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Abstract The aim of this paper is to introduce a new
conditional statistical model for generating daily pre-
cipitation time series. The generated daily precipitation
can thus be used for climate change impact studies,
e.g., crop production, rainfall–runoff, and other water-
related processes. It is a stochastic model that links local
rainfall events to a continuous atmospheric predictor,
moisture flux, in addition to classified atmospheric cir-
culation patterns. The coupled moisture flux is proved
to be capable of capturing continuous property of cli-
mate system and providing extra information to deter-
mine rainfall probability and rainfall amount. The ap-
plication was made to simultaneously downscale daily
precipitation at multiple sites within the Rhine River
basin. The results show that the model can well repro-
duce statistical properties of daily precipitation time
series. Especially for extreme rainfall events, the model
is thought to better reflect rainfall variability compared
to the pure CP-based downscaling approach.
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1 Introduction

Global warming caused by the increasing concentration
of greenhouse gases shows an evident influence on
climates past and present. This may in turn further im-
pact hydrology and the management of water resources
such as in agriculture, hydraulic structures, forestry and
human health, etc. Therefore, introducing appropriate
climate change signals into the impact models is becom-
ing a significant issue.

In the context of hydrology, a conventional way
to analyze the hydrological response to the climate
change is to define scenarios for change in hydrological
input from the output of general circulation models
(GCMs). GCMs are one of the most useful products
from climate-related studies. They attempt to represent
past and present climate situations through consider-
ation of the internal and external driving forces and
feedbacks in the climate system and to estimate the
enhanced greenhouse effect and the consequences for
the global climate in the future. The GCMs are pow-
erful to incorporate and represent complex processes
of the global system at continental and/or hemispheric
spatial scales and monthly temporal scales. They are,
however, still weak in representing local subgrid-scale
features and dynamics (Wigley et al. 1990; Carter
et al. 1994). This weakness is mainly caused by incom-
plete understanding of the complexity of mesoscale at-
mospheric processes occurring at relatively small scales
such as cloud formation, moist convection, and others
(Risbey and Stone 1996). Apart from that, due to high
computational cost, global numerical models solve only
the primary energetic motions that are not enough for
those motions occurring at the order of several kilome-
ters in scale (Hack 1994). At the present level, those
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parameterized variables only can present the large-
scale averages, but not the real local features. Running
a regional climate model (RCM) with boundary con-
ditions from an overlying GCM is one of dynamical
downscaling to transfer the climate change signal from
global scale to regional scale. Compared to GCMs,
RCMs normally outperform GCMs in representing the
local phenomena. It may be partly caused by including
extra information at local such as topography, intensive
studies of subscale processes such as new land surface
schemes, increased resolution, and computer power
(Kjellström et al. 2006). However, RCMs share the
same weakness as the GCMs arising from coarse spatial
resolution and the derived difficulties. There are still
a number of challenges remaining so that it may take
quite a long time for RCMs to describe adequately
small-scale processes on a reasonable scale.

Statistical downscaling is an another alternative to
improve GCM simulations. It transfers atmospheric
information by an established statistical relationship
among one or several atmospheric large-scale vari-
ables and local variables. Compared to RCMs, statis-
tical downscaling is normally relatively simple, easier
to implement, and require lower computational cost.
However, there are drawbacks to their application.
One disadvantage relates to the basic assumption that
an identified statistical relationship from a present cli-
mate remains unchanged in a future climate. This is
by no means guaranteed. However, it can be some-
how reasonably solved by using enough long historical
records to cover all possible atmospheric phenomenon
(von Storch et al. 1993; Rummukainen 1997).

A number of methods have been developed. They
can be classified as analog, regression-based, or circu-
lation-based approaches (Zorita and von Storch 1999;
Wilby and Wigley 1994). As one important family,
circulation-based approach has already been commonly
adopted in the statistical downscaling field (Hay et al.
1991; Wilby and Wigley 1994). It uses several represen-
tative patterns that contain rich information about the
atmosphere to explain events recorded in the long-term
historical observations. The patterns are conducted on
either professional knowledge of atmospheric motions
(subjective classification) or statistical characteristics
derived from the observations (objective classification)
and are accordingly called as subjective circulation
pattern (CP) and objective CP. Different from other
approaches, as a precondition, each pattern describes a
specific climate condition using multigrid points rather
than a single grid point. The method is thus able to
comprehensively capture overall properties of local cli-
mate situations. The circulation-based approach does
convey information from large-scale atmosphere to

local regions and provides useful products. However,
the continuous properties of the climate system are
not properly remained due to the fact that circulation
patterns are discrete variable rather than continuous
ones. Stéhlík and Bárdossy noticed this weakness in
their work (Stéhlík and Bárdossy 2002). This study not
only showed satisfactory agreement between observed
and downscaled precipitation but also highlighted the
model’s weakness in capturing the interannual vari-
ability. They suggested the possible improvement by
including additional variables, for instance, measure-
ments of humidity, vertical stability, etc.

In this paper, a new statistical downscaling model
for daily precipitation is to be introduced. It is able
to simultaneously generate daily precipitation time se-
ries at multiple locations. In the first phase of the
work, a continuous atmospheric variable was identified
and incorporated in to the model. It was included to
provide extra information to precipitation amount in
addition to the classified circulation patterns. The de-
veloped model was later applied to the Rhine River
basin (Yeshewatesfa and Bárdossy 2008) and three
regions in China (Wetterhall et al. 2006) and compared
to other statistical downscaling methods. Both studies
show clear improvement in capturing variability of pre-
cipitation between year to year and season to season.
In the second phase of the work, the model was further
developed by logistic regression for precipitation prob-
ability and two other distributions for the precipitation
amount. The new model shows its ability to accurately
reproduce complex precipitation processes and, at the
same time, its flexibility to fit precipitation to other
appropriate distributions.

