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Abstract

Background: Land Use Regression (LUR) is a popular method to explain and predict spatial contrasts in air pollution
concentrations, but LUR models for ultrafine particles, such as particle number concentration (PNC) are especially
scarce. Moreover, no models have been previously presented for the lung deposited surface area (LDSA) of ultrafine
particles. The additional value of ultrafine particle metrics has not been well investigated due to lack of exposure
measurements and models.

Methods: Air pollution measurements were performed in 2011 and 2012 in the eight areas of the Swiss SAPALDIA
study at up to 40 sites per area for NO2 and at 20 sites in four areas for markers of particulate air pollution. We developed
multi-area LUR models for biannual average concentrations of PM2.5, PM2.5 absorbance, PM10, PMcoarse, PNC and LDSA, as
well as alpine, non-alpine and study area specific models for NO2, using predictor variables which were available at a
national level. Models were validated using leave-one-out cross-validation, as well as independent external validation
with routine monitoring data.

Results: Model explained variance (R2) was moderate for the various PM mass fractions PM2.5 (0.57), PM10 (0.63) and
PMcoarse (0.45), and was high for PM2.5 absorbance (0.81), PNC (0.87) and LDSA (0.91). Study-area specific LUR models for
NO2 (R

2 range 0.52–0.89) outperformed combined-area alpine (R2 = 0.53) and non-alpine (R2 = 0.65) models in terms of
both cross-validation and independent external validation, and were better able to account for between-area variability.
Predictor variables related to traffic and national dispersion model estimates were important predictors.

Conclusions: LUR models for all pollutants captured spatial variability of long-term average concentrations, performed
adequately in validation, and could be successfully applied to the SAPALDIA cohort. Dispersion model predictions or area
indicators served well to capture the between area variance. For NO2, applying study-area specific models was preferable
over applying combined-area alpine/non-alpine models. Correlations between pollutants were higher in the model
predictions than in the measurements, so it will remain challenging to disentangle their health effects.
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Background
Several studies have documented large spatial contrasts
in air pollution in European and US cities [1–4]. Land
Use Regression (LUR) modeling has become a popular
method for explaining the observed contrasts [5–10], as
well as estimating outdoor pollution concentrations at
the homes of participants of large epidemiological stud-
ies [11–14]. LUR relies on a spatially dense air pollution
monitoring network, of which each site is characterized
by a set of potential “predictor variables”, which are gen-
erally derived from Geographic Information Systems
(GIS) [7]. In LUR, a regression model is developed
which links the air pollution concentrations observed in
the network to the most predictive environmental char-
acteristics, such as traffic, land use and population. De-
pending on the pollutant, LUR modeling has been able
to explain a moderate to large amount of spatial variabil-
ity in concentration for a growing arsenal of pollutants.
Where traditionally, mostly nitrogen dioxides and par-

ticulate matter were modeled [7], a few recent LUR
studies have also modeled ultrafine particles [15–21],
mostly based on mobile [17, 20] or short period moni-
toring [16, 18, 19, 21], and therefore modeling concen-
trations which are not necessarily representative for the
longer-term average. Long-term, spatially resolved moni-
toring campaigns for ultrafine particles (UFP) have been
uncommon because the condensation particle counters
which are typically used for measurements are costly
and require daily maintenance. The MiniDisc devices
used in our study could be deployed for longer periods
with relatively little maintenance.
Typically, LUR models are developed for single cities,

metropolitan areas or regions, and applied within the
same geographical parameters. Some attempts have been
presented to combine study areas [6, 10, 22–24], or transfer
LUR models between areas [24–26]. Most studies conclude
that locally developed models are favorable over
combined-area or transferred models [10, 24–26]. How-
ever, it has been mentioned that combined-area models
may allow epidemiological studies to pool epidemiological
data from different areas and better exploit the between
area contrasts, which would substantially increase the ex-
posure range for some pollutants [22]. The background
concentration difference between areas is often mentioned
as a source of over- or under-prediction when applying
these combined-area models, and has been addressed by
including indicator variables [6], area-specific regional
background [22] or recently satellite-observed background
NO2 [23], or (like in this paper) larger scale dispersion
models [10, 27]. Data for the latter two approaches may
not be available for all pollutants, but these approaches
have the advantage of being able to interpolate between
study areas. The availability of common-source predictor
data is crucial to the success of transferring LUR models or

combining study areas [22, 25, 26]. If the allocation of land
use categories differs between areas, or traffic intensity
dataare obtained from different traffic models, this may
compromise the quality of a combined-area model [10] or
the ability to transfer models between areas [25].
This paper describes the development, performance and

validation of multi-area LUR models for nitrogen dioxide
(NO2), particulate matter <2.5 μm (PM2.5), PM2.5 filter ab-
sorbance, a marker for diesel exhaust particles (PM2.5 ab-
sorbance), particulate matter <10 μm (PM10), the coarse
fraction calculated as the difference between PM10 and
PM2.5 (PMcoarse), particle number concentration (PNC) and
the lung deposited surface area (LDSA) of particles. For
NO2, measurements and models cover all eight areas of the
Swiss Study on Air Pollution and Lung and heart Diseases
(SAPALDIA). For particle-related markers of air pollution,
the study covers four of the eight areas. This paper presents
one of the first LUR models representing long-term expos-
ure to PNC and the first model for LDSA of ultrafine parti-
cles. Several toxicological studies suggest that the strength
of the induced inflammatory response is related to the con-
tact surface area of the pollutant with the alveolar cells, ra-
ther than its mass [28, 29], making it a biologically
promising metric of exposure [30]. Moreover, the small size
of ultrafine particles facilitates translocation into the blood-
stream and uptake into cells [31]. However, due to the lack
of exposure data, no epidemiological study on long-term
effects of air pollution has evaluated the added value of its
use. Furthermore, we evaluate the performance of study
area-specific and multi-area NO2 models to predict con-
centrations of an independent validation dataset. The LUR
models presented in this paper will be applied to the
SAPALDIA study population to estimate subjects’ exposure
to the above pollutants. The SAPALDIA cohort was initi-
ated in 1991 and had follow-ups in 2002 and 2011 (SAPAL-
DIA 3) [32, 33].

Methods
We developed LUR models for biannual average concentra-
tions of NO2 for eight areas in Switzerland, and for PM2.5,
PM2.5 absorbance, PM10, PMcoarse, PNC and LDSA for four
areas, due to financial constraints, using a range of geo-
graphic predictor variables. NO2 models were developed
for all eight areas combined, for each area separately, and
for the alpine and non-alpine regions separately. All predic-
tors were available nationwide. We used a supervised step-
wise method to develop LUR models, maximizing model
explained variance, while allowing only “plausible” direc-
tions of effect (e.g. increase in concentration for traffic,
decrease in concentration for proximity to green space).

