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given the data of LEP, the Tevatron and the LHC, as well as the advanced status of the

pertinent theoretical calculations. With the current statistics at the hadron colliders, the

workhorse decay channel, at all relevant H masses, is H → WW, followed by W → `ν,

` = e or µ. Using phase-space singularity techniques, we construct and study a plethora

of “singularity variables” meant to facilitate the difficult tasks of separating signal and

backgrounds and of measuring the mass of a putative signal. The simplest singularity

variables are not invariant under boosts along the pp or pp̄ axes and the simulation of

their distributions requires a good understanding of parton distribution functions, perhaps

not a serious shortcoming during the boson hunting season. The derivation of longitudi-

nally boost-invariant variables, which are functions of the four charged-lepton observables

that share this invariance, is quite elaborate. But their use is simple and they are, in a

kinematical sense, optimal.
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1 Introduction

Recent data from the LHC1 on a putative standard Higgs boson exclude, at a 95% con-

fidence level (CL), the mass domain 127 GeV < MH < 600 GeV (CMS) and, with some

1The quoted numbers are from the talks of Guido Tonelli [1] and Fabiola Gianotti [2] at CERN on

December 13th 2011. The corresponding updated analyses are in: [3], [4].
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narrow gaps, 131 GeV <MH< 453 GeV (ATLAS). These results are obtained with full use

of the standard theory, including radiative corrections which sometimes constitute the dom-

inant effect. The amplitude for Higgs boson production, for example, is largely dominated

by gluon fusion via a t-quark loop and so is the amplitude for H → γγ decay.

In the “quantum-level” setting we recounted, it would be inconsistent not to analize

the LHC data in conjunction with the constraints on MH which follow from the profusion

of high precision measurements that test the standard theory beyond tree level. These

constraints (and the direct searches [5] at the Tevatron) result in MH<161 (156) GeV at a

CL of 95% [6], while the direct LEP limit is MH>115 GeV.

In mass intervals akin to the one implied by the quoted constraints CMS finds a 1.9σ

excess of events — that could be an indication of a Higgs signal — at MH = 124 GeV and

ATLAS a 2.5σ one at MH = 126 GeV [1–4]. In the current broad mass range(s) of the

searches, the corresponding “local” significances are somewhat larger [1–4], but have no

rigorous statistical interpretation.

For a standard Higgs boson of mass MH > 140 GeV the branching ratio for the decay

H → WW is the dominant one. Below this mass and above the LEP limit, the winner is

H → bb̄, a process beset by terrifying backgrounds at a hadron collider. The branching

ratio W → qq̄ is one order of magnitude larger than the one for W → `ν, ` = e, µ. But a

light-lepton signal is much “cleaner” than that of a quark-generated jet. This makes the

chain H → W+W−, W± → `±ν the all-mass workhorse at a hadron collider. In brief,

we refer to this process as H → WW , including the “off-shell” MH < 2MW case, often

dubbed H →WW ∗.

The obvious problem with the H →WW channel is that MH cannot be reconstructed

event by event, as a lot of information escapes detection with the unobserved neutrinos

and, at a hadron collider, also with the unobserved hadrons that exit “longitudinally” close

to the beam pipe(s). This makes taming the workhorse almost an art, not only a science.

The formal and theoretically optimal singularity variable procedure to deal with this kind

of incomplete information is summarized in [7, 8] and exploited for the hadron-collider

production of a single W in [8]. We shall see that, for the H →WW process, the situation

is much more challenging, mainly because two missing neutrinos are many more than one.

The other crucial obstacles in the process we study are the large backgrounds with

kinematics akin to those of the signal. The main and irreducible one is the direct non-

resonant production of W pairs by qq̄ annihilation. The next most relevant one is tt̄

production, which also results in W pairs. For simplicity we shall illustrate our theoretical

results only for the chain W → eν, W → µν, for which the “Drell-Yan” background is not

a problem.

The analysis tools used to deal with the H →WW channel range from a simple “cut

and count” approach to “matrix-element” techniques and avant-garde neural networks or

“boosted decision trees” [1–4]. There is no question that in the long range the methods that

input and utilize the largest amount of information are likely to be the most powerful ones.

Whether this is also the case at an exploratory “Higgs-hunting” stage is more doubtful.

Here we shall explore a “copy and paste” avenue of intermediate sophistication: the deriva-

tion of singularity variables — functions of the observable momenta and of MH — whose
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measured histograms are to be compared (in one or more dimensions) with pre-prepared

templates.

For the production of a Higgs boson at a hadron collider, followed by the decays

H → W+W−, W± → `±ν, we shall limit our discussion to the distributions of various

functions of the charged lepton three-momenta ~k and ~l. The transverse momentum of the

Higgs boson is balanced by the transverse momentum, ~pT , of the final state hadrons, whose

discussion deserves a separate paragraph, the next. The use of other observables, such as

the number of jets, is beyond our scope.

Two practical problems are that ~k and ~l are measured to much higher precision than

~pT and that the formulae for the H → WW singularity variables are much more complex

for ~pT 6= 0 than for ~pT = 0. We deal with both problems by setting ~pT = 0 in our

theoretical expressions. This is less cavalier than it seems. The transverse momentum of a

Higgs boson in a given event is '−~pT . For a given ansatz MH value, its observed lepton

momenta can be Lorentz boosted closer to the ~pT = 0 frame. The precise boost would

require knowledge of the boson’s longitudinal momentum, p3. But, typically, p23 � 2M2
H ,

it is a fair approximation to neglect p3. More importantly, the singularity variables for

~pT = 0 are very useful even in the analysis of events with ~pT 6= 0, even if one does not

boost the events back closer to the ~pT = 0 frame, and even if one is also dealing with the

quoted backgrounds, whose W pairs do not have a fixed invariant mass.

Let the lepton momenta be ~k ≡ {~kT , k3} and ~l ≡ {~lT , l3}. Because of the rotational

symmetry along the beams’ axis, the six-dimensional observable space {~k,~l} is in practice

just five-dimensional. One possible choice of variables is the set (k+ l)2, the invariant mass

of the lepton pair; kT , lT , the moduli of the transverse momenta; and ~kT ·~lT , or the familiar

∆ϕ = arccos[~kT ·~lT /(kT lT )]. All four of these “transverse” observables are invariant under

longitudinal boosts along the beams’ axis. The remaining variable, for instance k3 + l3,

is not.

We shall derive two types of singularity variables: those which do — or do not — de-

pend only on transverse observables. Transverse variables are preferable, in that they are

insensitive to the significant uncertainties associated with the (longitudinal) parton distri-

bution functions (pdfs). In practice the uncertainties are to a modest extent reintroduced

via the angular coverage limitations of an actual experiment, which are not invariant un-

der longitudinal boosts. The histograms of singularity variables that are not longitudinally

invariant do depend on the pdfs, but, particularly during a Higgs-hunting or initiatory

epoch, this is not a serious limitation.

In the problem at hand, the quintessential function of transverse variables — in the

sense of its ability to tell apart signal from backgrounds — is ∆ϕ, the angle between the

charged leptons in the transverse plane. In figure 1, for comparison with our coming results,

we recall this fact by showing the (arbitrarily normalized) shapes of signal and background

distributions for two examples, with MH = 500 and 120 GeV. As is well known, the V-A

nature of the weak current and the specific spin zero nature of the W pair in signal events,

favours collinear vs. anticollinear leptons. The effect weakens as MH increases and the

leptons are boosted away from each other.

The simulations of figure 1, as well as all others in this note, were made with use

of the PYTHIA6 event generator [9]. They are for the H → WW , W → eν, W → µν

– 3 –
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Figure 1. Distributions of ∆ϕ. Top row: MH = 500 GeV. Bottom row: MH = 120 GeV. Left

column: Comparison between the shape of the (yellow) signal distribution and that of the (blue)

WW background. Right column: Comparison of signal with the (orange) tt̄ background.

channel, with leptons of transverse momentum greater than 15 GeV, and satisfying the

pseudorapidity cuts η(e) < 2.5, η(µ) < 2.1.

Our goal is two-fold. First and foremost, to derive the complete set of phase-space

singularity variables (functions analogous to ∆ϕ) for the process at hand. Second, to

illustrate with examples their potential phenomenological usage. At least at low MH values,

∆ϕ is more heavily dependent on dynamics than on kinematics. The singularity variables

we shall derive are the other way around. Individually, several of them are nearly “as good”

as ∆ϕ in disentangling a signal from the backgrounds. The ensemble of their distributions,

particularly in conjunction with ∆ϕ itself, should be a powerful and relatively simple tool

to search for a Higgs boson, which, in the sense of signal kinematics, is guaranteed to be

optimal.

