµνρ i −Fµνρ i

)

γiMN ∂M
(

eMNK ξρFµν K
)

,

(5.52)

where we have used the explicit from of the variation ∆ξCµνρM and contracted two epsilon

tensors. Observe that the first and the last terms above cancel each other off-shell.

The remaining term above cancels with the corresponding piece in (5.50) if one chooses

κ = 1/2 and takes into account the self-duality condition for the field strengths Gµνρ i

dressed up with the scalar matrix [63]:

1

3!
ǫµνρσκλ Gσκλ i γ

i
MNMNK = eMMNGµνρ

i γ
iNK . (5.53)

It is important to mention here that in the case of D = 6 maximal gauged super-

gravity the factor κ remains undetermined unless one considers supersymmetry invari-

ance. The novel feature of the EFT approach is that it is fixed at the level of bosonic

equations of motion.

Finally, the term (2) works in the same way as for the D = 6 maximal gauged super-

gravity, forming a full derivative together with the variation of the determinant e and the

scalar matrix Kmn.

6 Embeddings of D = 11 and Type IIB supergavity

The coordinate space of the SO(5, 5) Exceptional Field Theory is parameterised by six

external coordinates xµ and 16 extended coordinates X
M . Dynamics along the latter is
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restricted by the section condition

γiMN∂M • ∂N• = 0. (6.1)

In this section we consider two solutions of this equation that break the SO(5, 5) duality

group to GL(5) ≃ SL(5)×GL(1) and GL(4)× SL(2). The corresponding split of the field

content of EFT gives the field content of D = 11 and Type IIB supergravities respectively.

In the latter case one finds a manifest SL(2) covariant formulation.

Let us start with the decomposition with respect to the SL(5) × GL(1) subalgebra.

Since this contains a GL(1) subgroup this decomposition is performed by removing a node

from the Dynkin diagram for SO(5, 5):4

=⇒

The corresponding branching rules for the relevant representations take the following form

16 −→ 5̄+3 ⊕ 10−1 ⊕ 1−5,

10 −→ 5+2 ⊕ 5̄−2,
(6.2)

where the subscript denotes weight with respect to GL(1) rescalings. Using the decompo-

sition of 16 we have for the coordinate X
M :

{XM} −→ {xm, ymn, zmnpqr}, (6.3)

where xm is the conventional geometric coordinate, while ymn and zmnpqr correspond to the

winding modes of the M2- and M5-branes. To solve the section condition one leaves only

the dependence of the five coordinates xm that restores the eleven-dimensional spacetime

of the D = 11 supergravity.

In the on-shell formulation equations of motion for the 3-form fields CµνρM give the

self-duality relation for the 2-form potentials leaving only five of ten. Hence, for the p-forms

we have the following:

AM
µ −→ Am

µ , Aµmn, Aµ;

Bµν i −→ Bµν m.
(6.4)

This nicely fits into the decomposition of eleven-dimensional fields under the split 11 = 6+5,

that is (see (2.1)):

G
M̂N̂

−→ gµν , A
m
µ , ϕmn;

C
M̂N̂K̂

−→ Cµνρ, Bµν m, Aµmn, ϕmnp.
(6.5)

Upon dualizing the 3-form field Cµνρ one identifies all the 1-forms here. The five 2-forms

are identified with five electric 2-form potentials Bµν m of the EFT. Note, that one is free

to choose the five electric forms among ten Bµν i by choosing an appropriate U-duality

4All branching rules provided in this section were obtained by using the Mathematica package

LieART [64]. This reference is also recommended for theoretical background on subalgebra decomposi-

tion and branching rules, and for further references.
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frame. If one works off-shell and keeps the 3-forms one has to keep the magnetic 2-forms

as well and identify these to the fields coming from the magnetic 6-form potential of 11-

dimensional supergravity. However, since we are working in the true action formalism it is

more consistent to keep the discussion essentially on-shell.

The scalar matrix MMN is built from the coset representative VM
αα̇, which is an

element of SO(5, 5). The adjoint representation 45 of SO(5, 5) is decomposed under SL(5)

as follows

45 −→ 10 + 240 + 10+4 + 10−4. (6.6)

The compact subgroup of the last two terms correspond to generators of one of the SO(5)

in the local subgroup SO(5) × SO(5) and hence drop. The other SO(5) appears as the

compact subgroup of the SL(5) generators given by 240 and should be dropped as well.

The remaining 25 degrees of freedom correspond to the symmetric matrix ϕmn and the

3-form ϕmnk.