This paper will mainly focus on work in the second
phase. For the sake of completeness, all related model
setups will be introduced one after another. The details
about methodology and evaluation procedure can be
found in Section 3. The models’ performance is demon-
strated in Section 4 with a case study carried out in
Rhine River basin. The paper finishes with conclusions
in Section 5.

2 Case study area and data set

2.1 Case study area

The Rhine River basin is chosen as a study area
to demonstrate the model application (see Fig. 1).
The River Rhine originates from Swiss Alps, passing
through western Europe and finally flows into the
North Sea. It drains around 185,000 km2 and consists of
four main subbasins: the alpine region in Switzerland,
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Fig. 1 Distribution of
precipitation stations in the
Rhine River basin. Solid lines
are the boundaries of the
NCEP grid box

the Neckar basin, the Main basin, and the Mosel basin
in parts of Germany and France. In this study, the focus
will be on the mentioned subbasins, excluding the one
in Switzerland.

The Rhine River basin is very densely populated
(around 50 million inhabitants in total). Its temperate
climate conditions and abundant water resource were
crucial for the local socioeconomic development in the
agriculture-based economy and industry-based econ-
omy in the past decades. The local synoptic climate
is characterized by cool winters and warm summers.
Precipitation falls all the year around and shows weak
seasonal variability. Its amount varies from 500 to
1,800 mm. The region has been affected by several
serious flooding events in the last century, e.g., the
floods of 1925, 1926, 1955, 1993, and 1995 led to huge
economic losses and a number of casualties. Most of the
large-area flooding occurred in the late winter and early
spring, caused by heavy rainfall combined with snow
melt.

From the second half of the last century, the local
observations indicate more extreme trends in the me-
teorological variables. The phenomenon is proved by
the extreme value analysis conducted by Hundecha and
Bárdossy. In their study, local climate tends to be more

humid and warmer in winter and warmer in summer;
extreme daily maximum and minimum temperatures
are found to be increased, especially the extreme min-
imum temperature; extreme heavy precipitation be-
comes more extreme, in terms of both magnitude and
frequency, in winter and transition seasons (Hundecha
and Bárdossy 2005).

Therefore, the focus of this research is mainly the
winter seasons. Whether the model is able to represent
the variability of winter rainfall, especially under ex-
treme climate conditions, is of great importance. The
results for summer seasons are also included in this
paper, which aims to evaluate the models’ capability of
capturing the characteristics of precipitation governed
by different climate mechanisms.

2.2 Predictand

The predictand of the downscaling process is multisite
precipitation at daily scale that is required by most hy-
drological rainfall–runoff models. Particularly, their be-
havior under extreme conditions is of great importance.
The daily precipitation over long time is therefore used
for model calibration and validation.
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In the German part of the River Rhine basin, there
are hundreds of stations. Of the whole data set, 100
“evenly” distributed meteorological stations with well-
controlled records for 43 years are selected. The time
period slice starts from the year 1958 and ends in the
year 2000. These hundred stations are partitioned into
three groups, as exemplified in Fig. 1.

2.3 Predictor

The predictors for the downscaling procedure include
mean sea level pressure (MSLP), geostrophic wind field
(U, V), specific humidity (Sh), and a new combined
term, moisture flux (MF). All the predictors are derived
from National Center for Environmental Prediction
(NCEP) re-analysis data at a spatial resolution of 2.5◦ ×
2.5◦, provided by the NCEP in the USA.

As a precondition for circulation-based downscaling
approach, circulation patterns are always required. In
this work, the fuzzy rule-based classification scheme
was used to classify the circulation patterns. It is a
classification scheme based on the concept of fuzzy sets
(Zadeh 1965), using imprecise statements to describe
the climate system. The classification scheme for CPs
follows four steps: the transformation of large-scale
data, the definition of fuzzy rules, the optimization of
fuzzy rules, and the classification of circulation patterns.

Anomalies of normalized MSLP serve as a predictor,
and each CP is described by a fuzzy rule k represented
by a vector V(k) = (v(1)k, v(2)k, . . . , v(i)k, i = 1, n).
Here, n is the number of locations (grid points) and k
is the index for the CP. v(i)k are the indices of mem-
bership functions corresponding to the selected loca-
tions. Based on the membership functions, membership
grades for the anomalies are calculated for a given time
t and a given location i. These membership grades are
combined to calculate the degree of fulfillment (DOF)
of each rule. As a result, the rule k with the highest
DOF is selected as CP for a specific day. A detailed de-
scription of the methodology can be found in Bárdossy
et al. (2002).

The relationship between circulation patterns and
precipitation has been highlighted by numerous studies.
However, circulation patterns were found not efficient
enough in capturing continuous variation of climate
situations. To tackle this weakness, large-scale vari-
ables, daily geostrophic wind, and humidity variables
are taken into consideration. Geostrophic wind is a
daily airflow index. It is described by a vector con-
taining zonal U and meridional V components of the
wind field. A positive value of U indicates that airflow
moves from west to east and a positive value of V from
south to north. Humidity is an important variable that

represents concentration of water vapor in the air. It
can be expressed as absolute humidity (Ah), specif ic
humidity (Sh), or relative humidity (Rh). Geostrophic
wind and humidity-related variables are quite often
considered respectively as potential predictors in at-
mospheric studies (Charles et al. 1999; Murphy 2000;
Linderson et al. 2004). In their work, relative humidity
is taken as one of the humidity measures to scale down
precipitation. It has proven to be useful for describing
rainfall occurrence, but has very limited influence on
rainfall amount. Apart from relative humidity, specific
humidity, independent of temperature, also shows
its use to downscale rainfall amount on rainy days
(Beckmann and Buishand 2002).

