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bICREA, Instituciò Catalana de Recerca i Estudis Avançats,
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1 Introduction

Collider searches have restricted the allowed mass window for the Standard Model Higgs

boson to the narrow range between 115.5 and 127 GeV at 95% CL [1, 2]. From the the-

oretical point of view, this is an interesting range of masses because in this interval the

Higgs potential can develop an instability at large field values (for detailed analyses, see

refs. [3–20]). This is of course not necessarily a problem, first because the Standard Model

is likely to be embedded in a more fundamental theory at high energies which may change

the shape of the Higgs potential and, second, because the actual fate of the electroweak

vacuum depends on the cosmological history. It should be remarked, however, that an

instability caused by a negative quartic coupling is not cured at high temperatures (as

opposed to an instability caused by a negative quadratic term) and typically persists in

the early universe. Therefore, to avoid potential cosmological constraints on the reheat

temperature or the Hubble constant during inflation [21], it may be preferable to cure any

Higgs instability at large field values.

There are, of course, infinitely many ways to modify the Higgs potential and raise the

instability scale ΛI . In this paper we point out a very simple and economical mechanism

to avoid an instability of the electroweak vacuum. It requires the existence of a new heavy

scalar singlet that acquires a large vacuum expectation value (vev) and has a quartic inter-

action with the ordinary Higgs doublet. The crucial point is that the matching condition

of the Higgs quartic coupling, at the scale where the singlet is integrated out, corresponds

to a positive shift, as we evolve from low to high energies. Although the stability condition

is also modified by the presence of the singlet, a careful analysis shows that, under the

conditions specified in section 2, the threshold correction helps to stabilize the potential.
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The effect occurs at tree level and thus can be sizable and, in general, dominant over loop

contributions. Moreover, the effect does not decouple, in the sense that the size of the shift

does not depend on the singlet mass, which could take any value lower than the instability

scale ΛI .

The dynamics of the mechanism is explained in section 2. In section 3 we put the

proposed mechanism into context, considering setups in which the existence of a heavy

scalar singlet has independent motivations. We present three examples: see-saw origin of

neutrino masses, invisible axion, and Higgs inflation. For each example we give the range

of Higgs masses where the corresponding scalar field could cure the instability.

2 Stabilizing the Higgs with a scalar singlet

To explore the impact of an additional singlet scalar on the stability of the Higgs potential,

we consider a tree-level scalar potential of the form

V0 = λH

(
H†H − v2/2

)2
+ λS

(
S†S − w2/2

)2
+ 2λHS

(
H†H − v2/2

)(
S†S − w2/2

)
.

(2.1)

Here H is the Higgs doublet, S is a complex scalar field, and V0 is the most general

renormalizable potential that respects a global abelian symmetry under which only S is

charged. Although we will consider here a single complex scalar, most of our conclusions

remain valid also in the case of multi-Higgs doublets or real singlet fields (with a Z2 parity

replacing the abelian symmetry).

For λH , λS > 0 and λ2
HS < λHλS , the minimum of V0 is at

〈H†H〉 = v2/2 , 〈S†S〉 = w2/2 . (2.2)

A nonzero vev of S, which is crucial for our mechanism to work, spontaneously breaks the

global symmetry (or the Z2 parity, for a real singlet) giving rise to a potentially dangerous

Goldstone boson (or domain walls). Gauging the symmetry of S or explicitly breaking it by

(possibly small) terms in V0 can be used to evade these problems, but does not conceptually

modify our results. For simplicity, we restrict our considerations to the potential in eq. (2.1),

but generalizations are straightforward.

The presence of the new scalar field S modifies the analysis of the stability conditions of

the Higgs potential. One effect, already considered in previous literature is the contribution

of the singlet to the renormalization group evolution of the Higgs quartic coupling (for

recent analyses, see [22–26] and references therein). The relevant renormalization group

equations (RGEs) above the scale MS =
√

2λSw are, at one-loop:

(4π)2 dλH
d lnµ

=
(

12y2
t − 3g′

2 − 9g2
)
λH − 6y4

t +
3

8

[
2g4 + (g′

2
+ g2)2

]
+ 24λ2

H + 4λ2
HS ,

(4π)2dλHS
d lnµ

=
1

2

(
12y2

t − 3g′
2 − 9g2

)
λHS + 4λHS (3λH + 2λS) + 8λ2

HS , (2.3)

(4π)2 dλS
d lnµ

= 8λ2
HS + 20λ2

S .

– 2 –
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Figure 1. Feynman diagram for the tree-level threshold correction to the Higgs quartic coupling.