Since we investigate a plethora of singularity variables, this paper is long and detailed.

The reader mainly interested in results may be well advised to start reading it from the

end: section 11 and section 12.

2 Outline

The simple example of single-W production is used in section 3 to clarify what singularity

conditions and singularity variables are. After posing the formal problem in section 4 we

proceed in section 5 to solve it in the center of mass (CM) reference system of the Higgs

boson. There are two reasons for this. First, it is a necessary intermediate step in the

theoretical derivation, in section 6, of the general case with a boson which is not at rest.

Second, the “approximation” of a heavy particle made at rest by gluon-gluon or qq̄ fusion

in a hadron collider is not so bad, since the quark and gluon pdfs are fast falling functions

of their fractional momenta. Our results will reflect this fact.
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We shall have to deal with the case MH < 2MW , in which at least one of the W s is

off-shell; the relative probability for both of them having an invariant mass significantly

different from MW is small. In section 7 we explain the simple way in which we treat this

case. Further details of our data analysis not already discussed in the introduction are

given in section 8.

We analize MC-generated data in section 9 in the theoretical approximation of a Higgs

boson made at rest. To some extent, this section is a “warm-up” for the general results

wherein we lift this approximation, discussed in section 10, to which the reader interested

in the most powerful results may prefer to jump.

A summary of results is given in section 11. Our data analysis is not as thorough as

the theoretical one, it is only meant to illustrate our points. But it suffices to reach our

conclusions, which, naturally, are drawn in the last section. A very formal but important

step in our theoretical analysis is relegated to the appendix.

3 Simple singularity variables

Our main result is the theoretical derivation of the phase space singularity variables and

singularity conditions for the process H → W+W−, W± → `±ν. To understand these

concepts it is easiest to recall a simpler problem: the analogous one for single-W production

at a hadron collider, followed by the same leptonic decay. In this case, the singularity

condition [8] is ΣT = 0, with:

ΣT (M,~lT , ~pT ) ≡M4 − 4M2 (~lT · ~pT + l2
T

) + 4
[
(~lT · ~pT )2 − l2

T
p2
T

]
(3.1)

Of the four M -roots of ΣT = 0, one is not unphysical:

MT (~lT , ~pT ) = +

√
2
[
|lT | |p+ l|T +~lT · (~lT + ~pT )

]
, (3.2)

which reduces to MT = 2 |lT | for ~pT = 0. The function in eq. (3.2) is the habitual M2
T

originally derived in [10, 11].

The result of eq. (3.1) is obtained by projecting the full phase space (which includes

the neutrino momentum) onto the observable phase space. The function ΣT is a singularity

variable which — for a general non-singular event — is a measure of its distance to the

nearest singularity at the singular ΣT = 0 border of the projected space. In eq. (3.1)

the mass of the W appears in two ways: the physical M is imprinted in the data and

also appears as an implicit “trial” mass M → M in the equation. In the MT singularity

variable of eq. (3.2) M is only reflected in the observables. In applying the phase-space

singularity approach to our two-W problem, we shall encounter both types of singularity

variables.

In the single-W case one can refine the result in the sense of finding the optimal

singularity variable, that which would result in the most precise measurement of MW [8].

In the two-W case this is not worthwhile, as there are decay channels, such as H → γγ,

H → ZZ; Z → `+`−, for which the mass is reconstructible.
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4 The formal problem

Back to the H → W+W−, W± → `±ν process, let y and x, respectively, be the four-

momenta of the neutrinos accompanying the charged leptons of four-momentum k and l.

The full information relevant to the reconstruction of the boson’s mass for a signal event

is embedded in the kinematical equations:

E1 V x2 = 0

E2 V y2 = 0

E3 V 2 l · x = M2
W

E4 V 2 k · y = M2
W

E5 V 2 (l + x) · (k + y) = M2
H − 2M2

W

E6 V k1 + y1 + l1 + x1 + p1 = 0

E7 V k2 + y2 + l2 + x2 + p2 = 0 (4.1)

where we have made the approximation l2 = k2 = 0 for the charged leptons and — fleetingly

in error for the WW ∗ case — set the masses of the two W s to their central values. There

are 9 unknowns (2 neutrino four-momenta and MH) and only 7 equations. In spite of this,

is there a systematic way to extract the kinematically most stringent information on MH?

This is the problem to face.

Consider the 14D space of the components ~l,~k of the three-momenta of the two (ap-

proximately massless) charged leptons and the four-momenta x, y of the two neutrinos. For

a fixed MH , the seven Equations (4.1) define a 14 − 7 = 7D manifold, the phase space.

This surface is to be projected onto the 6D hyper-plane of observable three-momenta. The

points in the full phase space that project onto the boundary of the 6D space of observables

are singular: at such points one or more of the invisible directions are contained in the

tangent plane to the full phase space [7, 8] , and a tangent to a surface is singular in that

it “touches it” at more than one single point.

The equation, Σ(~l,~k,M2
W ;M2

H) = 0, describing the boundary of the projected phase

space is a singularity condition. A general event (i.e. specific values of ~l and ~k) is non-

singular and its corresponding value of Σ is, once again, a measure of distance to the Σ = 0

singularity. The shape of the distribution of the values of the singularity variable Σ is

sensitive to the unknown mass MH in a manner that allows one to extract its true value,

be it physical or Monte Carlo (MC) generated.

The formal modus operandi to obtain singularity variables is summarized in [7] and

discussed in detail in [8]. We recalled that at a singularity one or more of the invisible

directions are contained in the tangent plane to the full phase space. The general condition

for this to happen is that, in the space {z} = {x, y} of invisible directions, the row vectors

of the Jacobian matrix Jij ≡ ∂Ei/∂zj (with the row index i running along the number

of equations and the column index j over the number of invisible coordinates) be linearly

dependent. In other words, at a singularity, the rank of Jij must be smaller than its rank

at nonsingular points.

– 6 –
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There are 7 equations and 8 invisible directions in eqs. (4.1). The vanishing of the

Jacobian Jij (a 7×8 matrix) entails 8 conditions: the nullification of all 7×7 minors. Two

of these minors coincide, up to their sign, with two others. Moreover the sums of two pairs

of minors are of the forms D S0, D S3, with

D ≡ det(l, x, k, y)

S0 ≡ k0 + l0 + x0 + y0,

S3 ≡ k3 + l3 + x3 + y3.

(4.2)

Given that S0 > 0, one condition is:

det(l, x, k, y) = 0, (4.3)

that is, the coplanarity of the four lepton four-momenta, equivalent to

y = α l + β x+ (γ − 1) k. (4.4)

Introducing this into the 8 original minors, it is easy to see that they all vanish provided

that

γ =
(α− β) (l3 x0 − l0 x3)

α (k3 l0 − k0 l3) + β (k3 x0 − k0 x3)
(4.5)

The transposed Jacobian matrix, with use of E6 and E7 of eqs. (4.1), is

J(S0,S3) =



x0 0 l0 0 S0 0 0

−x1 0 −l1 0 0 1 0

−x2 0 −l2 0 0 0 1

−x3 0 −l3 0 −S3 0 0

0 y0 0 k0 S0 0 0

0 −y1 0 −k1 0 1 0

0 −y2 0 −k2 0 0 1

0 −y3 0 −k3 −S3 0 0


, (4.6)

where the functional dependence of J on S0,3 has been made explicit for later convenience.

It turns out to be very useful to study the behaviour of the 7 × 7 minors of J under

longitudinal Lorentz transformations, the boosts along the axis “3” of the proton beams. To

proceed recall that, for the reasons stated in the Introduction, we are setting the hadron

momenta p1 = p2 = 0. Next, parametrize an event in the usual Cabibbo-Maximovich

manner [12], illustrated in our notation in figure 2. That is, consider the lepton momenta

as if both W bosons were at rest, boost them by the antiparallel motion of the W s in

the H rest system and finally boost the Higgs boson longitudinally left or right along the

beams’ axis:

l = L(yH , ~np)L(y, ~n) (MW /2){1, ~nl},
x = L(yH , ~np)L(y, ~n) (MW /2){1,−~nl},
k = L(yH , ~np)L(y,−~n) (MW /2){1, ~nk},
y = L(yH , ~np)L(y,−~n) (MW /2){1,−~nk},

(4.7)
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µ+e−

qg,

νµν̄e

W−W+

!n
W

!nl

−!n
W

!np

!nk

Figure 2. Top: The H → WW , W → `ν process in a Cabibbo-Maximovich parametrization [12].

