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Abstract
Background: Considering that HTB140 melanoma cells have shown a poor response to either
protons or alkylating agents, the effects of a combined use of these agents have been analysed.

Methods: Cells were irradiated in the middle of the therapeutic 62 MeV proton spread out Bragg
peak (SOBP). Irradiation doses were 12 or 16 Gy and are those frequently used in proton therapy.
Four days after irradiation cells were treated with fotemustine (FM) or dacarbazine (DTIC). Drug
concentrations were 100 and 250 μM, values close to those that produce 50% of growth inhibition.
Cell viability, proliferation, survival and cell cycle distribution were assessed 7 days after irradiation
that corresponds to more than six doubling times of HTB140 cells. In this way incubation periods
providing the best single effects of drugs (3 days) and protons (7 days) coincided at the same time.

Results: Single proton irradiations have reduced the number of cells to ~50%. FM caused stronger
cell inactivation due to its high toxicity, while the effectiveness of DTIC, that was important at short
term, almost vanished with the incubation of 7 days. Cellular mechanisms triggered by proton
irradiation differently influenced the final effects of combined treatments. Combination of protons
and FM did not improve cell inactivation level achieved by single treatments. A low efficiency of the
single DTIC treatment was overcome when DTIC was introduced following proton irradiation,
giving better inhibitory effects with respect to the single treatments. Most of the analysed cells were
in G1/S phase, viable, active and able to replicate DNA.

Conclusion: The obtained results are the consequence of a high resistance of HTB140 melanoma
cells to protons and/or drugs. The inactivation level of the HTB140 human melanoma cells after
protons, FM or DTIC treatments was not enhanced by their combined application.
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Background
The disseminated melanoma is generally not curable
using conventional clinical tools. Despite recent advances
in the immunotherapy and vaccinotherapy, the chemo-
therapy remains the standard therapeutic option [1].
However, the malignant melanoma frequently displays
primary chemoresistance, and only a few cytotoxic drugs
have shown activity against this type of tumor. Higher
remission rates are obtained with the DNA-alkylating
agents, including cisplatin, methylating agents such as
dacarbazine and temozolomide, or chloroethylating
agents such as 2-chloroethylnitrosoureas [2].

Fotemustine (FM) is a member of the chloroethylnitro-
sourea class of alkylating agents that has been proven
active against the disseminated melanoma and primary
brain tumours [3]. Spontaneous decomposition of nitro-
soureas generates electrophilic species, which are respon-
sible for DNA alkylation, thus producing therapeutic
effects. The generation of isocyanates cause toxic side
effect of FM which are monitored through carbamoilation
of proteins [4]. The monofunctional alkylating agent
dacarbazine (DTIC) is approved and frequently used for
the treatment of melanoma. Relative response after DTIC
treatment is observed in 15 to 20% of cases with short
duration [5,6]. Due to the inherent drug-resistant charac-
teristic of this disease, chemotherapy is an ineffective
mean of treating malignant melanoma. The reasons for
the chemoresistant phenotype in human melanoma are
not well understood and are probably multifactorial.

Some forms of specially localized melanoma tumors, are
presently treated with therapeutic proton beams giving
positive results [7]. Physical properties of protons, such as
their well defined range, with the small lateral scattering
and high energy deposition within the Bragg peak maxi-
mum, made this type of therapy suitable for localized
melanomas. In order to treat the malignant growth with
protons so that the desired uniform dose can be delivered
over the large volume at the given depth, the Bragg peak is
spread out by the modulation of proton energy, followed
by the slight increase of the entrance dose. Various
authors have reported data on modulated proton beams
with energy less than 100 MeV which are used for the
treatment of eye melanoma [8,9].

With the goal to find a more efficient way to treat
melanoma, combined treatments of either FM or DTIC
with proton irradiations were examined. In our previous
studies, we investigated the effects of proton irradiations
and single drug treatments on HTB140 cells, as well as the
effects of proton irradiations on these cells that were pre-
treated with FM or DTIC [10-12]. The objective of the
present study is to examine whether the change in order
and duration of treatments applied have the influence on

cell inactivation level. Therefore, cell viability, prolifera-
tion, survival and cell cycle distribution were investigated
on HTB140 human melanoma cells that were first irradi-
ated and than exposed to FM or DTIC.