If the singlet mass MS is below the SM instability scale1 ΛI and (λHS/4π)2 ln(ΛI/MS) is

large enough, the positive contribution to the RGE equation for λH can prevent it from

becoming negative.

2.1 Threshold effect

Besides the loop contribution discussed above, there is a related tree-level effect through

which the new singlet can affect the stability bound. Let us consider the limit in which

MS is much larger than the Higgs mass (w2 � v2). At the scale MS we can integrate out

the field S using its equation of motion (neglecting derivatives):

S†S =
w2

2
− λHS

λS

(
H†H − v2

2

)
. (2.4)

Replacing eq. (2.4) in V0, we obtain the effective potential below the scale MS :

Veff = λ

(
H†H − v2

2

)2

, λ(MS) = λH −
λ2
HS

λS

∣∣∣∣
MS

. (2.5)

This shows that the matching condition at the scale Q = MS of the Higgs quartic coupling

gives a tree-level shift, δλ ≡ λ2
HS/λS , as we go from λH just above MS to λ just below MS .

Figure 1 shows the Feynman diagram that gives rise to such tree-level shift.

To better understand the origin of the shift in the matching condition, let us consider

the mass matrix of the fields h and s, corresponding to the real parts of the doublet H

(in unitary gauge) and the singlet S, such that H†H = h2/2 and S†S = s2/2. At the

minimum, the mass matrix is

M2 = 2

(
λHv

2 λHSvw

λHSvw λSw
2

)
. (2.6)

In the limit λSw
2 � λHv

2, the heaviest eigenstate, which is nearly singlet, can be integrated

out, leaving behind a “see-saw”-like correction to the lightest eigenvalue

m2
h = 2v2

[
λH −

λ2
HS

λS
+O

(
v2

w2

)]
, (2.7)

1Stabilizing the potential with degrees of freedom heavier than ΛI requires sizable couplings, see [27, 28].
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while M2
S = 2λSw

2 + 2(λ2
HS/λS)v2 +O(v4/w2). The light state is almost purely h, as the

singlet admixture is suppressed by a small mixing angle of order v/w. However, the Higgs

mass correction due to the heavy state persists even in the decoupling limit (w →∞). The

negative sign in the shift of the Higgs mass in eq. (2.7) can be readily understood as coming

from the repulsion of mass eigenvalues after turning on the mixing equal to 2λHSvw.

Naively, as the tree-level shift δλ corresponds to a larger Higgs quartic coupling above

MS , the chances of keeping it positive seem improved. However, the tree-level conditions for

stability change from λ > 0 in the effective theory below MS to λH > δλ in the full theory

above MS . Thus, it appears that the threshold correction δλ does not help stability at all.

To understand what happens, one has to reexamine the stability conditions more carefully.

First of all, remember that the tree-level potential V0 in eq. (2.1) is a good approximation

to the full potential if we evaluate couplings and masses (collectively denoted by λi below)

at a renormalization scale of the order of the field values of interest. Once we express the

scalar potential as V0[λi(µ = ϕ), ϕ], potentially large logarithms of the form lnmi(ϕ)/µ

(where mi(ϕ) ∼ ϕ is a typical field-dependent mass) are kept small. Roughly speaking,

this means that V0 with a fixed µc will be reliable as long as one examines ϕ ∼ µc and

restricts field excursions to |ϕ−µc| < µce
8π2λ0/λ21 (where λ0 denotes a coupling in the tree-

level potential and λ1 a coupling affecting the radiative corrections, e.g. the top Yukawa

coupling squared). By adjusting µ ∼ ϕ one can evaluate reliably the potential at all field

values, but the previous estimate tells us when we can use V0[λi(µc), ϕ], which has a simpler

field dependence.

With the parametrization chosen in eq. (2.1), the EW vacuum corresponds to V0 = 0.

Thus the stability condition is V0 > 0 anywhere in field space, away from the EW vacuum.

The first stability requirement that we should impose is

λH(µ) > 0 , λS(µ) > 0 , (2.8)

at any renormalization scale µ, or else the potential develops unwanted minima lower than

the EW vacuum or is unbounded from below at large field values.

Next, in order to discuss the conditions on the coupling constant λHS , it is convenient to

separate the cases in which λHS is either positive or negative. This separation is meaningful

because λHS renormalizes multiplicatively (as it is the only coupling that connects H and

S), see eq. (2.3), and therefore the RG flow cannot flip its sign.