The vectors ~nl and ~nk are the directions of the charged leptons (a µ+ and an e− in this illustration)

in the respective rest systems of their parent W s. The overall WW system, shown here at rest,

is to be boosted along the direction ~np of the gluon or qq̄ pair that fuse to produce the W pair,

resonantly (for the H signal) or not (for the irreducible background).

where ~nk, ~nl, ~n and ~np are unit vectors, L(y, ~n) is a Lorentz boost along ~n with velocity

β = tanh(y), y = arccosh(γ), γ = MH/(2MW ), and analogously for the longitudinal boost

along np, of rapidity yH .

Label mj , j = 1 to 8, the 7 × 7 minors of J in eq. (4.6), lacking the row 9 − j of J .

Under a longitudinal boost L(yH , ~n3), they transform as mj 7→ m̄j , with:

m̄1 = γH [m1 + βH m8 + βH S3D],

m̄i = mi, i = 2, 3, 6, 7,

m̄4 = γH [m4 + βH m5 − βH S0D],

m̄5 = γH [m5 + βH m4 + βH S3D],

m̄8 = γH [m8 + βH m1 − βH S0D],

(4.8)

where we used the definitions in eqs. (4.2).

The conditions mj = 0, ∀ j imply that D = 0, and consequently that m̄j = 0, ∀ j.
Thus, we reach a crucial point: the general singular configurations can be obtained by

boosts of the ones in the boson’s rest system. This is one of the reasons why we pause to

study this latter simpler case.

5 Lessons from a gluon collider

A standard Higgs can be made in various ways, with top-mediated gluon fusion being the

dominant mechanism up to very high MH values. The gluonic pdfs, as well as those of

the other partons, are fast-falling functions of their fractional momentum. This implies

that Higgs bosons are made with a narrow distribution of rapidities, centered at yH = 0.

The same is true for the backgrounds to the H → WW channel, e.g. non-resonant pairs

of relatively heavy objects, such as W -bosons, are also made with a moderate collective

motion. Thus, the approximation of a monochromatic “gluon collider” (or qq̄ collider) is a

good starting point for our analysis.

– 8 –
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5.1 Derivation of the singularity conditions

In the WW center of mass system an extra working condition is to be added to eqs. (4.1):

CCM V S3 ≡ l3 + x3 + k3 + y3 = 0. (5.1)

and the Jacobian is now J(S0, 0), with J as in eq. (4.6). Since S0 > 0 and the fifth column

of J(S0, 0) is proportional to S0, it suffices to consider the vanishing of the eight 7 × 7

minors of J(1, 0), of which only four, e.g. mi, i = 1, . . . 4, are independent modulo D.

In the CM system, let E = MH/2 denote the W ’s energy and P the corresponding mo-

mentum modulus. The four-momenta of the individual W s in the notation of eq. (4.7) are:

p
Wl

= {E,+P ~n}
p
Wk

= {E,−P ~n} (5.2)

and it is convenient to put the neutrino’s momenta in the form x = p
Wl
− l, y = p

Wk
− k.

The conditions x2 = y2 = 0 now read

2El0 = M2
W + 2P ~l · ~n

2Ek0 = M2
W − 2P ~k · ~n.

(5.3)

Stepping back to eq. (4.6) and introducing the explicit lepton four-momenta in the

minors of J(1, 0) and in det(l, x, k, y), the vanishing of the results requires, in particular,

that det(~l,~k, ~n) = 0, that is, the 3D coplanarity of ~l,~k and ~n and, consequently, of all four

lepton three-momenta. We may write

~n = (a/l0)~l + (b/k0)~k. (5.4)

Gathering results and imposing ~n ·~n = 1, one may express a, b, x and y as functions of

l and k. Two families of CM critical configurations are obtained. They differ by the sign

of δ in

δ2 = (4k20 − 2MHk0 +M2
W )(4l20 − 2MH l0 +M2

W ) (5.5)

and satisfy:

~k ·~l =
−4E2k0l0 + 2E(k0 + l0)M

2
W −M4

W +M2
W δ

4P 2
,

a =
l0
[
− 2Ek0(~k ·~l + k0l0) + (k20 + ~k ·~l)M2

W

]
2
[
(~k ·~l)2 − k20l20

]
P

,

b =
k0
[
2El0(~k ·~l + k0l0)− (l20 + ~k ·~l)M2

W

]
2
[
(~k ·~l)2 − k20l20

]
P

, (5.6)

Substituting these expressions into mi, i = 1, . . . 4 one finds that m4 vanishes auto-

matically. The others independent minors acquire the form

m1 = (k2l1 − k1l2)N/D,
m2 = (k3l1 − k1l3)N/D,
m3 = (k3l2 − k2l3)N/D,

(5.7)

where N and D are lengthy functions of k and l.

– 9 –
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There are two alternative ways to satisfy mi = 0 ∀i. One of them is to let all three

parenthesis in eqs. (5.7) vanish simultaneously, tantamount to imposing ~k ∝ ~l, a specific

case of the condition to be obtained anon from the second alternative: N = 0. Eliminating

the sign ambiguity of δ yields a first requirement for an event to be singular, C = 0, with

C = κC2
1 C

3
2 C3,

κ ≡ −2M10
H M

4
W

(
M2
H − 4M2

W

)3
,

C1 ≡ k0 − l0,
C2 ≡ 2k0l0MH −M2

W (k0 + l0),

C3 ≡ 4M2
W (k0l3 + k3l0)

[
2MH(k0k3 + l0l3) +

2(k0 − l0)(k0l3 − k3l0)−M2
H(k3 + l3)

]
+

M4
W (k3 + l3)

[
MH(k3 + l3)− 2(k0 − l0)(k3 − l3)

]
+

4MH(2k0 −MH)(2l0 −MH)(k0l3 + k3l0)
2

(5.8)

The non-trivial vanishing of C3 implicitly presupposes det(~l,~k, ~n) = 0. Up to non-

vanishing overall factors, a second requirement for an event to be singular is this coplanarity

condition, squared such as to eliminate the sign of δ: C0 = 0, with

C0 = 2M2
W (l·k−2k0l0)

[
2l·k−MH(k0+l0)

]
−M2

H(l·k−2k0l0)
2+M4

W

[
2l·k−(k0+l0)

2
]
, (5.9)

where l·k has its customary Minkowskian meaning.

5.2 Questions of nomenclature

For a singular event the values of C in eq. (5.8) and C0 in eq. (5.9) must both vanish.

Given the form of C, there are three nontrivial ways for this to happen: Ci=C0=0, i = 1

to 3, which we call complete singularity conditions. Of these, only C3 =C0 = 0 guarantees

that all minors of the Jacobian vanish. The other two conditions, Ci=C0 = 0, i = 1 to 2,

are mock singularity conditions, in a sense occasionally used in mathematics, that is, they

do not satisfy all wanted conditions, but are useful for one’s purposes. As it turns out,

even the four partial singularity conditions Cj =0, j = 0 to 3, are of interest.

We choose C0 as the example to make our next linguistic points. Consider a real or

MC-generated event due to the production and decay of a Higgs boson. Its corresponding

value of the C0 function in eq. (5.9) — a (partial) measure of distance to the C0 = 0

singularity — depends on the Higgs boson mass in two distinct senses. The first is that

k0, l0 and l · k are contingent on this “input” mass. The second is the explicit MH in

the expression of C0, which is a variable that one may — naturally — vary at will. To

emphasize this point, we label this analyst’s mass calligraphically: MH →M.

It is convenient to rescale and rewrite C0 as:

C0 = −M4
E Σ0(M)/4

Σ0(M) ≡ (M−M+)(M−M−)

M± =
2MW

M2
E

[
MW (k0 + l0)±MM

√
M2
W −M2

E

]
M2
M,E ≡ 2(k0 l0 ∓ ~k~l ), (5.10)
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where M± are the non-zero roots of C0 = 0 and M2
M,E are the Minkowski and “Euclidean”

masses of the (approximately massless) charged lepton pair. Notice that Σ0 depends on

the implicit variable M, while its roots, M± do not. That is why we refer to Σ0 and M±
with different symbols, even though their distributions are in all cases diagnostics of the

value of the real or simulated Higgs boson mass (we reserve the nomenclature “M” for all

singularity variables of the later kind). Implicit masses become theoretically inevitable in

cases for which, unlike for Σ0, the M roots cannot be made explicit.