In this work, specific humidity is coupled with wind
speed in zonal and/or meridional directions to form
a new term, MF. The aim is to use this new term
to describe the amount of water vapor conveyed by
wind fields to the study area, which is considered to be
important for both rainfall occurrence and its amount.
The numerical expression of moisture flux is shown as
below:

MF = Geotrophic wind × Sh (1)

3 Methodology

3.1 Conditional multivariate precipitation downscaling
model

The precipitation is distinctly asymmetrical with pos-
itive skewness and is physically constrained to be
nonnegative. Besides, it is also characterized with its
temporal intermittence in occurrence. Conventionally,
daily rainfall probability is treated as a function of the
weather state on the previous day or on the current day
such as in the Markov chain model (Richardson 1981)
and semi-empirical model (Semenov and Barrow 1997),
or dependent also on the CP of the day (Bárdossy
and Plate 1992). Daily rainfall amount is described
by a certain type of statistical probability distribution,
for instance, exponential distribution (Todorovic and
Woolhiser 1975), the gamma distribution (Groisman
1999), the mixed exponential distribution (Woolhiser
and Pegram 1979), and the transformed normal distrib-
ution (Bárdossy and Plate 1992). Here, the circulation
patterns are not the only predictor to determine occur-
rence and amount of rainfall. Moisture flux is selected
as an additional predictor. In addition, three probability
distributions are implemented. They are skewed nor-
mal distribution, exponential distribution, and gamma
distribution.
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For the model using skewed normal distribution, its
rainfall occurrence was determined only by the govern-
ing CP, while for the modeling using exponential and
gamma distribution, a logistic regression was used to
link daily moisture flux and rainfall occurrence condi-
tioned to a CP. Logistic regression is a technique to
deal with binary predictands, in this case, a day being
wet or dry. It uses binary predictands, but fits regression
parameters to a nonlinear equation. By taking the mois-
ture flux into account, the probability of rainfall oc-
currence can be differentiated, though under the same
governing CP.

y = 1

1 + exp
(
b0 + b1x

) (2)

In Eq. 2, moisture flux is an additional predictor, x, and
rainfall probability, y, a binary predictand. b0 and b1 are
two regression parameters. The probability of rainfall
occurrence obtained by logistic regression always lie
between zero and one.

Among the precipitation generators, a commonly
used continuous distribution for rainfall amount is the
gamma distribution, whose probability density function
(PDF) is expressed as:

f (x) = (x/β)α−1 exp(−x/β)

β�(α)
x, α, β > 0 (3)

It is a two-parameter distribution, with α, the shape
parameter, and β, the scale parameter. The density
function of the gamma distribution is not analytically
integrable. It has to be obtained by computing an ap-
proximation of its cumulative distribution function by
application of an incomplete gamma function.

The PDF of the gamma distribution possesses a
variety of shapes depending on its shape parameter.
For the case of α = 1, the gamma distribution is called
an exponential distribution, with a PDF that takes the
form of:

f (x) = 1

μ
exp

(−x
μ

)
x, μ > 0 (4)

The exponential distribution has only one parameter,
μ, the expectation of the precipitation amount. When α

approaches a very large value, the shape of the gamma
distribution resembles a normal distribution.

f (x) = 1

σ
√

2π
exp

(
− (x − μ)2

2σ 2

)
σ > 0 (5)

The normal distribution has many advantages over
other distributions. Its favorable characteristics make
it popular in many aspects of higher-order multivariate
analysis, including representation of precipitation, even
though precipitation is asymmetrically distributed. The

Box–Cox power transformation is always required to
correct the skewness of precipitation to mathematically
fit the normal distribution.

To couple with moisture flux, the aforementioned
distributions that propose linear relationships between
expectation of precipitation amount and identified
moisture flux are modified accordingly. As a whole,
a set of conditional precipitation downscaling models
can be presented by the equations below. They are all
dependent on the governing CP.

Z (t, u) =
{

0 if W(t, u) ≤ 0

G(t, u) else
(6)

G(t, u) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W(t, u)β

for the truncated normal distribution

F−1
[(

�
(

W(t,u)−μ(t,u)

σ (t,u)

)
− �

(
−μ(t,u)

σ (t,u)

))/

(
1 − �

(
−μ(t,u)

σ (t,u)

))]

for exponential or gamma distribution

(7)

Here,

Z (t, u) Daily precipitation amount at location u and
time t

W(t, u) Normal random variable
G(t, u) Function for generating daily precipitation

amount
F−1() Inverse of cumulative distribution function

(CDF) of exponential distribution or gamma
distribution

�() Inverse of CDF of normal distribution
μ(t, u) Expectation of random variable W(t,u)
σ(t, u) Standard deviation of random variable

W(t,u)
β Transformation exponent relating G(t,u) to

F−1(W(t,u)); If truncated, normal distribu-
tion is applied

A dependence between daily precipitation and MF
is assumed and verified by a preliminary analysis for
the study area. The parameters of the distribution are
presented as μ in addition to the CP-dependent μ0. Its
annual cycle is approximately described by a Fourier
series (Eqs. 8 and 9):

μ(t, u) = μ0
(
t∗, u

) + a × MF(t, u) (8)

μ0(t∗, u) = a0(i, u)

2
+

K∑

k=1

(
ak(i, u) cos

(
kwt∗

)

+ bk(i, u) sin
(
kwt∗

))
(9)
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where t∗ stands for the Julian day corresponding to
every actual day, a describes the relationship between
expectation of precipitation and daily moisture flux,
μ0(t∗, u) is the expectation of precipitation on the Julian
day at the location u. ak and bk are the coefficients of
the harmonics of the Fourier series conditioned to CP
pattern i. According to harmonic analysis, the Fourier
approximation is able to be identical to observed time
series when (t∗−1)/2 harmonics are introduced. Nor-
mally, the first three harmonics are enough.