Decomposition of SO(5, 5) with respect to a GL(4) that is not a subgroup of the GL(5)

above is performed by adding the most negative root to the Dynkin diagram. The resulting

diagram becomes linearly dependent and decomposes into a sum. Hence, for algebras in

the Dn class we have

=⇒

where the added root is denoted by the grey circle. Under this procedure the algebra

SO(5, 5) is decomposed as

SO(5, 5) ←֓ SL(4)⊕ SL(2)⊕ SL(2). (6.7)

To identify geometric and winding coordinates among X
M one writes the corresponding

branching rule for the 16 representation

16 −→ (4, 1, 2)⊕ (4̄, 2, 1). (6.8)

One has here two pairs of four coordinates each pair transforming under one of the SL(2)

algebras in the decomposition. We identify the representation (4̄, 2, 1) with the doublet of

winding coordinates ymα̂ corresponding to the fundamental F1-string and the D1-brane.

The corresponding SL(2) is then identified with S-duality group of Type IIB theory.

The remaining SL(2)-doublet (4, 1, 2) is composed of the geometric coordinates xm

corresponding to translational modes and the coordinates zmnr corresponding to windings

of the D3-brane. This explicit choice breaks the SL(2) symmetry leaving only its GL(1)

subgroup. Hence, we have the following decomposition for extended coordinates

{XM} −→ {xm, ymα̂, zmnr}. (6.9)

Upon this choice of the solution of section condition one considers the embedding

GL(4)× SL(2) →֒ SO(5, 5) and the corresponding branching rules read

16 −→ (4, 1)+1 ⊕ (4̄, 2)0 ⊕ (4, 1)−1;

10 −→ (1, 2)+1 ⊕ (6, 1)0 ⊕ (1, 2)−1,
(6.10)

where the subscript denotes weight with respect to the GL(1).
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By construction it is manifest that the GL(4) group here is not a subgroup of the GL(5)

group above. Such a case would correspond to Type IIA supergravity that is a reduction

of D = 11 supergravity on a circle. A nice explicit example of the relation between Type

IIA and Type IIB supergravities in the O(3, 3) formulation coming from reduction of the

SL(5) covariant field theory is provided in [65].

Field content of Type IIB supergravity is decomposed as follows:

GMN −→ gµν , A
m
µ , ϕmn;

Cα̂ −→ ϕα̂;

BMNα̂ −→ Bµν α̂, Aµm α̂, ϕmn α̂;

CMNKL −→ Bµν mn, Aµmnr, ϕmnrs, Cµνρσ, Cµνρm.

(6.11)

The last two fields and a half of d.o.f’s of the 2-form field in the last line should be dropped

due to the self-duality condition in 10 dimensions.

The representation 45 parameterised by the generalised vielbein V under the algebra

decomposition goes according to the following rule

45 −→ (1, 1)+2 + (1, 1)0 + (1, 1)−2 + (2, 6)+1 + (2, 6)−1 + (3, 1)0 + (1, 15)0. (6.12)

We see, that the SO(5)×SO(5) subalgebra is broken and one can see here only the O(4)×
O(4) generators corresponding to the T-duality coset O(n, n)/O(n) × O(n). As in the

previous case, one of these O(4) appears as a compact part of (2, 6)1 ⊕ (2, 6)−1 of SL(4)

and the other comes from (1, 15)0.

On the level of fields, the scalar matrix MMN is composed of the 25 scalars in the

usual way [66]:

{ϕα̂, ϕmn, ϕmnα̂, ϕmnrs} −→ MMN . (6.13)

The vector fields are collected according to the decomposition of the 16:

{Am
µ , Aµm α̂, Aµmnr} −→ AM

µ . (6.14)

There are only five 2-form fields in the field content that correspond to the five electric

2-forms:

{Bµν α̂, Bµν mn} −→ Bµν m. (6.15)

Note that there remain only three of six 2-forms Bµνmn due to the self-duality condition.

Alternatively, one may switch to the so called democratic formulation of Type IIB super-

gravity [67], where all p-forms including their duals are present. In this case one has to

keep the 3-form field CµνρM and all the ten 2-forms.

7 Outlook and conclusion

The bosonic SO(5, 5) covariant field theory constructed here forms a link in the chain of

Exceptional Field Theories with their gauge groups being the exceptional groups Ed(d) [30–

33]. The key feature of EFT is the notion of generalised Lie derivative, which is an analogue

of the conventional Lie derivative with an appropriate exceptional group instead of GL(D).
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This transformation acts as a gauge symmetry of the theory, which is constructed in the

spirit of Yang-Mills model.

We have shown how the unusual properties of the new gauge transformation such as

the necessity of section condition and failure of the Jacobi identity naturally lead to tensor

hierarchy. The story is kept as general as possible and can be carried over to the SL(5) and

SL(2) × SL(3) groups as well. One needs to do small modifications in the identities (3.3)

and (3.4) in order to go to the E6 case (see [53] for more detailed discussion of this issue).