Functions of an implicit mass M, such as Σ0, are also singularity variables. They

vanish at singular points of phase space, iff the correct choice M = MH has been made,

with MH the physical or Monte Carlo “truth”.

5.3 Partial and complete singularity conditions and variables

The singularity condition C = 0 of eq. (5.8) can be satisfied in various ways. Two of them

(MH = 0 and MH = 2MW ) are of little practical relevance. Two others correspond to the

näıve-looking observables

M1 = |k0 − l0| (5.11)

M2 = M2
W

k0 + l0
2 k0 l0

(5.12)

The remaining possibility is C3 = 0 in eq. (5.8), a cubic polynomial in the Higgs boson

mass. In analogy with eq. (5.10) for C0, we introduce its roots:

C3 = F Σ3(M)

Σ3(M) = (M− M̃1)(M− M̃2)(M− M̃3)

F ≡ 4 (k3 l0 + k0 l3)
2 (5.13)

where the explicit forms of M̃i are lengthy.

It is not useless to rewrite eqs. (5.10), (5.12), (5.13) in the form:

Σ̃0 ≡ Sign(Σ0) |Σ0|1/2

Σ1 ≡ M1

Σ2 ≡ M−M2

Σ̃3 ≡ Sign(Σ3) |Σ3|1/3 (5.14)

This is because to construct true singularity variables that reflect a complete set of singu-

larity conditions we must introduce a measure of the distance between a data point (given

values of ~k and ~l ) and one of the three center-of-mass singular manifolds: the points {0, 0}
of the planes {Ci = 0}∩{C0 = 0}, i = 1 to 3. With the help of eqs. (5.10), (5.14) we define

the following quantities with unit mass dimension:

D1 =
(

Σ̃2
0 + Σ2

1

)1/2
D2 =

(
Σ̃2
0 + Σ2

2

)1/2
D3 =

(
Σ̃2
0 + Σ̃2

3

)1/2
(5.15)
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The functions Di(M) are the full set of complete center-of-mass singularity variables for

the case at hand.

5.4 From algebra to geometry

An advantage of the approximation in which Higgs bosons would be produced at rest is that

the locus of the singular points in the observable {~k,~l} phase space can be visualized. Let

cϕ ≡ cos ∆ϕ = ~kT ·~lT /(kT lT ). The singular phase space is shown in figure 3 in the variables

{k0, l0, cϕ}, in an example wherein we have chosen MH = 2.5 in MW = 1 units. The closed

surface in the three subfigures is the coplanarity condition C0 = 0, see eq. (5.9). The thick

lines in the top and middle figure correspond to the singularity conditions C0 = C1 = 0

and C0 = C2 = 0, see eqs. (5.8). The last figure partly describes the singular phase space

C0 = C3 = 0 for the choice k3 + l3 = 0; the complete space would be the direct product of

this latter line in {k3, l3} space with the thick line in the figure.

The C0 = C3 = 0 singularity condition, as one varies k3 + l3, covers all of the C0 = 0

coloured surface of figure 3. This reflects the fact that the other two conditions are mock,

and of zero measure relative to C0 = C3 = 0.

6 Back to a hadron collider

The derivation of a singularity variable for the more realistic case of an H boson of rapidity

yH 6= 0 is akin to that of the yH = 0 case, requiring only one extra step. Naturally, this is

to start by applying the Lorentz boost L(yH , ~np) to the W momenta of eq. (5.2), to obtain:

p
Wl

= {cE + sP n3,+P n1,+P n2, cP n3 + sE}
p
Wk

= {cE − sP n3,−P n1,−P n2, cP n3 − sE} (6.1)

where c ≡ cosh(yH) and s ≡ sinh(yH). Following precisely the same steps as in section 5.1,

one concludes that the partial singularity conditions are C ′i = 0, i=1 to 4, with

C ′1 = 2ξC1(l
′
0, l
′
3, k
′
0, k
′
3)

= k0 + k3 − l0 − l3 + (k0 − k3 − l0 + l3) ξ
2

C ′2 = 2ξ2C2(l
′
0, l
′
3, k
′
0, k
′
3)

= (k0 + k3) (l0 + l3)MH − . . .+ (k0 − k3) (l0 − l3)MHξ
4

C ′3 = 4ξ6C3(l
′
0, l
′
3, k
′
0, k
′
3),

= 4 (k0 + k3)
3 (l0 + l3)

3MH − . . .+ 4 (k0 − k3) 3 (l0 − l3) 3MH ξ
12

C ′0 = 4ξ4C0(l
′
0, l
′
3, k
′
0, k
′
3)

= − (k0 + k3)
2 (l0 + l3)

2M2
H + . . .− (k0 − k3) 2 (l0 − l3) 2M2

H ξ
8 (6.2)

where

ξ = c+ s = eyH (6.3)

l′0 = cl0 − sl3, l′3 = cl3 − sl0,
k′0 = ck0 − sk3, k′3 = ck3 − sk0
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Figure 3. Visualizing the singular CM phase space. The closed surface in all figures is C0 = 0,

see eq. (5.9). The thick lines in the top (middle) figure are the singularity conditions C0 = C1 = 0

(C0 = C2 = 0), see eqs. (5.8). The thickest black line in the bottom figure is the singular phase space

C0 = C3 = 0 for the particular choice k3 + l3 = 0. The entire illustration is for MW = 1,MH = 2.5.

The horizontal axes are kT and lT , the vertical one is cϕ ≡ ~kT ·~lT /(kT lT ).
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In C ′2,3,0, whose expressions in terms of unprimed momenta are easily obtained and lengthy,

we have only given the first and last term in their expansion in ξ, which are sufficient to

specify their mass dimension and their grade as polynomials in ξ, two numbers that we

shall need.

To obtain longitudinally boost-invariant results analogous to the ones in eqs. (5.15)

one must eliminate the unknown boost parameter ξ between the pairs of polynomials

{C ′j(ξ), C ′0(ξ)}, j = 1 to 3. The first and simplest of these results, for j = 1, is the

singularity condition ∆1 = 0, with

∆1 ∝M2 Σ,

M = A−B l · k,
Σ =

[
4A2E4 +B2(M4

W − 2P 2 l · k)2 − 4ABE2(M4
W + 2P 2 l · k)

]
,

A ≡ 2
[
(~lT · ~kT + l · k)2 − k2T l2T

]
,

B ≡ 2 (~lT · ~kT + l · k)− k2T − l2T ,

(6.4)

where E =M/2 is the energy of a W in the rest system of a Higgs boson of trial massM
and P is the corresponding momentum. We have followed our convention to label M the

singularity variables that do not depend onM, and Σ (and now ∆) those which do. Notice

that ∆1, by construction and demonstration, is a function of longitudinally boost-invariant

observables.

The derivation of analytical results for the remaining polynomial pairs is not as simple

as it was for {C ′0, C ′1}, C ′1 being merely quadratic in ξ. The expressions for C ′2,3,0 are

polynomials in ξ of degrees 4, 12 and 8, respectively. The condition for two polynomials∑n
i=0 aiξ

i and
∑m

j=0 bj ξ
j to vanish simultaneously (to have common roots) is called their

resultant, and is a sum of products of powers of ai and bj . The resultant of C ′1 = 0 and

C ′0 = 0 is the condition Res{C ′1, C ′0} ≡ ∆1 = 0, see eq. (6.4). The number of terms of a

resultant grows very rapidly with m× n, it is 95 for (m,n) = (2, 8), 4970 for Res{C ′2, C ′0},
for which (m,n) = (4, 8). For this case, after considerable simplifications, the singularity
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condition is ∆2 = 0, with

Res{C ′2, C ′0} ≡ ∆2 ∝ E4 k6T l
6
T (l · k)4(M16

W (16E4k2T l
2
T

+ (−4(~lT · ~kT )2 + 2~lT · ~kTM2
W + l2TM

2
W + k2T (4l2T +M2

W ))2

− 8E2(2k4T l
2
T +~lT · ~kT l2T (−2~lT · ~kT +M2

W )+k2T (−2(~lT · ~kT )2+~lT · ~kTM2
W +2l2T (l2T +M2

W ))))

+ 4l · kM12
W (−32E6k2T l

2
T +M4

W (8(~lT · ~kT )3+2~lT · ~kTM4
W +l2TM

2
W (l2T +M2

W )+k4T (4l2T +M2
W )