The spatial structure of rainfall is presented by a
spatial covariance structure, which takes spatial co-
variance, Ci(t∗), and autocorrelation, r(t∗), into ac-
count. With the introduction of random numbers ψ(t),
precipitation can be generated at multiple sites day
by day:

W (t, u) = r
(
t∗

)
W (t − 1, u) + Ci

(
t∗

)
ψ (t) (10)

3.2 Parameter estimation

3.2.1 Parameter for rainfall probability model

The rainfall probability for each station is estimated
with the help of influencing moisture flux and gov-
erning CP using logistic regression. Logistic regression
contains two parameters, b0 and b1. They are estimated
using the maximum likelihood estimator (MLE) in this
work.

MLE is an approach to estimate the distribution
parameters apart from moments method. It is a method
that finds the value of parameters that maximize the
known likelihood.

The log-likelihood of the logistic regression model is
demonstrated with Eq. 11:

L(b) =
N∑

i=1

xT
i byi −

N∑

i=1

ni log
(
1 + exp

(
xT

i b
))

(11)

The estimated parameters, b0 and b1, are used to de-
termine the rainfall probability for a day with occurring
CP and moisture flux.

Table 1 Diagnostics of classified circulation patterns

Acronym Definition Unit

CP frequency Frequency of a particular CP during %
the studying time slice

Prec mean Percentage of observed rainfall events %
under a given CP

Prec 90 Percentage of rainfall events beyond %
90-th percentile value of overall
precipitation under a given CP

Table 2 Diagnostics of daily precipitation

Acronym Definition Unit

90N Total number of events larger than 90-th %
percentile value of overall precipitation

90T Percentage of rainfall from events %
beyond 90-th percentile value of
overall precipitation

P90 90-th percentile value of precipitation mm/day
Pav Index of mean precipitation amount mm/day
SDI Simple daily intensity (rain per rainy day) mm/day
CDD Max no. of consecutive dry days day
R5D Greatest 5-day total rainfall mm
Ldd Mean dry spell length day
Lww Mean wet spell length day
Pdd Mean dry day persistence day
Pww Mean wet day persistence day

3.2.2 Parameter for the rainfall amount model

Moment method is conventionally used to estimate
distribution’s parameters. However, it may not be suit-
able for all the distributions and variables. Thom, for
instance, pointed out that the moment estimator for the
gamma distribution performs relatively well for larger
values of α, but not for small values of α (Thom 1958).
Besides this, the particular characteristics of precipita-
tion makes moment estimator inefficient at capturing
its discrete continuous process. Therefore, MLE is used
instead.

Using MLE, probabilities for the dry days are de-
scribed using a cumulative distribution, while probabil-
ities for the wet days are described with a density distri-
bution. In the following expressions, � and ϕ denote
the cumulative distribution and the density function
of the standard normal distribution. μ0 stands for the
expectation conditioned to a particular CP; a represents
the dependence between the daily moisture flux and
the precipitation under the influence of a certain CP;
MF is the daily moisture flux produced using NCEP
re-analysis data; Z0 is the threshold value for rainfall
event.

For the skewed normal distribution, MLE is ex-
pressed as:

Ln(μ0, σ, a
)

=
∑

Z (t,u)≤Z0

ln �

(
−(

μ0
(
t∗, u

) + a × MF
)

σ
(
t∗, u

)

)

+
∑

Z (t,u)>Z0

ln ϕ

(
Z (t, u)1/β − (

μ0
(
t∗, u

) + a × MF
)

σ
(
t∗, u

)

)

(12)
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Fig. 2 Wetness index of the
CPs in summer and winter for
the period from 1960 to 1978
and 1994 to 2000

0,00

0,50

1,00

1,50

2,00

2,50

3,00

1 2 3 4 5 6 7 8 9 10 11 12 13

CP

W
et

n
es

s 
[-

]

SUMMER
WINTER

To apply MLE for finding the parameters of the
exponential distribution, the function has to be refor-
matted with a parameter λ, which is the inverse of the
expected precipitation.

Le(λ) =
∑

Z (t,u)≤Z0

(λ(t, u) × x)

+
∑

Z (t,u)>Z0

(ln λ(t, u) − λ(t, u) × x) (13)

λ(t, u) = 1

μ0
(
t∗, u

) + a × MF
(14)

When the gamma distribution is applied, the equation
adopts a more complicated form.

Lg(α, η, μ, a
)

=
∑

Z (t,u)≤Z0

(

ln γ

(

α,
α × Z (t, u)

μ
(
t∗, u

)

)

− ln �(α)

)

+
∑

Z (t,u)>Z0

(

ln

(
Z (t, u)

η(t, u)

)α−1

− Z (t, u)

η(t, u)
−ln

(
η(t, u)

�(α)

))

(15)

where

α Shape parameter of the gamma distribution
η(t, u) Location parameter of the gamma distribu-

tion
μ(t∗, u) Parameter including influence of daily mois-

ture flux into the distribution parameter
μ(t∗, u) = μ0(t∗, u) + a×MF(t,u)

The integral of the gamma density function cannot
be found analytically. It must be solved by computing

approximations to the CDF or from tabulated proba-
bilities. No matter which option is selected, the variable
has to be rescaled to follow the standardized gamma
distribution. After rescaling, the standard variate is
dimensionless, and the shape parameter still remains
the same. The cumulative probabilities for the standard
gamma distribution can be calculated through a mathe-
matical function, an incomplete gamma function �.