Air pollution measurement data
The SAPALDIA 3 measurement campaign and results have
been described previously [34]. Briefly, eight study areas
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(Aarau, Basel, Davos, Geneva, Lugano, Montana, Payerne
and Wald) were selected to cover the spatial distribution of
SAPALDIA 3 cohort addresses (Additional file 1). Forty
NO2 sampling sites were selected in each study area. In Ba-
sel, Geneva, Lugano and Wald, PM2.5, PM10, PNC and
LDSA measurements were co-located with the NO2 sam-
plers at 20 of the 40 sites. NO2 was measured with passive
diffusion samplers (Passam AG, Männedorf, Switzerland),
PM2.5 and PM10 were collected on filters using Harvard
Impactors, PM2.5 absorbance was measured as reflectance
on PM2.5 filters using a smoke stain reflectometer, and
PNC and LDSA measurements were conducted with the
Miniature Diffusion Size Classifier (MiniDiSC) (Fach-
hochschule Nordwestschweiz, Switzerland) [35]. All mea-
surements were performed between January 2011 and
December 2012. In each study area, regional background,
urban background and traffic sites were selected. Because a
substantial amount of spatial contrast is traffic-related, we
chose to over-represent the number of street sites (±50 %
of the total), including a wide range of different traffic in-
tensities and street layouts. In Aarau, Davos, Montana and
Payerne, all sites were measured simultaneously, three
times for 14 days each in the cold, warm and intermediate
seasons. In Basel, Geneva, Lugano and Wald, 20 sites
(10 PM+NO2 and 10 NO2-only) were measured simultan-
eously for 14 days, while the remaining 20 sites were mea-
sured during the subsequent 14 days. This was again
repeated 3 times in different seasons. A small number of
sites for which valid measurements were only available for
1 season, were excluded from the analysis [34], explaining
n < 40 for NO2 or n < 20 for PM2.5 or PM10 in some study
areas (Table 2).
For each site, results from the three individual measure-

ments were averaged to represent a bi-annual average over
the years 2011 and 2012, by adjusting for the long-term
concentration observed at a reference site which was cen-
trally located in each study area. The temporal correction
factor for each measurement was calculated as the ratio
between the biannual mean and the average reference site
measurement during the particular measurement period.
Thus, it is assumed that the temporal variation observed
at the fixed site monitor reflects the seasonal pattern of
the entire area. This procedure has been extensively
described before [34].

GIS predictor data
Sampling site coordinates were determined manually in
GIS by investigators who had personally visited the sites,
ensuring that the position was accurate relative to roads,
and buildings. For each site, we used GIS to calculate 164
geographic predictor variables. To do this, we made use of
digital datasets which were available on the European and
National (Switzerland) level. A more detailed description

of the predictor variables and how they were derived can
be found in Table 1.
The following GIS source data were available:

1. Building density

Building footprints were available for the year 2008 from
Vector25, the digital landscape model of Switzerland [36].
Data covered the whole country plus several km beyond
the borders. We calculated the total area covered by build-
ing footprints in various buffers.

2. Population density

Aggregated census population data at a 100×100m grid
were available for 2011 from the Bundesamt für Statistik
(BfS) http://www.bfs.admin.ch/bfs/portal/de/index/diens-
tleistungen/geostat/datenbeschreibung/volks-__gebaeude-
0.html for Switzerland only. For the border regions, we
obtained a 100×100m CORINE (COoRdination of INfor-
mation on the Environment) population grid for 2000 for
the surrounding countries (http://www.eea.europa.eu/data-
and-maps/data/population-density-disaggregated-with-cor
ine-land-cover-2000-2#tab-gisdata). The two grids were
combined, adjusting for an average 4.65 % population
growth in France, Germany, Italy and Austria over 2000–
2011 (Additional file 2).

3. Land use

Digital land cover (CORINE CLC-2006 Version 13, 02–
2010) data were available from the European Environment
Agency for the year 2006 for all of Europe including
Switzerland. We calculated the surface area of 6 land use
categories (high density residential, low density residen-
tial, airport, industry, natural and port), following re-
classifications previously adopted in the ESCAPE [5, 6]
and APMOSPHERE [37] projects.

4. Digital road network

A digital road network (Vector 25) with resolution
1:25,000 was available from Swiss Topo (Bundesamt fur
Landestopografie) at a national level for the year 2008,
with modeled traffic intensity data for the same year.
Road class (total 32 classes) and percentage heavy traffic
were also available. Roads were distinguished as major if
the traffic intensity was ≥ 5000 vehicles/24 h.

5. Altitude

A swiss elevation map with a resolution of 200 m was
available from the Bundesamt für Landestopografie
(Federal Office for Topography), SwissTOPO, website:
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Table 1 Description of evaluated predictor variables

Source data Variable name(s)a Description Unit Direction of effect Buffer sizes (m)

Building density BUILDINGS_X Total area covered by buildings m2 + 25, 50, 75, 100, 150, 200, 250,
300, 500, 1000, 2000, 5000

Population grid POP_X Population count N(umber) + 100, 150, 200, 250, 300, 500,
1000, 2000, 5000

CORINE Land
Cover b

LDRES_X Low density residential m2 + 100, 150, 200, 250, 300, 500,
1000, 2000, 5000

HDRES_X High density residential m2 + 100, 150, 200, 250, 300, 500,
1000, 2000, 5000

AIRPORT_X Airport m2 + 100, 150, 200, 250, 300, 500,
1000, 2000, 5000

INDUSTRY_X Industry m2 + 100, 150, 200, 250, 300, 500,
1000, 2000, 5000

NATURAL_X Natural m2 - 100, 150, 200, 250, 300, 500,
1000, 2000, 5000

PORT_X Port m2 + 100, 150, 200, 250, 300, 500,
1000, 2000, 5000

URBGREEN_X Urban green m2 - 100, 150, 200, 250, 300, 500,
1000, 2000, 5000

UGNL_X Urban green and natural land m2 - 100, 150, 200, 250, 300, 500,
1000, 2000, 5000

WATER_X Water m2 +/− 100, 150, 200, 250, 300,
500, 1000

Road network ROADLENGTH_X Total lengths of all roads m + 25, 50, 75, 100, 150, 200, 250,
300, 500, 1000, 2000, 5000

MAJROADLENGTH_X c Total lengths of all major roads m + 25, 50, 75, 100, 150, 200, 250,
300, 500, 1000, 2000, 5000