We construct both the true action, which gives covariant equations of motion as well

as all duality relation, and the pseudo-action, which is manifestly duality invariant. The

true action is not invariant under the gauge transformations induced by local coordinate

transformations of the extended space. The invariant pseudo-action takes the following

simple form:

L =− 1

2
e R̂[g,F ] +

1

4αd
e gµν DµMMN DνMMN − e

2 · 3!Fµνρ iMijFµνρ
j

− e

4
Fµν

MFµνNMMN − eV + Ltop.
(7.1)

Here, the topological Lagrangian is defined by an integral of an exact form over a

non-physical seven-dimensional spacetime, whose boundary is the six-dimensional phys-

ical spacetime

Stop =

∫

d6x d16XLtop

=

∫

d7X d16X

(

2 ηijFi ∧ DFj −
1√
2
F ∧ γiF ∧ Fi

)

.

(7.2)

The pseudo-action is supplemented with the modified duality covariant Einstein-Hilbert

term R̂[g,F ], that has the same form as in the other EFT’s, and the scalar potential V

that governs the dynamics of the generalised metric MMN in the extended space. The

latter is written in the most general form as well. In addition one imposes the following

self-duality condition by hands

∗Fi = −ηij Mjk Fk . (7.3)

We have shown that in order to have the potential invariant under duality transfor-

mations generated by ΛM one has to fix the weights of the vielbein and generalised metric

to be βd and 0 respectively. This in turn fixes the value of βd that perfectly reproduces

the value needed for consistency of the algebra [22]. One concludes that the construction

of EFT is very rigid and natural.

Gauge invariance constrains the action but leaves undetermined the relative coefficients

between the Einstein-Hilbert term, the scalar potential, the kinetic term for vector fields

and the action for 2-forms. We have demonstrated that all these are fixed by requiring

the invariance with respect to external diffeomorphisms along ξµ = ξµ(x,X). The action

of external diffeomorphisms on the elementary fields of the theory is provided in (5.45).

Hence, the action becomes completely fixed. Note, that this is the novel feature of

EFT: normally the actions of maximal gauged supergravities become fixed only after im-

posing supersymmetry. The construction presented here considers only the bosonic sector
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of maximal supergravity in 6 dimensions. Fermions and supersymmetry can be added

following the similar approach as in [34, 35].

The section constraint, which one has always to keep in mind, effectively restricts

the dynamics in the extended space. There are two solutions of the condition that lead

to theories in 11 and in 10 dimensions. These are given by embeddings of GL(5) and

GL(4) × SL(2) in SO(5, 5). We show that under the first embedding the field content of

the constructed EFT perfectly fits the field content of D = 11 supergravity, while the

second embedding gives D = 10 Type IIB supergravity with manifest SL(2) symmetry.

Note, that the GL(4) is not a subgroup of the GL(5). However, one is always allowed to

do further branching with respect to the embedding GL(4) ⊂ GL(5), which gives Type

IIA supergravity. Hence, the Exceptional Field Theory construction considers D = 11

supergravity and Type IIB theory on the same footing, which is possible due to lack of

10-dimensional Lorentz symmetry.

Of special interest is the additional SL(2) symmetry of Type IIB supergravity recovered

in the EFT construction. Upon decomposition of the extended coordinates ΞM this corre-

sponds to rotations of the translational modes and the winding modes of the D3-branes.

The authors are not familiar with literature that mentions this kind of hidden symmetry

and avoid any interpretation based on such schematic derivation. One possibility is that

this is just an artefact of the EFT construction and appears only in the field decomposi-

tion rather than being a true symmetry of the Lagrangian. However, this seems to be an

interesting direction of further research.

Another possible way to solve the section constraint is to do a generalised Scherk-

Schwarz reduction that relaxes the differential constraint to a set of algebraic relations

on embedding tensor, known as quadratic constraints. For the E7 covariant theory this

was done in [68]. It is important to note, that as it was shown in [18], the quadratic

constraints are much weaker than the initial section condition, thus one may consider

certain gaugings that break the section condition. These are claimed to correspond to

the so called genuine non-geometric gaugings and are defined as such gaugings that do not

belong to any geometric U-duality orbit. It is expected that such gaugings can be employed

to stabilise moduli and construct inflationary potential [69]. Since classification of orbits

becomes more and more complicated as the rank of the gauge group increases, exceptional

field theories with simple duality groups can work as useful toy models for investigating

common features. In this sense, the model constructed here is a nice analogue of the E7

theory where one encounters pseudo-action and self-dual forms as well.

Finally, an interesting problem is to look for lifts of the known solutions of lower dimen-

sional supergravities into EFT. Lift of the M2-brane solution into the E7 supersymmetric

EFT was recently found in [70]. A fascinating property of the constructed lift is that the

corresponding higher-dimensional solution is free of singularities.
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A Notations and conventions

We collect here all the notations for indices used in this paper.