3.3 Evaluation procedure

Evaluation for CP classif ication Circulation patterns
were classified based on the daily anomaly of MSLP
over central Europe covering the study area. Each day
is assigned to a particular CP. Whether the classified
CPs are able to distinguish the weather state in both

Table 3 The contribution of CPs to the frequency and magnitude
of precipitation in winter

CP CP Prec Prec Iw Iw,extrem

frequency mean 90 (–) (–)
(%) (%) (%)

CP01 5.2 5.85 3.93 1.12 0.76
CP02 11.1 9.24 5.28 0.73 0.48
CP03 7.3 4.17 2.72 0.57 0.37
CP04 5.8 11.79 12.56 1.92 2.17
CP05 14.9 6.00 2.86 0.37 0.20
CP06 3.1 4.91 4.70 1.71 1.52
CP07 5.5 4.22 3.32 0.71 0.60
CP08 14.9 5.75 3.61 0.37 0.24
CP09 3.6 3.12 1.91 0.6 0.53
CP10 6.0 9.71 11.55 1.75 1.93
CP11 8.8 21.41 35.50 2.97 4.03
CP12 5.3 4.16 1.86 0.85 0.35
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Table 4 The contribution of CPs to the frequency and magnitude
of precipitation in summer

CP CP Prec Prec Iw Iw,extrem

frequency mean 90 (–) (–)
(%) (%) (%)

CP01 4.1 4.88 5.14 1.26 1.25
CP02 12.7 6.78 5.32 0.41 0.42
CP03 5.7 5.84 6.47 1.05 1.14
CP04 6.6 12.14 11.80 1.82 1.79
CP05 13.4 5.52 5.26 0.37 0.40
CP06 6.3 5.44 3.61 0.87 0.57
CP07 5.4 5.11 3.54 0.67 0.66
CP08 11.0 5.33 5.23 0.57 0.48
CP09 5.4 3.70 2.38 0.70 0.44
CP10 7.7 13.78 19.59 1.93 2.54
CP11 8.9 16.73 16.82 2.11 1.89
CP12 6.3 6.06 6.12 0.92 0.97

normal and extreme rainfall events is considered as a
criterion.

Iw is a wetness index, shown in Eq. 16. It is an overall
index calculated for each CP for each season to identify
dependence between the local rainfall events and the
governing CPs.

Iw = Ri

Ni
(16)

where

i Number of CP
Ri Rainfall contribution in percent
Ni CP occurrence/frequency in percent

It describes the relative contribution of a certain CP
to the regional rainfall amount. The wetness index can
take values of 1, <1, and >1 indicating normal, dry and
wet conditions, respectively. The combination of low-
frequency occurrence and large amount of rainfall leads
to Iw > 1, and the combination of high-frequency oc-

currence but small amount leads to Iw < 1. The larger
the wetness, the wetter the CP is and vice versa. In
addition, several statistic indices are calculated to an-
alyze the performance of classified CPs for explaining
the variability of precipitation in the given study area
from CP to CP as well. They are CP frequency, Prec
mean, and Prec 90 (Table 1).

Evaluation for model performance The annual cycle
of each station is reproduced to ensure that the model
is capable of capturing the annual variability of pre-
cipitation. In addition to that, the indices represent-
ing the statistics of daily precipitation with consid-
eration of both precipitation occurrence (90N, 90T)
and precipitation amount (P90, Pav, R5D) are se-
lected; together with those indices reflecting aver-
age precipitation (SDI, CDD, Ldd, Lww, Pdd, Pww).
Table 2 summarizes the applied indices. The full
descriptions of the indices can be obtained from the
web site of the EU STARDEX project (http://www.
cru.uea.ac.uk/cru/projects/stardex/ ).

The diagnostics are calculated seasonally over all
stations. The interannual variability is analyzed by the
correlation between indices calculated from observed
and downscaled daily precipitation time series.

4 Results and discussions

4.1 Circulation patterns

The circulation patterns for the Rhine River basin were
classified within the STARDEX project (Bárdossy and
Hundecha 2003). They were generated using anomalies
of MSLP covering the central European window rang-
ing from 65◦ N–15◦ W to 35◦ N–25◦ E and optimized
against calculated daily discharge differences for the

CP 05 CP 11

Fig. 3 Driest and wettest CP classified for the River Rhine basin

http://www.cru.uea.ac.uk/cru/projects/stardex/
http://www.cru.uea.ac.uk/cru/projects/stardex/
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Table 5 The correlation
between daily precipitation
and daily flux at different
pressure levels

Pressure Net moisture flux Zonal moisture flux
level Group 1 Group 2 Group 3 Group 1 Group 2 Group 3

500 hPa 0.330 0.295 0.357 0.348 0.308 0.378
700 hPa 0.372 0.335 0.405 0.400 0.355 0.430
850 hPa 0.357 0.311 0.377 0.378 0.329 0.429

Table 6 Averaged correlation coefficients between observed and simulated daily precipitation generated by the three mentioned
models at selected 100 stations (see Fig. 1; winter and summer)

Indices Winter Summer

MF MF + CP MF + CP + AC MF MF + CP MF + CP + AC

Average 0.591 0.608 0.615 0.250 0.322 0.340
STD 0.056 0.060 0.058 0.047 0.050 0.043
Max 0.722 0.738 0.735 0.366 0.456 0.459
Min 0.356 0.417 0.417 0.104 0.187 0.225