2.2 Case λHS > 0

In this case, V0 can become negative only when |S| < w/
√

2 (neglecting corrections propor-

tional to v). In this situation, the most dangerous field configuration is well approximated

by setting S = 0 in eq. (2.1), such that

V0(H, 0) ≈ λH |H|4 −
λHS
2λS

M2
S |H|2 +

M4
S

16λS
. (2.9)

The extra stability condition (V0 > 0) is then

λ2
HS(µ) < λH(µ)λS(µ) . (2.10)
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Note that this can be rewritten as λH > δλ = λ2
HS/λS and ensures that the light scalar

state does not become tachyonic, see eq. (2.7). If this condition were violated at some scale

µ∗, it would lead to an instability for field configurations with

|S| < MS

2
√
λS
, µ− < |H| < µ+, µ2

± =
M2
SλHS

4λHλS

(
1±

√
1− λHλS

λ2
HS

)∣∣∣∣∣
µ∗

, (2.11)

which could be trusted provided µ− < µ∗ < µ+. Note that, if µ∗ � µ±, this would not

mean that there is an instability to worry about, as it would be located outside the range

of validity of the tree-level approximation V0(λi(µ∗), ϕ). Thus, as long as condition (2.10)

is satisfied for renormalization scales within a relatively narrow range of energies around

MS (which fixes the mass scale of µ±), there is no instability even if this condition were

eventually violated at higher scales. Only if parameters happen to lie near a critical point

in which at least one of conditions (2.8) or (2.10) is barely satisfied, radiative corrections

can become important and invalidate the stability analysis performed with the tree-level

potential. In this case one should resort to the one-loop approximation of the potential;

otherwise, our analysis is reliable.

We can now better appreciate how the threshold contribution in eq. (2.5) can cure the

instability of the SM Higgs potential (provided that MS < ΛI). The correction δλ has the

correct sign to shift the Higgs quartic coupling upwards (λH = λ+δλ), although the stabil-

ity condition is also shifted upwards by the same amount, becoming λH > δλ. However, for

positive λHS , the condition λH > δλ has to be satisfied only at scales of order MS , while for

larger scales it rapidly reduces to the conventional constraint λH > 0. Moreover, one-loop

RG effects (although typically less important than the tree-level matching condition) also

help to maintain stability. First, λS and λHS will stay positive once they are positive at

MS . Second, βλH ≡ dλH/d lnµ receives extra positive contributions proportional to λ2
HS

and to λ2
H (coupling which is numerically larger after the threshold shift). These two RG

effects can reduce (or even overcome) the destabilizing effect from top loops.

To illustrate the situation, we show in figure 2, left panel, how the Higgs quartic

coupling runs with the renormalization scale. We consider MS = 108 GeV � ΛSM
I =

2×109 GeV.2 For simplicity we take the couplings of the singlet to be smaller than the SM

top and gauge couplings, in order to better isolate the tree-level threshold effect. The same

panel also shows the full stability condition, computed numerically by demanding that

V (H, 0) > 0: we see that at renormalization scales just above MS the stability condition

of eq. (2.10) matters, but at larger field values it rapidly becomes irrelevant and only

λH > 0 remains.

To study the efficiency of the stabilization mechanism, we performed a numerical

study using the full one-loop effective potential with SM couplings running at two-loops.

We limited the evolution of the unknown singlet couplings to the one-loop level, given that

the effect we are considering is at tree level. In order to track accurately the large field

2Strictly speaking, this is the scale at which λ = 0, and corresponds to the instability scale of the tree-

level RG-improved potential. The ΛI that we calculate later on is higher and corresponds to the instability

of the one-loop RG-improved potential. For simplicity, in figure 3 we simply plot λ(µ).
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Figure 2. Running of the Higgs quartic coupling in the SM and in the model with a scalar singlet,

here assumed to have the mass MS = 108 GeV. Left: if λHS > 0, thanks to the tree level shift at

the singlet mass, the coupling never enters into the instability region, even assuming that singlet

contributions to the RG equations are negligible. Right: if λHS < 0 the instability can be shifted

away or avoided only by singlet contributions to the RG equations.