TRAFLOAD_X Total traffic load of roads
(sum of (traffic intensity
* length of each segment))

Veh · day−1 · m + 25, 50, 75, 100, 150, 200, 250,
300, 500, 1000, 2000, 5000

TRAFMAJORLOAD_X c Total traffic load of major
roads (sum of (traffic intensity
* length of each segment))

Veh · day−1 · m + 25, 50, 75, 100, 150, 200, 250,
300, 500, 1000, 2000, 5000

HEAVYTRAFLOAD_X Total heavy traffic load of
roads (sum of (traffic
intensity * length of each
segment))

Veh · day−1 · m + 25, 50, 75, 100, 150, 200, 250,
300, 500, 1000, 2000, 5000

TRAFNEAR, TRAFMAJOR c,
HEAVYTRAFNEAR

(Heavy) traffic intensity on the
nearest (major) road

Veh · day−1 + N/A

INTINVDIST, INTINVMAJDIST c,
HEAVYINTINVDIST

Traffic on the nearest (major)
road * inverse distance

Veh · day−1 · m
−1

+ N/A

INVDIST, MAJINVDIST c Inverse distance to the
nearest (major) road

m−1 + N/A

DHM Altitude grid ALT, LOG_ALT, SQRT_ALT Altitude, log(altitude)
and sqrt(altitude)

m - N/A

Dispersion
model estimates

NO2_2010, PM25_2010,
PM10_2010

Pollumap 2010 prediction
for NO2, PM2.5 and PM10

μg/m3 + N/A

Area indicator Area_BS, Area_DA, Area_GE,
Area_LU, Area_MO,
Area_PA, Area_WA

Dummy variable for presence
of a measurement site in the
study areas of Aarau, Basel,
Davos, Geneva, Lugano,
Montana, Payerne, Wald. The
reference is Aarau

Not applicable +/− N/A

aThe suffix “X” is replaced by the buffer size in meters to get the full variable name (e.g. BUILDINGS_100 = area covered by buildings in a 100 m buffer); bCORINE
classes were defined as previously in the APMOSPHERE [24, 45] and ESCAPE [5, 6, 46] projects; c Where major road is defined as a road with ≥5000 vehicles/24 h
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http://www.swisstopo.admin.ch/internet/swisstopo/de/
home/products/height/dhm25.html. Sampling points
were directly overlaid with this height grid.

6. Dispersion model

PolluMap Gaussian dispersion model estimates were
available for NO2, PM2.5 and PM10 at a 200×200m reso-
lution, for the year 2010. These dispersion models have
been shown to compare well to measurements, and de-
tails of their development have been published previ-
ously [38]. Sampling points were directly overlaid with
the grids.
Few sites were within 500 m of a port or industrial

area, or within 25 m of a major road, resulting in many
0-values for the smaller buffers of these land-use classes
and traffic variables. Occasionally, these variables are se-
lected as predictor variables, but this causes coefficients to
be estimated with a lot of weight given to relatively few
sites. This causes high Cook’s distance for the sites in ques-
tion, and often unstable coefficients, which do not hold up
in cross-validation, resulting in large differences between
the model R2 and LOOCV R2, as previously noted for other
LUR studies [5, 6]. The same happens for predictor vari-
ables which include extreme outliers. Therefore, we a priori
restricted the set of eligible predictors, eliminating those
which 1) had fewer than five sites with a value other than
the most common value (typically 0); 2) had a maximum
which was more than 3 times the P10-P90 range above P90,
or 3) had a minimum which was more than 3 times the
P10-P90 range under P10. The latter 2 criteria are based on
the generally accepted criteria for outliers (lower limit
P25-3*(P75-P25), upper limit P75 + 3*(P75-P25), but are
less restrictive. The elimination process was repeated for
each model, and so eligible variables varied, based on the
number of sites, and on the selection of sites included in
the model.

LUR model development
Linear regression models were developed using a supervised
forward selection procedure, first evaluating univariate re-
gressions. The corrected bi-annual average concentrations
were evaluated against all eligible potential predictors. The
predictor giving the highest adjusted explained variance (ad-
justed R2) was selected for inclusion in the model if the dir-
ection of effect was as defined a priori and the P-value was
<0.10, following procedures used before [5, 6]. Subse-
quently, we evaluated if any of the remaining predictor vari-
ables further improved the model adjusted R2 by at least
0.01. Again, we selected the predictor giving the highest
gain in adjusted R2, if it had a P-value <0.10 and the
expected direction of effect. Additional variables were not
selected if they changed the direction of effect of one of the
previously included variables. This process continued until

there were no more variables which fit the criteria, and im-
proved the model adjusted R2 by at least 0.01.
As final steps, variables with a p-value above 0.10 were

removed from the model. Furthermore, we checked that
all Variance Inflation Factors (VIF) were lower than 3 (en-
suring the absence of collinearity), and that Cook’s Dis-
tance values were below 1, ensuring the absence of highly
influential observations disproportionately influencing a
specific variable’s coefficient.
All analyses were done using SAS version 9.4. The

Moran’s I statistic was calculated to indicate spatial
autocorrelation of the model residuals (with weights pro-
portional to the inverse distance squared). In addition, the
significant dependence of model residuals on the study
area was tested for the multi-area models (PROC GLM,
with class variable for study area).
The modelling procedure is described in more detail in

Additional file 5, Table 1. In the first phase of our modelling
effort, we combined all measurement sites where the pollu-
tant in question was measured to fit a single LUR model
for each pollutant. We considered, but did not force in Pol-
luMap model NO2 (for pollutant NO2), Pollumap PM2.5

(for pollutants PM2.5 and PM2.5 absorbance) and PM10 (for
pollutants PM10 and PMcoarse). This way, we ensured con-
tinuity of exposure characterization across areas, and re-
duced the risk of over-fitting, which is higher for models
developed based on a limited number of training sites [39–
41]. No dispersion model predictors were evaluated for the
main PNC and LDSA models. In the second phase (model
2, Additional file 5, Table 1), we addressed those multi-area
models which did not adequately model between-area vari-
ability (resulting in significant spatial autocorrelation in the
residuals). We tried to force PolluMap NO2 estimates into
the NO2 model, to consider PolluMap NO2 for the PM2.5