M̂, N̂, . . . = 0, . . . 10, 11-dimensional spacetime indices;

M, N, . . . = 0, . . . 9, 10-dimensional spacetime indices;

µ, ν, ρ . . . = 0, . . . 5, 6-dimensional spacetime indices;

ā, b̄, c̄ . . . = 0, . . . 5, 6-dimensional spacetime flat indices;

m,n, p . . . = 1, . . . 5, 5-dimensional internal curved indices;

m,n, p . . . = 1, . . . 4, 4-dimensional internal curved Type IIB indices;

α̂ = 1, 2, SL(2) Type IIB index;

M,N,K . . . = 1, . . . 16, SO(5, 5) spinor indices labelling the extended space;

i, j, k, l = 1, . . . 10, SO(5, 5) vector indices;

α, β, α̇, β̇ . . . = 1, . . . 4, spinor indices for each SO(5);

a, b, ȧ, ḃ . . . = 1, . . . 5, vector indices for each SO(5);

(A.1)

The SO(5, 5) gamma matrices are introduced by 16× 16 blocks γiMN and γiMN that

satisfy the usual anticommutation relations

γiMNγj NK + γiMNγj
NK = 2δijδ

K
N . (A.2)

The 10-dimensional vector indices labelled by i, j are raised and lowered by the SO(5, 5)

invariant tensor ηij , that is basically the flat metric.

B Covariant field strengths

B.1 Gauge transformations

The long spacetime derivative, covariant with respect to the D-bracket, was defined to be

of the following form

Dµ = ∂µ − LAµ
= ∂µ − [Aµ, •]D , (B.1)

where the generalised vector field AM
µ plays the role of the gauge connection. Let us now

find how should the vector field transform in order for the derivative Dµ to be covariant:

(δΛ − LΛ)
(

DµV
M
)

= ∂µδΛV
M − LδAµ

V M − LAµ
δΛV

M

− LΛ

(

∂µV
M
)

+ LΛLAµ
V M

= ∂µLΛV
M − LΛ

(

∂µV
M
)

− LδAµ
V M − [LAµ

,LΛ]V
M

= L∂µΛV
M − LδAµ

V M − L[Aµ,Λ]EV
M ,

(B.2)
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where in the second line we have used the closure condition and the linearity of LΛ with

respect to Λ. Since the E-bracket differs from the D-bracket by a trivial transforma-

tion (3.10), we may choose the transformation of AM
µ to be of the form similar to the

conventional Yang-Mills:

δΛA
M
µ = ∂µΛ

M − [Aµ,Λ]D
M = DµΛ

M . (B.3)

Since the E-bracket does not satisfy the Jacobi identity the commutator of covariant deriva-

tives in general does not give a covariant expression

[Dµ,Dν ] = −LFµν
, Fµν

M = 2 ∂[µAν]
M − [Aµ, Aν ]E

M . (B.4)

We refer to the quantity Fµν
M as a non-covariant field strength for the 1-form potential

AM
µ and similar for the other potentials. Under an arbitrary variation of the gauge field

δAM
µ the non-covariant field strength transforms as

δFµν
M = 2 ∂[µδA

M
ν] − 2[A[µ, δAν]]E

M

= 2
(

∂[µδA
M
ν] − [A[µ, δAν]]D

M
)

+ Y MN
KL ∂N (AK

[µδA
L
ν])

= 2D[µδA
M
ν] + Y MN

KL ∂N (AK
[µδA

L
ν]).

(B.5)

We see that if we restrict AM
µ to transform as a gauge connection (B.3), then the transfor-

mation of Fµν
M contains a covariant piece and some extra terms:

δΛFµν
M = (LΛFµν)

M − Y MN
KL ∂N

(

ΛKFµν
L −AK

[µ Dν]Λ
L
)

. (B.6)

In the spirit of tensor hierarchy the non-covariant terms here may absorbed into variation

of some 2-form Bµν
KL by defining the full covariant field strength

Fµν
M = Fµν

M − Y MN
KL ∂NBµν

KL. (B.7)

Its general variation takes the form

δFµν
M = 2D[µδA

M
ν] − Y MN

KL ∂N∆Bµν
KL, (B.8)

with

∆Bµν
KL = δBµν

KL − 1

D(1− 2βd)
Y KL

MNAM
[µ δA

N
ν] (B.9)

(we have used the relation Y MN
KL Y KL

PQ = D(1− 2βd)Y
MN
KL ). It is important that the B-field

transforms under Λ-transformations in such a way that the term Y MN
KL ∂NBµν

KL is not

covariant. Hence the expression (B.8) becomes a generalised tensor. Note that since the

full covariant field strength Fµν
M differs from Fµν

M by a trivial gauge transformation, it

appears in the commutator of covariant derivatives as well:

[Dµ,Dν ] = −LFµν
= −LFµν

. (B.10)

Requiring that the newly introduced field strength Fµν
M transform covariantly under

the transformations parametrized by ΛM should in principle fix the transformation law
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δΛBµν
KL. However, if we identify the field Bµν

KL with the 2-form B-field of the maximal

D = 5, 6 supergravities, we may expect its own gauge variation with a 1-form parameter

Ξµ
KL to modify the transformation law. The gauge variation of AM

µ would also be affected.