Table 7 Averaged correlation coefficients between observed and simulated daily precipitation generated by the three mentioned
models at selected 100 stations (see Fig. 1; spring and autumn)

Indices Spring Autumn

MF MF + CP MF + CP + AC MF MF + CP MF + CP + AC

Average 0.369 0.415 0.418 0.481 0.525 0.527
STD 0.054 0.058 0.057 0.057 0.062 0.065
Max 0.496 0.538 0.544 0.589 0.668 0.658
Min 0.212 0.303 0.300 0.301 0.307 0.317

Fig. 4 Rainfall probability
for the station
GERMERSHEIM
conditioned to CPs and
moisture flux (MF)
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Moselle catchment. Thirteen CPs are classified. CP01
to CP12 are distinct CPs that explain specific large-scale
circulation. CP13 is the one that does not belong to any
of representative CP, and it is therefore considered as a
unclassified CP.

The importances of individual CP to rainfall events
at each station are evaluated using wetness index and
statistical analysis introduced in Section 3.3. Figure 2
shows the wetness index calculated over all the sta-
tions for every half year, summer half year (March–
August) and winter half year (September–February).
CP04, CP10, and CP11 can be clearly found much
wetter in comparison with other CPs, while CP05 and
CP08 are much drier. Elsewhere, as can be seen from
the statistics of single CP tabulated in Tables 3 and 4,
two extreme CPs, CP05 and CP11, behave conversely
from each other in both winter (December–January–
February) and summer (June–July–August) seasons: In
winter, 35.5% of the extreme rainfall events are caused
by CP11 despite its low occurrence of 8.8%; however,
with the occurrence of 14.9%, only 2.86% of the total
extreme rainfall events were observed under the impact
of CP05.

A consensus between statistic analysis and climatol-
ogy is also be reached. From the anomalies map of
CP11 (Fig. 3), a cyclone can be identified intuitively. A
large area of low pressure is centered over the North
Sea and influences most parts of western and cen-
tral Europe. The pressure gradient decreases from the
high-pressure region to the low-pressure region; wind
flow around the cyclone is moving counterclockwise
bringing huge amounts of moisture from the northern
Atlantic to Central Europe. That explains why heavy
rainfall, especially the large area rainfall, is always

produced with the occurrence of this particular CP. In
contrast to CP11, the pressure map of CP05 is a typical
anticyclone. The high pressure zone above western
Europe indicates the negative dependence between the
occurrences of CP05 and the local rainfall events.

As a conclusion, the classified CP set captures large-
scale information quite well which makes it reliable
enough to apply it as a precondition for downscale
precipitation in this study area.

4.2 Moisture flux

As mentioned in Section 2.3, moisture flux is used as an
additional predictor in this study. It is expected to pro-
vide extra information to the given CPs and thereafter
to enhance the original circulation-based downscaling
model. Moisture flux and wind direction (U and V) at
different pressure level, ranging from 850 to 500 hPa,
were in use. The stations were divided into three groups
(Fig. 1). For simplicity, the gridded moisture flux that
has the highest correlation with all stations in the group
is subsequently used as the best predictor for target
variable, precipitation. Individual gridded moisture flux
can be chosen for each station as well, which may
reasonably increase dependence as a whole.

Firstly, whole sets of zonal and net moisture flux
were compared to daily precipitation over the whole
year to identify their dependence in general. The re-
sults summarized in Table 5 indicate that the westerly
moisture flux (zonal moisture flux) has a greater impact
on local rainfall, which is also reflected by the pressure
map of the circulation patterns. Including meridional
moisture flux deteriorates the dependence. In addition,
the moisture flux impacts more on the coastal regions

Fig. 5 Rainfall probabilities
calculated from the
observations and logistic
regression for CP11
(diamonds modeled rainfall
probability; squares observed
rainfall probability; dashes
confidence level of 95%)
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Fig. 6 Annual cycle of monthly precipitation at the selected stations in the Rhein River basin (1979–1993)

(group 1 and group 3) than on the inland region (group
2). Compared with other pressure levels, moisture flux
at 700 hPa pressure level shows the strongest depen-
dence on local rainfall.

Secondly, identified westerly moisture flux was cou-
pled with the three other linear regression models, MF,
MF + CP, and MF + CP + AC. Model MF generates
precipitation as a function of daily moisture flux with-
out considering the governing CP. Model MF + CP
uses CP as a condition to generate precipitation with

the daily moisture flux. Model MF + CP + AC takes
both seasonal variation of moisture flux and governing
CP into account. The three simple models were all cal-
ibrated using the time periods from the year 1960–1978
and 1994–2000 and validated using data from the year
1979 to 1993. The correlations between models’ outputs
and precipitation time series from observation were
calculated for different seasons and their results for the
validation period are tabulated. As seen from Tables 6
and 7, there is considerable dependence between daily
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moisture flux and precipitation varying from season
to season. The highest correlation of 0.59 is reached
in winter; the lowest correlation of 0.25 appears in
summer. Improvement is noticed when moisture flux
is treated as a predictor conditioned to the governing
circulation patterns, instead of being treated as the
most important predictor, which is in consensus with
other related studies. Model MF + CP + AC reaches
the highest correlation among different combinations
of moisture flux, annual cycle, and governing CP. It
indicates that the inclusion of moisture flux may help
generate reasonable rainfall amount when coupled in
relation to both CP and seasonal variation.