Methods
Cell Culture
The human melanoma HTB140 cells were purchased
from the American Tissue Culture Collection (Rockville,
MD, USA). They were grown in the RPMI1640 medium
supplemented with 10% fetal bovine serum, penicillin-
streptomycin and L-glutamine. The cells at the passage
number 35 to 60 were maintained in 6 ml of the medium
in 25-cm2 plastic tissue culture flasks (Nunclon™, Amex
Export -Import, Serbia) at 37°C in a humidified atmos-
phere with 5% CO2. Under these conditions, the plating
efficiency (PE) for the HTB140 cells was 62 ± 7.3%, while
the doubling time (Td) evaluated from the growth curve
was 24 ± 2.7 h.

Irradiation Conditions
The exponentially growing cells were irradiated within the
spread out Bragg peak (SOBP) of the 62 MeV proton beam
at the CATANA (Centro di Adro Terapia e Applicazzioni
Nucleari Avanzati) treatment facility. The applied doses
were 12 or 16 Gy at the dose rate of 15 Gy/min. These are
the doses commonly used in proton therapy. The irradia-
tion position in the middle of SOBP was obtained by
interposing 16.3 mm thick Perspex plate (Polymethyl
methacrylate – PMMA) between the final collimator and
the cell monolayer. The obtained relative dose was 99.42
± 0.58%, having the mean energy of protons of 34.88 ±
2.15 MeV. The reference dosimetry was performed using
plane-parallel PTW 34045 Markus ionization chamber
which was calibrated according to the IAEA code of prac-
tice [13,14]. All irradiations were carried out in air at room
temperature. Described irradiation conditions were the
same for single irradiations and combined treatments of
irradiation and drugs. The biological assays that follow
were performed 7 days after each irradiation.

Chemotherapeutic Drug Treatments
The chemotherapeutic drugs used were fotemustine (FM,
Ital Farmaco S.p.A., Milano, Italy) or dacarbazine (DTIC,
Aventis Pharma S.p.A., Milano, Italy). Stock solutions of
the drugs made for this study were prepared according to
the manufacturer's instructions: 10 mM FM diluted in
43.3% ethanol and 10 mM DTIC diluted in water.

In a previous study a wide range of FM or DTIC concentra-
tions and incubation periods were investigated [10]. It has
been shown that the concentrations of 100 and 250 μM,
after the incubation period of three days, produced the
cell inactivation level of about 50%. Based on the
obtained results, in the experimental setup described here,
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these values were used as relevant for the single drug and
the combined radiation and drug effects.

For the single drug treatments cells were seeded at a suita-
ble number into 25-cm2 plastic tissue culture flasks or on
96-well plates, depending on the biological assay to be
used. After 24 h the cells were treated with drugs (100 or
250 μM) without replating and all biological assays were
performed 72 h later.

In the treatment combining proton irradiation and drugs,
after being irradiated exponentially growing cells were
detached by trypsinization (1.98% trypsin/0.02% EDTA
in PBS), replated appropriately for each biological assay
and incubated for 4 days under standard conditions
(37°C, 5% CO2). Then the culture medium was replaced
with the fresh medium containing drugs (100 or 250 μM)
and the cells were incubated for additional 72 h. In this
way the biological assays were carried out after the incu-
bation period of 7 days after irradiation.

Viability Assay
The sulforhodamine B (SRB) assay, which is based on the
measurement of cellular protein content, was used for the
determination of cell density. The assay was performed
according to the method of Skehan and co-workers [15].
After incubation, the cells that were grown in 96-well
plates (four wells per dose or concentration in each of
three independent experiments) were fixed with 10%
trichloroacetic acid and stained for 30 min, when the
excess dye was removed by washing with 1% acetic acid.
The protein-bound dye was dissolved in 10 mM tris base
solution for the determination of absorbance at 550 nm
using a microplate reader (Victor, Wallac).

Proliferation Assay
The DNA synthesis and cell proliferation were measured
using a 5-bromo-2-deoxyuridine (BrdU) assay (Roche
Diagnostics GmbH, Mannheim, Germany). The cells were
grown in 96-well plates (four wells per dose or concentra-
tion in each of three independent experiments) and BrdU
labeling was performed according to the manufacturer's
instructions. The absorbance was measured at 550 nm
using a microplate reader (Victor, Wallac).