Overall, we may expect the following gauge transformations of the fields corresponding to

the SO(5, 5) and SL(5) duality groups [41]:

δAM
µ = DµΛ

M + Y MN
KL ∂NΞµ

KL,

∆Bµν
KL = 2D[µΞν]

KL − 1

D(1− 2βd)
Y KL

MNΛMFµν
N

+ 3
(

∂NΨµν
N,KL − Y KL

PQ∂NΨµν
P,NQ

)

.

For this choice of gauge transformations, the covariant field strength Fµν
M transforms as

a generalised vector with the appropriate weight βd:

δΛFµν
N = (LΛFµν)

M . (B.11)

Indeed, substituting the transformations (B.11) into (B.8) and taking into account the iden-

tity Y MN
KL Y KL

PQ = D(1− 2βd)Y
MN
KL , one obtains δFµν

M = [Λ,Fµν ]
M
D , that is exactly (B.11).

The Ψ terms in the variation ∆Bµν
KL (B.11) were added to covariantise the transfor-

mation of the field strength for the 2-form field Bµν
KL, that we are about to construct. It

is important, that they do not contribute to the transformation of the 2-form Fµν . One

can check that this combination of Y -contractions of a generalised tensor ηM,KL(= ηM,LK)

forms a generalised tensor

δΛ
(

∂NηN,KL − Y KL
PQ∂NηP,NQ

)

= LΛ

(

∂NηN,KL − Y KL
PQ∂NηP,NQ

)

. (B.12)

Together with the term Y MN
KL ∂MχKL these appear as extended geometry analogues of

differential forms in Riemannian geometry. Indeed, having a p-form ωp one does not need

a covariant derivative to construct a (p + 1)-form ωp+1 = dωp. Since we have exceptional

groups instead of GL(D) one does not simply antisymmetrise the corresponding indices.

The next step is to construct such a covariant 3-form field strength for the B-field that

its first term has the usual form D[µBνρ]
KL. The most straightforward way to proceed is

to start with the Bianchi identity for the covariant field strength Fµν
M :

3D[µFνρ]
M = −Y MN

KL ∂NFµνρ
KL, (B.13)

where again the covariant field strength F is constructed of the non-covariant one F by

adding an extra term to be determined

Fµνρ
KL = 3D[µBνρ]

KL +
3

D(1− 2βd)
Y KL

PQ

(

A
(P
[µ ∂νA

Q)
ρ] − 1

3
[A[µ, Aν ]E

(PA
Q)
ρ]

)

,

Fµνρ
KL = Fµνρ

KL − Φµνρ
KL.

(B.14)

The reader is referred to the next section for the details of this calculation. The last term

here will be constructed out of the next field in the tensor hierarchy, which is the 3-form

Cµνρ
M,KL, with some derivatives and possible contractions with the Y -tensor.
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Following the analogy with the gauged supergravity we would like the transformation

of the covariant field strength to be of the form

δFµνρ
KL = 3D[µ∆Bνρ]

KL +
3

D(1− 2βd)
Y KL

PQF[µν
P δAQ

ρ] −∆Φµνρ
KL. (B.15)

Taking the variation of (B.14) and transforming it to the form above we see, that the

remaining terms can be organized into a full derivative:

∆Φµνρ
KL = δΦµνρ

KL + 3 ∂N

(

− δAN
[µBνρ]

KL + Y KL
PQB[µν

PNδAQ
ρ]

− 1

3D(1− 2βd)
Y KL

RS

(

AN
[µA

R
ν δA

S
ρ] + Y RN

PQAP
[µA

S
ν δA

Q
ρ]

)

)

.

(B.16)

Defining the variation of the last remaining supergravity tensor field Cµνρ
M,KL to be

∆Cµνρ
N,KL = δCµνρ

N,KL − δAN
[µBνρ]

KL − 1

3D(1− 2βd)
Y KL

RS A
N
[µA

R
ν δA

S
ρ], (B.17)

we write

∆Φµνρ
KL = 3 ∂N∆Cµνρ

N,KL − 3Y KL
PQ∂N∆Cµνρ

Q,PN . (B.18)

This leads to the following expression for the full covariant 3-form field strength:

Fµνρ
KL = 3D[µBνρ]

KL +
3

D(1− 2βd)
Y KL

PQ

(

A
(P
[µ ∂νA

Q)
ρ] − 1

3
[A[µ, Aν ]E

(PA
Q)
ρ]

)

− 3
(

∂NCµνρ
N,KL − Y KL

PQ∂NCµνρ
Q,PN

)

.