Figure 3. For mh = 125 GeV and λHS > 0, bands of the modified instability scale ΛI versus

the threshold correction δλ to the Higgs quartic coupling due to a scalar singlet with mass MS =

104, 106, 108, 1010 GeV (from left to right). For a fixed MS value the lowest boundary of the band

corresponds to small λS , λHS and the highest boundary to λS(MPl) = 4π.
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behaviour of the one-loop potential one can simply include in the running quartic couplings

the finite one-loop contributions not captured by RG evolution and impose the stability

conditions on these corrected couplings (the shift in the instability scale can be up to one

order of magnitude; see [17–19] for further details). The scale at which these one-loop

improved running couplings violate the stability condition corresponds then to the field

scale at which the potential falls below the EW vacuum. The results are illustrated in

figure 3 which shows the new instability scale ΛI as a function of the threshold shift δλ for

several singlet scalar masses, MS = 104, 106, 108, 1010 GeV below the SM instability scale,

ΛSM
I ' 4 × 1010 GeV (for mh = 125 GeV, Mt = 173.2 GeV and αs(MZ) = 0.1183). For

each value of MS , there is a band of values for ΛI due to the freedom in choosing λS ,

once λH and δλ = λ2
HS/λS are fixed. The lower boundary of each band corresponds to

λS � 1 (and consequently also λSH � 1 for fixed and small δλ). This case nearly isolates

the impact of the tree-level shift on the instability scale (as the running of λH above the

singlet threshold is SM-like). The upper boundary of each band corresponds to the largest

value of λS that we allow by requiring λS(µ) < 4π up to the Planck scale. Large values

of λS correspond to large λHS , making the RG effect on λH stronger. We conclude that

the tree-level shift in λ can have an extremely significant impact in raising the instability

scale even for very moderate values of the couplings λS and λHS , and it can easily make

the EW vacuum absolutely stable.

2.3 Case λHS < 0

In this case V0 can become negative only for |S| > w/
√

2. In this condition, we can neglect

the mass parameters v and w in eq. (2.1) and approximate the potential by keeping only

the quartic terms

V0 ≈ λH |H|4 + λS |S|4 + 2λHS |H|2|S|2 . (2.12)

The stability condition (V0 > 0) is now

− λHS(µ) <
√
λH(µ)λS(µ) . (2.13)

If this condition is violated at some scale µ∗ an instability would develop with

|S| > MS

2
√
λS
, c− <

|H|
|S|

< c+ c2
± =

−λHS
λH

(
1±

√
1− λHλS

λ2
HS

)∣∣∣∣∣
µ∗

. (2.14)

As this determines a direction in field space along which the fields H and S slide towards

an unbounded instability, condition (2.13) has to be satisfied at all renormalization scales

larger than MS . Thus the stability condition for negative λHS is much more constraining

than in the case of positive λHS .

In the case λHS < 0, as the stability condition λH > δλ must be satisfied at all scales,

the tree-level threshold effect is not sufficient to improve the stability. Then one should

resort to RG effects to improve the potential stability, as illustrated in figure 2, right panel.

By using the RG equations (2.3), we can derive the evolution of the effective Higgs quartic

coupling combination λ ≡ λH − λ2
HS/λS above MS as

dλ

d lnµ
= βSM

λ +
8

(4π)2

[
(λHS − δλ)2 + 3λ δλ

]
, (2.15)
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Figure 4. For mh = 125 GeV and λHS < 0, the modified instability scale ΛI versus the threshold

correction δλ to the Higgs quartic coupling due to a scalar singlet with mass MS = 108 GeV and

λS(MS) = 0.01, 0.1, 0.2, as indicated.

where βSM
λ is the SM beta function for the Higgs quartic coupling and δλ = λ2

HS/λS > 0.

We see that the additional term in the beta function of λ is always positive so that RG

effects tend to increase the instability scale also in the case λHS < 0.

The numerical analysis of the λHS < 0 case confirms this expectation. As an illus-

tration, figure 4 shows the instability scale versus the shift δλ for the same choice of SM

parameters as in figure 3 and for the particular case MS = 108 GeV with three different

values of λS as indicated. The end-point of the curves marks the location beyond which

(i.e. for larger δλ) the potential becomes completely stable. These end-points occur because

λ first decreases as a function of the renormalization scale but, after reaching a minimum,

starts increasing at large scales. In comparison with the case λHS > 0 (figure 3) we see

that larger values of the shift δλ are now required to have a significant impact on the

instability scale.

The stabilization mechanism for λHS < 0 we have just described is fragile with respect

to possible new contributions to the RGEs that can appear if the singlet couples to other

sectors of the theory. In contrast, the stabilization mechanism for λHS > 0 is more robust,

being based on a tree-level shift. The mechanism is also very effective (because the tree

level can be easily large) and economical (because it requires only a heavy scalar singlet).

The proposed mechanism can be realized in several situations of physical interest and we

now turn to discussing some examples.

3 Examples

In this section, we present some examples in which a heavy scalar singlet has been advocated

as a solution to other SM problems such as the smallness of neutrino masses, strong CP

problem and the unitarity problem of Higgs inflation.
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3.1 See-saw

The see-saw is the conventional mechanism to understand the smallness of neutrino masses.