Clonogenic Assay
After irradiation or drug treatment the cells were harvested
by the trypsinization, seeded into 25-cm2 plastic tissue
culture flasks (four flasks per dose or concentration in
each of three independent experiments) at a suitable
number for colony assay and incubated at 37°C for 7
days. This incubation period is appropriate since it repre-
sents more than six cell-doubling times. Moreover, the
results of the colony assay that was performed 14 days
after irradiation did not show statistically significant dif-

ferences in the cell inactivation level with respect to those
obtained after 7 days [16]. Therefore, in the combined
treatments, during post irradiation incubation, the drugs
were introduced after 4 days (without replating), and the
cells were further incubated for 3 days. The cells were then
fixed with methanol and stained with 10% Giemsa solu-
tion for the evaluation of the survival.

Flow cytometry
The cells were grown in 25-cm2 plastic tissue culture flasks
(four flasks per dose or concentration in each of two inde-
pendent experiments). For the flow cytometric evaluation
of the cell cycle status 1 × 106 cells were taken from each
flask, washed with Phosphate Buffered Saline (PBS), fixed
overnight with 70% cold ethanol and stained with PBS
buffer that contained 50 μg/ml Propidium Iodide (PI)
and 50 μg/ml RNase. After the incubation for 30 min at
room temperature, the cells were analyzed by the flow
cytometry (Coulter EPICS XL; Beckman Coulter) using the
XL SYSTEM II software.

Statistical analysis
Quadruplicate measurements were made during each
experiment, while each experiment has been repeated
three times, except for flow cytometry that was performed
in two replicate experiments. All obtained data for viabil-
ity, proliferation and survival assays were normalized to
the untreated controls to obtain percentage of cells or sur-
viving fraction. The significance of differences among the
experimental groups was assessed by the independent Stu-
dent's t-test, with the level of significance set at p < 0.05.
Results were presented as the Mean ± S.D. (standard devi-
ation). All data processing was carried out using the soft-
ware OriginPro 7.5.

Results
The effects of protons and FM on cell viability, 
proliferation and survival
Single treatments with protons or FM, presented in Figure
1A and Figure 1B, have shown dose or concentration
dependent inhibitory effects on cell viability and cell pro-
liferation, respectively, as compared to untreated controls
(***, p < 0.001).

After combined treatments with these agents, as com-
pared to controls, cell viability also decreased (***, p <
0.001) and is shown in Figure 1A. But, the single effects of
either proton irradiation or FM treatment were better than
those of their combined application (†††, p < 0.001 and
###, p < 0.001).

Cell proliferation after combined treatments, given in Fig-
ure 1B, was significantly reduced compared to untreated
cells (***, p < 0.001). Combined effects of protons and
100 μM FM remained in the range that was obtained for
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each single treatment (p > 0.05). Still, cell proliferation
after single treatment with 250 μM FM was lower than
after its combination with protons (##, p < 0.01).

Cell survival, estimated through the colony forming abil-
ity, revealed important reduction for single and combined
treatments vs. control (***, p < 0.001), as shown in Figure
1C. Combined effects of protons and FM were in the range
of those of proton irradiation (p > 0.05) and did not reach
the level of cell killing obtained by FM alone (###, p <
0.001).

The effects of protons and DTIC on cell viability, 
proliferation and survival
After exposure to single and combined treatments with
protons and DTIC, as shown in Figure 2A, the viability of
HTB140 cells was reduced as compared to controls (***,
p < 0.001). However, the effects of single proton irradia-
tion or DTIC treatment were more pronounced than their
combination (†††, p < 0.001 and ###, p < 0.001).

There was a high inhibition of cell proliferation after sin-
gle and combined treatments with protons and DTIC, as
compared to control cells (***, p < 0.001), and is given in
Figure 2B. The effects of combined treatments were
stronger than those of relevant single treatments, particu-
larly regarding DTIC (†, p < 0.05; ††, p < 0.01 and ###, p
< 0.001).

A reduction of cell survival vs. control, as it is shown in
Figure 2C, was obtained after single proton irradiation or
combination of protons and DTIC (***, p < 0.001) and
was in the same range. Single DTIC treatment provoked
negligible cell inactivation.