absorbance model, and to consider PM2.5 and PM10 Pollu-
Map for the PNC and LDSA models, In the third phase, we
introduced area-indicators to account for between-area
variance. These indicators were introduced to the model as
dummy variables for each site in the area of Geneva, Lu-
gano or Wald (Aarau being the reference). Ultimately, in
the 4th phase,, we fitted an area-specific NO2 model for
each study area to optimally capture local contrasts. In
addition, we fitted an alpine (study areas Davos and Mon-
tana) and a non-alpine model (study areas Aarau, Basel,
Geneva, Lugano, Payerne, Wald), retaining the option of
making model predictions outside of the eight study areas,
for sites above and below 1000 m, respectively. This was
only possible for NO2, where 40 measurement sites per
study area were available. We did not consider building
local models for pollutants with only few sites (≤20) avail-
able per study area. The models that were ultimately se-
lected for the epidemiological application are shown in the
main paper. The selection process and the disregarded al-
ternative models are shown in Additional file 5.
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Validation and quality assurance
Model performance was evaluated in three ways: firstly by
leave-one-out cross validation (LOOCV), where each site
was sequentially left out from the model while the in-
cluded variables were left unchanged. Each site’s value was
then predicted from the model based on the n-1 sites, after
which the R2 between observed and predicted values was
calculated. Secondly, and only for those models combining
multiple study areas, all sites from one particular study
area were left out (leave-one-area-out cross validation
(LOAOCV), while the remaining sites from the other areas
were used to predict their values. The variables in the
model were left unchanged. The predicted concentra-
tions from the LOAOCV were compared to the mea-
sured concentrations, showing the degree of over- or
under-prediction per study area.
Thirdly, external validation was performed using a set of

routine monitoring stations from the National air quality
monitoring network (NABEL) and several cantonal air
monitoring agencies. We gathered data from all available
stations in Switzerland which had annual average concen-
trations available for both 2011 and 2012 for NO2 (102 sta-
tions), PM2.5 (10 stations), elemental carbon (EC) as a
marker of PM2.5 absorbance (these metrics are known to
correlate well from previous studies [3], 18 stations), PM10

(82 stations) and PNC (13 stations). PMcoarse was calculated
as the difference between PM10 and PM2.5 for 10 stations.
No routine monitoring data was available for LDSA, since
this is not measured as part of any routine monitoring net-
works. The predictor variables selected for the models were
also extracted for these stations. To avoid predictions out-
side of the plausible concentration range, predictor values
were truncated to the minimum and maximum values
present in the various training data sets which were used to
develop the LUR models [42]. Predictors derived from dis-
persion models were not truncated: these were assumed to
reflect regional background pollution levels, and were
therefore allowed to vary beyond the range present in the
training dataset. For PM2.5, PM10 and PMcoarse, LUR
models were then applied to all available stations. The
PM2.5 absorbance and PNC models, which included area
indicators, were applied to all stations which fell within
20 km of any of the measurement sites used to develop the
model for that specific area. This resulted in 5 successful
predictions for PM2.5 absorbance and 4 for PNC. Reducing
the inclusion criterion further (e.g. to 10 km) would have
resulted in too few sites (≤3) to allow any comparison. For
NO2, we applied the area-specific models to stations within
10 km of the sites used for the modelling, the alpine
models for stations above 1000 m and the non-alpine
model for stations below 1000 m. Model predictions were
then compared to the two-year (2011–2012) measured
average concentrations, to best represent the time period
for which the models were developed.

Sensitivity analyses
To allow a more direct comparison of model perform-
ance between pollutants, we additionally fitted an NO2

model for the same four study areas which also contrib-
uted to the PM and UFP models (Basel, Geneva, Lugano
and Wald). We explored whether applying the local
NO2 models within 10 km of the study areas, and alpine
and non-alpine models everywhere else, gave the most
accurate predictions (in comparison to applying alpine
and non-alpine models only, or applying local models
within 20 km of the study areas).

Results
Pollutant distribution characteristics are shown in Table 2
and are available in more detail in Eeftens et al. 2015 [34].
For all pollutants, substantial variation was present be-
tween as well as within the areas. Within-area contrasts
were largest for NO2 and PMcoarse, while between-area
contrasts were the dominant source of variability for the
PM2.5, PM2.5 absorbance, PM10, PNC and LDSA [34].
The area-specific, alpine and non-alpine LUR models

and LOOCV validation statistics for NO2 are presented
in Table 3. Combined-area LUR models for PM2.5, PM2.5

absorbance, PMcoarse, PNC and LDSA are shown in
Table 4. Pearson correlations between different pollut-
ants are shown in Table 5 for the measured and for the
LUR predicted concentrations. Model performance by
area and LOAOCV statistics are shown in Additional file
3. Descriptive statistics of the predictor variables used in
the models can be found in Additional file 4.
We observed substantial under- and over-prediction

by study area, and significant spatial autocorrelation in
the residuals for the eight-area NO2 model and the four-
area PM2.5 absorbance, PNC and LDSA models
(Additional file 5, Table 2). These models also showed
dependence of the model residuals on study area, and
substantial over- or under-prediction bias in some of the
areas (Additional file 5, Table 3). We therefore ultimately
fitted area-specific NO2 LUR models which could ad-
equately capture local variability. Additionally, we fitted
NO2 LUR models for alpine (Davos and Montana) and
non-alpine (Aarau, Basel, Geneva, Lugano, Payerne,
Wald) areas, which could be applied to predict NO2 ex-
posures for addresses outside of the eight SAPALDIA
areas, above and below 1000 m, respectively (Fig. 1). For
PM2.5 absorbance, neither the PM2.5 nor the NO2

dispersion-model estimates were selected since neither
explained the between area variability. For the novel
markers of ultrafines (PNC and LDSA), allowing disper-
sion model estimates for PM10 and PM2.5 to enter the
models resulted in no systematic under- of overpredic-
tion by area in the models (Additional file 5, Table 3).
However, the inclusion of these dispersion-model esti-
mates did not allow us to capture the spatial variation of
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ultrafines independently from the mass. To better explain
between-area variability in these models, we introduced
area-indicators for PM2.5 absorbance, PNC and LDSA.
Combined area NO2 models for alpine (Davos and

