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Abstract

host gene remains unclear.

host genes.

Background: Transcriptional enhancers are generally known to regulate gene transcription from afar. Their
activation involves a series of changes in chromatin marks and recruitment of protein factors. These enhancers may
also occur inside genes, but how many may be active in human cells and their effects on the regulation of the

Results: We describe a novel semi-supervised method based on the relative enrichment of chromatin signals
between 2 conditions to predict active enhancers. We applied this method to the tumoral K562 and the normal
GM12878 cell lines to predict enhancers that are differentially active in one cell type. These predictions show
enhancer-like properties according to positional distribution, correlation with gene expression and production of
enhancer RNAs. Using this model, we predict 10,365 and 9777 intragenic active enhancers in K562 and GM12878,
respectively, and relate the differential activation of these enhancers to expression and splicing differences of the

Conclusions: We propose that the activation or silencing of intragenic transcriptional enhancers modulate the
regulation of the host gene by means of a local change of the chromatin and the recruitment of enhancer-related
factors that may interact with the RNA directly or through the interaction with RNA binding proteins. Predicted
enhancers are available at http:.//regulatorygenomics.upf.edu/Projects/enhancers.html.

Background

Transcriptional enhancers are characterized by specific
chromatin signatures, which differ depending of whether
the enhancer is active or not [1-5]. Transcriptional en-
hancers have been generally identified by studying the
genome-wide binding of the acetyl-transferase P300, a
ubiquitous enhancer co-activator [1, 6, 7]. However, not
all P300-bound enhancers show activity [8]. Enhancers
have also been characterized by their chromatin state
[1, 2,9, 10]; and, although the mono-methylation of his-
tone 3 lysine 4 (H3K4mel) has been identified to be an
important signature for enhancers [2], this mark is not
sufficient for enhancer activation [3, 11]. In fact, recent
evidence shows that other marks like H3K27ac [1, 3-5]
and H3K4me3 [5, 11] may be necessary for enhancer
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activity. Additionally, the recruitment of RNAPII and the
concomitant production of enhancer-associated RNAs
(eRNAs) have also been associated to active enhancers
[3-5, 12, 13].

Although enhancers are typically defined to regulate
gene transcription at a distance, about 50 % of potential
enhancers predicted by high-throughput methods lie
within protein-coding genes [2] and some overlap exons
[14, 15]. Intragenic enhancers can regulate the expres-
sion of the host gene [14] or of a nearby gene [15], and
have been proposed to act as alternative promoters [16].
These results raise the question of how many intragenic
enhancers may be active in a cell and whether upon
their activation or silencing they may affect the process-
ing of the host gene, possibly by means of local changes
of the chromatin state. In this direction, there is evi-
dence that some enhancers upstream of a reporter gene
can affect splicing in vitro [17], and that intragenic en-
hancers bound by Argonaute-1 (AGO1) protein can
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affect the constitutive and alternative splicing of the host
gene [18]. In this work we describe a computational
method to predict active enhancers based on chromatin
signals. This method, which uses the relative enrichment
of chromatin signals between cell lines to the detect cell
specific active enhancers, predicts thousands of intra-
genic active enhancers. Additionally, we find evidence
that the differential activation of enhancers inside genes
affect the expression and splicing of the host genes. We
propose that the activation or silencing of intragenic
transcriptional enhancers can modulate the regulation of
the host gene through a local change of the chromatin.

Methods

Datasets

Annotated human enhancers with a mouse homologous
enhancer that has been experimentally validated were
downloaded from VISTA [19]. The gene set was obtained
from the 7" release of GENCODE, human assembly
GRCh37 (hgl9). ChIP-Seq and RNA-Seq datasets were
downloaded from ENCODE [20] for K562 and GM12878
cells. The datasets used were: ChIP-Seq for CTCE, EZH2,
P300, RNAPII, PU.1 (SPI1), STAT1, H3K9ac, H3K27ac,
H3K4mel, H3K4me2, H3K4me3, H3K27me3, H3K36me3,
H3K79me2, H4K20mel and H2A.Z; one Control ChIP-
Seq experiment and one input experiment; RNA-Seq for
short (<200 nt) and long (>200 nt), polyA+ and polyA-
RNAs from whole cell, nucleus and cytosol; and DNasel
data for the same cell lines. All datasets were downloaded
in the form of mapped reads to the reference hgl9 genome
in BAM format.