The effects of protons and FM or DTIC on cell cycle 
distribution
Compared to untreated controls, proton irradiation of
HTB140 cells induced a dose dependent increase of G1
cell population. FM provoked a raise of G2 phase fol-
lowed by a reduction of S phase with some changes in G0/

Figure 1

Single and combined effects of protons and FM on HTB140 cellsFigure 1
Single and combined effects of protons and FM on 
HTB140 cells. Viability (A), proliferation (B) and survival 
(C) of HTB140 cells estimated by SRB, BrdU and clonogenic 
assays, respectively, after single and combined treatments 
with protons and FM. Irradiation doses were 12 (I) and 16 
Gy (II). Drug concentrations were 100 (III) and 250 μM (IV). 
(* – single or combined treatment vs. control, † – combined 
treatment vs. proton irradiation, # combined treatment vs. 
single drug treatment; 0.01 < p < 0.05 (*, †, #), 0.001 < p < 
0.01 (**, ††, ##), p < 0.001 (***, †††, ###)).
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G1 cell population. After combined treatments with pro-
tons and FM, there was an improvement of S and G2
phase followed by a decrease of G0/G1 cell population
(Figure 3A). It appears that the major characteristic of
combined treatment with respect to single protons or FM
was an increase of S phase mostly compensated by a
reduction of G0/G1 phase.

Single DTIC treatment did not provoke changes in the cell
cycle distribution as compared to control. It differed from
proton effects by an increase in S and G2 cell population.
Cell cycle distribution after combined application of pro-
tons and DTIC remained in the range of controls and sin-
gle DTIC effects (Figure 3B).

Discussion
Radio- and chemoresistance of malignant melanoma can
be related to the phenotypic heterogeneity, including dif-
ferent degrees of cellular pigmentation, diverse cell mor-
phology and growth rate of variety of melanoma types
[17,18]. It has been shown that when using conventional
radiation, the common radiosensitivity parameter, the
surviving fraction at 2 Gy of different melanoma cell lines
ranged from 0.36 to 0.96 [16,19,20]. The HTB140 human
melanoma cells are among cell lines with the highest val-
ues, thus representing the limit case of cellular radioresist-
ance. To increase the inactivation level these cells were
irradiated with protons that have higher linear energy
transfer than conventional radiation. Still, the surviving
fraction at 2 Gy remained high with the value of 0.93 [16].

Response of the HTB140 cells to different chemothera-
peutic drugs is uneven and corresponds to moderate cel-
lular inactivation [10]. Although FM and DTIC are the
members of the alkylating agent family, they inactivate
HTB140 cells in different ways. Due to its major inherent
toxicity, FM exhibited very high killing ability within the
incubation time proper for the evaluation of clonogenic
survival, i.e. 7 days after administration [10]. The highest
effectiveness of the single DTIC treatment was 72 h after
its administration and it almost disappeared with the pro-

Figure 2

Single and combined effects of protons and DTIC on HTB140 cellsFigure 2
Single and combined effects of protons and DTIC on 
HTB140 cells. Viability (A), proliferation (B) and survival 
(C) of HTB140 cells estimated by SRB, BrdU and clonogenic 
assays, respectively, after single and combined treatments 
with protons and DTIC. Irradiation doses were 12 (I) and 16 
Gy (II). Drug concentrations were 100 (III) and 250 μM (IV). 
(* – single or combined treatment vs. control, † – combined 
treatment vs. proton irradiation, # combined treatment vs. 
single drug treatment; 0.01 < p < 0.05 (*, †, #), 0.001 < p < 
0.01 (**, ††, ##), p < 0.001 (***, †††, ###)).
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Cell cycle analyses after single and combined treatmentsFigure 3
Cell cycle analyses after single and combined treatments. Cell cycle analysis of HTB140 cells estimated by flow cytom-
etry, after single and combined treatments with protons and FM (A) or protons and DTIC (B). Irradiation doses were 12 (I) 
and 16 (II) Gy, while drug concentrations were 100 (III) and 250 μM (IV). The percentage of cells in G0/G1, S and G2/M phase 
were obtained with the XL SYSTEM II software.
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longed incubation up to 7 days [10]. Therefore, as an
example of cellular resistance, the human HTB140
melanoma cell line was used as a model system.