Montana) and non-alpine (all others) areas yielded R2’s
of 0.53 and 0.65, respectively, and performed similarly in
cross-validation (LOOCV R2 = 0.46 and 0.63, respect-
ively) (Table 3). Area-specific NO2 models yielded an
average R2 of 0.71 (range 0.52–0.89), which was higher
than for the alpine and non-alpine NO2 models.
LOOCV R2 values were on average 10 % (range 3–15 %)
lower than model R2’s, indicating that models were gen-
erally less robust than the multi-area ones. None of the
study area specific, nor the alpine or non-alpine NO2

models showed significant spatial autocorrelation. While
the model residuals remained associated with the study
area in the non-alpine model (Table 3), absolute over-
and under-prediction for the different areas was small
(Additional file 3). The alternative NO2 models without
regional indicators, with PolluMap NO2 estimates, and
with area indicators yielded an R2’s of 0.52, 0.52 and
0.64, respectively, but could not adequately explain be-
tween area variability, or were unable to predict expo-
sures outside of the study areas (Additional file 5).
Multi-area LUR models explained a moderate amount

of spatial variance for the different PM mass fractions
PM2.5 (R2 = 0.57), PM10 (R2 = 0.63) and PMcoarse (R2 =
0.45). Explained variance was higher for PM2.5

absorbance (R2 = 0.81), PNC (R2 = 0.87) and LDSA (R2 =
0.91) (Table 4). For comparison, a model for NO2 based
on the same four areas yielded a moderate R2 of 0.61 in
sensitivity analyses (Additional file 5, Table 2). LOOCV
R2 values were on average 5 % points (range 4–7 %)
lower than model R2’s for all multi-area models, indicat-
ing that models were robust (Table 4). Multi-area
models for PM2.5, PM10 and PMcoarse generally per-
formed well in leave-one-area-out cross-validation, pre-
dicting similar amounts of within-area spatial variation,
whether the area in question was included in the train-
ing dataset or not (Additional file 3). However, for all
pollutants, the under- or over-prediction of absolute
concentrations became more extreme if the area in ques-
tion was left out from the training dataset (Additional
file 3). Alternative models for PNC and LDSA which did
not consider and regional indicators were unable to ex-
plain between area variability adequately. Alternative
models which considered dispersion model predictors
yielded high R2’s of 0.84 for PNC and 0.89 for LDSA.
These models were able to predict between areas, but
did not allow us to understand PNC and LDSA variabil-
ity independently from PM mass. (Additional file 5).
LUR models were successfully applied to available rou-

tine monitoring sites and predicted 52 to 83 % of spatial
variability for most pollutants (Table 6). Over- and
under-prediction was small for NO2, PM2.5, PM2.5 ab-
sorbance and PM10 compared to the predicted

Table 2 Distribution of NO2, PM2.5, PM2.5 absorbance, PM10, PMcoarse, PNC (Particle Number Concentration) and LDSA (Lung Deposited
Surface Area) concentrations over the measurement sites

Pollutant Area(s) n Mean Min P10 P25 Median P75 P90 Max

NO2 (μg/m
3) All: Aarau, Basel, Davos, Geneva,

Lugano, Montana, Payerne, Wald
312 21.9 3.7 11.0 13.7 20.5 28.4 35.4 62.9

Alpine: Davos, Montana 78 18.5 3.7 8.0 11.5 17.0 23.0 30.1 48.7

Non-alpine: Aarau, Basel, Geneva,
Lugano, Payerne, Wald

234 23.0 5.2 11.6 14.1 21.3 29.5 36.2 62.9

Aarau 40 22.2 11.4 12.9 16.5 20.9 28.9 32.9 35.2

Basel 40 23.3 11.3 14.3 19.3 22.7 26.9 32.6 39.5

Davos 38 22.1 7.1 8.0 13.8 20.9 28.6 41.6 48.7

Geneva 38 29.1 12.0 16.8 21.5 26.0 34.2 47.3 62.9

Lugano 37 32.5 13.8 20.6 26.0 32.8 36.6 46.6 55.0

Montana 40 15.0 3.7 7.8 11.1 14.5 18.7 23.1 29.6

Payerne 40 15.0 8.1 10.1 11.8 13.9 17.0 22.1 34.0

Wald 39 16.9 5.2 7.0 10.0 13.1 21.9 33.7 48.4

PM2.5 (μg/m3) Basel, Geneva, Lugano, Wald 74 14.2 7.8 10.5 12.6 13.5 16.0 17.9 25.1

PM2.5 abs (10
−5 m−1) Basel, Geneva, Lugano, Wald 74 0.94 0.33 0.42 0.66 0.87 1.26 1.49 1.80

PM10 (μg/m3) Basel, Geneva, Lugano, Wald 74 20.1 13.0 15.2 17.3 19.3 22.7 26.2 31.9

PMcoarse (μg/m3) Basel, Geneva, Lugano, Wald 74 6.1 2.6 3.6 4.5 6.2 7.2 9.0 11.1

PNC (particles/cm3) Basel, Geneva, Lugano, Wald 67 12016 3361 4873 8639 11624 15952 19599 22896

LDSA (μm2/cm3) Basel, Geneva, Lugano, Wald 67 32.1 12.2 15.4 24.7 31.4 40.4 46.8 61.3

Eeftens et al. Environmental Health  (2016) 15:53 Page 7 of 14



concentration ranges. Over-prediction for PMcoarse was
larger than for PM2.5 and PM10, likely because of the in-
creased uncertainty that is introduced when subtracting
PM2.5 from PM10. Sensitivity analysis showed that apply-
ing local NO2 models within 10 km of the study areas,
and alpine and non-alpine models farther outside the
study areas, outperformed applying alpine and non-alpine
models only, or applying local models within 20 km of the
study areas (Additional file 6). While the PNC model per-
formed well in LOOCV, there was no association with the
routinely measured averages at fixed monitoring sites. The
four available routine monitors generally measured higher
numbers of particles than our models predicted, and our
PNC model predictions did not capture the spatial con-
trast measured by the four routine monitors well.

Discussion
We developed multi-area LUR models for NO2, PM2.5,
PM2.5 absorbance, PM10, PMcoarse, PNC and LDSA with
moderate to good explained variance across regions of
Switzerland. Models for PM2.5 absorbance, PNC and LDSA
explained the highest amount of spatial variance, and also
performed best in LOOCV. Multi-area models for PM2.5,
PM10 and PMcoarse adequately captured between-area con-
trasts, but area-indicators were necessary to adequately
capture the between area contrasts for PM2.5 absorbance,
PNC and LDSA. For NO2, study area specific models were
preferable to any LUR models which combined areas, since
they were able to explain more local spatial variance. How-
ever, they were most reliably applied within 10 km of the
measurement sites which were used to develop the

Table 3 Alpine, non-alpine and area-specific LUR models for NO2

Area(s) N Model Model Measures of spatial autocorrelation LOOCV

Adj R2 R2 RMSE P-value of association
of residuals with areaa

Moran’s I
(p-value)

R2 RMSE

Alpineb 78 NO2 = 7.97 + BUILDINGS_25 * 0.0124 +
POP_500 * 0.00658 + TRAFNEAR * 0.000871
+ URBGREEN_2000 * -0.00000497

0.50 0.53 6.6 0.1593 0.011 (0.8387) 0.46 7.0

Non-alpinec 234 NO2 = −0.83 + NO2_2010 * 0.855 +
MAJROADLENGTH_25 * 0.201 + HDRES_
250 * 0.0000266