Relative enrichment calculation

We considered sliding windows of 1500 nt along the en-
tire genome, as suggested by the length distribution of
experimentally validated enhancers [19, 21] (Additional
file 1: Figure S1), with a slide shift of 500 nt, resulting in
a total of 3,086,047 overlapping windows. In order to
avoid mixing enhancer signal with genic and promoter
signals, we discarded windows that were closer than
500 nt to an annotated TSS. The same approach was
applied to intergenic (Additional file 1: Figure S2A) and
intragenic (Additional file 1: Figure S2B) regions. Although
there are more intergenic windows (~3-10° vs ~2.2-10° in
both cases the amount of windows with signal was similar
(~1.5 million windows), which were then kept for further
processing. The relative enrichment of chromatin signals
between 2 cell lines was calculated to predict active en-
hancers in K562 (relative increase of activation marks in
K562 with respect to GM12878) and silent enhancers in
K562 (relative decrease of activation marks in GM12878
with respect to K562, i.e. active in GM12878). Full quantile
normalization for counts and GC content was applied
using EDASeq [22]. GC content in each region was
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calculated as the proportion of G+ C in the 1500 nt
window. After normalization, the z-score of the relative en-
richment of each ChIP-Seq signals between K562 and
GM12878 was calculated with Pyicoteo [23] using the
pyicoenrich function (https://bitbucket.org/regulatorygen
omicsupf/pyicoteo). A vector of z-scores per region was
obtained, which we refer to as attributes, consisting of the
17 enrichment z-scores for the ChIP-Seq and Input data-
sets. A positive z-score for a region indicates an increased
in ChIP-Seq signal in K562 relative to GM12878 in that re-
gion, whereas a negative z-score indicates a decreased sig-
nal in K562 relative to GM12878; and z-scores close to
zero indicate no significant differences between the cell
lines. For all datasets, except for the ChIP-Seq with non-
specific antibody and for the RNA-Seq datasets, we used
replicates. The relative enrichments were calculated with
respect to the distribution described by the comparison be-
tween replicates. When replicates were not available, these
were simulated by pooling the two conditions and dividing
them using random sampling [23].

Feature selection

Feature selection was performed using Boruta [24],
which finds informative features by measuring the rele-
vance of each attribute with respect to a reference attri-
bute, also called correlation class, and in comparison
with a random model extracted from the original data-
set. Boruta uses the correlation class to evaluate the
other features against it using Random Forests [25]. We
performed this analysis using as correlation class each of
the individual marks (Additional file 1: Figure S3). In
each case, the correlation was performed 10 times using
normalized counts on a subset of 5000 intergenic win-
dows, sampled randomly in each one of the 10 itera-
tions. In order to avoid possible biases, in each analysis
the correlation class was defined as the ChIP-Seq signal
minus the level of Input DNA. The features used as
negative controls were the ChIP-Seq sample for a non-
specific antibody (Control sample) (Additional file 1:
Figure S3D) and H4K20mel (Additional file 1: Figure
S3E), which has been associated to transcription repres-
sion and heterochromatin but not to enhancer activity
[26, 27]. Running the selection algorithm with the
H3K4mel mark, the average Boruta score for the con-
trol increased notably, suggesting that the mark is
present in many regions along the genome (Additional
file 1: Figure S3C).

Window clustering

Fifteen thousand arbitrary intergenic windows of length
1500 bp were used as seed for the prediction model.
Various different seed selections of the same size did not
change the results significantly. These 15,000 windows
were clustered using Mclust [28]. Mclust is based on
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finite normal mixture modeling and uses the Bayesian
Information Criterion (BIC) [29] for model optimization.
The BIC score plateaus at 3 clusters for most models
(Additional file 1: Figure S4A). The seed windows corre-
sponded to 552 active, 616 silent and 13,832 no-change
windows. This indicates that there are mostly three main
classes, two that correspond to active and silent en-
hancers, and a class composed of a gradient of multiple
chromatin states, which show little or no relative change
of chromatin activity. This is further supported by the
uncertainty plot, which shows that regions classified
with higher certainty are on the extreme values of the
correlation (Additional file 1: Figure S4B). The final
model used for clustering was the centroid type (labeled
as VEV), which creates clusters with variable volume,
equal shape, and variable orientation. This model was
used to classify the genome-wide 1500 bp windows
(Additional file 1: Figure S2) using the same clustering
method Mclust to predict intergenic enhancers. Intra-
genic enhancers were calculated using the same seed of
15,000 intergenic windows as before. The clustering was
performed in the same way as for intergenic enhancers.
As controls we calculated 4 sets of randomized positions
(intergenic/intragenic and active/silent putative predic-
tions). These sets were calculated from the predicted en-
hancers by randomizing the positions, not closer than
500 nt to any gene, avoiding gaps, genic regions, and other
random locations previously generated, and keeping the
same length and the same number of regions (Additional
file 1: Figure S2A). Random intragenic enhancers were
generated similarly by placing the intragenic enhancers in
a random location inside the same gene, avoiding regions
of 1 kb around any internal TSSs and avoiding other
random enhancers previously generated (Additional file 1:
Figure S2B). All predicted intergenic and intragenic en-
hancers can be visualized in the UCSC genome browser
through the link http://regulatorygenomics.upf.edu/Pro
jects/enhancers.html.

Linking enhancers to genes

Enhancers were linked to genes by selecting the closest
TSS on either direction and by using ChIA-PET data for
RNAPII in K562 cells for two replicates from ENCODE
[20]. An enhancer was considered connected to a gene
if there were at least 3 ChIA-PET pairs connecting both
the predicted enhancer and the region of 1 kb around
the TSS of the gene. Random enhancers used as
controls were calculated as described above. For the as-
sociation of enhancers to genes, only enhancers that
were between 2 and 100 kb from a TSS were considered.
Genes associated to cancer were obtained from the
Cancer Gene Census (http://cancer.sanger.ac.uk/cancer
genome/projects/census/) [30].
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Expression and splicing analysis

For every gene in GENCODE (v7) annotation [31], the
most upstream TSS (TSS1) and all alternative TSSs
(TSS2, TSS3, etc.) were considered. Each pair TSSI-
TSS2, TSS2-TSS3, etc. was considered as an alternative
transcription event. RNAPII relative enrichment levels
were measured around each TSS using the same method
as before. To control possible association with upstream
enhancers, we discarded all alternative TSS events that
had a predicted intergenic enhancer (active or silent)
100 kb upstream of the gene. We calculated the expres-
sion levels of the annotated transcript isoforms using
cufflinks v2.1.1 [32] with parameters -library-type
fr-firststrand —no-effective-length-correction —min-frags-
per-transfrag 5 and masking all rRNAs, tRNAs and
mitochondrial sequences. The relative changes in tran-
script abundance were obtained using Cuffdiff with pa-
rameters —library-type fr-firststrand —min-reps-for-js-test
1, using the merged GTF file obtained from Cufflinks for
GM12878 and K562, along with the bam files of
GM12878 and K562 with replicates. This provided 3552
genes (6.68 %) with relative changes in expression be-
tween the two cell lines.