To achieve better cellular inactivation than it has been
obtained by single treatments with either protons or drugs
a study of combined effects of these agents has been
undertaken. Irradiation doses were those frequently used
in proton therapy [16], whereas drug concentrations were
close to those that produce 50% of growth inhibition
[3,10,21].

The level of cellular radiosensitivity is almost exclusively
assessed by clonogenic assay. Different viability tests, for
instance SRB, microtetrasolium (MTT) or BrdU are basi-
cally employed for the estimation of cellular chemosensi-
tivity. They are also adapted for the evaluation of the
cellular response to the radiation damage [22,23]. All bio-
logical assays used in this study were selected to enable
the comparison of sensitivity levels of HTB140 cells after
applying radiation, alkylating agents or their combina-
tion. These methods were particularly chosen because
they measure distinct biological parameters in cells [24-
26].

In combined treatments the common order of adminis-
tration of different agents is exposure to drug and then to
radiation [27,28]. Consequently, in an initial experiment
the HTB140 cells were pretreated with FM or DTIC (100
or 250 μM) and were irradiated with protons (12 or 16
Gy) 24 h later [11]. Cell viability was assessed 48 h after
irradiation, the time appropriate to the maximum drug
effect [10,21]. For all treatments the obtained levels of via-
bility were about 50%, without major changes between
single and combined applications. The viability levels in
these combined treatments are probably due only to the
effects of drugs [11].

In another experimental setup the effects of combination
of drugs and protons were estimated 7 days after irradia-
tion of HTB140 cells [12]. The selected time point is
proper for the evaluation of radiobiological survival, i.e.,
survival after at least six doubling times following irradia-
tion. This combination of FM and protons considerably
reduced cell proliferation, providing better inactivation
level than each single treatment. Effects of the combina-
tion of DTIC and protons were small for cell proliferation
and viability [12].

According to the discussed results of the two experiments,
an improvement of combined treatments, with respect to
the single once, was achieved only after the combination
of FM and protons, 7 days after irradiation [11,12].

To increase the efficiency of combined treatments, partic-
ularly the combination of DTIC and protons, the order of
administration of drugs and radiation was inversed. The
new experimental set up was conceived knowing the posi-
tion on the time scale where the best effect of each single
treatment with FM, DTIC or protons was reached [10].
The HTB140 cells were irradiated with protons, incubated
for 4 days, when FM or DTIC was added to the cells, and
then incubated for another 3 days. In this way it was ena-
bled that the incubation periods providing the best single
effects of protons and drugs coincide at the same time.

The described combination of protons and FM reduced
cell proliferation to ~40% and clonogenic survival to
~50%, while there was ~80% of viable cells estimated by
the SRB assay (Figure 1). With respect to the single treat-
ments the obtained effects were weaker. The time interval
between irradiation and drug treatment might be consid-
ered as long because the multiplicity of microcolonies 4
days after irradiation could underestimate the effects of
drug treatment, particularly for the clonogenic assay. An
overestimation of cell viability by the SRB assay could be
ascribed to the excess of proteins coming from the dead
cells that were indistinguishable from those of surviving
cells [23]. DNA damaging agents also produce morpho-
logical changes of cells, such as an increased cell size and
therefore protein content [29]. This might also explain the
overestimated viability obtained by the SRB assay. Com-
paring the inactivation levels obtained in this experiment
to those of the two experiments that were previously
described [11,12], the best effect was obtained when the
HTB140 cells were treated with FM before proton irradia-
tion and incubated for 7 days [12].

The combination of protons and DTIC reduced cell prolif-
eration to ~32% while after single treatments this level
was higher (Figure 2). Again, an overestimation of viabil-
ity was obtained by SRB assay [23,29]. According to cell
proliferation and survival, the poor efficiency of the single
DTIC treatment was overcome when it was introduced
following proton irradiation. The cells that were damaged
by protons and would most likely survive were addition-
ally damaged in a similar way by the DTIC treatment [30].
As a result, the obtained cell inactivation levels were better
than those of the two previously reported experiments
[11,12].