0.64 0.65 6.3 0.0010 0.0658 (0.2217) 0.63 6.4

Aarau 40 NO2 = 2.29 + TRAFLOAD_25 * 0.0000139 +
BUILDINGS_75 * 0.0012 + INDUSTRY_5000
* 0.00000332 + MAJROADLENGTH_
500 * 0.00179

0.87 0.88 2.7 - −0.149 (0.1524) 0.84 3.0

Basel 40 NO2 = −1.86 + NO2_2010 * 0.738 +
HEAVYTRAFLOAD_25 * 0.0019 +
HEAVYTRAFLOAD_500 * 0.00000136 +
WATER_500 * 0.0000329

0.76 0.78 3.3 - −0.154 (0.0913) 0.64 4.0

Davos 38 NO2 = −6.19 + TRAFLOAD_150 *
0.00000604 + NO2_2010 * 1.63 +
ROADLENGTH_50 * 0.0552 +
BUILDINGS_25 * 0.0102

0.69 0.73 6.1 - −0.296 (0.1211) 0.62 6.9

Geneva 38 NO2 = 14.2 + POP_2000 * 0.0000987 +
MAJROADLENGTH_25 * 0.234 + HDRES_
250 * 0.0000619

0.49 0.53 8.3 - −0.0393 (0.8908) 0.43 8.9

Lugano 37 NO2 = 14.1 + TRAFMAJORLOAD_25 *
0.0000293 + TRAFMAJORLOAD_500
* 0.000000331 +WATER_500
* 0.0000436 + INTINVDIST * 0.00357 +
INDUSTRY_1000 * 0.0000167

0.64 0.69 5.7 - −0.0804 (0.4878) 0.57 6.3

Montana 40 NO2 = 20.9 + TRAFLOAD_25 *
0.0000183 + LDRES_300 * 0.0000315 +
ALT * -0.0143 + BUILDINGS_
1000 * 0.000024

0.46 0.52 4.3 - 0.0414 (0.5248) 0.39 4.6

Payerne 40 NO2 = 44 + BUILDINGS_50 * 0.00289 +
TRAFLOAD_50 * 0.0000126 +
ALT * -0.0749

0.61 0.64 3.1 - 0.218 (0.0639) 0.49 3.6

Wald 39 NO2 = −10.3 + HEAVYINTINVDIST
* 1.35 + NO2_2010 * 1.15 + POP_
100 * 0.029

0.89 0.89 3.5 - −0.00939 (0.8613) 0.86 3.9

aBold = significant association of residuals with study area; bAlpine areas are Davos (n = 38) and Montana (n = 40); cNon-alpine areas are Aarau (n = 40), Basel
(n = 40), Geneva (n = 38), Lugano (n = 37), Payerne (n = 40) and Wald (n = 39)
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model. LOAOCV validation for the particulate air pol-
lutant models shows that the multi-area models based
on three areas predicted moderate to high amounts of
spatial variation in the area which was left out. Validation
using independent routine measurement sites shows that
the developed models were able to predict moderate to
high amounts of spatial variation, except for PNC. For
LDSA, we could not verify our LUR model predictions
against independent measurements.

LUR models for NO2, PM2.5, PM2.5 absorbance, PM10

and PMcoarse were previously developed based on meas-
urement campaigns for the SAPALDIA study for the
years 1993 and 2003 [10] and for the ESCAPE study for
the years 2008 to 2010 [5, 6]. The previous SAPALDIA
study also identified that fitting a combined-area model for
NO2 was challenging because between area variability could
not be adequately captured. The models developed in this
paper generally performed similarly to previously developed

Table 5 Pearson correlations (n) between different pollutants using measured (lower half) and predicted (upper half) concentrations

aArea-specific NO2 LUR models were applied to all 312 sites; bAlpine (above 1000 m) and non-alpine (below 1000 m) NO2 LUR models were applied to all 312
measurement sites

Table 4 Multi-area LUR models for PM2.5, PM2.5 absorbance, PM10, PMcoarse, PNC and LDSA

Pollutant N Model Model Measures of spatial autocorrelation LOOCV

Adj R2 R2 RMSE P-value of association
of residuals with area

Moran’s I
(p-value)

R2 RMSE

PM2.5 (μg/m3) 74 PM2.5 = −13.2 + PM25_2010 * 1.81 +
MAJROADLENGTH_25 * 0.0478 +
URBGREEN_5000 * -0.000000521 +
TRAFMAJOR * 0.0000515

0.55 0.57 2.0 0.4530 −0.0558 (0.7222) 0.50 2.2

PM2.5 absorbance
(10−5 m−1)

74 PM2.5abs = 4.75 + Area_GE * 0.559 +
Area_LU * 0.626 + Area_WA * 0.369 +
MAJROADLENGTH_25 * 0.00564 + LOG_
ALT * -0.715 + HEAVYTRAFLOAD_
150 * 0.00000108

0.79 0.81 0.18 1.0000 0.1500 (0.1684) 0.77 0.19

PM10 (μg/m3) 74 PM10 = −19.2 + PM10_2010 * 2.02 +
MAJROADLENGTH_25 * 0.0707 +
URBGREEN_5000 * -0.00000092

0.62 0.63 2.5 0.1012 0.123 (0.2494) 0.59 2.6

PMcoarse (μg/m3) 74 PMcoarse = −0.69 + PM10_2010 * 0.337 +
TRAFMAJORLOAD_75 * 0.000000413 +
NATURAL_1000 * -0.00000182 +

0.43 0.45 1.5 0.0551 0.125 (0.242) 0.38 1.6

PNC (particles/cm3) 67 PNC = 7805 + Area_GE * 4270 + Area_LU
* 5895 + Area_WA * ‘2388 + TRAFLOAD_
250 * 0.000110 + ROADLENGTH_100
* 4.26 + MAJROADLENGTH_50 * 19.9 +
UGNL_1000 * -0.00273

0.85 0.87 1991 1.0000 −0.0663 (0.7059) 0.82 2255

LDSA (μm2/cm3) 67 LDSA = 29.9 + Area_GE * 9.17 + Area_LU
* 17.3 + Area_WA * 0.502 + MAJROADLENGTH_
250 * 0.00317 + ROADLENGTH_100 * 0.0094 +
TRAFNEAR * 0.000199 + ALT * -0.0257