− 4(~lT · ~kT )2(l2T + 2M2
W ) + k2T (−4(~lT · ~kT )2 − 8~lT · ~kT l2T + 4l4T + 6l2TM

2
W +M4

W ))

− E2M2
W (−8(~lT · ~kT )3 + 8~lT · ~kT l2TM2

W + 4(~lT · ~kT )2(−5l2T +M2
W )

+ k4T (20l2T +M2
W ) + l2TM

2
W (l2T + 2M2

W )

+ 2k2T (−10(~lT · ~kT )2 + 10l4T + 13l2TM
2
W +M4

W + 4~lT · ~kT (l2T +M2
W )))

+ 4E4(4k4T l
2
T +~lT · ~kT l2T (−4~lT · ~kT + 3M2

W )

+ k2T (−4(~lT · ~kT )2 + 3~lT · ~kTM2
W + 2l2T (2l2T + 7M2

W ))))

+ 16E4(l · k)4(M6
W + 4k2TP

4)(M6
W + 4l2TP

4)

+ 4(l · k)2M8
W (−4~lT · ~kTM2

W (2E2 +M2
W )

× (3E4(k2T + l2T )− 4E2(k2T + l2T )M2
W +M4

W (k2T + l2T +M2
W ))

+ 4(~lT · ~kT )2(4E6(k2T +l2T )+M8
W +E4M2

W (−8k2T−8l2T +M2
W )+4E2M4

W (k2T +l2T +M2
W ))

+M4
W (M4

W (l2T +M2
W )2 − 2E2l2TM

2
W (l2T + 6M2

W ) + E4l2T (l2T + 12M2
W ))

+ 2k2T (48E8l2T +M8
W (l2T +M2

W )−8E6l2T (l2T +15M2
W )+E4(16l4TM

2
W +97l2TM

4
W +6M6

W )

− 2E2(4l4TM
4
W + 15l2TM

6
W + 3M8

W )) + k4T (−16E2l2T +M4
W )P 4)

− 16E2(l · k)3M4
W (M12

W + 3(k2T + l2T )M8
WP

2 + 6(k2T + l2T )M6
WP

4 + 24k2T l
2
TM

2
WP

6

+ 32k2T l
2
TP

8 − 2~lT · ~kTM2
W (E2 +M2

W )(M6
W + 2(k2T + l2T )P 4)))

(6.5)

Notice that ∆2, as was the case for ∆1, is a function of only longitudinally boost-invariant

observables.

What is the number of terms in Res{C ′3, C ′0}, for which the degrees of the polynomials

in ξ are (m,n) = (12, 8)? For m,n larger than a small integer the resultant soon becomes

obdurately complex. Not even the number of addends in the (monomial) products of its

formal coefficients is known. Only upper bounds to that number are, to our knowledge,

published. The tightest one is [13]:

S(m,n) = F (m,n, bmn/2c)
(
m+ n

n

)
,

where, for integer a, b, c, F satisfies the recurrence

F (a, b, c) =
b∑

j=0

F (a− 1, j, c− j),

with

F (1, b, c) =

{
1 if 0 ≤ c ≤ b
0 otherwise
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For the polynomial pair {C ′2, C ′0}, (m,n) = (4, 8) and S(4, 8) = 16335 (an overestimate

by a factor ∼3), while for {C ′3, C ′0}, (m,n) = (12, 8) and S(12, 8) = 477 174 360. This last

upper limit is the best current estimate (by expert mathematicians) of the number of terms

in the expression for the remaining singularity variable we are after, in terms of products

of powers of the m+ n+ 2 = 22 coefficients of ξ in the polynomial pairs, each of which is

a complicated function of MW ,M,~k and ~l.

We shall not be discouraged by the mathematical hardship of constructing explicit

algebraic resultants. In analogy with ∆1 in eq. (6.4) and given the complexity of ∆2 in

eq. (6.5), we shall simply define:

∆2 ≡ Res{C ′2(ξ), C ′0(ξ)}
∆3 ≡ Res{C ′3(ξ), C ′0(ξ)} (6.6)

and find, event by event, the resultant numerically. The coefficients of the powers of ξ in

C ′2,3,0 being — for a given event — numbers as opposed to symbols, this is doable and —

for the computer — trivial.

The formal proof that the resultants in eqs. (6.6) ought to be boost-invariant is given

in the appendix.

7 Dealing with the MH < 2MW case

In an H →WW ∗ process followed by leptonic decays of both W s, there is no way to assign

a mass, M∗, to the W which is putatively off-shell, even for a fixed MH . Moreover, there is

no deterministic way to decide which W was approximately on-shell. Finally, except close

to the MH = 2MW threshold, the theoretical distribution of off-shell masses, dΓ/dM∗, is

very wide. To confront this situation we choose to analize this case by assigning to both

W s an adequately averaged squared mass:

〈M2〉 =
M2
W + 〈M2

∗ 〉
2

(7.1)

Since the non-observation of two neutrinos results in wide distributions for all observables,

there is very little difference between using this prescription and other sensible ones, such

as substituting the average M2
∗ in eq. (7.1) by its most probable value.

For MH > MW , up to a few W widths, ΓH , below the two-W threshold, and for the

leading order standard-model matrix element for the H → WW ∗ decay, the distribution

of W ∗ masses, in the excellent approximation of neglecting Γ2
W /M

2
W , is:

dΓ

dM∗
∝

√
M4
W − 2M2

W

(
M2
H +M2

∗
)

+
(
M2
H −M2

∗
)2

(M2
∗ −M2

W )2

×
[
M4
W − 2M2

W

(
M2
H − 5M2

∗
)

+
(
M2
H −M2

∗
)2]

(7.2)

The corresponding 〈M2
∗ 〉 distribution is shown in figure (4) for the relevant range of MH

values. In this range and to a good approximation

〈M2(MH)〉 =
M2
W

2

[
1 +

(
MH

1.02456MW

)6
]
, (7.3)

also shown in the figure as the dashed line.
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〈M2〉
M2

W

MH (GeV)100 150

0.55

0.6

0.65

0.7

0.75

Figure 4. The average squared mass of eq. (7.1), as a function of MH , in the process H →WW ∗,

for MH < 1.93MW . The continuous line is the leading-order calculation in the standard model.

The dashed line is the approximation of eq. (7.3).

8 Details of our data analysis

We have derived singularity variables only for the signal process, not for its backgrounds,

and we use the signal singularity variables to compare the distributions of MC-generated

signals and backgrounds.

We present results only for the H → WW , W → eν, W → µν channel and its non-

resonant WW and tt̄ backgrounds, with leptons of transverse momentum greater than

15 GeV, and satisfying the pseudorapidity cuts η(e) < 2.5, η(µ) < 2.1 [9].

Given the delicacies of measuring or simulating (at a “reconstruction level”) the trans-

verse momentum of hadrons, pT , we have not boosted each event to the approximate frame

wherein the putative Higgs boson is transversally at rest. Our MC-simulations are for “gen-

erator level” events and do not have a pT = 0 requirement. No doubt this makes our results

look somewhat weaker than they might otherwise be.

The ratios of signal to background yields are fast-varying functions of MH . The se-

lections made by experimentalists on the way to focus on signal events are many and are

also mass-dependent. These are reasons why we shall limit ourselves to illustrating only

the different shapes (and not the absolute scales) of the signal and background histograms

of various singular variables.

In discussing singularity variables such as Σ0(M) of eq. (5.10) or ∆1(M) of eq. (6.4),

it is informative to do it not only for the correct “guess” M = MH , but also for incorrect

ones. Naturally, the histograms for a fixed MH and various M contain precisely the same

statistical information. An experimentalist using an observable such as Σ0 or ∆1 would

deal with data (with MH not known a priori) armed with a plethora of “diagonal” MC

templates with M = MH , with which to compare the observed distributions.
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9 Data analysis in the CM approximation

In this section we sketch a numerical analysis of the partial and complete “Higgs at rest”

singularity variables derived in section 5. Recall that these theoretically-obtained expres-

sions ignore both the longitudinal and transverse momentum of the Higgs-boson signal to

be analized.

9.1 Partial singularity conditions

We start this part of the discussion with the singularity variable Σ0, a measure of distance

of an event to the partial singularity condition of coplanarity: Σ0 = 0. We chose MH = 500

and 120 GeV as examples of the “true” mass of the events in this first illustration.