Analysing the effects of the two administration procedures
of radiation and drugs, in general there was not an appre-
ciable improvement with respect to the single treatments.
In each of them there was a moderate improvement with
the combination of just one drug and radiation.

All studied agents affect cellular DNA, but they differ in
the type of damage they induce. Protons, as well as con-
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ventional radiation, induce oxidative changes in DNA
bases together with the single- and double-strand breaks
[31]. Alkylating agents act by transferring methyl, ethyl or
chloroethyl group to DNA [32]. The drugs of nitrosourea
type, such as FM, express high cytotoxicity through the
formation of interstrand cross-links in DNA [33].

The dominating mechanism of chemoresistance to
alkylating agents is the repair of DNA adducts by the
enzyme O6-methylguanine DNA-methyltransferase [3].
Ionizing radiation also induces activity of this enzyme
[34]. In melanoma cells exposed to the alkylating agents
or ionizing radiation the level of O6-methylguanine DNA-
methyltransferase may increase, resulting in a resistance to
such treatments. Some melanoma cell lines inherently
express high level of O6-methylguanine DNA-methyl-
transferase [5]. The weak effect of combined treatments is
due to the relatively high level of O6-methylguanine DNA-
methyltransferase that might be intrinsically present in
the HTB140 cells and/or triggered by proton irradiation.

Another possible reason for such a limited effectiveness of
the combination of protons and drugs is the nuclear tran-
scription factor kappa B (NF-κB) that is constitutively
expressed in melanoma cells [35]. NF-κB is an important
feature in the development and progression of malignan-
cies by targeting genes that promote cell proliferation, sur-
vival, metastasis and angiogenesis. NF-κB also regulates
apoptosis by controlling the transcription of genes that
block cell death. Activation of NF-κB induces overexpres-
sion of bcl-xl, bcl-2, vascular endothelial growth factor
and interleukin-8. This may affect resistance to apoptosis
induced by radiation and chemotherapy [36]. Alkylating
agents as well as ionizing radiation can induce cell death
through the activation of apoptosis [21,28,37]. However,
the described mechanism can cause defects in apoptotic
pathways, leading to a high cellular resistance [35].

In the HTB140 cells proton irradiation induced G1 phase
arrest, while FM as well as combined treatments provoked
significant G2 arrest (Figure 3A). After ionizing radiation
a delay in G2 phase is the most frequent event, but signif-
icant delays could also occur in G1 and S phase [38].
These results are in agreement with the high radioresist-
ance of HTB140 cells [16]. FM generally produces a G2/M
block in the cell cycle, while higher drug concentrations
could induce S phase accumulation [39]. In samples
exposed to FM or in combined treatments the cell prolif-
eration (Figure 1B) was in agreement with the S phase
(Figure 3A). Combined treatment with protons and DTIC,
did not induce major changes in the cell cycle as com-
pared to the control or single DTIC treatment (Figure 3B).
Similar cell cycle arrest in S and G2/M phase caused by
DTIC was also reported for other melanoma cells [40].
Compared to protons, after combined treatment there

was a slight reduction of G1 phase and an increase of S
phase. Most of the analysed cells were in G1/S phase, thus
being viable and able to replicate DNA.

The obtained FACS results may be influenced by a specific
feature of melanoma cells which is melanogenesis. This
metabolic activity of melanoma cells triggers arrest and
accumulation of cells in the G1 phase [41]. FACS analyses
of the HTB140 cells did not show a major accumulation
of cells in G2/M phase 7 days after irradiation, confirming
that these cells are among very radioresistant lines, as it
was already reported for the viability and survival [16].

Conclusion
To improve single effects of protons, FM or DTIC on the
inactivation of HTB140 melanoma cells, combined treat-
ments with these agents have been investigated. After
being irradiated with protons cells were exposed to either
FM or DTIC. The combination of protons and FM did not
improve the cell inactivation level achieved by each single
treatment. The poor efficiency of the single DTIC treat-
ment was overcome when DTIC was introduced following
proton irradiation, giving better inhibitory effects with
respect to the single treatments. The molecular mecha-
nisms activated by protons enabled DTIC to express its
cytostatic nature. However, under the studied experimen-
tal conditions the level of sensitivity of the HTB140 cells
to protons, FM or DTIC remained within 50% of cell inac-
tivation also after their combined application.
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