0.89 0.91 3.8 1.0000 −0.0434 (0.8349) 0.87 4.2
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models. Variations in performance may be explained by dif-
ferences in the site selection procedure, different numbers
of sites or the availability of better predictor variables. For a
detailed discussion of this comparison and a table summar-
izing the performance of LUR models from the current and
from previous studies in SAPALDIA study areas, we refer
to Additional file 7.
There are few LUR models for PNC which can be com-

pared with our model. In Switzerland, only one other LUR
model was previously made for PNC [19]. This model was
developed for the city of Basel and comprised repeated 20-
min measurements at 57–59 measurement sites during

three seasons. Median concentrations were log-transformed
and a large fraction (50 %) of the (temporal) variability could
be explained by the concurrently measured concentration at
a nearby urban background site. Subsequently, spatial pre-
dictors derived from GIS, and other predictors related to
season, meteorology, time and manually observed site char-
acteristics were able to increase the explained variance to
58-68 % (depending on which predictor sets were evaluated)
[19]. We cannot directly compare this model for PNC to
ours, since it contained temporal as well as spatial
terms and used log-transformed median concentra-
tions. In comparison to PNC models from other coun-
tries [15–18, 20, 21], which are purely spatial, and used
average, not-transformed concentration data, our
models performed very well, yielding R2 values of 0.84
and 0.89, respectively. The Dutch PNC model for
Amsterdam was the only other study based on week-
long observations per site [15], and had a notably
higher explained variance (R2 = 0.67, LOOCV R2 = 0.57)
than models which were based on shorter-term aver-
ages (10–60 min) [16, 18, 19, 21] or mobile monitoring
[17, 20].
To understand the spatial predictors of PNC and

LDSA independently of particle mass, our main models
did not offer PM mass dispersion model estimates. How-
ever, in a sensitivity analysis, we allowed the use of dis-
persion model estimates for PM mass concentrations to
enter the models, revealing a strong predictive power of
the PM mass dispersion model estimate for the local
levels of PNC and LDSA alike (Additional file 5). This
may appear counterintuitive, given the rather different

Table 6 Results of independent external validation using air
pollution data from the routine monitoring sites

Pollutant N Mean overprediction
(standard deviation)

R2

NO2 (μg/m3)a 102 −2.2 (5.8) 0.75

PM2.5 (μg/m3) 10 0.090 (1.5) 0.83

PM2.5 absorbance (10−5 m−1)b,c 5 −0.13 (0.28) 0.52

PM10 (μg/m3) 82 0.77 (4.9) 0.71

PMcoarse (μg/m3) 10 1.2 (1.7) 0.65

PNC (particles/cm3)c 4 −5058 (17678) 0.00
aNO2 LUR models were applied to 102 sites in total: the area-specific NO2 models
were applied to 26 routine monitoring sites within 10 km of the SAPALDIA
measurement areas, alpine NO2 models were applied to 4 routine monitoring sites
outside of SAPALDIA measurement areas, with altitudes above 1000 m, and non-
alpine NO2 models were applied to 72 routine monitoring sites outside of the
SAPALDIA measurement areas, with altitudes below 1000 m (Fig. 1); bThe
routine monitoring sites measured elemental carbon or soot, but this is
known to correlate highly with PM2.5 absorbance;

c The PM2.5 absorbance
and PNC models included area indicators, and were only applied to the sites
within 20 km of the SAPALDIA measurement areas

Fig. 1 The boundaries of the 10 km and 20 km buffer areas, drawn around the measurement sites which were used to develop the area-specific
NO2 LUR models. Black dots represent resident locations of SAPALDIA participants
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small-scale spatial distributions of freshly emitted parti-
cles – well indicated by PNC – as compared to the
spatially more homogeneous PM2.5 and PM10. However,
we found large spatial variability between study areas for
long-term PNC and LDSA measurements [34]. The high
predictive ability of dispersion model predictors in PNC
and LDSA models and the high correlations in Table 5,
show that between-area pollution contrasts are similar
for NO2, PM mass, PNC and LDSA. The high spatial
correlation between NO2, PNC and LDSA, which all
characterize motor vehicle exhaust in the direct vicinity,
was previously discussed in Eeftens et al. [34]. The selec-
tion strategy of choosing measurement sites close to
residential locations, including side- and back-yards was
aimed at capturing the residential variation of PNC and
LDSA, rather than the high peaks along busy roads.
Therefore, the spatial variability of PNC and LDSA also
showed high correlations with other pollutants, such as
PM2.5 and PM10 [34], and it could be predicted by dis-
persion modelled PM2.5 or PM10. (Additional file 5).
Variables related to traffic and major roads were selected

in nearly all models, mostly in small buffer sizes (25 to
100 m). This has also been observed in earlier studies [5–7],
and reflects the major impact of traffic on the adjacent
roads on local air quality rather than reflecting the influence
of ring roads and motorways. The dispersion model esti-
mates from the Pollumap PM2.5 and PM10 models are
found in the multi-area models for PM2.5, PM10 and
PMcoarse, and account for a large fraction of the regional
and between-area variability (Table 4). These models are
too coarse to explain much of the local variability within
study areas, and were only included in the area-specific
NO2 models for Basel, Davos and Wald, but not as the first
variable (Table 3). PM2.5, PM10, PMcoarse and PNC models
further included large-buffer land-use variables on urban
green and natural land, both serving as a sink of pollutants
(negative coefficients). These land-use variables do not ap-
pear in the multi-area or local NO2 models. However, sev-
eral of the local NO2 models include large to medium-size
buffers of building density, population density and residen-
tial land, representing broader-scale urban activities. In
addition, local NO2 models include industrial land-use (Aa-
rau and Lugano) indicating local industrial sources. In the
Basel and Lugano NO2 models, proximity to the Rhine river
and Lugano lake was relevant as well. The Rhine above Ba-
sel hosts the most important port of Switzerland, and al-
most all the freight transport ships on the Rhine cross the
city. The lake in Lugano is also used by boats, including
regular boating services for tourists.
We evaluated model performance in three different ways:

1) using leave-one-out cross validation (LOOCV), which is
widely used in previous LUR studies [5–7], 2) leave-one-
area-out cross-validation (LOAOCV), as used by a previous
study which combined study areas [22] and 3) by

independent external validation, where the models were
applied to independent sites from a routine measurement
network. The second method gives an idea of how well the
models predict within-area contrasts in areas which were
not used to develop the model. The third method shows
how well the models predict independent concentration
contrasts at a national level.
Several recent studies pointed out that leave-one-out

cross-validation overestimates the true model perform-
ance when applied to independent sites, especially if the
models were developed based on a limited number of
training sites, which increases the risk of over-fitting
[39–41]. Our multi-area models are based on a mini-
mum of 67 sites, and our study area specific models on
a minimum of 37 sites, increasing the robustness of the
models, which is apparent from a small difference be-
tween model R2 and LOOCV R2, as well as good results
from LOAOCV and independent external validation.
Independent validation showed that we could predict

moderate to large amounts of spatial variability for NO2,
PM2.5, PM2.5 absorbance, PM10 and PMcoarse among rou-
tine monitoring sites, which were not used for model de-
velopment. The comparison of our PNC model with the
routine monitoring data must be interpreted with cau-
tion. In contrast to all other pollutants, the routine mon-
itoring data for ultrafine particles are derived from
different types of monitoring instruments, which meas-
ure different particle size ranges, and use optical or elec-
tric charge measurement principles. Therefore, the
absence of agreement between the LUR model predic-
tions and the routine monitoring for PNC likely high-
lights the limitation of comparing any metrics of
absolute concentrations of ultrafine particles that are de-
rived from multiple different instruments. Hence, this
finding should not be interpreted as indicating poor
quality of the LUR model.
We minimized the risk of over-fitting by setting a

priori criteria for inclusion of variables into our model.
These criteria were related to the expected direction of
the effect, significance, and distribution of the predictor
variables, producing models which were plausible, with
coefficients that were robust and not dependent on a
small number of sites. Strict selection criteria resulted in
the inclusion of 3 to 5 predictors for the local NO2,
PM2.5, PM10 and PMcoarse models, and 6 to 7 for the
PM2.5 absorbance, PNC and LDSA models, which in-
cluded area indicators. Similar screening strategies were
used in other studies [43, 44].
While there are no strict rules for a minimum number

of sampling sites, for developing LUR models, we ob-
served that the model R2 and LOOCV R2 were larger for
the area-specific NO2 models (based on up to 40 sites)
and the alpine and non-alpine models than for the
model fitted on all eight areas. The risk of over-fitting is
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larger when using smaller training sets in model building
[39–41]. Therefore, we gave preference to the more ro-
bust multi-area models for the particulate pollutants,
wherever systematic bias in predicting the between-area
variability was not an issue. In LOAOCV, we show that
the separate alpine and non-alpine NO2 models (Additional
file 3) are indeed preferable to the NO2 model which
combined all eight regions (Additional file 5), with
lower over- and under-prediction by study area, and
better explained variance within each area. In external
validation, we further show that the alpine and non-
alpine models predict better in the independent exter-
nal validation (Table 6). The inability to properly
model NO2 for the Alpine valleys with data from the
flatter, much more populated areas of Switzerland and
vice versa may be explained by the distinct topog-
raphies and meteorological conditions of alpine and
non-alpine regions in Switzerland.
While the spatial distributions of different pollutants

were already moderately to highly correlated in the
SAPALDIA3 measurements, we observed that after apply-
ing the LUR models to the measurement sites on which
they were fitted, the correlations between pollutants be-
came even higher (Table 5). The LUR models all include
different predictors, but these predictors are also corre-
lated. Using these predictors to fit models “smoothes” the
random variation in the measurements for all pollutants
in a similar way. To not further complicate this challenge,
our main models for PNC and LDSA did not allow disper-
sion modelled PM mass concentrations as predictors. The
high correlations between predicted concentrations are a
combination of the rather high spatial correlation of these
pollutants (lower left part of Table 5) and the artifact of
the modelling process. As a consequence, we may expect
similarly high correlations when we apply our models to
the residential sites of the SAPALDIA cohort participants.
It is important to be aware of possible artifacts when using
LUR modelled estimates in epidemiological health
analyses, especially when fitting 2-pollutant models,
for which the collinearity of the estimated exposures
will be high. The implication is that epidemiological
studies relying on LUR models are limited in disen-
tangling the health effects attributable to the different
pollutants, looking at PNC and LDSA independently
from PM mass.
Because of the increasing number of LUR models, devel-

oped for different study areas, long-term cohort studies
such as SAPALDIA have a multitude of exposure estimates
available. To avoid multiple testing, we pre-selected models
for the health analyses to prevent the use of too many
models. Based on our LOAOCV (Additional file 3) and ex-
ternal validation results (Additional file 6), we concluded
that long-term exposure to NO2 is best estimated by study-
area specific models. We will use these models to predict

long-term exposure to NO2 at the SAPALDIA home and
work addresses which fall within 10 km of at least one of
the measurement sites used to develop the model for that
particular study area. For cohort participants who have
moved further beyond the original SAPALDIA study areas,
we will estimate the NO2 exposure based on the alpine and
non-alpine models, respectively, which also performed ad-
equately in external validation. The validity of the models
presumably decreases with the distance from the sites used
to develop the model. Therefore, an epidemiological sensi-
tivity analysis may address if the effect estimates are af-
fected if those people living further from the measurement
sites are excluded. Exposure to PM2.5 absorbance, PNC
and LDSA model will only be assigned to those coordinates
within 20 km from the areas for which they were devel-
oped. Exposure to all particulate air pollutants (PM2.5,
PM10 and PMcoarse) will be assigned to all homes and work
addresses by applying the multi-area models developed for
these pollutants to all subjects. Since these models are
based on measurements made in Basel, Geneva, Lugano
and Wald only, it will be necessary to verify in the epi-
demiological analyses that their application in the
remaining four areas, as well as the rest of Switzerland does
not affect the relationship with the health outcomes. This
might be achieved by performing sensitivity analysis on
only those participants who live within 10 km/20 km of the
measurement sites which were used to develop the models.
Appropriately, the Basel, Geneva, Lugano and Wald study
areas are geographically diverse, which suggests the models
can be applied in a wide geographical context. Moreover,
external validation suggests that throughout Switzerland,
the PM2.5, PM10 and PMcoarse models explain moderate to
high amounts (R2 = 0.83, 0.71 and 0.65, respectively) of
spatial variation.

Conclusions
We were able to develop a set of LUR models capturing
both the between and within-area variability in long-term
pollutant concentrations in the study areas of the Swiss
SAPALDIA cohort. Multi-area models for PM2.5, PM10,
and PMcoarse, performed adequately in LOOCV, LOAOCV,
and external validation. For PM2.5 absorbance, PNC and
LDSA, area indicators were needed to capture the between
area variance. Model and model performance (evaluated by
LOOCV, and for PM2.5 absorbance by external validation)
was high. For NO2, applying study-area specific models was
preferable over applying combined-area alpine/non-alpine
models. The study-area specific, alpine and non-alpine
NO2 models, and multi-area models for the particulate air
pollutants will be applied to derive exposure of partici-
pants of health studies such as the SAPALDIA cohort
study. However, we observe high spatial correlations
between the estimated pollutants, so the ability to fully
disentangle their health effects may remain a challenge.
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