Alternative splicing events from the Gencode v7 anno-
tation [31] were calculated using the software SUPPA
(https://bitbucket.org/regulatorygenomicsupf/suppa). Only
events that do not overlap any other alternative splicing
event were kept, giving rise to a total of 5319 events. For
exon skipping events, defined by an exon triple E1-E2-E3,
the inclusion level (PSI) of the middle exon E2, was calcu-
lated as the fraction of reads that include the exon over the
total number of reads that include and skip the exon:

psy — "2 + 123
n1z + #a3 + 2033

where nj,, ny3 and n;3 are the number of reads that span
the junctions E1-E2, E2-E3 and E1-E3, respectively.
PSI values were calculated using junction reads only,
since enhancers can produce RNA as well, so the
enhancer-related RNAs may be mistakenly included in
the PSI calculation when they overlap an event. Reads at
junctions were counted with sjcount [33] from the
mapped RNA-Seq data, using the -readl I and -read2 0
parameters. For this analysis, RNA-Seq reads were
mapped using STAR [34] with parameters —outSJfilterO-
verhangMin -1 -1 -1 -1 and —sjdbScore 100 in order to
use only annotated junctions. A genome index was pre-
viously generated with STAR over the Gencode.v7 anno-
tation using the —sjdbOverhang 75 parameter in order to
adjust the splice junction database to the length of the
RNA-Seq reads. Finally, only events with a total of 20 or
more reads mapping at the junctions were kept. This
gave a final number of 3227 and 3192 events with PSI


http://regulatorygenomics.upf.edu/Projects/enhancers.html
http://regulatorygenomics.upf.edu/Projects/enhancers.html
http://cancer.sanger.ac.uk/cancergenome/projects/census/
http://cancer.sanger.ac.uk/cancergenome/projects/census/
https://bitbucket.org/regulatorygenomicsupf/suppa

Gonzalez-Vallinas et al. BMC Genomics (2015) 16:523

values from the nuclear and cytosolic RNA-Seq experi-
ments, respectively.

We defined the events to be regulated if they had
|delta PSI| > 0.1 in at least one replicate comparison be-
tween cell lines. Using two pairings of the replicates, this
gave rise to 339 and 293 events (148 in common) with
the cytosolic samples, and 367 and 378 (210 in common)
for the nuclear samples. Additionally, we defined a set of
alternative events that do not change splicing by impos-
ing |delta PSI| <0.05 between the same replicate com-
parisons used before. This gave rise to 1722 and 1534
(1328 in common) for the cytosolic samples, and 1627
and 1497 (1278 in common) for the nuclear samples.

Results and discussion

Modeling and prediction of active transcriptional
enhancers

We built a computational predictive model based on the
relative differences in various chromatin marks between
two cellular conditions. We applied this model to study
the differences between the ENCODE cell lines K562, a
leukemia cell line, and GM12878, a blood cell derived cell
line. Using windows along the entire genome (Additional
file 1: Figures S1 and S2), we considered the relative en-
richment of a number of histone marks and protein fac-
tors (Methods). We then clustered windows into classes
according to the chromatin features. In order to deter-
mine which features are relevant for classification, we per-
formed a feature selection analysis in which one signal is
chosen as a proxy for a classification value and is com-
pared against the rest (Methods). We then considered two
of the main epigenetic marks related to active enhancers,
H3K27ac [3] and H3K4me3 [11], as proxies for enhancer
activity. We found that H3K4mel and H3K4me2, ob-
served to be present in active and non-active enhancers
[11] are strongly correlating signals (Fig. 1a and Additional
file 1: Figure S3A). We also consistently found H2A.Z,
which is a histone variant associated to open chromatin
and H3K4 methylation [35]; and P300, which is ubiqui-
tously present in enhancers [6].

Interestingly, when P300 or H3K4mel were used as a
correlation feature, the signals H3K27ac and H3K4me3
did not appear as the most significantly associated
(Additional file 1: Figure S3B and C). Additionally, P300
seemed to associate with the largest subset of features,
which is consistent with experimental evidence showing
that P300 associates generally to enhancers [1, 6]. How-
ever, enhancers with H3K4mel and/or P300 occupancy
are not always active [3, 11], since H3K4mel precedes
enhancer-binding factors and P300 may be present in
poised and intermediate enhancer states [36]. On the
other hand, we did not find RNAPII and H3K36me3 to
be strong predictors of enhancer activity (Fig. la and
Additional file 1: Figure S3A), even though they have
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been previously detected on enhancers [12, 13]. Add-
itionally, although we found a strong correlation of
PU.1 (SPI1) with H3K27ac, it does not correlate with
H3K4me3, hence it is likely that PU.1 associates to a
subset of the putative enhancers [37]. Based on these
results, we decided to keep those features that scored
consistently above the technical and biological controls
in the feature selection analysis using H3K27ac and
H3K4me3 as correlation classes, including these two
marks. That is, we used as predictors of enhancer activity
the following signals: P300, H3K27ac, H3K9ac, H3k4mel/
me2/me3 and H2A.Z.

