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Abstract

In this paper, we study some fixed point theorems for self-mappings satisfying certain
contraction principles on a convex complete metric space. In addition, we investigate
some common fixed point theorems for a Banach operator pair under certain
generalized contractions on a convex complete metric space. Finally, we also improve
and extend some recent results.
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1 Introduction
In 1970, Takahashi [1] introduced the notion of convexity in metric spaces and studied
some fixed point theorems for nonexpansive mappings in such spaces. A convex metric
space is a generalized space. For example, every normed space and cone Banach space is
a convex metric space and convex complete metric space, respectively. Subsequently, Beg
[2], Beg and Abbas [3, 4], Chang, Kim and Jin [5], Ciric [6], Shimizu and Takahashi [7],
Tian [8], Ding [9], and many others studied fixed point theorems in convex metric spaces.
The purpose of this paper is to study the existence of a fixed point for self-mappings
defined on a nonempty closed convex subset of a convex complete metric space that satis-
fies certain conditions. We also study the existence of a common fixed point for a Banach
operator pair defined on a nonempty closed convex subset of a convex complete metric
space that satisfies suitable conditions. Our results improve and extend some of Karap-
inar’s results in [10] from a cone Banach space to a convex complete metric space. For
instance, Karapinar proved that for a closed convex subset C of a cone Banach space X
with the norm |[|x[|,, = d(x,0), if a mapping T': C — C satisfies the condition

d(x, Tx) + d(y, Ty) < qd(x, )

for all x,y € C, where 2 < g < 4, then T has at least one fixed point. Letting x = y in the
above inequality, it is easy to see that T is an identity mapping. In this paper, the above
result is improved and extended to a convex complete metric space.

2 Preliminaries
Definition 2.1 (see [11]) Let (X,d) be a metric space and I = [0,1]. A mapping W: X x
X x I — X is said to be a convex structure on X if for each (x,y,A) € X x X x [ and u € X,

d(u, W(x,y, A)) < xd(u,x) + 1 - N)d(u,y).
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A metric space (X, d) together with a convex structure W is called a convex metric space,
which is denoted by (X, d, W).

Example 2.2 Let (X, | ||) be a normed space. The mapping W: X x X x I — X defined
by W(x,5,1) = Ax + (L — A)y for each x,y € X, A € I is a convex structure on X.

Definition 2.3 (see [11]) Let (X,d, W) be a convex metric space. A nonempty subset C of
X is said to be convex if W(x,y,1) € C whenever (x,y,1) € C x C x I.

Definition 2.4 (see [3]) Let (X,d, W) be a convex metric space and C be a convex subset
of X. A self-mapping f on C has a property (I) if f(W(x,y,1)) = W(f(x),f(y),A) for each
x,y€Cand A €1.

Example 2.5 If (X, || ||) is a normed space, then every affine mapping on a convex subset
of X has the property (I).

Definition 2.6 Letf,g: X — X. A point x € X is called
(i) afixed point of f if f(x) = «,
(ii) a coincidence point of a pair (f,g) if f(x) = g(x),
(iii) a common fixed point of a pair (f,g) if f(x) = g(x) = x.
F(f), C(f,g), and F(f,g) denote the set of all fixed points of f, coincidence points of the
pair (f,g), and common fixed points of the pair (f,g), respectively.

Definition 2.7 (see [12, 13]) The ordered pair (f,g) of two self-maps of a metric space
(X, d) is called a Banach operator pair if F(g) is f-invariant, namely f(F(g)) € F(g).

Example 2.8 (i) Let (X, d) be a metric space and k > 0. If the self-maps f, g of X satisfy
d(g(f (x)),f(x)) < kd(g(x),x) for all x € X, then (f,g) is a Banach operator pair.

(ii) It is obvious that a commuting pair (f, g) of self-maps on X (namely fg(x) = gf (x) for
all x € X) is a Banach operator pair, but the converse is generally not true. For example,
let X = R with the usual norm, and let f(x) = x? — 2x, g(x) = x? — x — 3 for all x € X, then
F(g) = {-1,3}. Moreover, f(F(g)) € F(g) implies that (f,g) is a Banach operator pair, but
the pair (f,g) does not commute.

In [10], Karapinar obtained the following theorems.

Theorem 2.9 (see Theorem 2.4 of [10]) Let C be a closed and convex subset of a cone
Banach space X with the norm ||x|,, = d(x,0), and T: C — C be a mapping which satisfies
the condition

d(x, Tx) + d(y, Ty) < qd(x,y)

forallx,y € C, where2 < q < 4. Then, T has at least one fixed point.

Theorem 2.10 (see Theorem 2.6 of [10]) Let C be a closed and convex subset of a cone
Banach space X with the norm |x|, = d(x,0), and T: C — C be a mapping which satisfies
the condition

d(Tx, Ty) + d(x, Tx) + d(y, Ty) < rd(x, )

forallx,y € C, where2 <r<5. Then, T has at least one fixed point.
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3 Main results
To prove the next theorem, we need the following lemma.

Lemma 3.1 Let (X,d, W) be a convex metric space, then the following statements hold:
() d(x,y) =dx, W(x,y,1)) + d(y, W(x,y, 1)) for all (x,y,A) € X x X x I.
(i) d(x, W(x,y, %)) =d(y, W(x,y, %)) = %d(x,y)for allx,y € X.

Proof (i) For any (x,7,1) € X x X x I, we have

d(x,y) < d(x, W(x,y,1) +d(y, W(x,y, 1)
<@ =1)d(x,y) + rd(x,y)
=d(x,).