It assumes the existence of heavy right-handed neutrino states N with

LN = iN̄ /∂N + yνLNH +
MN

2
N2 + h.c. (3.1)

After EW symmetry breaking, nonzero neutrino masses are generated

mν =
y2
νv

2

MN
, (3.2)

which are naturally small provided MN � v.

The impact of the see-saw mechanism on the stability of the Higgs potential has been

discussed in the past [19, 29, 30]. The right-handed neutrino Yukawa couplings can play

a destabilizing role on βλ similar to that of the top Yukawa coupling. As they scale like

y2
ν ∼ mνMN , they become sizable for large MN and are dangerous for stability only if

MN
>∼ 1013 GeV. For lower MN the new Yukawas will have a negligible effect on stability.

We do not know what originates the large right-handed Majorana mass, but the sim-

plest idea is to assume that the right-handed neutrinos are coupled to a scalar field carrying

two units of lepton number and having a large vev,

κ

2
S N2 + h.c. (3.3)

The vev of S, which sets the scale of the Majorana mass, MN = κ〈S〉 does not necessarily

lead to a Goldstone boson because in unified models B−L is usually a gauge symmetry. In

this well-motivated realization of the see-saw the scalar field S could naturally reestablish

stability of the electroweak vacuum. In this setting the role of the singlet scalar is therefore

double. Upon taking a large vev and decoupling, it leaves behind two effects: a Weinberg

dimension-5 operator that gives neutrinos a nonzero mass and a threshold effect on the

Higgs Yukawa coupling that solves the stability problem of the Higgs potential, as long as

the mass of S is smaller than ΛI .

A lower bound on the lightest right-handed neutrino mass M1 is derived by assuming

that the cosmic baryon asymmetry is explained by thermal leptogenesis.3 In this case, one

obtains the bounds [31, 32]:

• M1 > 2 × 109 GeV, if the initial right-handed neutrino density vanishes at high

temperature.

• M1 > 5 × 108 GeV, if the initial right-handed neutrino density is thermal at high

temperature.

• M1 > 2×107 GeV, if the initial right-handed neutrino density dominates the universe

at high temperature.

3If neutrinos are nearly degenerate in mass, thermal leptogenesis could operate at much smaller values

of M1 and the following lower bounds do not apply.

– 9 –
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Figure 5. The SM instability scale ΛI increasing as a function of the Higgs mass. The central line

corresponds to Mt = 173.2 GeV and αs(MZ) = 0.1184 and the side-bands to 1 sigma deviations as

indicated (with the larger deviation for the top mass uncertainty). The horizontal lines and band

mark several values or ranges of interest for ΛI . The three lowest lines are relevant for the see-saw

case and correspond to lower limits on the mass M1 of the lightest right-handed neutrino N1 coming

from thermal leptogenesis. The bound depends on the initial density ρN1 : M1 > 2 × 107 GeV for

ρN1
∼ 0; M1 > 5×108 GeV for thermal ρN1

and M1 > 2×109 GeV for ρN1
dominating the universe;

the shaded band shows the range of singlet masses 109 − 1012 GeV relevant for the axion case; and

the upper line is the singlet mass 1013 GeV relevant for the unitarized Higgs inflation case.

Assuming that the mass of S is equal or smaller than its vev, we can infer the range of

Higgs masses for which the scalar setting the see-saw scale could cure any instability of

the potential. From figure 5 we can easily read off such Higgs masses.4 At 90% CL in Mt

and αs, we find that the see-saw singlet can potentially eliminate the instability of the EW

vacuum, as long asmh > 120 GeV (leptogenesis with vanishing initial right-handed neutrino

density), mh > 119 GeV (leptogenesis with thermal initial right-handed neutrino density),

ormh > 115 GeV (leptogenesis with dominant initial right-handed neutrino density). These

limits are compatible with the region of Higgs masses suggested by preliminary ATLAS

and CMS data, mh = 124 − 126 GeV. The instability scale is raised according to the

mechanism discussed in the previous section as long as MN
<∼ 1013 GeV, since the RG

effects of yν couplings can be neglected.