The distribution of values of Σ0 for 20000 signal events generated with MH = 500 GeV

is shown in the left panels of figure 5. The top left panel is for the correct assumption

M = MH , the two other left panels show comparisons with the incorrect assumptions

M = 4MH/5 (middle) and M = 5MH/4 (bottom). The right panels of figure 5 show

results for MH = 140 GeV. The top panel is for the correct assumption M = MH . The

middle panel is for M= 120 GeV and the lower one for M= 160 GeV. At MH = 500 GeV

the distribution of Σ0 is very sensitive to the boson’s mass, as exemplified in figure 5 by

the sensitivity to M. At MH =140 GeV this is less so.

The ability of the Σ0 distribution to sieve apart signal and background shapes is

illustrated in figure 6. Its left (right) columns are for MH = 500 (120) GeV, both with

M set to its corresponding correct value. The top (bottom) lines refer to the WW and tt̄

backgrounds. In all cases we have simulated equally many signal and background events,

so that the figure reflects the shape of the distributions, not their relative weights. At

MH = 120 GeV the shape of signal and backgrounds are very different, while at MH =

500 GeV this is not so.

The conclusions on the ability to distinguish signal and backgrounds or different Higgs

masses are, as we saw, very mass dependent. The rest of the questions to be discussed in

this section are quite insensitive to MH . We shall study them only for the MH = 120 GeV

example.

The quantity Σ0 of eq. (5.10) is real, but its roots, M±, need not be. For input MC

data corresponding to MH = 120 GeV, about 14% of the roots are a real pair, the rest

being two conjugate complex numbers. The conclusion that the complex roots are useless

would be most premature. A feature of these roots to be studied ab initio is the correlation

between their absolute value and phase. This is done for the MH = 120 GeV signal and

the WW and tt̄ backgrounds in figure 7, where the mass axis is the absolute value of the

roots (shown once for each complex root and for its two values for each real pair). The

ϕ axis is the phase of the roots having a non-negative imaginary part. We see that the

{ϕ, |M |} correlation is weak and the distributions are significantly different for signal and

background.

The distribution of absolute values and phases of the roots of Σ0, that is the projections

of the results of figure 3 onto the |M | and ϕ axis, are shown in figure 8. The results for

signal and WW and tt̄ backgrounds are significantly different. Notice in particular how
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Figure 5. The distribution of Σ0 values. The horizontal scales are in units of GeV2. The left

column in for MH = 500 GeV. Its top figure is for M = MH . In its middle (lower) ones the result

is compared with that of the incorrect M = (4/5)MH (M = (5/4)MH). The right panels are for

MH = 140 GeV. The top one is for the correct M = MH . The middle panel is for M = 120 GeV,

the lower one for M = 160 GeV. In the figures the correct-guess histogram is yellow. We have

not superimposed the histograms in the right column, because two of them are too similar to be

distinguishable when superposed.

the signal has a much higher fraction than the background of events with |M | and ϕ close

to zero.

The variables M1,2 of eqs. (5.11), (5.12) are akin to M± in that they do not refer to

an ansatz mass M. In spite of their naiveté, these observables, particularly M2, are quite

good at telling signal from backgrounds. Their shapes for an MH = 120 GeV signal and

the WW and tt̄ backgrounds are shown in figure 9.

Because the variable Σ3 of eq. (5.13) has mass dimension 3, it is convenient to plot

its sign-recalling cubic root of eq. (5.14). This we do in the left column of figure 10 for an

MH = 120 GeV signal and the WW and tt̄ backgrounds. The signal and the illustrated

backgrounds are seen to result in distributions with similar looks but significantly different

details. In the right column of figure 10 we show the three roots of the cubic equation

Σ3(M) = 0, see eq. (5.13). The taller (yellow) histograms are the MH = 120 GeV signal,

they are compared with those of the WW background (the tt̄ distributions, not shown,

differ a bit more than the WW ones from the signal distributions). The three roots M̃i of

Σ3, unlike the roots M± of Σ0, are not so useful in telling signal from backgrounds.
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Figure 6. Shapes of the Σ0 distributions for the signal — the yellow tallest histogram — and the

WW and tt̄ backgrounds (upper and lower rows). The horizontal scales are in GeV2 units. The

left (right) column is for MH = 500 (120) GeV.

9.2 Correlations between partial singularity variables

A question of practical interest is the extent to which the C0 and C1,2,3 distributions of

eqs. (5.10), (5.8) are correlated, for a putative signal, and for the backgrounds. It can be

answered, pictorially, by contemplating 2D histograms in the three {C0, Ci} planes. In

the {C0, C3} case, for which the functions depend on M, we choose to plot the results

in the {Σ̃0, Σ̃3} plane, see eqs. (5.10), (5.13). The singularity, for the correct assignment

M = MH , is at the origin of the plane. For this to be the case in the two other pairs, we

plot results for {Σ̃0,Σ1} and {Σ̃0,Σ2}, see eq. (5.14). All this we do in figure (11).

Two conclusions are to be extracted from the quoted figure, after noticing that its

horizontal scales for signal and backgrounds are not always the same. The signal variable

pairs are quite correlated, with the exception of {Σ0,Σ1}. The WW background is less cor-

related and its distribution is significantly different from that of the signal, for all variable

pairs. These statements are more so for the tt̄ background, which we have not shown.

9.3 Complete CM singularity conditions

To construct true singularity variables that reflect a complete set of singularity conditions

we must exploit a measure of the distance between a data point (its values of ~k and ~l )

and one of the three center-of-mass singularities which, forM = MH , are the points {0, 0}
of the planes {Σ0,Σi}, i = 1 to 3. These are the quantities Di defined in eqs. (5.15).

Distributions of these variables are shown in figure 12. The three choices appear to be

comparably efficient at telling signal from backgrounds.

The {Di, Dj} correlations are illustrated in figure 13 for a signal with MH = 120 GeV

and for the WW background, all withM = MH . Only the {D2, D3} correlation is strong.
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Figure 7. Correlation between absolute value M and the phase ϕ of the roots of Σ0. Top:

MH = 120 GeV signal. Middle: WW background. Bottom: tt̄ background. The real roots gather

along the ϕ = 0 axis.

In all cases the signal and background results are fairly distinct. This is even more so for

the tt̄ background, results for which we do not show.
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Figure 8. Shapes of the distributions of |M | (left column) and ϕ (right column) of the roots of Σ0.

The top row is the MH = 120 GeV signal. The WW and tt̄ backgrounds are shown in the middle

and lower rows. |M | is in GeV units.

10 Data analysis beyond the CM approximation

We have derived three longitudinally boost-invariant singularity variables. The first of

them, ∆1 is algebraically simple and factorizable as ∆1 ∝M2 Σ, see eq. (6.4). The mass

dimension of C ′1 is 1 and its degree in ξ is 2. The corresponding numbers for C ′0 are 6 and

8, see eqs. (6.2). The mass dimension of their resultant is 1 × 8 + 6 × 2 = 20. The mass

dimensions of M and Σ are 4 and 12, respectively. It is therefore convenient to discuss the

results in terms of M1/4, Σ1/12 and

∆̃1 ≡ ∆
1/20
1 , (10.1)

where the root is always real, since ∆1 is always positive.

For the quoted variables we show in figure 14 histograms comparing the quite distinct

shapes of the distributions for a signal of a Higgs boson of mass MH = 120 GeV and the

WW and tt̄ backgrounds, for M = MH in the case of Σ and ∆1. The distributions of

M1/4 and Σ1/12 — and consequently ∆̃1 — are similar, since the first two variables are

correlated. The correlations, shown in figure (15), are not as strong as one might have

suspected on the basis of figure 14 . The correlations are weaker for the signal than they

are for the background, except in the high-mass tails of the background distributions.
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Figure 9. Comparison of the shapes of the distributions of M2 (left column) and M1 (right column)

for an MH = 120 GeV signal (yellow) and the WW (top row) and tt̄ (lower row) backgrounds. See

eqs. (5.12), (5.11). Abscissae in GeV units.

The ability of Σ and its factors to tell apart diverse masses (120 and 140 GeV in the

coming instance) is studied in figure 16. The top left figure, histogramming Σ1/12, is for a

fixed MH = 120 GeV, with M = MH or 140 GeV. The other tree figures, for M1/4, Σ1/12

and ∆̃1 are for MH = 120, 140 GeV with, in all cases, M = MH . The function Σ(M) is

quadratic in M so that its roots, in analogy with M± in eq. (5.10) can be made explicit.

But they are not very efficient at telling apart signal from backgrounds, nor at zooming

into a value of MH . Thus, we do not show results for them.