(B.19)

It is straightforward to show that upon imposing the section condition the last line above

does not contribute to the Bianchi identity (B.30). Using the equations (B.11) and (B.17),

the gauge transformation of the covariant field strength can be written as

δFµνρ
KL = 3D[µ∆Bνρ]

KL +
3

D(1− 2βd)
Y KL

PQF[µν
P∆AQ

ρ]

− 3
(

∂N∆Cµνρ
N,KL − Y KL

PQ ∂N∆Cµνρ
Q,PN

)

.

(B.20)

Let us show explicitly that the above transformation indeed reduces to the transfor-

mation law of a generalised tensor. First fix gauge transformations for the 3-form potential

to be:5

∆Cµνρ
M,KL = 3D[µΨνρ]

M,KL −F[µν
NΞρ]

KL +
2

3D(1− 2βd)
Y KL

PQΛ
PFµνρ

QM . (B.21)

Consider now the gauge transformations generated by Ψµν
N,KL, which give

δΨFµνρ
KL = 3D[µ(∂NΨµν

N,KL − Y KL
PQ∂NΨµν

P,NQ)

− 3∂NDµΨνρ
N,KL + 3Y KL

PQ∂NDµΨνρ
Q,PN

= − 3LA[µ
(∂NΨµν

N,KL − Y KL
PQ∂NΨµν

P,NQ)

+ 3∂NLAµ
Ψνρ

N,KL − 3Y KL
PQ∂NLA[µ

Ψνρ
Q,PN .

(B.22)

5Note, that in the off-shell formulation for the SO(5, 5) case the field strength in the last term here

should be replaced by Gµνρ
KL.
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Since equation (B.12) implies that the particular combination transforms as a generalised

tensors, the above expression is identically zero.

Next, we turn to the gauge transformations generated by Ξµ
MN , that give

δΞFµνρ
KL = 6D[µDνΞρ]

KL + 3Y KL
PQF[µν

P∂NΞρ]
NQ + 3∂N (Fµν

NΞρ
KL)

− 3Y KL
PQ∂N (Fµν

QΞρ
PN )

= 6Ξ[ρ
P (K∂PFµν]

L) − 6Y
R(K
PQ Ξ[ρ

L)Q∂RFµν]
P

+ 3∂NF[µν
NΞρ]

KL − 3Y KL
PQΞ[ρ

PR∂RFµν]
Q = 0,

(B.23)

where the relation D[µDν] = −1
2LFµν

and the identities (3.3) were used. In addition, one

should note here, that the gauge transformation parameter Ξµ
KL satisfies the relation

Ξµ
KL =

1

D(1− 2βd)
Y KL

MNΞµ
MN . (B.24)

Finally, one has to show that the rest indeed gives generalised Lie derivative of Fµνρ
KL.

The corresponding terms in the variation read

δΛFµνρ
KL = − 3

D(1− 2βd)
Y KL

MNDµ(Λ
MFνρ

N ) +
3

D(1− 2βd)
Y KL

MNFνρ
MDµΛ

N

− 2

D(1− 2βd)
∂N

(

Y KL
PQΛ

PFµνρ
QN − Y KL

PQY
PN
RS ΛRFµνρ

SQ
)

= Y KL
PRΛ

P∂NFµνρ
RN − 1

D(1− 2βd)

(

2Y KL
R(Qδ

N
S) − 2Y KL

P (QY
PN
S)R

)

ΛR∂NFµνρ
SQ

− 1

D(1− 2βd)

(

2Y KL
R(Qδ

N
S) − 2Y KL

P (QY
PN
S)R

)

∂NΛRFµνρ
QS .

(B.25)

Using the covariance condition (3.4) and the relation Y MN
KL F(3)

KL = D(1 − 2βd)F(3)
MN

one obtains

δΛFµνρ
KL = ΛN∂NFµνρ

KL − 1

D(1− 2βd)

(

2Y KL
R(Qδ

N
S) − 2Y KL

P (QY
PN
S)R

)

∂NΛRFµνρ
QS

= ΛN∂NFµνρ
KL +

1

D(1− 2βd)

(

Y KL
SQ δNR − Y KL

PRY
PN
SQ

)

∂NΛRFµνρ
QS

= ΛN∂NFµνρ
KL − 2

D(1− 2βd)

(

Y
N(K
SQ δ

L)
R − Y

N(K
PR Y

L)P
SQ

)

∂NΛRFµνρ
QS

= LΛFµνρ
KL.