We conclude that this simple scenario could comfortably account for the cosmological

baryon asymmetry through leptogenesis, for the smallness of neutrino masses and cure the

Higgs potential instability. The only drawback of this (beautifully simple but depressing)

scenario is that it makes plainly explicit the hierarchy problem: a large singlet vev also

gives a tree-level contribution to the Higgs mass term in the Lagrangian which requires a

4Figure 5 gives the SM instability scale as a function of mh as calculated in [19]. Besides the 1-sigma

error bands shown, associated with the experimental uncertainties in Mt and αs, a (conservative) estimate

of the higher order radiative corrections not included in the calculation results in a theoretical uncertainty

on mh of ±3 GeV [19].
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large fine-tuning. (This is in contrast with the scenario without the singlet, in which Higgs

mass corrections appear at one-loop and are dangerous only when MN > 107 GeV [33, 34]).

3.2 Invisible axion

The scalar field S can also be identified with the invisible axion. DFSZ axion models [35, 36]

use the SM fermion content and a two-Higgs doublet structure Hu and Hd augmented by a

complex scalar S, neutral under SM gauge interactions, with a coupling λHSS
2HuHd+h.c.,

analogous to the one in eq. (2.1). This interaction is crucial for the axion mechanism,

because it transmits the breaking of the global symmetry triggered by the vev of S to the

Higgs sector. One or both of the Higgs doublets can remain light, at the electroweak scale.

The presence of an instability is subject to the details of the two-Higgs potential [37–40],

but this does not change the essential point. Independently of the model implementation,

the field S containing the invisible axion a =
√

2ImS with large decay constant fa ≈ 〈S〉
is a perfect candidate to play the role of the field S in our Higgs stabilization mechanism.

KSVZ axion models [41, 42] use a single Higgs doublet and a complex scalar S coupled

to new heavy vector-like fermions Ψ. The Dirac mass term M Ψ̄Ψ is forbidden by imposing

the symmetry

ΨL → −ΨL, ΨR → ΨR, S → −S. (3.4)

Then the mass of the heavy fermions comes only from the vev of S:

λΨ SΨ̄Ψ + V (H,S). (3.5)

The resulting model has a spontaneously broken U(1) global symmetry

Ψ→ eiγ5αΨ, S → e−2iαS (3.6)

which gives rise to a light axion a =
√

2ImS with large decay constant fa ≈ 〈S〉. The

scalar potential of the theory is precisely of the form in eq. (2.1), although the coupling λHS
plays no role in axion phenomenology because both |S|2 and |H|2 are separately invariant

under the global symmetry.

The decay constant of the axion is allowed to lie in the range

109 GeV < fa < 1012 GeV . (3.7)

The lower bound comes from non-observation of axion emission from stars and supernovæ.

The upper bound comes from requiring that the axion dark matter density

Ωa ≈ 0.15

(
fa

1012 GeV

)7/6(a∗
fa

)2

(3.8)

does not exceed the observed value ΩDM ≈ 0.23 under the assumption that the axion vev a∗
in the early universe was of the order of fa [43–45]. The resulting range of singlet mass MS ,

which we can roughly take to be the same as the range for fa in eq. (3.7), overlaps with the

range that can stabilize the SM Higgs potential from mh
>∼ 119 GeV (for MS ∼ 109 GeV)

to mh
>∼ 124 GeV (for MS ∼ 1012 GeV), as can be inferred from figure 5.
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3.3 Unitarized Higgs inflation

In the original proposal for SM Higgs inflation [46], a large non-minimal coupling ξ ∼ 104

of the Higgs boson to gravity, ξH†HR, drives inflation at large Higgs field values. However,

due to the same large non-minimal coupling, the unitarity cutoff [47–50] becomes ΛSM =

MPl/ξ which is not only much lower than the Planck scale but also lower than the field scales

at which the inflationary plateau develops. Although the unitarity cutoff during inflation

could be larger than the one in the vacuum [51, 52], the perturbative expansion is still

questionable and the very existence of an inflationary plateau beyond ΛSM is jeopardized.

In addition to this unitarity problem, in all the Higgs mass range allowed by ATLAS and

CMS, the potential instability that develops at large field values could also destroy the flat

plateau induced by gravitational effects [19].

To fix the unitarity problem, extra dynamical degrees of freedom are required to restore

unitarity without ruining the flat plateau. A UV complete model with a real singlet scalar

of sigma-model type was proposed in [53] and it is natural to ask if this singlet could also

solve simultaneously the instability problem. The Jordan-frame Lagrangian of the model is

LJ√
−gJ

=
1

2

(
M2 + ξσ2 + 2ζH†H

)
R− 1

2
(∂µσ)2 − |DµH|2

−1

4
λσ

(
σ2 − Λ2 + 2

λHσ
λσ

H†H
)2
−
(
λH −

λ2
Hσ

λσ

)(
H†H − v2

2

)2
, (3.9)

where M,Λ and v are mass parameters with v � M,Λ (so that the σ field is heavy) and

ξ, ζ are positive non-minimal couplings with ξ � ζ. The scalar potential derived from

eq. (3.9) falls in the class of models considered in this paper, once we identify σ with S

(although the singlet now is real). In what follows we will also use the effective quartic

coupling defined as

λ ≡ λH −
λ2
Hσ

λσ
. (3.10)

The large nonzero vev of σ, 〈σ〉 ' Λ, is crucial to make the unitarity cutoff ΛUV larger.