We conclude that the singularity variable ∆1 and its factors are strong boost-invariant

tools to tell signal from backgrounds, and is not very stringent in constraining the value

of MH .

The mass dimension of C ′2 is 3 and its degree in ξ is 4. The corresponding numbers

for C ′0 are 6 and 8, see eq. (6.2). Thus, the mass dimension of ∆2 ≡ Res{C ′2, C ′0} is

3× 8 + 4× 6 = 48. In analogy with eqs. (5.14), it is convenient to define

∆̃2 ≡ Sign(∆2) |∆2|1/48 (10.2)

Results for the distributions of this singularity variable are presented in figures 17, 18 and

commented later.

The mass dimension of C ′3 is 7 and its degree in ξ is 12. Recall that thee corresponding

numbers for C ′0 are 6 and 8. The mass dimension of ∆3 ≡ Res{C ′3, C ′0} is 7×8+12×6 = 128.

In analogy with eq. (10.2), it is thus convenient to define

∆̃3 ≡ Sign(∆3) |∆3|1/128 (10.3)

Results for the distributions of this singularity variable are presented in figures 17, 18. The

message of these figures is that the variables ∆̃1,2,3 are very good both at distinguishing
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Figure 10. Left: distributions of the variable Σ̃3 of eq. (5.14); top is the MH = 120 GeV signal,

middle is the WW background, bottom is the tt̄ one. Right: distributions of the three roots of

Σ3(M) = 0, for the quoted signal (tall and yellow) compared with the WW background. Abscissae

in GeV units.

signal and background events and ∆̃2,3 are very good at pinpointing the mass of a putative

signal.

An interesting feature emerges when some of the histograms in figure 18 are remade

with higher statistics and resolution, concerning the singularity functions ∆̃2,3, but not ∆̃1.

This is shown in figure 19. A very clear narrow double peak shape appears for ∆̃3 (lower

figure), and a hint of a similar structure for ∆̃2 (upper figure).

The peaks in figure 19 reflect individual roots in M of ∆̃2,3(M). The function ∆̃2 in

eq. (6.5) is, after elimination of the overall E4 = (M/2)4 factor, still a polynomial of sixth

degree in M2. The ∆̃3(M) resultant in eq. (6.6) has an even more intractable degree in

M2: twenty-two. Thus, their roots can only be extracted numerically event by event, a

rather laborious task, which we postpone.

10.1 Correlations

The longitudinally boost invariant singularity variables ∆̃1,2,3 have correlations similar to

the ones between D1,2,3 that we showed in figure 13. They are shown in figure 20, for

an MH = 120 GeV signal. Once again, there are significant but not extreme correlations.
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Figure 11. Top left: Histogram of the values of Σ̃0 and Σ1, for a signal with MH = 120 GeV. Top

right: for the WW background. Middle row: the same as the first row, for {Σ̃0,Σ2}. Third row:

{Σ̃0,Σ3}. All plots are made for M = 120 GeV and all horizontal scales (which do not have the

same extent in all figures) are in GeV units. The relevant definitions are in eqs. (5.10), (5.13), (5.14).

Moreover the correlated histograms are quite different for the signal and WW background.

This is even more so for the tt̄ background, which we do not show.

In figure 21, we illustrate the correlations between ∆̃1,2,3 and ∆ϕ for the signal and

the WW background, to which the tt̄ background again is in this sense similar. For

the relatively light MH = 120 GeV signal shown in the figure, as expected, signal and

background densely populate very different regions of phase space.

11 Summary of results

With an eye on potential practical usefulness, let us call “good” the singularity variables

that do an efficient job at focusing on the correct value of MH and, more so, the ones that

produce the most significant difference in the shape of their distributions for a potential

signal and the WW and tt̄ backgrounds.

Some of the singularity variables derived in the CM approximation of a motionless

Higgs boson are unexpectedly good. This is the case for Σ0, associated with the CM

condition of coplanarity, defined in eq. (5.10) and illustrated in figures 5 and 6. Its two
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Figure 12. Histograms of the singularity variables Di of eq. (5.15). Top: D1. Middle: D2. Bottom:

D3. Left: comparison of the signal for M = MH = 120 GeV (the distribution peaking closer to

zero) with the WW background. Right: comparison of the same signal with the tt̄ background.

Abscissae in GeV units.

roots, M±, defined in the same equation, are of the simpler kind that does not involve a

trial massM. Their correlations, shown in figures 7, 8 in two different ways, are moderate,

both for the signal and the background. The quantities M± and their product Σ2
0(M) ≡

(M−M+)(M−M−) are good.

Still in the CM, we see in figure 9 that the näıve variable M1 (or Σ1), defined in

eqs. (5.12), (5.14), is not good. The variable Σ2 (Σ̃3), also defined in eq. (5.14) is good (not

so good), as one can conclude from figures 9, 10. These limitations are lifted as we con-

struct from these variables the quantities Di defined in eq. (5.15), which are histogrammed

in figure 12: they are reasonably good at telling signal from backgrounds. Their correla-

tion plots, shown in figure 13, are quite disimilar for the signal and the WW irreducible

background.

The longitudinally boost-invariant analogs of Di, i = 1 to 3 are the singularity vari-

ables ∆1 of eq. (6.4) and ∆2,3 of eq. (6.6). We have redefined them to have unit mass

dimensionality in eqs. (10.1), (10.2), (10.3). Only for ∆1,2 we have analytical expressions,

which are factorizable. The factors of ∆1, and the complete variable are very good, as

illustrated in figures 14, 15), (16. So are the variables ∆̃2,3, as shown in figures 17, 18. We
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Figure 13. Histograms of the correlations between the singularity variables Di of eq. (5.15). Left:

the signal for MH = 120 GeV. Right: WW background. Top: {D1, D2}. Middle: {D1, D3}.
Bottom: {D2, D3}. Horizontal axes is GeV units.

see in figure 20 that the three ∆̃i are quite correlated, but the correlation plots of signal

and background are populated in a significantly different way. A comparison of figure 18

with the corresponding result for the CM variables Di, figure 12, shows, once more, that

the ∆̃i are demonstrably better.

The confrontation of the results for the boost-invariant variables, ∆i, and their siblings,

Di, obtained in the approximation in which the boson is at rest is very gratifying. The

signal peaks are significantly narrower and the correlations weaker for the ∆s than for

the Ds.

In the sense of their correlations with the function ∆ϕ, shown in figure 21, the singu-

larity variables ∆̃i are optimal tools to separate signal from backgrounds.
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Figure 14. Histograms of the singularity variables M1/4,Σ1/12 and ∆̃1 of eq. (6.4). Top: M .

Middle: Σ. Bottom: ∆1. Left: comparison of the shape of the signal forM = MH = 120 GeV (the

distribution peaking closer to zero) with the shape of the WW background. Right: comparison of

the same signal shape with that of the tt̄ background. Abscissae in GeV units.

12 Conclusions

Recall that, as discussed in the Introduction, in the case of the CM singularity variables one

can construct up to five independent combinations of the relevant observables. The best

choice is the set {M+,M−, D1, D2, D3}, whose ingredients are defined in eqs. (5.10), (5.15).

The main appeal of these CM variables is that they are simple and explicit functions of

the relevant observables. Their main drawback is that they are not as good as the boost-

invariant variables, to be revisited next.

The only imperfection of the boost-invariant singularity variables is that for one of

them, ∆3, we are unable to derive its explicit analytical expression. For ∆2 the analytical

expression, eq. (6.5), is so complex that we have opted to compute it event by event as a

numerical resultant, as we are forced to do in the case of ∆3. For the computer, this is fast

and simplest.

The practical virtues of the variables ∆i — in being able to pinpoint the actual value

of MH and to tell apart signal from backgrounds — amply overcome their quoted single

limitation. The theoretical toil required to go beyond the Higgs-at-rest approximation pays.
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Figure 15. Correlations between M1/4 and Σ1/12. Top: The Signal for M = MH = 120 GeV.

Middle: WW background. Bottom: tt̄ background. The horizontal scales are in GeV and do not

have the same extent in all figures.

Recall that in terms of the four boost-invariant observables one can construct up to

four useful combinations. The next-to-best choice is {M1/4,Σ1/20, ∆̃2, ∆̃3}, where M and Σ

are the factors building up ∆1, see eq. (6.4). The best choice is {∆̃1, ∆̃2, ∆̃3,∆ϕ}, combin-
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Figure 16. Top left: The distribution of Σ1/12 for a signal with MH = 120 GeV. The (yellow)

histogram peaking at a smaller value of Σ is for the correct M = MH . The other histogram is for

M = 140 GeV. Top right: The distribution of M1/4 for “data” with MH = 120 and MH = 140 GeV.