(B.26)

In the third line here we used the identity (3.3) for contractions of the Y -tensor.

Finally, we need to check covariance of the 4-form field strength Fµνρσ
M,KL which,

however, appears in the SL(5) EFT only under the following projection:

∂NFµνρσ
N,KL − Y KL

PQ ∂NFµνρσ
Q,PN . (B.27)

This is in complete analogy with the maximal gauged D = 7 supergravity where the

corresponding field appears under a particular projection by the embedding tensor.
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The 4-form field strength is determined via the Bianchi identity for the covariant field

strength Fµνρ
KL that reads

4D[µFνρσ]
KL =

3

D(1− 2βd)
Y KL

PQF[µν
PFρσ]

Q − 3
(

∂NFµνρσ
N,KL − Y KL

PQ ∂NFµνρσ
Q,PN

)

.

(B.28)

So defined field strength for the 3-form potential Cµνρ
M,KL takes the following form

Fµνρσ
M,KL = 4D[µCνρσ]

M,KL +
(

2Bµν
KLFρσ

M −B[µν
KLY MN

PQ ∂NBρσ]
PQ

)

+
4

D(1− 2βd)
Y KL

PQ

(

AM
[µA

P
ν ∂ρA

Q
σ] −

1

4
AM

[µ [Aν , Aρ]E
PAQ

σ]

)

.
(B.29)

Again, for explicit derivation of this expression the reader is referred to the next section.

B.2 Bianchi identities

As in the gauged supergravity the field strength for the 2-form potential Bµν
KL is con-

structed by considering Bianchi identity for the covariant field strength Fµν
M :

3D[µFνρ]
M = −Y MN

KL ∂NFµνρ
KL. (B.30)

Let us first extract the non-covariant 3-form field strength Fµνρ
KL. Substituting the explicit

form of FM
µν we obtain for the left-hand side:

D[µFνρ]
M = D[µFνρ]

M −D[µ

(

Y MN
KL ∂NBνρ]

KL
)

= −∂[µ
[

Aν , Aρ]

]

E
M −

[

A[µ, Fνρ]

]

E
M − 1

2
Y MN

KL ∂N

(

AK
[µFνρ]

L
)

− Y MN
KL D[µ∂NBνρ]

KL

=
[

A[µ,
[

Aν , Aρ]

]

E

]

E

M − 1

2
Y MN

KL ∂N

(

AK
[µFνρ]

L
)

− Y MN
KL ∂ND[µBνρ]

KL

= −Y MN
KL ∂N

(

D[µBνρ]
KL +AK

[µ∂νA
L
ρ] −

1

3

[

A[µ, Aν

]

E
KAL

ρ]

)

,

(B.31)

where in the second line we have used the relation (3.10) between the E- and D-brackets.

In the third line the relation

Y MN
KL ∂NDµχ

KL = Y MN
KL Dµ∂NχKL (B.32)

was used, which is valid for any symmetric generalised tensor χKL(= χLK). Finally, in

the last line we have used the Jacobi identity for the E-bracket (3.11). Hence, we conclude

that the covariant field strength for the 2-form field can be taken in the following form:

Fµνρ
KL = 3D[µBνρ]

KL +
3

D(1− 2βd)
Y KL

PQ

(

A
(P
[µ ∂νA

Q)
ρ] − 1

3
[A[µ, Aν ]E

(PA
Q)
ρ]

)

−
(

3 ∂NCµνρ
N,KL − 3Y KL

PQ ∂NCµνρ
Q,PN

)

,

(B.33)
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To construct the EFT for the U-duality group SL(5) one needs a covariant field strength

for the 3-form potential. The corresponding Bianchi identity takes the following form

4D[µFνρσ]
KL =

3

D(1− 2βd)
Y KL

PQF[µν
PFρσ]

Q − 3
(

∂NFµνρσ
N,KL − Y KL

PQ∂NFµνρσ
Q,PN

)

.