Clustering the genomic windows according to the
relative enrichment of the selected features (Methods)
resulted in three optimal classes (Additional file 1:
Figure S4). We recovered one class characterized for be-
ing enriched in H3K4me3 and H3K27ac (Fig. 1b), which
we considered to be enhancers that are active in K562
cells (silent in GM12878). We recovered a second class
characterized by a depletion of these same marks in
K562 (Fig. 1b), which we considered to be active en-
hancers in GM12878 (silent in K562). Finally, the third
cluster showed small or no changes in most of the sig-
nals, indicating that these regions do not have any differ-
ential activity between the two cell lines. These regions
do not necessarily represent enhancers and are labeled
as no-change. These three groups (active, silent, no-
change) define the three predictable classes of our com-
putational model, two of which can be identified with
enhancer classes: active and silent. The genome wide
classification analysis resulted in 66,079 windows pre-
dicted to be active in K562 (silent in GM12878) and
64,436 windows predicted to be active in GM12878 (si-
lent in K562).

In-silico validation of active transcriptional enhancers

In order to evaluate the accuracy of our predictions, we
first compared our predicted enhancers windows with
the enhancer regions predicted in the same cell lines by
ChromHMM [38]. The majority of our enhancers pre-
dicted as active in K562 or GM12878 overlap with
ChromHMM windows labeled as weak or strong en-
hancers in the same cells (Additional file 1: Figure S5A
and B). On the other hand, when we compared active
windows with ChromHMM labels in the other cell line,
the majority corresponds to ChromHMM silent windows
(Additional file 1: Figure S5C and D), as expected.
Furthermore, the overlap of our active enhancers with
predicted ChromHMM enhancers increases with the
posterior probability of our predictions (Additional file 1:
Figure S5E and F). In contrast, when comparing the active
enhancers in one cell line with the ChromHMM labels
from the other cell line, we found no correlation with the
posterior probability (Additional file 1: Figure S5G and H).
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Fig. 1 A predictive model of active enhancers. a Feature selection using H3K27ac (minus the Input DNA) as a correlation class. The bars represent
the average importance score per feature. Red labels and bars indicate the minimum (randMin), mean (randMean) and maximum (randMax) of
the simulated replicates, as well as the ChIP-Seq with a non-specific antibody (Control). The red dashed line separates the relevant features (in
blue) from the non-relevant features (in grey). b Scatter plot of the intergenic windows according to relative enrichment z-scores for every pair
of selected features (x and y axis). Each dot represents a window and windows are separated according to the three classes: active enhancers
(green), no-change regions (blue) silent enhancers (red). The black centroids show the centers and standard deviations of the correlations
between different features
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Based on these comparisons, we kept predictions with a
posterior probability of >0.95, which resulted in 36,301
active windows in K562 and 37,859 active windows in
GM12878. Overlapping windows were then clustered into
16,646 active enhancers in K562 and 16,328 active en-
hancers in GM12878, which distribute evenly along the
genome (Additional file 1: Figure S6A). These enhancers
have mean length of 3053 bp and the majority of them
(87.65 %) are shorter than 5 kb (Additional file 1: Figure
S6B). There were also 273 (1.38 %) predictions longer
than 10 kb, which may correspond to large-scale chro-
matin domains [39] or to clusters of enhancers [40]. We
filtered out those predictions longer than 5 kb, resulting
in 10,365 active enhancers and 9777 silenced enhancers,
with mean lengths of 2704.6 and 2588 bp, (median
lengths of 2500 and 2000 bp), respectively. These aver-
age lengths are in agreement with previous analyses of
enhancers from ChIP-Seq data of histone marks and
protein factors [5, 11, 15].

We next studied the association of enhancers to other
signals not considered in the predictive model. PU.1 and
RNAPII correlate with the predicted active enhancers,
with 25.3 and 20.1 % of the active enhancers in K562
showing a significant relative enrichment (left-tailed
p-value < 0.01) in PU.1 (Fig. 2a) and RNAPII (Additional
file 1: Figure S7A), respectively. Similarly, we found a
strong association of DNasel to our predicted enhancers,
in agreement with previous observations [2, 9, 10] and
53.6 % of the active and silent enhancers show a signifi-
cant enrichment (left-tailed p-value <0.01) (Fig. 2b).
Likewise, 46.7 % of the silent enhancers in K562 (active
in GM12878) show a significant depletion in DNasel
(right-tailed p-value < 0.01). In contrast, H3K27me3 shows
a weak inverse correlation with enhancer activity and
6.5 % of the silent enhancers in K562 show a significant
enrichment (right-tailed p-value<0.01) of H3K27me3
(Additional file 1: Figure S7B). Although CTCF and
H3K36me3 have been detected before on enhancers [12,
13], we observed a weak correlation of these signals with
enhancer activity and only 7.4 and 4.6 % of active en-
hancers in K562 show a significant enrichment in CTCF
and H3K36me3, respectively (Additional file 1: Figure S7C
and D).