4.3 Probability of precipitation

The logistic regression is used to describe the rainfall
probability conditioned to the classified circulation pat-
terns and moisture flux. The dependence between the
moisture flux and rainfall probability is represented by
a monotonic increasing curve that displays graphically
the probability of a day being wet or dry with a given
moisture flux under a particular CP.

Figure 4 illustrates the dependence between the
probability of rainfall and the corresponding moisture
flux under the impact of CPs at station GERMER-
SHEIM in southern Germany. In the figure, the dots
represent the dependence under the wet CP–CP11; the
diamonds for the same analysis under the dry CP–
CP05. The dashes describe the dependence without
consideration of CP impact.

As can be seen in the figure, the classified circu-
lation patterns successfully differentiate the behavior

of rainfall under the impact of moisture flux. Rainfall
probability increases with the increase of moisture flux.
Especially, there is a quite low probability of rainfall
occurrence with the appearance of negative moisture
flux that denotes the eastward flux. It proves again
the assumption that the westerly moisture flux is a
dominant factor for the Rhine River basin. It is worthy
to note that the wet CP always induces higher rainfall
probability compared with the dry one under the same
amount of moisture flux.

In order to see whether the difference between
estimated values and observed values is statistically
significant, a statistical test has to be performed. A
confidence level is used to construct intervals with re-
spect to a specified probability of 95%. The probability
of rainfall can be simply considered as the frequency
of the weather state being wet. The weather state is
either wet or dry, which exactly fits to the parametric
test of the binomial distribution. The observed weather
states are shuffled to calculate the observed frequency
of rainfall for each moisture flux interval conditioned
to each CP. The binomial distribution is then applied to
construct its corresponding intervals at 95% confidence
level.

In Fig. 5, the probability of rainfall calculated
from both observations and model, together with a
confidence level of 95%, is presented. The observed
frequency of rainfall is shown as a discrete variable and
calculated as a continuous variable. It can be noticed
that the confidence intervals constructed around the
observed frequencies is quite narrow except at the
limits of extremely high and low moisture flux. The cal-
culated rainfall probabilities are consistent with those

Table 8 Correlation between
monthly precipitations
derived on observed and
simulated daily precipitation
(1979–1993)

Subbasin Stations CP CP + MF CP + MF CP + MF
(normal (normal (exponential (Gamma
distribution) distribution) distribution) distribution)

Moselle Pellingem 0.75 0.81 0.78 0.84
Puettlingen 0.86 0.84 0.86 0.86
Saarbruecken 0.86 0.84 0.90 0.79
Buechel 0.81 0.83 0.77 0.82
Schmelz-lim. 0.93 0.95 0.96 0.95
Germersheim 0.69 0.70 0.74 0.70
Nohfelden-Tr. 0.94 0.95 0.97 0.97

Neckar Sinsheim 0.79 0.79 0.82 0.81
Ahorn-eub. 0.87 0.88 0.87 0.89
Gschwend 0.76 0.76 0.81 0.81
Eschborn 0.73 0.71 0.82 0.80

Main Holzkirch 0.74 0.69 0.76 0.68
Obersinn 0.87 0.88 0.91 0.89
Werneck 0.71 0.71 0.75 0.68
Staffelstein 0.80 0.74 0.81 0.84
Ebern-Ey. 0.70 0.66 0.77 0.68
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Table 9 Bias between monthly precipitation derived from the
observation records and simulation result over the whole study
area (1979–1993)

Distribution Winter Summer
half year half year
(mm/month) (mm/month)

CP Normal distribution −3.2 −6.9
CP + MF Normal distribution −2.4 −2.3
CP + MF Exponential distribution −6.9 −8.4
CP + MF Gamma distribution −7.7 −6.1

from the observations. They are all falling within the
intervals bounded by the confidence level of 95%. The
statistical test indicates that the difference between the
estimated values and observed values is not statistically
significant at the 5% level. This result is statistically
acceptable.

The logistic regression proved useful for integrating
nonlinear dependence among CPs, moisture flux, and
rainfall probability into one expression. Consequently,
the daily rainfall probability conditioned to an individ-
ual CP is not constant anymore but varies together with
daily moisture flux, which is conducive in providing
more detailed information for generating daily rainfall
time series.

4.4 Validation of the model

The downscaling models with different setups were
implemented. They were calibrated using historical
records from the periods 1958–1978 and 1994–2000 and
validated with records of the period from 1979 to 1993.
Mean monthly simulated precipitation was compared
to that of observed precipitation to ensure the agree-
ment in intraannual variation and precipitation amount

in a year. Several exemplar stations located in Mosel,
Neckar, and Main subbasins were selected. The bias
and Pearson correlation between the observation and
model’s outputs was used as one of the measurements
for the models’ performances. Apart from that, a num-
ber of precipitation indices were calculated seasonally
from both simulated and observed precipitation. Their
rank correlations were used to evaluate how good the
model is to capture interannual variability of average
and extreme precipitation.

In general, all the models are able to capture the
annual variability of rainfall at the station location no
matter whether the moisture flux is considered or not.
As shown in Fig. 6, no model performs predominantly
better compared with the other models. The model
using the skewed normal distribution coupled with
moisture flux causes the least bias of −2.4 mm/month
during the winter half year and −2.3 mm/month in the
summer half year, while the remaining models pro-
duced larger deficits over the whole year. For the model
using exponential distribution with moisture flux, the
average correlation between day-to-day precipitation
reaches the highest value, though the resultant bias is
much higher compared to the one using skewed normal
distribution with moisture flux (see Tables 8 and 9).