It is straightforward to find that

ΛUV =
(

1 + 6rξ
)MPl

ξ
, (3.11)

where the Planck mass is now M2
Pl = M2 + ξΛ2, and we measure the contribution of the σ

vev by the ratio r = ξΛ2/M2
Pl, which in general can take values from 0 to 1. One can see

how for a negligible vev (r → 0, as was the case of the SM Higgs inflation case) the cutoff

is MPl/ξ while it is pushed up to rMPl for moderate values of r >∼ 1/ξ.

As described in [53], in this scenario the sigma field dominates inflation due to its large

non-minimal coupling to R while the Higgs field follows the sigma field along a flat direction,

provided λHσ < 0. In fact, in unitary gauge with HT = (0, h)/
√

2, for σ, h � M/
√
ξ,Λ,

slow-roll inflation takes place along h ≈
√

(−λHσ/λH)σ, while the direction orthogonal

to the inflaton gets mass of order
√
−2λHσMPl/

√
ξ (identified with a larger background-

dependent cutoff in the Higgs inflationary regime [53]). Here, a negative λHσ is crucial

for the sigma model to reproduce the Higgs inflation model below the sigma mass and for
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the Higgs boson to participate in inflaton dynamics beyond Λ. Then, the Einstein-frame

potential along the inflaton field direction χ =
√

6MPl ln(
√
ξσ/MPl), is given by

V (χ) ' λσλ

4λH

M4
Pl

ξ2

(
1− 2 e−2χ/

√
6MPl

)
. (3.12)

In order to match the COBE normalization of the power spectrum, we obtain the following

condition on the parameters,

√
λσ
ξ

= 2× 10−5

√
λH
λ
, (3.13)

which explains the need of having ξ � 1.

The mass of the σ field in the vacuum, on the other hand, is given by

M2
σ̄ = λσ

2rM2
Pl

(1 + 6rξ)ξ
' λσ

M2
Pl

3ξ2
, (3.14)

(where σ̄ denotes the canonically normalized field, and we have required r >∼ 1/ξ for the

last expression), which is r-independent and of the same order of ΛSM, the UV cutoff for

r = 0. The σ field could be lighter than ΛSM at the cost of reducing r below 1/ξ, but

then the unitarity cutoff (3.11) would decrease, back to its SM value. In principle, one

could also lower the sigma mass below the unitarity cutoff by choosing a small value of λσ.

However, the COBE constraint (3.13) precisely fixes the sigma mass in the vacuum to be

(taking λH/λ of order 1)

Mσ̄ ≈ 1013 GeV . (3.15)

As we would like the singlet to be lighter than ΛI in order to cure that instability problem,

we are forced to a region of Higgs masses for which ΛI > 1013 GeV. From figure 5 we see

that this requires mh > 125 GeV (at 90% CL in Mt and αs), which is marginally compatible

with the ATLAS and CMS hint of mh ∼ 124–126 GeV.

As explained above, the scenario requires λHσ < 0, so that the stability condition to

be satisfied (at all scales) is λ = λH − λ2
Hσ/λσ > 0. As can be seen from eq. (3.12) this

condition amounts to requiring a positive vacuum energy during inflation. From our general

analysis we know that in this case the tree-level threshold effect alone would not improve

the vacuum stability and RG effects above the sigma mass are necessary for stabilizing the

potential. The instability scale ΛI should be pushed up, if not all the way to the Planck

scale, at least sufficiently high to maintain the inflationary plateau stable in an interval

that provides enough e-folds of expansion. Such interval is approximately Λ < σ < 10Λ,

so that it would be sufficient to increase ΛI by one or two orders of magnitude.