We additionally investigated whether enhancer-
associated RNAs (eRNAs) are found in our predictions.
Enhancer activity correlates with the production of polyA+
(Fig. 2c) and polyA- (Additional file 1: Figure S8A) long
(>200 bp) nuclear RNAs, compared to silent enhancers.
This relative enrichment is much larger than for the other
RNA subclasses (Additional file 1: Figure S8B). Interest-
ingly, there is also enrichment of cytosolic polyA+ RNAs
(Additional file 1: Figure S8C), but not of cytosolic polyA-
RNAs (Additional file 1: Figure S8D) or short RNAs
(<200 bp) (Additional file 1: Figure S8E and F). Moreover,
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not all enhancers predicted as active appear to generate
eRNAs: 26.4 and 32.1 % of the predicted active enhancers
in K562 have a significant (left-tailed p-value <0.01) in-
crease of nuclear polyA+ and polyA-, respectively. In com-
parison, only 1.25 % of active enhancers have significant
(left-tailed p-value < 0.01) increase for short nuclear RNAs.
For cytosolic polyA+, 18.7 % of the predicted active en-
hancers in K562 have a significant (left-tailed p-value <
0.01) increase of eRNAs. In contrast, only 9.2 % of these
active enhancers have a significant enrichment of short
total RNAs and polyA- cytosolic RNAs, respectively.

Although enhancers can regulate genes from afar, they
tend to be enriched upstream of genes (Visel et al. [6]).
We therefore connected enhancers to genes by choosing
for each enhancer the closest annotated transcription
start site (TSS) in either direction. With this approxima-
tion, active intergenic enhancers show enrichment at
distances close to TSSs compared to random regions
and to silent enhancers (Fig. 2d). Using these enhancer-
TSS pairs, we calculated the relative change in gene ex-
pression measured from RNA-Seq data (Methods). We
observed that genes with activated enhancers at a dis-
tance between 2 and 10 kb show up-regulation, whereas
genes with silenced enhancers in the same distance
range show down-regulation (Fig. 2e). Moreover, this
association is conserved when the distance range of the
enhancers is extended to be between 10 and 100 kb
from the closest gene (Additional file 1: Figure S9A).
Further support for transcription activity in association
to our predicted enhancers was found measuring the
relative density of RNAPII around the TSS in genes close
to predicted enhancers, which was found to correlate
with enhancer activity (Additional file 1: Figure S9B).

We additionally searched for evidence of direct phys-
ical interactions for the enhancer-TSS pairs calculated
above by using ChIA-PET data for RNAPII [41]. Although
only a small fraction of active enhancers have ChIA-PET
links to TSS regions (1.6 %), there is enrichment over silent
enhancers and randomized regions (Additional file 1:
Figure S9C), indicating that predicted active enhancers
tend to have more ChIA-PET links than silent enhancers
and expected by chance. Finally, we investigated whether
enhancers active in K562 have any association to genes
that have been involved in cancer. Using the cancer gene
census [30], we found that enhancers predicted to be active
in K562 are enriched for genes related to cancer, compared
to random regions and to enhancers silent in K562 (active
in GM12878) (Fig. 2f). Interestingly, oncogenes can be
linked more frequently to active enhancers and suppressors
can be linked more frequently to silent enhancers
(Additional file 1: Figure S10). In summary, these analyses
indicate that our predicted enhancers show properties of
active enhancers. We therefore set out to predict intragenic
enhancers using the same computational model.
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(See figure on previous page.)

Fig. 2 Properties of predicted intergenic enhancers. Relative enrichment of PU.1 (a), DNasel (b) and polyadenylated long (>200 nt) nuclear RNA
() at active and silent enhancers, as well as for regions of no-change in chromatin. The violin plots describe the distributions for the z-score of
the relative enrichment along the y-axis. Positive z-score values mean enrichment in K562, while negative z-scores mean enrichment in GM12878.
d Percentage of enhancers at a given distance from the TSS, for active (blue), silent (green), as well as for the corresponding randomized sets
(red and cyan) (Methods). e Relative expression change in genes associated to enhancers by proximity to the TSS. The violin plot describes the
distributions of z-scores of the relative enrichment of RPKM values along the y-axis for genes associated to active and silent enhancers, as well as
for no-change regions calculated with Pyicoteo [23]. Genes where linked to the nearest enhancers within a distance range between 2 and 10 kb.
f Cumulative distribution of enhancer nearby genes related to cancer in terms of the distance between the TSS and the closest enhancer. The
comparison is made between active and silent predicted enhancers, and the corresponding randomizations

Thousands of intragenic enhancers are differentially
activated in human cells

Active enhancers regulating the expression of nearby
genes have been observed in exons [14, 15] and about
50 % of enhancers predicted by high-throughput methods
lie within protein-coding genes [2]. Additionally, by com-
paring the overlap of validated VISTA elements with the
annotation in Gencode.v7 [31], we observe that there is no
preference for intragenic or intergenic regions (Additional
file 1: Figure S1). All these evidences indicate that intra-
genic enhancers represent an important regulatory compo-
nent of the genome. However, it remains an open question
how many intragenic enhancers may be active in a given
cell. Accordingly, we decided to apply our predictive model
to localize putative intragenic enhancers that are activated
in K562 relative to GM12878, and vice versa.