Therefore, d(x,y) = d(x, W(x,y, 1)) + d(y, W(x,y, 1)) holds.
(ii) Let x,y € X. By the definition of W and using (i), we have

1 1 1 1 1 1
d(x, W(x,y, 5)) < Ed(x,y) = Ed(x, W(x,y,i)) + §d< ,W(x,y, 5))
Therefore,
1 1 1 1
_d ,W ')y o = _d ’W )y o .
2 <x (”2))<2 ( (”2»

Similarly,

1 1 1 1
§d<y, W(x,y, 5)) < Ed(x, W(x,y, 5))

Therefore, d(x, W (x, y, %)) =d(y, W(x,y, %)). Now, from (i), we obtain

d(x, W(x,y, %)) :d(y, W(x,y,%)) = %d(x,y)

for all x,y € C, and the proof of the lemma is complete. O
The following theorem improves and extends Theorem 2.6 in [10].

Theorem 3.2 Let C be a nonempty closed convex subset of a convex complete metric space
(X,d, W) and f be a self-mapping of C. If there exist a, b, ¢, k such that

2b—|c| <k<2@+b+c)-|c|, (3.1)
ad(x,f(x)) + bd(y,f(9)) + cd(f (x),f () < kd(x,y) (32)

forall x,y € C, then f has at least one fixed point.

Proof Suppose x € C is arbitrary. We define a sequence {x,};°, in the following way:

X, = W(xn_l,f(x,,_l), %), n=1,.... (3.3)
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As C is convex, x, € C for all n € N. By Lemma 3.1(ii) and (3.3), we have

d(xn:f(xn)) = 2d (%, Xys1)s (3.4)
d(xn’f(xn—l)) = d(xm xn—l) (35)

for all n € N. Now, by substituting x with x,, and y with x,_; in (3.2), we get
ad (%, f (%)) + b (%n-1,f %n-1)) + cd(f (), f (n-1)) < kd (%, %n-1)
for all # € N. Therefore, from (3.4) and (3.5), it follows that
2ad(%; X1) + 2bd(X, 1) + €A (f (%), f (K1) < kel (%, 1) (3.6)

for all n € N. Let ¢ be a nonnegative number. Using the triangle inequality, (3.4) and (3.5),
we obtain

2¢d(%s Xs1) — €A Xy %n1) < cd(f (%), f (%4-1))
for all n € N. Similarly, for the case ¢ < 0, we have

2¢d (%, %na1) + €A %1) < cd (f (%), f (1))
for all # € N. Therefore, for each case we have

20d (3, Xn11) — 101 Gin, 1) < € (F (), f (n 1) (37)
for all # € N. Now, from (3.6) and (3.7), it follows that

2ad(%y, Xy11) + 20d (%, %-1) + 2¢d (X, K1) — |€|d(Kp, %p1) < kd (%, %0-1)

for all #» € N. This implies

k-2b
d(xnrxwrl) =< * |C| d(xmxn—l)
2(a+c¢)

for all #» € N. From (3.1), k;éb;;';‘ € [0,1), and hence, {x,}5, is a contraction sequence in C.

Therefore, it is a Cauchy sequence. Since C is a closed subset of a complete space, there
exists v € C such that lim,_, » x, = v. Therefore, the triangle inequality and (3.4) imply
lim,,, o f (x,,) = v. Now, by substituting x with v and y with x,, in (3.2), we obtain

ad(v,f(v)) + bd(x,,,f(x,,)) + cd(f(v),f(x,,)) < kd(v,x,)

for all n € N. Letting n — oo in the above inequality, it follows that

(@+c)d(v,f(v)) <0.
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Since a + ¢ is positive from (3.1), it follows that d(v,f(v)) = 0. Therefore, f(v) = v and the
proof of the theorem is complete. d

The following corollary improves and extends Theorem 2.4 in [10].

Corollary 3.3 Let (X,d, W) be a convex complete metric space and C be a nonempty closed
convex subset of X. Suppose that f is a self-map of C. If there exist a, b, k such that

2b<k<2a+b),
ad(x.f(x)) + bd(y.f(y)) < kd(x,5)

forall x,y € C, then F(f) is a nonempty set.
Proof Set c=0in Theorem 3.2. O

Theorem 3.4 Let (X,d, W) be a convex complete metric space and C be a nonempty subset
of X. Suppose that f, g are self-mappings of C, and there exist a, b, ¢, k such that

2b—|c|<k<2(a+b+c)-|c|, (3.8)
ad(g(x),f(x)) + bd(g(y),f(y)) + Cd(f(x),f(y)) < kd(g(x),g(y)) (3.9)

for all x,y € C. If (f,g) is a Banach operator pair, g has the property (I) and F(g) is a
nonempty closed subset of C, then F(f,g) is nonempty.

Proof From (3.9), we obtain

ad(x,f (%)) + bd(y,f () + cd(f (x),f () < kd(x,y) (3.10)

forallx,y € F(g). F(g) is convex because g has the property (I). It follows from Theorem 3.2
that F(f,g) is nonempty. O

Theorem 3.5 Let (X,d, W) be a convex complete metric space and C be a nonempty subset
of X. Suppose that f, g are self-mappings of C, F(g) is a nonempty closed subset of C, and
there exist a, b, ¢, k such that

2b—|c| <k<2(a+b+c)-|c|, (3.11)
ad(g(x),g(f (%)) + bd(g(»),g(f (1)) + cd(g(f()), g(f())) < kd(g(x),2(»)) (3.12)

forallx,y € C.If (f,g) is a Banach operator pair and g has the property (I), then F(f,g) is
nonempty.

Proof Since (f,g) is a Banach operator pair from (3.12), we have

ad(x,f (%)) + bd(y,f () + cd(f (%), £ () < kd(x,)

for all x,y € F(g). Because g has the property (I) and F(g) is closed, Theorem 3.2 guaranties
that F(f,g) is nonempty. O
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