Concerning the RG evolution of couplings above the sigma-field threshold, we fol-

low [54, 55] and take into account the effects of a non-minimal coupling to gravity of the
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sigma and Higgs fields through suppression factors in the RGEs, which become:

(4π)2 dλH
d lnµ

= (12y2
t − 3g′

2 − 9g2)λH − 6y4
t +

3

8

[
2g4 + (g′

2
+ g2)2

]
+ (18c2

h + 6)λ2
H + 2c2

σλ
2
Hσ,

(4π)2dλHσ
d lnµ

=
1

2
λHσ

[
12y2

t − 3g′2 − 9g2 + 12(1 + c2
h)λH + 12c2

σλσ
]

+ 8chcσλ
2
Hσ, (3.16)

(4π)2 dλσ
d lnµ

= 2(3 + c2
h)λ2

Hσ + 18c2
σλ

2
σ .

(Numerical factors are now appropriate for a real scalar σ, and therefore these equations do

not reduce to (2.3) in the limit cσ,h → 1). The suppression factors, cσ and ch, are given in

terms of the Weyl rescaling factor Ω2 = (M2/M2
Pl)(1 + ξσ2/M2) as cσ = Ω−2(∂χ/∂σ)−2 '

(1 +M2/ξσ2)/(6ξ)� 1 and ch = Ω−2(∂φ/∂h)−2 = 1, where χ and φ are canonical fields.

Therefore, the running of λH is SM-like, as loops containing the sigma scalar are suppressed

for cσ � 1 and Higgs loops are the same as in the SM. Then, we use the above RG equations

to get the corresponding equation for λ ≡ λH − λ2
Hσ/λσ, with δλ ≡ λ2

Hσ/λσ, as

dλ

d lnµ
≈ βSM

λ +
8

(4π)2
(3λ+ δλ) δλ . (3.17)

Consequently, as compared to the SM, the sigma scalar gives an extra positive contribution

in βλ. Therefore, the loop effects of the sigma scalar couplings can make the instability

scale larger than the SM one for a sizable value of δλ at the sigma mass scale. In conclusion,

unitarized Higgs inflation could still be a viable possibility without an instability problem.

4 Conclusions

The recent LHC Higgs searches have narrowed down the Higgs mass to a range which

most likely leads to a large-field instability of the potential, in the context of the SM. One

can view this result as an opportunity to learn new information about the early universe

through collider experiments [21], or as the need for a UV modification of the SM.

The lack of early discoveries at the LHC is a motivation for considering minimal, albeit

technically unnatural, theoretical descriptions of the particle world. In this paper we have

analyzed the most minimal UV modification that eliminates the EW vacuum instability,

adding one singlet scalar field to the SM degrees of freedom. As the theory is renormalized

to low energies and the new singlet is integrated out, the Higgs quartic coupling is shifted

downwards, making the Higgs mass smaller. As a result, the physical Higgs mass lies

inside the region of instability in the pure SM, although there is no actual instability in the

complete UV theory. From this point of view, the instability for mh in the allowed range

115–127 GeV is just a mirage.

The proposed stabilization mechanism relies on a threshold correction to the Higgs

quartic coupling, whose size is independent of the singlet mass. The necessary ingredients

are a singlet self-quartic coupling (λS), a mixed quartic coupling with the Higgs (λHS)

and a non-zero vev for the singlet. The mechanism can be operative even for a very heavy
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singlet, as long as its mass is smaller than the instability scale ΛI . Occurring at tree level,

the effect is sizable and robust.

The analysis of the effect involves some subtleties because, at the singlet threshold,

both the Higgs quartic coupling and the stability conditions are shifted by the same amount.

We have shown that, when λHS is positive, the stability conditions become weaker as the

field value is increased above the singlet mass. In this situation, the tree-level contribution

is very effective in stabilizing the potential. On the other hand, for negative λHS , the shifts

in the Higgs quartic coupling and in the stability condition essentially cancel out, and one

has to rely on RG effects. These can help the stabilization, but larger singlet couplings are

needed to obtain the desired effect.

The minimal modification of the SM that we have considered, with the addition of one

singlet scalar, has motivations that are independent of the stability of the EW vacuum.

We have investigated three examples. The new singlet can set the scale of the right-handed

neutrino mass in the sea-saw mechanism; or it could play the role of the invisible axion;

or finally it could unitarize models with large gravitational non-minimal couplings of the

Higgs field invoked for inflationary dynamics. In each case, we were able to define the range

of Higgs masses for which the corresponding singlet could also be used to stabilize the SM

Higgs potential. We find that stabilization is possible for any Higgs mass allowed by the

current LHC limits, in the case of leptogenesis with dominant initial right-handed neutrino

density; for mh > 119 GeV, in the case of leptogenesis with thermal initial right-handed

neutrino density or in the case of the invisible axion; for mh > 120 GeV, in the case of

leptogenesis with vanishing initial right-handed neutrino density; for mh > 125 GeV in the

case of unitarized Higgs inflation.
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