In order to predict intragenic active enhancers, we
considered 1.5 kb sliding windows inside genes, starting
500 bp downstream of the first TSS and eliminating all
windows that overlap with a 1 kb region around every
annotated alternative TSS (Additional file 1: Figure S2).
This resulted in an initial set of 2,206,307 possible 1.5 kb
windows, for which we used the same selected chroma-
tin features as for the intergenic enhancers. Using a seed
of 15,000 intergenic regions and the same clustering ap-
proach as before, we predicted 73,080 active and 92,225
silenced regions. As we did previously with intergenic
enhancers, we compared our predicted intragenic pre-
dictions with ChromHMM predictions with similar
results (Additional file 1: Figure S11). Accordingly, we
only kept windows predicted with posterior probability >
0.95, resulting in 42,297 and 55,624 active intragenic
enhancer windows in K562 and GM12878, respectively.
After clustering overlapping windows, we obtained
17,791 active intragenic enhancers in K562 (relative to
GM12878) and 21,108 active intragenic enhancers in
GM12878 (relative to K562), falling inside a total of
5162 genes (10.11 % of all genes) and 5933 (11.61 %)
genes, respectively. The mean length of these predictions
is 3665 bp, with the majority (82.81 %) being shorter
than 5 kb (Additional file 1: Figure S12). As before, we
kept those shorter than 5 kb, resulting in 11,055 and
11,917 candidate active intragenic enhancers in K562
and GM12878, respectively.

Our predicted intragenic enhancers tend to occur in
separate genes, with only 29.2 % of the genes hosting en-
hancers of both types. The majority of intragenic en-
hancers active in K562 (78.24 %) or active in GM12878
(80.61 %) fall in intronic regions, and 26.02 % in K562
(22.07 % in Gm12878) overlap at least partially with an
exon. However, comparing the proportion of exonic and
intronic regions covered by enhancers with the actual
proportions of these regions in genes, we find no prefer-
ence for exons or introns (Additional file 2). Additionally,
even though we observed a preference for intragenic
enhancers to fall on the first intron (Additional file 1:
Figure S13), this effect can be explained by the fact that
first introns are on average longer in human (Additional
file 2) [42].

Intragenic enhancers affect the regulation of the host gene
As the activation or silencing of intragenic transcrip-
tional enhancers are characterized by the differential
density of chromatin marks, we hypothesized that this
would lead to a modulation of the RNA processing of
the host gene. To test this, we first measured whether
genes hosting predicted enhancers tend to show signifi-
cant differential expression between the two cell lines.
Similarly as before for enhancers linked to genes, we
find a correlation of the relative expression change of
genes hosting active or silenced enhancers. Specifically,
23.8 % of 5162 genes with only active enhancers in K562
(34.5 % of the 5933 genes with only active enhancers in
GM12878) show a significant expression up-regulation
in the corresponding cell line (Methods). We then tested
whether the activation or silencing of internal enhancers
may produce the activation or repression of an intra-
genic TSS. We considered all active and silenced en-
hancers that fall between the most upstream TSS (TSS1)
and the first internal annotated TSS (TSS2), such that
the distance TSS1-TSS2 was longer than 20 kb. This re-
sulted in a total of 870 TSS1-TSS2 pairs, from which
113 (13 %) had at least one active enhancer in K562 and
135 (15.52 %) had at least one silent enhancer in K562
(active in GM12878) located between both TSSs. When
an active enhancer is present between the two alterna-
tive TSSs, we observed that generally both TSS1 and
TSS2 show an increase in RNAPII density in K562
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relative to GM 12878 (Fig. 3a). This suggests that activa-
tion of an intragenic enhancer can affect both TSSs.
Conversely, when a silent enhancer is present between
both TSSs, the relative level of RNAPII tend to decrease
at both TSSs relative to the other cell line (Fig. 3b).
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Interestingly, this effect persists for other downstream
alternative TSS events (Additional file 1: Figure S14), in-
dicating that intragenic enhancers can activate internal
TSSs, but also affect transcription of the most upstream
TSS to some extent. We further used ChIA-PET for
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RNAPII in K562 to validate a possible direct interaction
between our intragenic enhancers and the first TSS of
each gene. Similarly as before, we observe a higher
density of ChIA-PET links for active enhancers than for
silent and random ones (Additional file 1: Figure S15).
In this case 54.19 % of the active intragenic enhancers
have ChIA-PET links, compared to 36.73 % in silent,
23.5 % in random active and 17.5 % in random silent
(Additional file 1: Figure S15). This enrichment with re-
spect to intergenic enhancers could be due to a higher
density of RNAPII sites in intragenic regions. As an
example of the described mechanism, we show the
example of the gene MAGED1, a member of the melan-
oma antigen family D, which is known to have tumor-
suppressor properties [43]. We predict an enhancer that
is silent in K562 and active in GM12878, and is located
between a distant TSS and an alternative downstream
TSS (Fig. 3c). The activation of this enhancer co-occurs
with the expression of the downstream first exon in
GM12878 cells, whereas the silencing of the enhancer
co-occurs with lack of expression of this exon in K562
cells (Fig. 3c). The RNA-Seq data suggests that the acti-
vation of this enhancer affects more strongly the usage
of the TSS that is downstream.