Figures 7 and 8 show the rank correlation calcu-
lated from observed and simulated precipitation over
all stations. The calculation was carried out for each
season. Here, the results for the selected indices from
winters (December–January–February) and summers
(June–July–August) are presented as a bar chart. Each
bar represents the result from a single model setup.
The first and second model setups stand for the per-
formance derived from generators using skewed nor-
mal distribution, the former proceeding one with no
account of moisture flux and the latter one with. The

Fig. 7 Comparison between
the performances of models
with and without moisture
flux (MF) in summer
(June–July–August).
Definition of daily
precipitation diagnostics
acronyms are given in Table 1
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Fig. 8 Comparison between
the performances of models
with and without moisture
flux (MF) in winter
(December–January–
February). Definition of daily
precipitation diagnostics
acronyms are given in Table 1
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rainfall probability is controlled by the governing CP.
The last two models represent the performance of the
generator using the exponential distribution and the
gamma distribution, respectively. Both of them are
set up to consider moisture flux. The weather state is
controlled by both CP and moisture flux.

As can be seen from the figures, the models show
their particular skills differently. However, the better
performance in representing average precipitation and
persistence of dry and wet days can still be noticed in
moisture-related models, which implies the importance
of introducing additional continuous atmospheric pre-
dictors to the discrete circulation patterns. The in-
terannual variability in average and extreme rainfall
has been largely enhanced in both winter and sum-
mer seasons. Generally, all model setups show their
best performances in reproducing winter rainfall, rather
than in reproducing summer rainfall. This is mainly
caused by the different mechanisms governing synoptic
climate. In winter, the long-lasting rainfall is caused by
large-scale circulation that can be captured by classified
circulation patterns. However, the summer rainfall is
mostly dominated by local processes that are difficult to
be represented by large-scale patterns. The model setup
with skewed normal distribution as its marginal shows
the best performance in winter, followed by the one
with exponential distribution, and then the one with
gamma distribution. In contrast to the winter season,
the model with exponential distribution behaves best
in the summer seasons. Improvement in dry and wet
spells is noticeable in model setups that use both CP
and moisture flux to determine rainfall occurrence.
Furthermore, the variability related to average rainfall
amount is increased; however, the variability related to
extreme precipitation is still quite low. As a whole, the
models are enhanced with inclusion of moisture flux
over the whole year. Their performances vary in indices

and differ from season to season and depend on the
governing atmospheric mechanisms.

5 Conclusion

In this paper, a conditional multivariate downscaling
model was introduced. The present model couples a
continuous predictor, moisture flux, in addition to the
circulation patterns, to generate the rainfall amount.
Besides this, a logistic regression has been applied for
determining the rainfall probability.

The analysis of the dependence between the precip-
itation series and the moisture flux highlighted that the
influence is significantly related to local geography and
orography. For example, the eastward moisture flux is
more dominant for regions in central Europe, while for
other regions, it may not be a dominant factor. Shown
by a linear regression model and a logistic regression
model, it is clear that not only precipitation amount
but also probability are dependent on both circulation
patterns and moisture flux, which proves the key role
of circulation patterns and moisture flux for generating
precipitation.

The current model was successfully applied to the
Rhine River basin. Its performance was evaluated by
diagnostic analysis for both extreme and average con-
ditions. The performance is consistent with historical
observations. Especially, the interannual performance
could be improved a lot due to the incorporation of
moisture flux. The main conclusions are summarized as
follows:

• Classification of circulation patterns is useful to
capture the representative climate phenomena.

• Moisture flux plays an important role on local rain-
fall events.
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• Logistic regression is useful when involving use of
binary predictands and fitting regression parame-
ters to the nonlinear equation. In this study, it helps
to determine rainfall probability with respect to
daily moisture flux conditioned to a given circula-
tion pattern.

• Under the same circulation pattern, the larger the
moisture flux, the higher the probability of rainfall.

• With the same amount of moisture flux, the wet CP
is more likely to cause the occurrence of rainfall.

• Generators with skewed normal distribution and
exponential distribution were proven to be reliable
in representing the variability of precipitation.

In comparison with other model setups, the model
of the skewed normal distribution coupled with the
moisture flux is the best one in terms of reproducing
the interannual variability and representing the annual
cycle. As an alternative, the exponential distribution
using logistic regression for determining the occurrence
of rainfall works also relatively well. In general, all the
models show the best performance in winter, followed
by transition season, spring and autumn.

The winter rainfall at high latitude regions in the
northern hemisphere is important for major river
flooding, often caused by long lasting rainfall due to
large-scale west cyclonic circulation (Caspary 1996),
which can be captured by the classified circulation
patterns. For the winter rainfall events, all the mod-
els coupled with moisture flux yield better results in
terms of indices related to both mean precipitation
and extreme precipitation conditions. Especially for
the model adopting the skewed normal distribution,
the skill to reproduce the interannual variability has
been enhanced by 100%. The models with exponential
distribution and gamma distribution do not perform
as well as the one using the skewed normal distribu-
tion. Nevertheless, they produce better results than the
model without moisture flux. This implies the impor-
tance of introducing continuous meteorological predic-
tors in addition to the discrete circulation patterns for
generating meteorological variables.

The capabilities of the models to reproduce the
interannual variability in summer are also improving
with the consideration of moisture flux, however, not as
much so in winter. The model with the exponential dis-
tribution shows the best performance of all three model
setups. The skill to reproduce the extreme rainfall
events is increased by 25% and for the normal rainfall
events by 60%. The model performance is in general
weaker than that in other seasons. This weakness is due
to the different mechanisms characteristic for summer
rainfall from that for winter rainfall. It is partly the

result of local convective motion and therefore, the
rainfall events are much more local. More research is
needed related to moisture flux. Studying the vertical
variation of moisture flux may be helpful to further
improve model performance.
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