Bottom left: The distribution of Σ1/12 for the same data, withM = MH in each case. Bottom right:

The same as the last entry, for ∆̃1. In all cases the lower-peaking histogram his for MH = 120 GeV.

The horizontal scales are in GeV.

Figure 17. Study of the sensitivity to mass of ∆̃2, eq. (10.2) (top row), and of ∆̃3, eq. (10.3)

(bottom row). The (yellow) single-peaked histograms are, in all graphs, for the correctM = MH =

120 GeV. Left: Comparison with an incorrect choice M = 140 GeV. Right: Comparison with data

for MH = 140 GeV, analized with the correct M = MH . The horizontal scale is in GeV.

ing our kinematical singularity variables with the good old “dynamical” (spin-dependent)

angle, ∆ϕ, of the charged leptons in the transverse plane.
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Figure 18. Signal vs WW (left column) and tt̄ backgrounds (right column) for the variables ∆̃1

(top row), ∆̃2 (middle row) and ∆̃3 (bottom row), respectively defined in eqs. (10.1), (10.2), (10.3).

In all graphs M = MH = 120 GeV. The horizontal scale is in GeV.

The bell shapes of the signal histograms in figure 18 are very satisfactory, even if

obtained with theoretical expressions in the ~pT =0 approximation for the produced hadrons.

We have checked, by generating and analizing events with ~pT = 0, that the improvement

brought by theoretical variables that avoid the ~pT =0 approximation is unlikely to be very

significant.

We have only studied variables and their pair-wise correlations. We have not attempted

to quantify the absolute values of signals and backgrounds — as opposed to just the shape

of their distributions. Thus, we are far from being able to show potential “significance”

results in terms of a full multi-dimensional analysis of all variables and their correlations.

Yet our results for ∆̃1,2,3 in figure 18 are competitive in “goodness” with the ∆ϕ diagnosis

recalled in figure 1. That was one of our goals.

For an experimentalist eager to test the tantalizing hints that MH = 126 or 124 GeV [1–

4], it should not be too streneous to prepare the relevant one- or multi-dimensional

singularity-variable templates for the relatively copious channel H →WW → leptons.

Our main aim was the theoretical derivation of a complete set of phase-space singularity

conditions and variables for the process H → W+W−, W± → `±ν. We have seen it is

a rather laborious task. The origin of its difficulty is many-fold. First, because of the

– 31 –



J
H
E
P
0
6
(
2
0
1
2
)
0
9
1

Figure 19. High resolution histograms for ∆̃2 (upper panel) and ∆̃3, showing the (narrower,

yellow) signal and the (wider, blue) WW background. The abscissae are in GeV units.

elusiveness of neutrinos, the kinematical constraints of eqs. (4.1) are incomplete. Second,

several of these equations are non-linear. Finally and most severely, the 7-th equation,

the one reflecting that the invariant mass of the four leptons is MH , inextricably links

the leptons resulting from the decay of one W to those from the other, very significantly

complicating the ensuing algebra.

In most processes relevant to a hadron-collider search for new physics involving unob-

servable particles, the initial step is a non-resonant production of a pair of novel particles.

This means one cannot assume a fixed invariant mass for the pair and (approximately)

boost each event to the pair’s rest system. But the last difficultly mentioned in the previ-

ous paragraph is absent. That is why, even for ~pT 6= 0 — and a surfeit of unknown masses

— the pertinent singularity variables are relatively simple, and analytical [14].
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Figure 20. Histograms of the correlations between the singularity variables ∆̃i of

eqs. (10.1), (10.2), (10.3). Left: The MH = 120 GeV signal. Right: WW background. Top:

{∆̃1, ∆̃2}. Middle: {∆̃1, ∆̃3}. Bottom: {∆̃2, ∆̃3}. The ∆̃i axes are in GeV.

A SO(1, 1) invariance of the resultants

Let Ci, C0 be the CM functions defined in eqs. (5.8), (5.9). Let C ′i, C
′
0 be the functions in

eq. (6.2), boosted by Lξ ∈ SO(1, 1), whose action on a longitudinal vector v = {v0, v3} is

v 7→ Lξ(v). Very explicitly, with ξ the boost parameter in eq. (6.3),

v0 7→ (Lξv)0 :=
1

2
(ξ + ξ−1)v0 +

1

2
(ξ − ξ−1)v3,

v3 7→ (Lξv)3 :=
1

2
(ξ − ξ−1)v0 +

1

2
(ξ + ξ−1)v3,

(A.1)

and

C ′i(l, k, ξ) = ξriCi(L
−1
ξ l, L−1ξ k),

C ′0(l, k, ξ) = ξr0C0(L
−1
ξ l, L−1ξ k),

(A.2)

– 33 –



J
H
E
P
0
6
(
2
0
1
2
)
0
9
1

Figure 21. Histograms of the correlations between the singularity variables ∆̃i of

eqs. (10.1), (10.2), (10.3) and ∆ϕ. Left: The MH = 120 GeV signal. Right: WW background.

Top: {∆̃1,∆ϕ}. Middle: {∆̃2,∆ϕ}. Bottom: {∆̃3,∆ϕ}. The ∆̃i axes are in GeV.

where ri, r0 are the minimal entire numbers required for C ′i, C
′
0 to be polynomials in ξ. It

is easy to check that

ri = gi/2, r0 = g0/2, (A.3)

with gi and g0 the degrees in ξ of C ′i and C ′0.

Let R(l, k) be the resultant in ξ of C ′i(l, k, ξ), C
′
0(l, k, ξ):

R(l, k) := Res(C ′i(l, k, ξ), C
′
0(l, k, ξ), ξ). (A.4)

We want to prove that

R(l, k) = R(Lηl, Lηk) (A.5)

for all Lη ∈ SO(1, 1), that is, the resultant is invariant under longitudinal boosts.
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Indeed, using the aforementioned definitions, we have:

R(Lηl, Lηk) =

Res(C ′i(Lηl, Lηk, ξ), C
′
0(Lηl, Lηk, ξ), ξ) =

Res(ξriCi(L
−1
ξ Lηl, L

−1
ξ Lηk), ξr0C0(L

−1
ξ Lηl, L

−1
ξ Lηk), ξ) =

Res(ξriCi(L
−1
ξ/ηl, L

−1
ξ/ηk), ξr0C0(L

−1
ξ/ηl, L

−1
ξ/ηk), ξ) =

Res(ηriC ′i(l, k, ξ/η), ηr0C ′0(l, k, ξ/η), ξ).

(A.6)

Taking into account that, if p1(x), p2(x) are two arbitrary polynomials of degrees g1, g2,

respectively,

Res(a1p1(x/b), a2p2(x/b), x) = ag21 a
g1
2 b
−g1g2Res(p1(x), p2(x), x), (A.7)

it immediately follows, with use of eqs. (A.3), (A.7), that:

Res(ηriC ′i(l, k, ξ/η), ηr0C ′0(l, k, ξ/η), ξ) = Res(C ′i(l, k, ξ), C
′
0(l, k, ξ), ξ) = R(l, k). (A.8)

The desired “Q.E.D.” is simply reached by putting together eqs. (A.6), (A.8). It is also sim-

ple and gratifying, in the case of the ∆3 resultant that we were unable to derive explicitly,

to check its boost invariance numerically.
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[9] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05

(2006) 026 [hep-ph/0603175] [INSPIRE].

[10] V.D. Barger, A.D. Martin and R. Phillips, Perpendicular e neutrino mass from W decay, Z.

Phys. C 21 (1983) 99 [INSPIRE].

[11] J. Smith, W. van Neerven and J. Vermaseren, The transverse mass and width of the W

boson, Phys. Rev. Lett. 50 (1983) 1738 [INSPIRE].

[12] N. Cabibbo and A. Maksymowicz, Angular Correlations in Ke4 Decays and Determination of

Low-Energy π − π Phase Shifts, Phys. Rev. B 137 (1965) 438 [Erratum ibid. B 168 (1968)

1926].

[13] M. Kalkbrener, An upper bound on the number of monomials in the Sylvester resultant, in

proceedings of 1993 International Symposium on Symbolic and Algebraic Computation,

ACM, New York (1993) 161.
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