The change in chromatin state induced by the activa-
tion or silencing of an enhancer may affect the process-
ing of the pre-mRNA. There is evidence that localized
intragenic chromatin states can produce changes in al-
ternative splicing through various mechanisms [44—48].
Moreover, we have recently shown that active enhancers
recruit Argonaute proteins to regulate the splicing of the
host gene [18]. We therefore hypothesized that intra-
genic enhancers that are active in a cell line relative to
the other one may in general be associated with relative
differences in the inclusion level of nearby exons relative
to the two same cell lines. To test this, we measured for
all genes the variation in splicing between K562 and
GM12878 using cytosolic and nuclear RNA-Seq polyA+
data from ENCODE, using only junction-reads, to avoid
contributions from RNAs stemming from overlapping
enhancers (Methods). We found that around 4 % of
multi-exonic genes with intragenic enhancers that are
active in either cell line, have a regulated alternative spli-
cing event (|delta PSI|>0.1) between both cell lines,
whereas only about 1 % of all the genes without intra-
genic enhancers have a calculated alternative splicing
event that changes between cell lines (Additional file 1:
Table S2). A total of 3732 and 3908 genes with no
change in expression have active or silent enhancers, re-
spectively, and 1527 of these genes have enhancers of
both types (Fig. 4a). Moreover, 325 of the genes with no
change in expression have regulated events, and overlap
with a total of 1046 enhancers (480 active and 566 si-
lent) (Fig. 4a). Moreover, these genes contain 347 of the
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535 (65 %) cassette events regulated between K562 and
GM12878 (available as Additional file 2). Using Gorilla
[49], we tested whether genes with enhancers and
regulated events were enriched for any particular Gene
Ontology term, and found an overrepresentation of genes
encoding DNA-binding proteins implicated in gene regu-
lation and chromatin organization (Fig. 4b) (Additional
file 1: Table S3).

We next decided to evaluate whether there is any as-
sociation between the presence of enhancers and regu-
lated events in genes. To this end, we compared only
genes that have one or more of the 5319 calculated alter-
native splicing events (Methods) and separated these
genes according to whether they have one or more regu-
lated events (|delta PSI| > 0.1) or not (|delta PSI| < 0.05)
between the two cell lines. We found that in all compar-
isons the proportion of genes with regulated events was
higher for those genes that have active enhancers (either
in K562 or GM12878) (Additional file 1: Table S4), being
the comparison statistically significant (Fisher p-value <
0.05) for both replicates for genes with active enhancers
in GM12878, using nuclear RNA-Seq for the calculation
of PSI values; whereas the same association for enhancers
active in K562 was only significant for one of the replicate
comparisons (Fisher p-value=0.01) (Additional file 1:
Table S4). Moreover, these associations remained signifi-
cant when we considered only those genes that do not
change expression between both cell lines (Additional
file 1: Table S5). The regulated events in genes with
active or silent intragenic enhancers present equal pro-
portions of each pattern of PSI change, i.e. increase or
decrease PSI (Additional file 1: Figure S16), which is
consistent with the observed dual effect that a chroma-
tin change can have on splicing [50]. Additionally, the
direction of change of PSI does not correlate with the
position, upstream or downstream, of the enhancer rela-
tive to the regulated exon (Additional file 1: Figure S17).
Remarkably, the majority of the regulated events are
located 5000 nt from an enhancer (Additional file 1:
Figure S18). However, we did not find any significant
difference with the distribution of distances of non-
regulated events to nearby enhancers (Additional file 1:
Figure S19).

As an example, we show the case of a regulated exon
in the microtubule-actin crosslinking factor 1 gene
(MACF1) (Fig. 4c). We observe a cassette exon with in-
creased inclusion (delta PSI=0.72) in K562 cells. The
regulated exon is flanked by two enhancers predicted to
be active in K562, one of which shows binding of PU.1
in K562, but not in GM12878 (Fig. 4c). This, together
with the rest of our findings, suggests that the binding
of PU.1 to a nearby enhancer, possibly in combination
with other factors, could control the inclusion of this
exon in MACF1. MACF1 has been implicated in the
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Wnt signalling pathway [51] and the inclusion of a cas-
sette exon in MACF1 was observed before to be associ-
ated to lung adenocarcinoma [52]. This result suggests
the interesting possibility that the binding of PU.1 to an
enhancer inside the MACF1 gene may affect its splicing,
thereby altering Wnt signaling and contributing to the
oncogenic transformation associated to PU.1 [53]. In
conclusion, we have found a possible association be-
tween the activity of intragenic enhancers and the regu-
lation of the pre-mRNA. In particular, we find evidence
that the activation of intragenic enhancers, besides af-
fecting the activity of internal TSSs, can also potentially
influence the inclusion of nearby exons.

Conclusions

We have developed a novel semi-supervised method that
exploits the relative enrichment and depletion of mul-
tiple signals from ChIP-Seq experiments to predict
enhancers that are active in one cell line relative to an-
other. Applying this method to ENCODE data we pre-
dicted a total of 21,420 enhancers that are active in
K562 relative to GM12878 (silent in GM12878 cells) and
21,694 enhancers that are active GM12878 relative to
K562 (silent in K562), including intragenic and inter-
genic enhancers.