(B.34)

Where the field strength for the 3-form potential Cµνρ
M,KL reads

Fµνρσ
M,KL = 4D[µCνρσ]

M,KL +
(

2Bµν
KLFρσ

M −B[µν
KLY MN

PQ ∂NBρσ]
PQ

)

+
4

D(1− 2βd)
Y KL

PQ

(

AM
[µA

P
ν ∂ρA

Q
σ] −

1

4
AM

[µ [Aν , Aρ]E
PAQ

σ]

)

.
(B.35)

Indeed, let us show that the l.h.s. and r.h.s. of the Bianchi identity match upon substi-

tuting the above expression and (B.19) into (B.34). Consider first the terms that depend

on Bµν
KL:

2DµDνBρσ
KL = −LFµν

Bρσ
KL

= −
(

Fµν
N∂NBρσ

KL − 2Bµν
N(K∂NFρσ

L) + 2Y
N(K
PQ Bµν

L)P∂NFρσ
Q
)

= −
(

∂N
(

Fµν
NBρσ

KL
)

− Y KL
PQ ∂N

(

Fµν
PBρσ

QN
))

− Y KL
PQ ∂NBρσ

NPFµν
Q,

(B.36)

where we have used the Y -tensor identities (3.3) in the third line and total antisymmetri-

sation of the indices {µνρσ} is understood. We see that the terms in brackets in the last

line above already give precisely the BF-terms in (B.35).

Let us go further and consider the terms in brackets in (B.19), that give (dropping the

factor D(1− 2βd) for a while):

3Y KL
PQDµ

(

A(P
ν ∂ρA

Q)
σ − 1

3
[Aν , Aρ]E

(PAQ)
σ

)

= 3Y KL
PQ ∂[µA

P
ν ∂ρA

Q
σ] + Y KL

PQ[Aµ, [Aν , Aρ]EAσ]
PQ
D

− 3

(

[A[µ, YPQA
P
ν ∂ρAσ]

Q]KL
D +

2

3
Y KL

PQ[∂µAν , Aρ]E
PAQ

σ +
1

3
Y KL

PQ[Aν , Aρ]E
P∂µA

Q
σ

)

.

(B.37)

Using the identities (3.3) and (3.4), and the Jacobi identity (3.11) the first term here and

the terms in brackets can be simplified as follows

3Y KL
PQ∂µA

P
ν

(

∂ρA
Q
σ − [Aρ, Aσ]E

Q
)

− Y KL
PQ

(

∂N (AN
µ AP

ν ∂ρA
Q
σ )− Y PN

RS ∂N
(

AQ
µA

R
ν ∂ρA

S
σ

))

=
3

4
Y KL

PQFµν
PFρσ

Q − 3

4
Y KL

PQ[Aµ, Aν ]E
P [Aρ, Aσ]E

Q

− Y KL
PQ

(

∂N (AN
µ AP

ν ∂ρA
Q
σ )− Y PN

RS ∂N (AQ
µA

R
ν ∂µA

S
ν )
)

=
3

4
Y KL

PQFµν
PFρσ

Q +
3

2
D(1− 2βd)Y

KL
PQFµν

P∂MBρσ
QM

+
3

4
Y KL

PQY
PM
RS Y QN

UV ∂MBµν
RS∂NBρσ

UV − 3

4
Y KL

PQ[Aµ, Aν ]E
P [Aρ, Aσ]E

Q

+ Y KL
PQ

(

∂N
(

AN
µ AP

ν ∂ρA
Q
σ

)

+ Y PN
RS ∂N

(

AQ
µA

R
ν ∂µA

S
ν

))

.

(B.38)
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Here in the second line we have used the explicit expression for the non-covariant field

strength (B.7). Restoring the factor D(1 − 2βd) we see that the first term in the last

equation above exactly reproduces the FF term in the Bianchi identities (B.34) and the

second term above precisely cancels the last term in (B.36).

Now, to identify the ∂B∂B-terms in Fµνρσ
M,KL we substitute the corresponding con-

tribution from (B.35) into the r.h.s. of Bianchi identities (B.34). This gives

− 3 ∂M
(

Y MN
PQ Bµν

KL∂NBPQ
ρσ

)

+ 3Y KL
PQ

(

Y QR
UV Bµν

PN∂NBUV
ρσ

)

= 3D(1− 2βd)Y
KL
PQ∂MBµν

MP∂NBρσ
NQ − 3Bµν

PNY KL
PQY

QR
UV ∂NRBρσ

UV .

(B.39)

The first term above is exactly what we had in (B.38) while the second term vanishes upon

the section condition. Indeed, consider only the Y -tensors contracted with the double

derivative

Y KL
PQY

NP
ST Y QR

UV ∂NR =
(

− 2Y KL
P (SY

NP
T )Q + 2Y KL

Q(Sδ
N
T ) + Y KL

ST δNQ
)

Y QR
UV ∂NR

= − 2Y KL
P (SY

NR
T )QY

QP
UV ∂NR + 2Y QR

UV Y
KL
Q(S∂T )R = 0,

(B.40)

where in the first line we used the identity (3.3) with respect to the indices {QST}
while in the last line the Y -invariance identity from (3.3) was used with respect to the

indices {NRP}.
Finally, using the same identities for the Y -tensor the remaining AAAA terms can be

shown to exactly match the r.h.s. of Bianchi identities.
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any medium, provided the original author(s) and source are credited.
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