The number of active enhancers is cell type specific
and very much dependent on the method used to detect
them [36]. Although activation of enhancers is generally
associated to a number of histone modifications, only a
small fraction of the many candidate enhancers previ-
ously identified using a variety of techniques may be ac-
tive in a given cell. For instance, Heintzman et al. found
24,566 putative enhancers in K562 cells with approxi-
mately 20 % of them overlapping putative enhancers de-
tected in HeLa cells [1]. In contrast, ChromHMM [38]
predicts more than 60,000 non-abutting genomic regions
to be strong enhancers and about three times as many
for weak enhancers. There are two main reasons for the
discrepancies with our predicted number of active en-
hancers: the resolution of the genome segmentation is
very different and we only predict enhancers that are ac-
tive in one condition but not in the other. That is, we do
not detect enhancers active or silent in both cell types.
Nonetheless, we found a good agreement between the
regions we predict as active or silent enhancers and the
annotations from ChromHMM for the same cell lines.

Our predicted enhancers are H3K27ac dependent and
are defined almost entirely by chromatin signals. The
relevant predictive features confirm that active enhancers
are characterized not only by the presence of H3K4mel,
but also by the presence of H3K27ac, H3K4me3 and
RNAPII [4, 5, 12, 13]. We also observed that active
enhancers show an enrichment of the histone variant
H2A.Z, which has been identified to demarcate regulatory
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regions [35]. In contrast, CTCF and EZH2 and the histone
marks H3K36me3 and H4K20mel do not seem to play
any prominent role in enhancer activation. H3K27me3 is
the only feature that shows a pattern of depletion in active
enhancers and enrichment in silent enhancers, but mainly
in long enhancer-like regions (data not shown), which
may be related to other regulatory mechanisms. We add-
itionally found that predicted enhancer activity correlates
strongly with production of long nuclear RNAs, rather
than short ones, which can be polyA+ as well as polyA-.
However, we observe that not all active enhancers produce
eRNAs. Furthermore, although RNAPII and H3K36me3
have been detected on enhancers in relation to eRNA pro-
duction [12, 13], we did not find them as strong predictors
of enhancer activity.

When we applied the same predictive model to predict
intragenic enhancers, we found a similar number of
active intragenic enhancers as for intergenic ones. This
result suggests that there exist in cells a considerable
number of differentially activated intragenic enhancers,
which may have a relevant contribution to the mecha-
nisms of cell-specific gene regulation. Since active en-
hancers are characterized by a local modification of the
chromatin state, we hypothesized that our predictions
could be linked to relative differences between the same
two cell lines in expression and splicing. We observed
that intragenic transcriptional enhancers, upon activa-
tion or silencing, affect the activity of downstream alter-
native transcription start sites. Surprisingly, they can
also affect the most upstream TSS. This generalizes pre-
vious findings indicating that intragenic enhancers can
act as internal alternative promoters [16]. We also found
that intragenic enhancers, upon activation or silencing,
associate to the differential inclusion of nearby exons.
However, a considerable proportion of splicing changes
occur in genes that change expression (51.1 % for genes
containing differentially included exons in K562 and
52.9 % for differentially excluded exons in GM12878).
This indicates that the main effect of the activation of
enhancers may be related to the activation of alternative
transcription in the gene and alternative splicing may be
a byproduct of that. The observed changes may be medi-
ated by the changes in the RNAPII elongation produced
due to the chromatin change. However, active intragenic
enhancers show enrichment in open chromatin marks
(H3K4me3, H3K27ac) that have not been associated be-
fore to changes in RNAPII elongation.

On the other hand, we found here a strong association
of PU.1 (SPI1) to active enhancers in K562 cells and in
particular, a significant increase in PU.1 occupancy in
26.8 % of active enhancers. PU.1 has been shown before
to be an essential co-factor for enhancer activity [54]
and is known to bind to H3K4mel sites in macrophages
and B cells in a cell-specific manner [55, 56]. Moreover,
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PU.1 has been observed to regulate alternative splicing
from the promoter [57] and can interact with the RNA
binding proteins FUS (TLS) and NONO (p54nrb) [58,
59]. In fact, PU.1 has been proposed to bind RNA [59]
and to perform an antagonistic function to the RNA
binding proteins TLS and NONO in the regulation of
splicing [59, 60]. In this direction, we found enrichment
of regulated events in genes with enhancers, which sug-
gests that PU.1 could be regulating the splicing of some
of these genes through its binding to intragenic en-
hancers, possibly interacting with RNA binding proteins
[46]. In support of this model, we find that there is an
enrichment of regulated events in genes with enhancers
that are active or silent relative to the other cell line. We
postulate that intragenic enhancers provide localized
and cell-type specific mechanisms to link the chromatin
state to RNA processing.

In summary, there is increasing evidence that changes
in the chromatin state can affect the processing of the
pre-mRNA [44-48, 61-65] and different models for this
regulation have been proposed. From our analysis a
picture emerges whereby localized chromatin changes
inside genes can take place by means of the activation of
intragenic transcriptional enhancers. We propose that
the differential activation and silencing of transcriptional
enhancers that fall within genes could explain the local-
ized chromatin variation that have been observed before
to affect the expression and splicing of genes, either
through the modulation of RNAPII activity or through
the recruitment of factors that can interfere with RNA
processing, like PU.1.

Additional files

Additional file 1: Contains the supplementary figures (51-519) and
tables (S1-S5) cited in the text.

Additional file 2: List of predicted active and silent enhancers in
K562 inside genes overlapping differentially spliced events. Contains
the coordinates of the enhancers and the events, as well as the inclusion
values (PSI) of the events in K562 and GM12878 cells.
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